
Confidential Consortium Framework: Secure Multiparty
Applications with Confidentiality, Integrity, and High Availability

Heidi Howard∗
Azure Research, Microsoft

Fritz Alder†
imec-DistriNet, KU Leuven

Belgium

Edward Ashton
Azure Research, Microsoft

Amaury Chamayou
Azure Research, Microsoft

Sylvan Clebsch
Azure Research, Microsoft

Manuel Costa
Azure Research, Microsoft

Antoine Delignat-Lavaud
Azure Research, Microsoft

Cédric Fournet
Azure Research, Microsoft

Andrew Jeffery†
University of Cambridge

UK

Matthew Kerner
Microsoft

Fotios Kounelis†
Imperial College London

UK

Markus A. Kuppe
Microsoft Research

Julien Maffre
Azure Research, Microsoft

Mark Russinovich
Microsoft

Christoph M. Wintersteiger
Azure Research, Microsoft

ABSTRACT
Confidentiality, integrity protection, and high availability, abbrevi-
ated to CIA, are essential properties for trustworthy data systems.
The rise of cloud computing and the growing demand for multiparty
applications however means that building modern CIA systems is
more challenging than ever. In response, we present the Confiden-
tial Consortium Framework (CCF), a general-purpose foundation
for developing secure stateful CIA applications. CCF combines cen-
tralized compute with decentralized trust, supporting deployment
on untrusted cloud infrastructure and transparent governance by
mutually untrusted parties.

CCF leverages hardware-based trusted execution environments
for remotely verifiable confidentiality and code integrity. This is
coupled with state machine replication backed by an auditable im-
mutable ledger for data integrity and high availability. CCF enables
each service to bring its own application logic, custom multiparty
governance model, and deployment scenario, decoupling the opera-
tors of nodes from the consortium that governs them. CCF is open-
source and available now at https://github.com/microsoft/CCF.

1 INTRODUCTION & MOTIVATION
Together data confidentiality, integrity protection, and high avail-
ability form the CIA triad, a classic formulation in information
security [129]. We begin by examining each property, with a par-
ticular focus on running trustworthy multiparty applications on
untrusted infrastructure.

Data confidentiality. Organizations are responsible for ensur-
ing the privacy of personal data. Increasingly this responsibility
is codified in law, and the penalties for failing to fulfill this obli-
gation can be substantial, for instance up to 4% of turnover in the

∗Corresponding author’s email: heidi.howard@microsoft.com
†Work done while at Microsoft

case of GDPR [97]. Even where data is not personal, companies
may wish to keep data confidential to protect intellectual prop-
erty, for competitive advantage, or to maintain systems security,
for instance when storing secrets. Encryption at rest and in-flight
are well-established approaches to achieving confidentiality, but
confidentiality during execution is more challenging. Moreover,
encryption alone does not fully solve the problem of confidentiality.
Instead, it reduces the problem of protecting arbitrary data into
the problem of protecting keys, which in turn need to be managed,
stored, and released according to some well-defined policy.

Integrity protection. Not only are organizations responsible for
maintaining data confidentiality, they are also obligated to protect
data in their care from unauthorized or unintended modification.
In fact, integrity protection of the code that accesses data is of-
ten a prerequisite of data confidentiality. Code integrity together
with transparency [34] allows parties who share data to agree on
how data can be used, for instance, a bank can comply with anti-
money laundering legislation by executing queries on behalf of a
government without disclosing all customer information.

Cloud computing enables efficient scaling of applications with
cost proportional to use and a low barrier to entry [9], but the
mass migration to the cloud means that the trusted computing base
(TCB) of our systems is growing over time [103]. Data integrity and
confidentiality are vital when leveraging untrusted cloud infrastruc-
ture [112] but even more difficult to ensure remotely. As a result,
some highly sensitive applications, such as medical, financial, or
governmental services, are unable to migrate to the public cloud.
This challenging situation leaves us with the following research
question: Is it possible to remove cloud providers from the TCB of mul-
tiparty applications and still enable developers to leverage the cloud’s
compute and storage capabilities? This requirement is particularly
important with the increasing demand for multiparty scenarios: the

1

https://github.com/microsoft/CCF
mailto:heidi.howard@microsoft.com

Heidi Howard, Fritz Alder, Edward Ashton, Amaury Chamayou, Sylvan Clebsch, Manuel Costa, Antoine Delignat-Lavaud, Cédric Fournet, Andrew Jeffery, Matthew Kerner, Fotios
Kounelis, Markus A. Kuppe, Julien Maffre, Mark Russinovich, and Christoph M. Wintersteiger

integration of data systems between parties who wish to compute
over shared data but do not fully trust one another. Collaborating
and combining data from multiple sources increases its value and
enables novel use cases [103]. However, this makes confidentiality
and integrity more difficult, as we must reason about the access
rights and requirements of multiple distinct participants.

High availability. As modern society increasingly depends on
digital infrastructure, it is vital that applications are dependable
and highly available. Even if the necessary consistency and cost
trade-offs are made, it is not possible to guarantee 100% availability
of digital infrastructure, and so applications should be resilient to
failures expected during normal operation.

CIA triad. We need a principled approach to developing CIA
applications that is also highly pragmatic, supporting a wide range
of stateful applications and modern deployment scenarios, in partic-
ular, delegation to untrusted cloud infrastructure and governance
by multiple untrusted parties.

In this paper, we present the Confidential Consortium Frame-
work, also known as CCF, which combines centralized cloud com-
pute with decentralized trust (section 2). CCF leverages cloud-based
trusted execution environments for remotely attestable confiden-
tiality and integrity (section 3). This is coupled with state machine
replication and a transactional key-value store, backed by an im-
mutable ledger for high availability (section 4) and auditing. CCF
decouples the operators of CCF nodes and the controllers of the
system (the consortium members) (section 5). CCF is highly flexible,
allowing developers to bring their own application logic, and their
own multiparty governance model for highly tunable oversight.

As we examine in section 8, we are not the first to consider
data confidentiality, integrity protection, or high availability in the
context of cloud computing or multiparty collaboration. Whereas
most prior systems offer either a data storage solution (in the form
of a ledger, database, or key-value store) or a secure execution
solution (relying instead on a secondary storage system) in isolation,
CCF offers an end-to-end solution, supporting both execution and
storage. CCF has a unique auditable governance model, designed to
operate between untrusted environments and parties, codified in a
programmable contract. Moreover, CCF occupies a security versus
usability sweet spot, offering a relatively small trusted computing
base and a simple yet flexible programming model. Last but not
least, CCF is trusted in production with services such as Azure
Confidential Ledger [82] and Azure Managed CCF [114] relying on
features such as reconfiguration, disaster recovery, snapshotting,
indexing, and live code updates, evidencing the importance of a
general-purpose and self-contained design.

2 CCF OVERVIEW
A CCF service, as shown in Figure 1, consists of a collection of CCF
nodes. These nodes are deployed by one or more operators, such
as cloud providers, and managed by the members of a consortium.
Users invoke endpoints provided by the application logic on the CCF
nodes. The application logic executes the operation corresponding
to the endpoint, updating the state of the service, and responds to
the user.

Endpoints vary depending on the application, for instance, a dis-
tributed logging application might simply provide write_message

CCF Network

Node 1

Users

Consortium
members

Operators Node 2 Node 3

Governance
transactions

Application
transactions

Node
management

Figure 1: Overview of a CCF service. Users, operators & con-
sortium members interact with the three CCF nodes.

TEE

Application
logic

Key-value
store

TEE host interface

Transaction
Handler

Storage

Consensus

Host

Network

Figure 2: Key components of each CCF node.

and read_message endpoints, which take a message ID and take/re-
turn a corresponding message.

On the other hand, consider a banking application, managed by
a consortium of financial institutions. Endpoints such as credit,
debit, and transfer, could take an account ID (or IDs) and an
amount in USD and return with success (or an error such as insuffi-
cient funds), and the new account balance. Further endpoints might
include apply_interest, which updates all account balances from
a given bank accordingly, or audit, which is available only to a
financial regulator, and returns the names of account holders whose
total funds exceed some threshold.

The application-specific logic is responsible only for implement-
ing the application itself, naming the endpoints which can be in-
voked and how they transform a user request to interact with the
service state. CCF implements all else necessary to deploy a confi-
dential, integrity-protected, and highly available stateful service.
The programming model of CCF aims to be as easy to use as to-
day’s functions-as-a-service platforms whilst providing stronger
guarantees.

CCF utilizes hardware-protected trusted execution environments
(TEEs), also known as enclaves. Whilst offerings vary, in general,
TEEs provide a secure and isolated execution space that guarantees
that code and data are protected with respect to confidentiality
and integrity. In this paper, the TEE we will be focusing on is Intel
SGX (refer to section 8 for a discussion of other TEE platforms).
Each CCF node has its own TEE. The framework code running on
CCF nodes is divided between the TEE and the untrusted host. The
application logic is always executed inside the TEE. This forms the
basis of CCF’s confidentiality and integrity guarantees.

2

Confidential Consortium Framework: Secure Multiparty Applications with Confidentiality, Integrity, and High Availability

Table 1: Sample of the cryptographic keys utilized by nodes in CCF.

Key (Type) Purpose Lifetime & Storage

Service Identity
(Asymmetric)

Public-key certificate (X.509) used for TLS
server authentication (subsection 3.1) & re-
ceipt verification (subsection 3.5).

Generated when a CCF service is started, either for the first time or
following disaster recovery (subsection 5.2), the associated private key
is shared with all trusted CCF nodes and kept only in enclave memory.

Node Identities
(Asymmetric)

Public-key certificates (X.509) used for node
authentication.

Generated separately by each CCF node when it joins the CCF service,
the associated private key is stored in enclavememory and never shared.

Ledger Secret
(Symmetric)

Used to encrypt updates to private maps in
the ledger.

Shared between all trusted CCF nodes, the encrypted ledger secret is
recorded in the underlying key-value store (subsection 5.2).

The application logic accesses data via a key-value store inter-
face provided by CCF. Each endpoint invocation executes transac-
tionally over the key-value store, potentially reading and writing
from multiple keys. CCF records the result of these transactions
in an append-only ledger, replicated to the other CCF nodes and
to persistent storage, forming the basis of CCF’s high availability
guarantees.

Threat Model. Regarding safety properties such as data con-
fidentiality, integrity, and correctness, we assume that the hosts
running the CCF nodes, and by extension their operators, cannot
be trusted. We also do not trust users. Attestation refers to the
process by which a host can produce a verifiable proof that it has a
TEE and of what code is running inside the TEE. We assume that
once their attestation has been verified, the TEEs on CCF nodes
can be trusted. Verification of an attestation requires trusting the
hardware and the hardware manufacturer. We assume that the code
running inside the TEEs, CCF itself and the application logic, has
been implemented correctly. We do not trust other applications
running on the same host, the operating systems of either the guest
or host, the hypervisor, or BIOS. The persistent storage is outside
the trust boundary and thus could be modified or rolled back by a
malicious host.

Provided that the consortium consists of multiple independent
parties, together with a suitable constitution (defined in subsec-
tion 5.1), then we do not trust individual consortium members.
Whilst we assume that CCF nodes have TEEs, we do not assume
that consortium members or users have their own TEEs.

We make the standard cryptographic assumptions such as the
existence of collision-resistant hash functions. Table 1 gives an
overview of CCF’s main cryptographic keys. CCF also provides
rekeying and certificate expiry/renewal, though the implementa-
tion details [85] are beyond the scope of this paper. In the case of
catastrophic failure, CCF’s disaster recovery procedure (described
in subsection 5.2) can perform a best-effort recovery from a single
copy of the ledger in persistent storage. This recovered service
presents a changed service identity, so the recovery is detectable
by users (Table 1).

Regarding liveness, we assume that the operators are not deliber-
ately attacking the availability (or performance) of CCF. However,
the CCF nodes are subject to the usual failures such as crash faults
and network delays. We do not describe any specific measures to
prevent denial-of-service attacks, but standard techniques can be
applied.

d3 d4

d34

d1 d2

d12

d1234

d7 d8

d78

d5 d6

d56

d5678

d9 d10

d910

d1-8

d1-10

1.1 1.2 1.3 1.4 1.5 1.6 1.8 1.9 1.10 1.111.7

root signed by primary

Figure 3: Example of a CCF ledger. Each box represents a
transaction and the transaction ID (view& sequence number).
The underlined transaction IDs are signature transactions,
which each contain a Merkle root over the ledger prefix.

3 INTRA-NODE ARCHITECTURE
In this section we examine the architecture of a static single-node
CCF network; we leave the multi-node architecture (section 4) and
governance (section 5) to future sections. The key components of a
CCF node are shown in Figure 2.

3.1 Application logic
Users connect to the CCF node over TLS, with the connection ter-
minating inside the TEE and the CCF service certificate as a root of
trust. Users may then invoke endpoints, provided by the applica-
tion logic, using the HTTP REST API. Each endpoint invocation
is executed against the latest version of the key-value store. Once
completed, a transaction comprised of the request’s write-set is ap-
pended to the end of the ledger and the user receives a response to
their request. This response includes the ID assigned to the transac-
tion. This transaction ID is an ordered pair of two natural numbers,
the view and the sequence number (the index of the transaction in
the ledger). We will discuss views later (section 4) but for now we
simply assume that transaction IDs are unique to each transaction.

Each CCF endpoint declares how callers should be authenticated.
Each invocation is first checked by CCF against these declared poli-
cies and the application logic is only called if the caller passes the
checks. The application logic can then implement its own autho-
rization logic based on these authenticated claims.

3

Heidi Howard, Fritz Alder, Edward Ashton, Amaury Chamayou, Sylvan Clebsch, Manuel Costa, Antoine Delignat-Lavaud, Cédric Fournet, Andrew Jeffery, Matthew Kerner, Fotios
Kounelis, Markus A. Kuppe, Julien Maffre, Mark Russinovich, and Christoph M. Wintersteiger

Unknown
Committed

Pending
Invalid

Figure 4: Transaction statuses and transitions. Committed and
Invalid states are final, once observed the alternative final
status will never be observed (except after disaster recovery).

3.2 Integrity protected ledger
As illustrated in Figure 3, CCF maintains a Merkle tree [78], over
the ledger. Each leaf vertex of the Merkle tree corresponds to a
transaction in the ledger and each interior vertex is the digest of
its two children. The Merkle tree is extended to the right as each
new transaction is appended to the ledger. The root of the tree,
known as the Merkle root, is a cryptographic commitment to the
whole ledger content. The CCF node periodically signs the Merkle
root, and appends this to the ledger in the form of a signature
transaction. The signature transactions provide integrity protection
and thus a transaction can only be considered committed once it
has been followed by a signature transaction. The logical ledger is
then divided into multiple physical ledger files, each terminating
with a signature transaction, as it is written to persistent storage
by the host.

In addition to the endpoints exposed by the application logic,
CCF also provides its own built-in endpoints common to every
service. One such endpoint, tx, returns the transaction status (see
Figure 4) of a transaction given its transaction ID. Recall that CCF
replies to the user as soon as its request has finished executing
and includes the associated transaction ID in the response. This
tx endpoint thus provides one mechanism for the user to check
whether the resulting transaction has been committed to the ledger.

3.3 Transactional key-value store
The underlying key-value store in CCF consists of a set of maps,
each of which is a named collection of key-value pairs of a given
type. Each map may either be private, meaning its updates are
encrypted before leaving the TEE and being appended to the ledger,
or public, in which case their updates are written to the ledger
in plain text. Each transaction in the ledger includes a set of up-
dates, each either a write-to or a removal-of a single key, to be
applied atomically to the maps. These updates are subdivided into
updates to public maps (unencrypted) and updates to private maps
(encrypted).

The current state of the maps is kept in memory on the CCF node
and the key-value store is utilized both by the application logic and
by CCF itself. For instance, the map ccf.internal.signatures
stores the signed Merkle root from the signature transaction. CCF’s
internal and governance maps are public, enabling auditing without
ledger decryption.

3.4 Read-only & historical transactions
Not all transactions update the key-value store, and as such CCF
provides a fast path for read-only transactions. Read-only transac-
tions are executed against the latest version of the key-value store

but are not then recorded on the ledger. The user receives a re-
sponse from CCF as per usual, except the transaction ID included is
the ID of the last transaction applied to the key-value store instead
of a new one.

The application logic can also choose to query the historical state
of the ledger over a range of sequence numbers. Since historical
queries may require fetching and processing many transactions
from persistent storage, they can take some time. To accelerate
historical range queries, CCF enables applications to define their
own indexing strategy within the application logic. The indexer on
the CCF node pre-processes in-order each transaction in the ledger
as it is committed and stores the results for future use. Alternatively,
this can also be done lazily when a historical query is received.
The indexer’s state is kept in-memory for quick access but can be
offloaded to persistent storage if needed.

As an example, an application’s indexing strategy could record
for each key every transaction ID that writes to the key. Such
an index could be utilized by our banking example from earlier
to implement a get_statement endpoint that returns all recent
credits/debits given an account ID.

3.5 Verifiable receipts
Receipts are signed statements, associated with a given transaction,
that can be verified and audited offline. Like the key-value store,
receipts are utilized both internally by CCF, to ensure the validity
of snapshots (subsection 4.4), and externally by users. Receipts can
be leveraged either to audit CCF or to prove to a third party that a
transaction was committed in a particular context and at a specified
position in the ledger. One way users can generate a receipt is by
invoking the built-in receipt endpoint with the transaction ID.

At its core, the receipt includes a signature over the Merkle root
(from a subsequent signature transaction) and the sequence of ver-
tices on the path from the transaction leaf to the root, known as
a Merkle proof. In Figure 3, the Merkle proof for transaction 1.7 is
[(𝑟𝑖𝑔ℎ𝑡, 𝑑8), (𝑙𝑒 𝑓 𝑡, 𝑑56), (𝑙𝑒 𝑓 𝑡, 𝑑1234), (𝑟𝑖𝑔ℎ𝑡, 𝑑910)]. TheMerkle proof
can be used to verify that the transaction leaf, which includes the
transaction ID and a digest of the write-set, was in the ledger at
the time of the signature. The application logic may also choose to
attach arbitrary claims to a transaction and thus its receipt to make
them verifiable offline.

4 INTER-NODE ARCHITECTURE
Last section we focused on a single-node CCF network. This sec-
tion describes how we extend that to a multi-node network, pro-
viding high availability in the presence of crash faults. Moreover,
multi-node CCF networks also increase the throughput of read
transactions, which can be handled by any node. CCF includes
its own consensus layer for replicating transactions in the ledger,
inspired by Raft [94] and adapted for a fault model more suited
to trusted execution. This protocol requires 𝑛 CCF nodes to toler-
ate 𝑓 = ⌊𝑛−12 ⌋ crash faults. To build confidence in our approach,
we used TLA+ [68] to formally specify and model check CCF’s
consensus layer including reconfiguration [88].

4

Confidential Consortium Framework: Secure Multiparty Applications with Confidentiality, Integrity, and High Availability

1.2

1.2 2.4

3.5

3.5

3.4

n0

n1

1.1

1.1

n2 1.1 1.2

n3 1.1 1.2

n4 1.1 1.2

1.3

1.3

1.3

1.3

3.4

2.5 2.6 2.7

3.4

3.6 3.7

2.8

3.4

4.5

4.6

4.6 4.7 4.8

4.5

3.4

1.1 1.2

1.1 1.2

1.1 1.2

1.1 1.2

1.1 1.2

1.3

1.3

1.3

1.3

3.4

3.4 4.5

1.3 3.4

4.5 4.7 4.8

Figure 5: Examples of five CCF ledgers. Underlined trans-
actions IDs are signature transactions and the thick boxes
highlight the committed transactions.

Table 2: Possible votes and primaries during an election,
based on the ledgers shown in Figure 5 (left). For each possi-
ble candidate (row), the table shows which nodes might vote
for it and thus whether it could win the election.

candidate 𝑛0 𝑛1 𝑛2 𝑛3 𝑛4 could win?

𝑛0 ✓ ✗ ✗ ✗ ✗ ✗

𝑛1 ✓ ✓ ✗ ✗ ✗ ✗

𝑛2 ✓ ✓ ✓ ✓ ✓ ✓

𝑛3 ✓ ✓ ✗ ✓ ✓ ✓

𝑛4 ✓ ✓ ✗ ✓ ✓ ✓

4.1 Transaction replication
Time is divided into a series of views. During most views, one of
the nodes is the primary and the remaining nodes are the back-
ups. The primary executes the user requests, appends the resulting
transaction to its ledger, and replies to the users. The primary regu-
larly replicates its ledger onto the other nodes using the integrity-
protected append_entries remote procedure call (RPC).

As before, the primary regularly appends signature transactions.
The primary tracks the matched sequence number on each node
and once a signature transaction has been copied onto ⌈𝑛−12 ⌉ other
nodes then it considers the signature transaction and all previous
transactions as committed and updates its commit sequence number
accordingly. This updated commit sequence number is included in
future append_entries so that the backups can update their local
commit sequence number.

Recall that each transaction ID uniquely identifies a transaction.
Each append_entries includes a set of transactions and the previ-
ous transaction ID. The backup checks that the previous transaction
ID matches its ledger before appending the new transaction. This
check ensures that if any two ledgers contain a transaction with
the same ID then the ledgers up to and including that transaction
are identical. Figure 5 shows an example of the ledgers from five
nodes, where node 𝑛2 is the primary in view 3. Note that the last
committed transaction is always a signature transaction and that all
committed transactions are present in at least a majority of ledgers.

4.2 Primary elections
Eventually, one or more nodes will fail. If the failed node (or nodes)
are backups, and ⌈𝑛−12 ⌉ backups remain then the primary will

Pending

Backup

Candidate Primary

Retiring

Retired

Trusted

Figure 6: Node states & transitions: PENDING, TRUSTED includ-
ing PRIMARY, CANDIDATE, & BACKUP, RETIRING, and RETIRED.

continue as before. If the primary fails then a new primary will be
elected, as illustrated by Figure 6.

Note that each node keeps track of its perspective on the current
view, increasing it accordingly as messages are exchanged. Each
RPC includes the sender’s view, and the receiver will update its
view if the sender’s view is greater before processing the message.
If the sender’s view is less than the receiver’s view then the receiver
will not process the message. Instead, it will reply negatively to the
message including its view so that the sender can update its own
view. When a node increases its view, it becomes a backup if it is
not already one. The primary sends regular heartbeats, in the form
of empty append_entries RPCs to its backups. If a backup does
not hear from a primary within its election timeout, it becomes
a candidate, increments its view, and dispatches a request_vote
RPC to all nodes including the view and sequence number of its
last signature transaction. After checking the candidate’s view, the
recipient of the request_vote RPC checks if the candidate’s ledger
is at least as up-to-date as its own, and if so, provided it has not
voted for another candidate this view, it will vote for the candidate.
In doing so, the backup also resets its own election timeout.

A candidate’s ledger is at least as up-to-date as the voter’s ledger
if (i) the view of the candidate’s last signature transaction is greater
than the view of the voter’s last signature transaction, or (ii) the
views are equal and the sequence number of the candidate’s last
signature transaction is greater or equal to the sequence number of
the voter’s last signature transaction.

An example of this voting criteria is shown in Table 2. 𝑛0 cannot
become primary as the other nodes would not vote for it. 𝑛1 cannot
become primary as only one other node (𝑛0) would vote for it and
𝑛2 could become primary as all nodes would vote for it. 𝑛3 and 𝑛4
could become primary as 𝑛0 and 𝑛1 could vote for them, and they
could vote for each other.

If a candidate receives votes from ⌈𝑛−12 ⌉ other nodes, then it
becomes a primary. It discards any transactions after the last signa-
ture transaction and begins sending append_entries to its backups.
The new view will begin with a signature transaction and the pri-
mary can update its commit sequence number to this transaction
as soon as it has been replicated to the majority of ledgers. The
new primary tracks the sequence number of the next transaction
to send to each backup, starting with the first signature transaction
of the next view. The ledgers of the backups might have fallen
behind or even diverged from that of the new primary. Recall that
when a backup receives an append_entries it checks that it has

5

Heidi Howard, Fritz Alder, Edward Ashton, Amaury Chamayou, Sylvan Clebsch, Manuel Costa, Antoine Delignat-Lavaud, Cédric Fournet, Andrew Jeffery, Matthew Kerner, Fotios
Kounelis, Markus A. Kuppe, Julien Maffre, Mark Russinovich, and Christoph M. Wintersteiger

the previous transaction ID. If not, it responds negatively to the
primary including the sequence number of what it believes to be
the latest common point. The primary decrements its sequence
number for that primary, utilizing the information provided by the
backup, and tries again until the append_entries is successful. If
a backup has conflicting transactions then they are deleted before
the new transactions are appended. In other words, the primary’s
ledger is considered the ground truth when there are conflicts.

Consider the example on the right of Figure 5. Following the
situation on the left of Figure 5, 𝑛4 became the primary in view four.
After rolling back transaction 3.5, 𝑛4 added signature transaction
4.5 and appended it to 𝑛0, 𝑛1 & 𝑛2. 𝑛4 also appended transactions
4.6, 4.7, and signature transaction 4.8 to its ledger but has so far
only replicated these to 𝑛1.

If a candidate’s election timer expires without it either stepping
up to a primary or down to a backup then it restarts the election by
incrementing its view once more and sending new request_vote
RPCs. It might be the case that a new primary is elected whilst the
previous primary is still alive. In this scenario, the new primary will
eventually learn of the new view and will step down to a backup in
the process. Multiple backups can become candidates at a similar
time, splitting the votes. To reduce the likelihood of this, the election
timer is randomly chosen from a configurable range. The primary
also keeps track of the last time it received an append_entries
response from each backup, and it steps down if it does not hear
from at least ⌈𝑛−12 ⌉ backups within a specified time window. This
ensures that a primary that cannot make progress, for instance due
to a partial network partition, steps down cleanly, allowing another
node to become primary, and does not produce an arbitrarily long
ledger suffix which will never be committed.

4.3 User interaction
Users can connect to any CCF node, and backup nodes can forward
user requests to the primary. When a node fails, the users connected
to it will retry with other nodes. Read-only requests, including
receipt requests, can be served by any CCF node and do not need to
be forwarded to the primary. However, to ensure that CCF provides
session consistency to its users, once a backup has forwarded a
request to a primary it will forward all subsequent requests on
the same TLS session, including reads, to the same primary, and
terminate the session if this forwarding is not possible due to a
primary change.

Note that each node maintains a view history, containing the
start index for each view, according to its ledger. This history can
help a node determine transaction status (Figure 4), for instance, a
transaction has status Invalid if a greater view started at a smaller
sequence number.

4.4 Atomic reconfiguration
When a node fails, the CCF network can tolerate one fewer fault
than it could before. To restore the fault tolerance of the CCF net-
work, the failed node should be replaced with a new node. This
process, known as reconfiguration, allows an arbitrary transition
from any node configuration to any other node configuration. For

Table 3: Sample of CCF’s built-in maps. Some names
have been edited for brevity and all are prefixed with
public:ccf.gov or public:ccf.internal.

Name Purpose

users.certs User certificates
members.certs Consortium member certificates
nodes.info Node identity certificates & properties
nodes.code_ids Code versions that are allowed to join
service.info Service identity certificate & service status
signatures Merkle roots and signatures
tree Merkle tree for historical receipts
history Governance operations signed by members
constitution CCF service constitution
modules JavaScript application logic
endpoints JavaScript endpoints
proposals Governance proposals
proposals_info Status of governance proposals & ballots
ledger_secret Encrypted ledger secret
recovery_shares Encrypted shares to recover ledger secret
members_keys Members’ public encryption keys

instance, any number of nodes can be added, removed, or a combi-
nation of both, atomically changing the total number of nodes and
thus changing the fault tolerance accordingly.

Reconfiguration is achieved by a reconfiguration transaction. Re-
configuration transactions are similar to signature transactions, in
that they contain updates to built-in maps and affect the operation
of a CCF node directly, distinguishing them from user-defined up-
dates to application tables. For reference, Table 3 provides a sample
of some built-in maps used by CCF.

A reconfiguration transaction includes writes to nodes.info
which (among other things) maps each node’s ID to a node status
(Figure 6). The current configuration is the set of nodes whose
status is TRUSTED. Reconfiguration transactions can add a node by
changing its status from PENDING to TRUSTED and remove a node
by changing its status to RETIRED. The question of how nodes are
first added to the map as PENDING and removed from the map is
addressed in section 5.

Each node maintains a sorted list of active configurations, where
each configuration contains the transaction ID of the reconfigu-
ration transaction and the associated set of nodes. At the head
of the list is the current configuration, followed by any pending
configurations. Winning an election or committing a transaction
requires a majority quorum in each active configuration, therefore
request_vote and append_entries are sent by the candidate or
primary to all nodes across the active configurations. As soon as a
node appends a reconfiguration transaction to its ledger, regardless
of whether the node is a primary or backup, that configuration is
added to the active configurations. The reconfiguration transac-
tion, like user transactions, is considered committed by the primary
only when a subsequent signature transaction has been committed
on all active configurations. When a node learns that a reconfigu-
ration transaction has been committed, all earlier configurations
are removed from the active configurations. A newly added node

6

Confidential Consortium Framework: Secure Multiparty Applications with Confidentiality, Integrity, and High Availability

begins participating in consensus, including potentially starting
an election, as soon as it appends to its ledger the first signature
transaction following the reconfiguration transaction that added it.

The process described thus far requires new nodes to replay all
transactions in the history of the CCF service in order to become
up to date. In practice, nodes can begin from a snapshot and use
the consensus layer to simply learn the transactions since the last
snapshot.

Recall that nodes add new configurations to the set of active con-
figurations as soon as the associated reconfiguration transaction
is appended to their ledger, they do not wait for the reconfigura-
tion transaction to be committed or even followed by a signature
transaction. Uncommitted transactions however can be rolled back
following a view change. When this occurs, the rolled-back recon-
figurations are removed from the set of active configurations. Note
that the set of active configurations will always contain at least one
configuration, the current configuration, which is either the initial
configuration or the last committed reconfiguration, which cannot
be rolled back.

4.5 Node retirement
The process of retiring nodes includes an additional step. The recon-
figuration transaction first updates the node’s status to RETIRING.
As soon as the reconfiguration transaction is committed, the previ-
ous configurations are removed as before and the retired node is no
longer part of the configuration. Before we shut down the retiring
node, the primary must ensure that all future primaries also know
that the node has been successfully retired. Therefore, once this
reconfiguration transaction has been committed, the primary adds
a second reconfiguration transaction to update the node’s state
to RETIRED. Once this second transaction is committed, then the
retired node can be shut down. If there is a view change during
reconfiguration, the new primary must commit the first reconfig-
uration transaction before appending the second reconfiguration
transaction.

A primary may commit a reconfiguration transaction that retires
itself. In this case, it should stop adding new transactions after
the signature transaction which commits its retirement. Once the
first reconfiguration transaction is committed, it should then stop
sending heartbeats but remain online, replicating its ledger and
voting for new primaries, whilst a new primary establishes itself. As
before, the retiring node can be shut down once the new primary
commits the reconfiguration transaction which sets its state to
RETIRED.

5 MULTIPARTY GOVERNANCE
CCF is designed to support long-running applications and thusmust
remain available in the face of typical management operations such
as node replacement, live code updates, changes to the set of users,
and more. Such actions must be done with great care to preserve
CCF’s strong confidentiality and integrity properties. Moreover,
since CCF services can bemanaged bymultiple parties, these parties
should have an opportunity to sign off on management operations
before they are executed.

Table 4: Sample of the governance actions defined in CCF’s
default constitution [87].

Governance action Purpose

set_user Add user
set_member Add consortium member
set_js_app Update JS application logic
add_node_code Allow a new code ID
transition_node_to_trusted Allow node to join
set_constitution Update constitution
transition_service_to_open Allow user requests
set_recovery_threshold Update recovery threshold

5.1 Governance proposals & ballots
At a high level, CCF’s approach to multiparty governance is to
require consortium members to oversee governance operations
using governance proposals and ballots, which are processed by
the programmable constitution.

The constitution is a contract between the consortium members
describing all the available governance actions and the associated
voting criteria. The constitution, encoded in JavaScript, is provided
to a CCF service at start-up. The constitution defines a resolve
function, which takes a governance proposal (defined below) and
votes by consortium members, and determines if the proposal has
been accepted. The constitution also defines apply, which takes an
accepted proposal and executes the governance actions within it to
modify the key-value store. The default constitution [87] accepts a
governance proposal once it has received votes from a strict ma-
jority of consortium members. Alternative constitutions could give
consortium members different voting power, for instance giving a
few consortium members, who are the main parties running the
application, veto power. Alternatively, a constitution could vary
the number of votes needed depending on the action, for instance
giving one consortium member, who is also an operator, the unilat-
eral power to add or remove nodes. The constitution can also be
updated using a governance proposal (if permitted by the current
constitution).

A governance proposal consists of a set of actions, defined in
the constitution, and a ballot is a vote for or against a particular
proposal, conditional on the proposal itself and the current state
of the key-value store. Similar to user transactions, governance
proposals and ballots are recorded on the underlying CCF ledger,
However, unlike user transactions, they always originate from a
request signed by a consortium member. This signature is also
stored on the ledger.

Table 4 shows a sample of the governance actions defined in the
apply function of the default constitution and Listing 1 shows the
implementation of one such action. This action, add_node_code,
can be used when updating the code inside the TEE (CCF itself
or its C++ application logic), and adds the given code ID to the
set of trusted code IDs. This is done by writing the code ID to
the nodes.code_ids map (listed in Table 3) in the key-value store.
That map is then read from when a new node attempts to join the
service, to establish whether they are running a trusted version of
the code.

7

Heidi Howard, Fritz Alder, Edward Ashton, Amaury Chamayou, Sylvan Clebsch, Manuel Costa, Antoine Delignat-Lavaud, Cédric Fournet, Andrew Jeffery, Matthew Kerner, Fotios
Kounelis, Markus A. Kuppe, Julien Maffre, Mark Russinovich, and Christoph M. Wintersteiger

1 ["add_node_code", new Action(
2 function (args) {
3 checkType(args.code_id, "string", "code_id") },
4 function (args, proposalId) {
5 ccf.kv["public:ccf.gov.nodes.code_ids"].set(args.code_id, "AllowedToJoin");
6 invalidateOtherOpenProposals(proposalId)})]

Listing 1: An example action from the apply function in
CCF’s default constitution. Adapted for brevity.

Governance proposals have the power to change many funda-
mental properties of the service, not least modifying the constitu-
tion itself. Any errors, deliberate or otherwise, are therefore poten-
tially damaging. Consortium members should examine proposals
carefully before submitting their ballot to ensure they do not leak
confidential state. Proposals are encoded as succinct JSON docu-
ments so that they are easy to inspect offline. Note that the default
constitution [87] provided by CCF should be suitable for most de-
ployments.

5.2 Disaster recovery protocol
Governance and reconfiguration require consensus and thus major-
ity agreement. If more than a majority of nodes fail simultaneously
then CCF cannot make progress. In this case, the disaster recovery
protocol can enable the service to restart. Note that disaster recov-
ery restores the CCF service to a safe state, even from just a single
copy of the ledger files, but it is not guaranteed to preserve all com-
mitted transactions. This best-effort approach is necessary when
any consensus-based service wishes to recover from the persistent
storage of just a minority of nodes. The newly recovered service
will have a new service identity (defined in Table 1), making it clear
to users that a disaster recovery has occurred, and thus that the
service may have been rolled back to a previous state.

During disaster recovery, a node or set of nodes is started in
recovery mode with a set of ledger files from the previous CCF
service (and optionally, snapshot files to speed things up). The
public parts of transactions are restored, and further nodes may
join the network. A consortium member will submit a proposal to
open the new service, specifying the old and new service identities
to ensure this proposal is bound to a precise recovery, and once the
proposal receives sufficient approving ballots, the service is opened.

In order to decrypt the updates to private maps, consortium
members must submit their recovery shares to the CCF service.
Recall that updates to private maps are encrypted using the ledger
secret, as defined in Table 1. The ledger secret is recorded in the
ledger, encrypted using the ledger secret wrapping key. The ledger
secret wrapping key is itself stored in the ledger after being split
into 𝑛 shares, known as recovery shares, where 𝑛 can be up to
the number of members in the consortium. Each recovery share
is first encrypted using one of the consortium member’s public
encryption keys. The ledger secret wrapping key is divided into
𝑘-of-𝑛 shares [108], such that 𝑛 recovery shares are created, less
than 𝑘 shares leak nothing about the ledger secret, and any 𝑘 shares
suffice to recover the ledger secret. Once these shares are submitted
by the consortium members, the ledger secret can be reconstructed
in TEE, and the previous ledger’s private state decrypted. Once

this is complete, the CCF service is fully recovered. The parameter
𝑘 , known as the recovery threshold, can be configured through
governance. Table 3 includes a summary of the built-inmaps utilized
by CCF’s disaster recovery procedure.

6 DISCUSSION
We set out to investigate whether it is possible to develop a prag-
matic solution for deploying confidential, integrity protected, and
highly available multiparty applications on untrusted cloud infras-
tructure. We now evaluate CCF along these dimensions.

6.1 Confidentiality
Keeping data confidential requires protection during every stage of
a CCF service. Firstly, data is encrypted in transit between users
and CCF nodes with a TLS connection, using the service identity
certificate (defined in Table 1), and terminating inside the TEE. Data
is encrypted during execution and in memory by the TEEs. Data is
encrypted at rest (on disk) and in transit between CCF nodes as the
transactions in the ledger are encrypted with the ledger secret (Ta-
ble 1). The service certificate private key and ledger secret are not
shared with new CCF nodes until their attestation has been verified.
Whilst the application logic has read-write access to the key-value
store (except CCF’s read-only internal/governance maps), the ap-
plication logic can limit which users can invoke specific endpoints
using user authentication policies. The application logic and set of
authorized users can only be modified via a governance proposal.
There is a fundamental tradeoff between confidentiality and au-
ditability; some transactions, including all governance operations,
are written unencrypted to permit offline audit, while application
data which does not require such audit can be encrypted by the
ledger secret.

6.2 Integrity
Whilst the ledger secret is the primary mechanism for providing
confidentiality, it is the signature transactions (subsection 3.2) that
provide integrity protection to the ledger whilst outside the TEEs.
The Merkle tree constructed for the signatures transactions is again
utilized to provide Merkle proofs for receipts (subsection 3.5). In-
tegrity protection with signature transactions ensures that a ma-
licious party cannot modify the ledger undetected whilst it is in
persistent storage, however, the ledger could be rolled back to
a previously valid prefix. Notably, CCF’s design avoids the need
to depend upon a dedicated rollback protection mechanism. Ex-
isting rollback protection approaches include SGX trusted mono-
tonic counters [24] (which have since been deprecated [53]), using
TPMs [53, 75], or a service based on replication across TEEs such
as ROTE [77], LCM [21], Tiks in Engraft [126], NARRATOR [90]
or Nimble [4]. Rollback protection is also closely related to forking
protection mechanisms and likewise, CCF avoids the need for them
by design. The architecture of CCF treats nodes as ephemeral.When
a node crashes, it cannot simply resume from persistent storage
as we cannot be sure that its state is up-to-date. Instead, the CCF
node rejoins the service via reconfiguration (subsection 4.4) and
establishes a fresh node identity. This stricter fault model as well as
the need for integrity protection are the motivation behind CCF’s

8

Confidential Consortium Framework: Secure Multiparty Applications with Confidentiality, Integrity, and High Availability

choice of a custom consensus protocol over a classic approach such
as Multi-Paxos [67] or Raft [94].

CCF adopts a transparent approach to management where gover-
nance proposals and ballots are recorded in public maps and signed
by consortiummembers to enable auditability and disaster recovery
(subsection 5.1).

6.3 High availability
CCF achieves high availability through replication across CCF
nodes (section 4). The consensus layer in CCF uses strict majority
quorums thus it can continue to operate even when up to a minority
of nodes fail simultaneously. Users can simply connect to any CCF
node, requests are handled locally if they are read-only, including
historical transactions and receipt generation, and forwarded to
the primary otherwise (subsection 4.3). If the CCF node that a user
is connected to fails, then the user can retry with another node.

Failed nodes can be replaced by reconfiguration to restore the
fault tolerance of the service (subsection 4.4). For instance, a CCF
service with five nodes can tolerate two faults, if one node fails
then the service can only tolerate one further fault. Reconfiguring
to remove the failed node and add a new healthy node restores the
fault tolerance of the service back to two faults. In addition to re-
covering from failures, reconfiguration can also be used proactively
to migrate the service, to change the replication factor, or for code
updates, either to CCF itself or to the application logic. CCF’s con-
sensus layer supports arbitrary reconfiguration, moving from any
set of nodes to any other set of nodes, without stopping the service.
CCF also achieves reconfiguration in just a single transaction, with
a second transaction only needed to confirm node removal. The
classic approaches to reconfiguration in Raft either requires nodes
to be added or removed one at a time [38, 93], or always requires
two transactions [94]. Our design is particularly useful as it enables
CCF services to minimize the window of vulnerability until the
usual degree of resilience is restored. If more than a majority of
nodes are lost, CCF can recover from persistent storage through
its disaster recovery procedure (subsection 5.2). During disaster
recovery, the service may be reverted to a prior state (a suffix of
the ledger may be lost).

The constitution (subsection 5.1) defines what groups of consor-
tium members must vote in favor of a proposal for it to be accepted,
for instance, a majority quorum. Votes are recorded and calculated
using the ledger and thus consortium members do not need to be
online simultaneously to propose and accept a proposal. Propos-
ing and voting for a proposal can be done on the fly and does not
require stopping the service. If a sufficient number of consortium
members lose their keys, then governance operations and disaster
recovery will no longer be possible.

6.4 Pragmatism
CCF is designed to make the deployment of trustworthy multiparty
applications on untrusted infrastructure as simple as possible. CCF
supports custom application logic that can be written in either
JavaScript/TypeScript or C++, providing greater flexibility com-
pared to permissioned blockchains which often support DSLs such
as Solidity, Move [17], or Daml. The programming model is sim-
ple, application logic exposes endpoints that are invoked by users,

and state changes are recorded by a transaction over the built-in
data store. Transactions are applied to the key-value store atomi-
cally and in isolation thus the application will never observe partial
transaction execution. Application logic is not required to be de-
terministic, it may be executed multiple times but its associated
transaction is applied exactly once. The constitution is also fully
programmable, allowing the consortium members granular control
over governance operations. The constitution, written in JavaScript,
is provided at start-up and can be updated by a governance proposal
(if supported by the current constitution).

Many aspects of CIA support in CCF are configurable, allow-
ing CCF to adapt to different deployment scenarios. Maps in the
key-value store can be either private (encrypted on the ledger) or
public (plain-text). Public maps are not confidential but can be au-
dited without decrypting the ledger, and thus can be audited offline.
Application logic maps are private by default, and public maps are
also supported. CCF’s built-in maps are public for transparency.
CCF can be deployed on hosts without TEEs using virtual mode.
This is useful for development and, in practice, for replication if
confidentiality and integrity are not needed. CCF in virtual mode
still provides highly available state machine replication with ad-
vanced features such as atomic reconfiguration, indexing, snapshots,
historical transactions, disaster recovery, receipts, and multiparty
governance. Likewise, CCF can be deployed on a single node if high
availability is not needed.

Users of CCF can determine on a per-request basis the consis-
tency/durability guarantee required. CCF provides two levels of
guarantee: local execution & global commit. Users receive a reply
with a transaction ID as soon as it has been executed locally. The
user can determine after having observed the response if it wishes
to proceed without checking for commit. Likewise, receipts can be
expensive to retrieve and thus are issued on demand, at the user’s
request, again using the transaction ID. There is optional support
for user request signing, via the same mechanism that consortium
members sign governance operations. CCF also allows applications
to define their own indexing strategy.

CCF currently supports Intel SGX, and it is designed with a view
to supporting more TEE platforms, for instance, by minimizing
dependencies on features specific to SGX (or specific versions of
SGX) e.g. sealing [48], trusted time and monotonic counters [24],
or ECALL/OCALL interface provided by SGX.

7 IMPLEMENTATION & EVALUATION
CCF is written in C++20 and built on the OpenEnclave SDK [37].
The host and the TEE communicate via a pair of lock-free multi-
producer single-consumer ringbuffers to minimize the expensive
transitions to/from the TEE [10, 49, 96, 128]. CCF uses a host-
side thread, a TEE-side thread, and optionally, a TEE-side thread
pool with a configurable number of worker threads. CCF’s REST
API supports HTTP/1.1 and HTTP/2 with a custom HTTP header
in responses for the transaction ID. Built-in endpoints use JSON
and COSE payloads. CCF supports TLS 1.2 & 1.3 using OpenSSL
1.1.1 [95]. Request signing by consortium members, and optionally
by users, supports HTTP signatures [23] and COSE Sign1 [105].

9

Heidi Howard, Fritz Alder, Edward Ashton, Amaury Chamayou, Sylvan Clebsch, Manuel Costa, Antoine Delignat-Lavaud, Cédric Fournet, Andrew Jeffery, Matthew Kerner, Fotios
Kounelis, Markus A. Kuppe, Julien Maffre, Mark Russinovich, and Christoph M. Wintersteiger

1 3 5
of Nodes

0

20

40

60

80

W
ri

te
 t

h
ro

u
g

h
p

u
t

(K
tx

/s
)

1 3 5
of Nodes

0

200

400

600

800

R
e

a
d

 t
h

ro
u

g
h

p
u

t
(K

tx
/s

)

0 1
Read rat io

0

50

100

150

200

M
ix

e
d

 t
h

ro
u

g
h

p
u

t
(K

tx
/s

)

Figure 7: Impact of the number of CCF nodes on writes (left)
and reads (center) and the impact of read/write request ratio
on single node throughput (right).

Table 5: Throughput (tx/s) for writes/reads on a five node
service. Virtual mode refers to CCF running without SGX.

SGX Virtual

C++ 64.8 K / 881 K 118 K / 1.24 M
JS 15.7 K / 90.7 K 33.7 K / 219 K

User authentication is implemented using JWT (JSON Web To-
kens) [57] and by X.509 certificates [18]. Our Merkle tree imple-
mentation [81] uses SHA-256 [91]. The ledger secret uses AES256-
GCM [104] to encrypt the transactions on the ledger. AES256-GCM
is also used to encrypt any persistent storage utilized by the indexer.
Diffie-Hellman key exchange [35] is used for node-to-node message
headers and message forwarding. The encryption of ledger secrets
uses RSA OAEP [16]. The map implementation in CCF is based on
the Compressed Hash-Array Mapped Prefix-tree (CHAMP) [116].
CCF’s JavaScript engine is QuickJS [15].

Experiment Setup. Unless specified otherwise, our setup was as
follows. We used DC16s_v3 (16 cores, 128 GB memory) VMs [86]
in the UK South region of Azure, running Ubuntu 20.04. Our Ice
Lake CPUs support Intel SGX2 [55]. Our C++ application logic
implements a simple logging application, where messages with
corresponding identifiers are posted, and later retrieved with read-
only transactions. Messages are private and 20 characters each. We
use four VMs: three CCF nodes, configured with 10 worker threads,
with one user VM, simulating sufficient users (closed loop with
up to 1k concurrent requests) to stress test CCF. To measure the
performance of CCF itself, instead of the optional node-to-node
forwarding logic, the user directly writes to the primary.

Figure 7 shows that CCF consistently achieves a throughput of
at least 65 thousand requests per second. Increasing the ratio of
reads to writes slightly increases performance. This effect is most
notable for the 100% read workload, where all user requests are
handled directly by the CCF node that receives them since only
writes must be handled by the primary. We also observed similar
performance using public maps instead of private ones.

Table 5 illustrates the significant performance difference be-
tween the C++ implementation of the logging application and the
JavaScript implementation. Table 5 also demonstrates the significant
overhead of Intel SGX. We hope that future TEEs will substantially
reduce this overhead such that performance is comparable to that of

1.0 1.5 2.0 2.5
Response t im e (m s)

100

101

102

103

104

Fr
e

q
u

e
n

cy

1000 1500
Request index

1.0

1.5

2.0

2.5

R
e

sp
o

n
se

 t
im

e
 (

m
s)

101 102 103 104

Signature interval

0

20

40

60

80

T
h

ro
u

g
h

p
u

t
(K

tx
/s

)

Figure 8: Impact of the signatures on response time (left &
center) and write throughput (right).

non-confidential offerings. This is supported by early benchmarks
of AMD SEV-SNP which report a performance overhead of just
2–8% [3].

Figure 8 investigates the performance impact of generating sig-
nature transactions. To measure the overhead of signatures, the
signature transaction frequency has been set to every 100 trans-
actions and most other sources of latency variance removed, for
instance, we use one node and one user. We then measure the re-
sponse time, the time for the user to receive a positive response
from the CCF node, including a transaction ID that can then be
used to check for commit. We observe that the response time of
write requests is 1.2–1.3 ms, with the exception that approximately
every 100 requests, a signature is triggered, and the response time
increases to 2.3 ms. The graph on the right shows how the through-
put of writes is impacted by the frequency of signature transactions,
demonstrating the tradeoff between time to commit (which requires
a signature), and overall throughput.

Figure 9 shows the impact of a primary failure and subsequent re-
configuration on a CCF service with three initial nodes {𝑛0, 𝑛1, 𝑛2},
and three consortium members {𝑚0,𝑚1,𝑚2} using the default con-
stitution. Listing 2 also shows five governance transactions from
the ledger in Figure 9. The graph shows two users, one sending
writes to 𝑛0, the initial primary, and the other sending reads to 𝑛1,
one of the two backups. At𝐴, we kill 𝑛0, writes stop immediately as
the service is without a primary and the reads continue (in fact their
throughput increases as the backup is no longer handling messages
from the primary). 𝑛2 is then elected primary and writes resume.
During this time our test infrastructure, simulating an operator,
detects the failure and begins preparing a new node, 𝑛3, by copying
the snapshots onto the new host, 𝑛3 tries to send a join message to
the primary and succeeds at 𝐵. At𝐶 , our test infrastructure starts a
governance proposal (𝑝3 in Listing 2) as consortium member𝑚0
to add 𝑛3 to the network and remove 𝑛0. Consortium members
𝑚0 and𝑚1 then submit ballots to support the proposal 𝑝3. By 𝐷

the governance proposal has been accepted and 𝑛3 will now be
added to the current configuration at the consensus layer. At 𝐸,
the reconfiguration has been completed, the fault tolerance of the
service has been restored, and 𝑛0 can be retired by the operator.

8 RELATEDWORK
We divide the state-of-the-art into techniques that do not leverage
trusted execution (subsection 8.1) and those that do (subsection 8.2).

10

Confidential Consortium Framework: Secure Multiparty Applications with Confidentiality, Integrity, and High Availability

0 2 4 6 8 10 12 14
Tim e (seconds)

0

10

20

30

40

T
h

ro
u

g
h

p
u

t
(k

re
q

/s
)

read

write

Figure 9: Impact of primary failure (𝐴) and subsequent node
replacement (𝐵-𝐸) on the availability of reads and writes.

Bal = "export function vote (proposal , proposer_id) {return true}"
txid 3.198408: // Point B on Figure 9

map public:ccf.gov.nodes.info:

𝑛3: {status: Pending}
txid 3.207341: // Point C on Figure 9

map public:ccf.gov.proposals:

𝑝3: {actions: [{name: transition_node_to_trusted , args: {
node_id: 𝑛3}}, {name: remove_node , args: {node_id: 𝑛0 }}]}

map public:ccf.gov.proposals_info:

𝑝3: {ballots: {}, proposer_id: 𝑚0 , state: Open}
txid 3.208098:

map public:ccf.gov.proposals_info:

𝑝3: {ballots: {𝑚0: Bal}, state: Open}
txid 3.209096: // Point D on Figure 9

map public:ccf.gov.proposals_info:

𝑝3: {ballots: {𝑚1: Bal , 𝑚0: Bal}, final_votes: {𝑚1: true , 𝑚0:
true}, state: Accepted}

map public:ccf.gov.nodes.info:

𝑛0: {status: Retiring}
𝑛3: {status: Trusted}

txid 3.210844: // Point E on Figure 9
map public:ccf.gov.nodes.info:

𝑛0: {status: Retired}

Listing 2: Sample of the key updates from the ledger in Fig-
ure 9, where 𝑛0 is replaced with 𝑛3. Adapted for brevity.

8.1 Approaches without TEEs
Raft [94] does not provide confidentiality or integrity on untrusted
infrastructure as the protocol only targets high availability. The
system model of Raft assumes that nodes can only fail by crashing,
and thus does not handle other faults, for instance, nodes subverting
the consensus protocol to reorder transactions or fork the ledger.
The same is true of other crash fault-tolerant (CFT) consensus
algorithms [67] and atomic broadcast protocols [58].

TEEs can help systems to achieve integrity and confidentiality,
however, simply executing a CFT protocol within TEEs does not
necessarily provide the desired CIA properties. For instance, En-
graft [126] uses model checking to prove that Raft within TEEs
does not provide integrity. A key concern is that the persistent
storage is outside the trust boundary and thus under the control of
the untrusted host, which can truncate the ledger to violate Raft’s
linearizability guarantees. Moreover, CCF also provides features,
such as receipts and multiparty governance, which are beyond the
scope of Raft.

Unlike their CFT counterparts, Byzantine fault-tolerant (BFT)
protocols, can tolerate arbitrary faults including malicious nodes.
However, safety is only guaranteed by BFT protocols provided
that a threshold of participants, often two-thirds, are non-faulty.
This limitation is fundamental to BFT protocols, yet it is unreal-
istic for cloud environments where the parties involved are not

all running their own nodes. BFT protocols are also typically less
available than CFT protocols, as they require at least two-thirds
of nodes to be available to make progress and some BFT protocols
also do not support reconfiguration, which is key for restoring fault
tolerance after a node failure. BFT protocols are computationally
expensive relative to CFT protocols and BFT protocols also require
the re-execution of user requests across nodes, so the application
logic must be deterministic, making it difficult to support general-
purpose programming languages. Distributed ledger technologies
and permissioned blockchains [27, 30, 46] often utilize BFT state
machine replication to provide distributed multiparty applications
with integrity provided that a threshold of participants are non-
faulty. Many blockchains struggle with poor performance [41], high
energy footprints [98], and typically they do not provide confiden-
tiality, although zero knowledge proofs [40] may be used to avoid
recording private data on blockchains.

Fully homomorphic encryption, arbitrary computation over en-
crypted data, is an active research area, but it is not yet a practical
option [76] for most applications. Secure Multiparty Computation
provides both confidentiality and integrity but can be expensive
and is highly application-specific [127].

8.2 TEE-based approaches
At the time of writing, there are various TEE platforms, at differing
stages of development. These include ARM CCA [8] with Trust-
Zone [7] and Realms [71], Intel SGX [31] and TDX [51], RISC-V
Keystone [69], and AMD SEV [61], SEV-ES [60], and SEV-SNP [50].
Like most systems discussed in this section, CCF opted for In-
tel SGX due to its availability at the time of development, SDK
support [37, 54, 119], and its small TCB relative to VM-based ap-
proaches. Early Intel SGX offerings had highly limited enclave mem-
ory (128 MB) but this is no longer the case [36], for instance, the
3rd Gen Intel Xeon Scalable Processors support up to 512 GB [52].
In January 2022, Intel reaffirmed its commitment to SGX on its
server-grade processors [101]. There are two general approaches to
building trustworthy data systems leveraging TEEs: lift-and-shift
and enclave-aware.

Lift-and-shift approaches focus on porting existing applications
to a TEE with minimal modifications. Examples include Haven [13],
Graphene [120, 121], SCONE [10], Occlum [110], Ryoan [44], Ra-
tel [32], S-FaaS [1], and Parma [56]. Cloud providers are beginning
to offer lift-&-shift as a service, in the form of Confidential VMs or
Confidential containers [99]. Kata containers [29] has experimental
support for AMD SEV-SNP [28] and lift-and-shift is already being
utilized, for instance, by Constellation [118]. Lift-and-shift is easy
to adopt for stateless applications but has a large trusted computing
base (TCB), violating the principle of least privilege, and is more
challenging for applications requiring durability.

Enclave-aware approaches are new system designs with a focus
on dividing code between the trusted enclave and the untrusted
host. This approach has a higher barrier to entry compared to lift-
&-shift solutions but also a smaller TCB. Some systems in this
space are highly application specific [22, 70, 106, 111]. Others are
more application agnostic, for instance, recent efforts to put privacy
into blockchains with off-chain processing on TEEs [2, 26, 47, 66,
131], a TEE-based file system [65], or Glamdring [73] which allows

11

Heidi Howard, Fritz Alder, Edward Ashton, Amaury Chamayou, Sylvan Clebsch, Manuel Costa, Antoine Delignat-Lavaud, Cédric Fournet, Andrew Jeffery, Matthew Kerner, Fotios
Kounelis, Markus A. Kuppe, Julien Maffre, Mark Russinovich, and Christoph M. Wintersteiger

Table 6: Comparison of data systems utilizing TEEs, ordered
by publication year. (C) Confidentiality, (E) Execution In-
tegrity, (D) Data Integrity, (A) High Availability, (R) Recon-
figuration, (U) Untrusted infrastructure, (OS) Open Source.

C E D A R U OS

Hybster [14] ✓ ✓ ✓ ✓

Fabric PC [20] ✓ ✓ ✓ ✓ ✓ ✓

Pesos [64] ✓ ✓ ✓ ✓

EnclaveDB [100] ✓ ✓ ✓ ✓

VeritasDB [113] ✓ ✓

Ekiden [26] ✓ ✓ ✓ ✓ ✓

ShieldStore [63] ✓ ✓ ✓ ✓

Speicher [12] ✓ ✓ ✓

Azure SQL AE [5] ✓ ✓ ✓ ✓

Avocado [11] ✓ ✓ ✓ ✓ ✓ ✓

Enclage [117] ✓ ✓

FastVer [6] ✓ ✓

HotStuff-M/VABA-M [132] ✓ ✓ ✓

Precursor [79] ✓ ✓ ✓

(Chained) Damysus [33] ✓ ✓ ✓ ✓

Engraft [126] ✓ ✓ ✓ ✓ ✓ ✓

FlexiTrust [43] ✓ ✓ ✓

Treaty [39] ✓ ✓ ✓ ✓

Data Station [130] ✓ ✓ ✓ ✓

CCF ✓ ✓ ✓ ✓ ✓ ✓ ✓

developers to annotate sensitive data and automatically partitions
the application between the enclave and host.

Table 6 compares CCF to similar TEE-based approaches, along
the dimensions of data confidentiality, integrity protection (divided
into execution and data), high availability, support for reconfigura-
tion, and support for untrusted infrastructure. All approaches listed
are based on Intel SGX, except for Data station [130] which opted
for AMD SEV.

Avocado [11] is a confidential, integrity-protected key-value
store, built for Intel SGX using SCONE [10]. Unlike CCF, Avocado
is purely in-memory with a node replacement protocol based on
Hermes [62] and does not support disaster recovery. Avocado uses
multi-writer ABD [74] for replication instead of a distributed con-
sensus algorithm. Avocado supports sharding on individual oper-
ations since Avocado does not support transactions so no cross-
shard transaction support is needed. Like many systems utilizing
TEEs, its architecture is heavily influenced by the limited enclave
memory in early SGX offerings and the high cost of enclave page
cache paging. Similarly, Treaty [39] is a confidential, distributed
key-value store built on SGX. The distribution layer is built on top
of Speicher [12] and like Avocado, its networking stack is based on
eRPC [59]. Treaty uses two-phase commit for replication instead
of a consensus algorithm such as Raft. Treaty supports sharding
but does not support server-side application logic, so users submit
interactive transactions directly. Protection against rollback attacks
is achieved using a trusted counter. FastVer [6] adds integrity pro-
tection to the Faster [25] key-value store, using a combination of
trusted execution, Merkle trees, and deferred memory verification.

Whilst FastVer does not have many of the features of CCF such
as confidentiality or custom application logic, it does achieve out-
standing performance. FlexiTrust [43] is motivated by the claim
that current TEE protocols have three issues compared to classic
BFT protocols: liveness attacks, rollback attacks, and sequential
consensus. FlexiTrust tries to address these. It is a BFT protocol
for TEEs that uses 3𝑓 + 1 nodes but only one phase (usually CFT
protocols require one phase but BFT protocols require two) and
a TEE is only used by the primary. FlexiTrust provides no confi-
dentiality guarantees but does perform well (up to 200K txns/sec).
Hyperledger Fabric [46] is a permissioned blockchain, whose nodes
are divided into peers, which execute the chaincode (smart contrac-
t/app logic), and the orderers, which use Raft (implementation from
etcd) to order transactions on the ledger. Hyperledger Fabric Private
Chaincodes (PC) [20, 45] is a proposed extension to Fabric that uses
Intel SGX for private execution by modifying the peers to execute
chaincode inside an enclave. With Fabric PC, like Ekiden [26], the
consensus layer remains outside the TEEs.

We have released a technical report [102] describing an earlier it-
eration of CCF and a subsequent paper on a technique for providing
accountability following TEE compromise [109].

9 CONCLUSION & FUTUREWORK
CCF is a general-purpose platform for constructing confidential,
integrity protected & highly available services, with support for
delegation to untrusted cloud infrastructure and governance by mu-
tually untrusted parties. CCF is a production quality, open source
project that we believe has substantial potential as a foundation for
new systems research into trustworthy computing, and it is already
being built upon [66, 80, 83, 84]. CCF offers an all-in-one platform
for deploying trustworthy multiparty applications on untrusted
infrastructure. Moreover, aspects of CCF’s design, such as its dis-
aster recovery procedure, atomic reconfiguration, and governance
model, could also be useful techniques in their own right.

CCF is by no means the final word on confidential computing.
Our trusted computing base still includes the hardware manufac-
turer and research is ongoing into verifying the correctness of the
code and protecting against side-channel attacks [42, 92]. Intel SGX
has also been the subject of various exploits [19, 89, 107, 115, 122–
125], capable of compromising the confidentiality and/or integrity
of execution. We have applied the available mitigations, however,
further exploits may be uncovered. SGX also has a significant per-
formance overhead, as shown in Table 5, and is not universally
available. In response, we have recently added experimental sup-
port for another trusted execution platform, AMD SEV-SNP, and
we aim to support future offerings such as Intel TDX. CCF’s threat
model is a significant improvement over the current state of the art
and a substantial step in the right direction. The removal of cloud
providers from the trusted computing base opens up a myriad of
new possibilities for reimagining multiparty distributed systems
that leverage the cloud’s compute capability whilst minimizing
trust in cloud providers.

ACKNOWLEDGMENTS
We are sincerely grateful to the following people for their contribu-
tions to CCF at various stages of the project: Christine Avanessians,

12

Confidential Consortium Framework: Secure Multiparty Applications with Confidentiality, Integrity, and High Availability

Dominic Ayre, Jacqueline Aziz, Theodore Butler, Miguel Castro,
Mahati Chamarthy, Joonwon Choi, Renato Golin, Istvan Haller,
Syed Hamza, Sid Krishna, Sangeeth Kumar, Paul Liétar, Thomas
Moscibroda, Kartik Nayak, Olga Ohrimenko, Joe Powell, Jonathan
Protzenko, Maik Riechert, Takuro Sato, Felix Schuster, Roy Schus-
ter, Alex Shamis, Lyndon Shi, Ross P. Smith, Cale Teeter, Shoko
Ueda, and Olga Vrousgou. We would also like to thank the con-
tributors to Open Enclave [37], Confidential Containers [56], and
snmalloc [72]. Finally, we would also like to thank the anonymous
VDLB reviewers for their insightful feedback.

REFERENCES
[1] Fritz Alder, N. Asokan, Arseny Kurnikov, Andrew Paverd, and Michael Steiner.

2019. S-FaaS: Trustworthy and Accountable Function-as-a-Service Using Intel
SGX. In Proceedings of the 2019 ACM SIGSAC Conference on Cloud Comput-
ing Security Workshop (London, United Kingdom) (CCSW’19). Association for
Computing Machinery, New York, NY, USA, 185–199. https://doi.org/10.1145/
3338466.3358916

[2] Enterprise Ethereum Alliance. 2021. Enterprise Ethereum Alliance Off-Chain
Trusted Compute Specification v1.1. https://entethalliance.github.io/trusted-
computing/spec.html [Last accessed: 2023-Oct-06].

[3] AMD. 2021. Microsoft Azure Confidential Computing Powered by 3rd Gen EPYC
CPUs. https://community.amd.com/t5/business/microsoft-azure-confidential-
computing-powered-by-3rd-gen-epyc/ba-p/497796 [Last accessed: 2023-Oct-
06].

[4] Sebastian Angel, Aditya Basu, Weidong Cui, Trent Jaeger, Stella Lau, Srinath
Setty, and Sudheesh Singanamalla. 2023. Nimble: Rollback Protection for Confi-
dential Cloud Services. In 17th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 23). USENIX Association, Boston, MA, 193–208.
https://www.usenix.org/system/files/osdi23-angel.pdf

[5] Panagiotis Antonopoulos, Arvind Arasu, Kunal D. Singh, Ken Eguro, Nitish
Gupta, Rajat Jain, Raghav Kaushik, Hanuma Kodavalla, Donald Kossmann,
Nikolas Ogg, Ravi Ramamurthy, Jakub Szymaszek, Jeffrey Trimmer, Kapil
Vaswani, Ramarathnam Venkatesan, and Mike Zwilling. 2020. Azure SQL
Database Always Encrypted. In Proceedings of the 2020 International Con-
ference on Management of Data (Portland, OR, USA) (SIGMOD ’20). Associ-
ation for Computing Machinery, New York, NY, USA, 1511–1525. https:
//doi.org/10.1145/3318464.3386141

[6] Arvind Arasu, Badrish Chandramouli, Johannes Gehrke, Esha Ghosh, Donald
Kossmann, Jonathan Protzenko, Ravi Ramamurthy, Tahina Ramananandro,
Aseem Rastogi, Srinath Setty, Nikhil Swamy, Alexander van Renen, and Min
Xu. 2021. FastVer: Making Data Integrity a Commodity. In Proceedings of the
2021 International Conference on Management of Data (Virtual Event, China)
(SIGMOD ’21). Association for Computing Machinery, New York, NY, USA,
89–101. https://doi.org/10.1145/3448016.3457312

[7] ARM. 2013. GlobalPlatform based Trusted Execution Environ-
ment and TrustZone Ready - The foundations for trusted services.
https://community.arm.com/cfs-file/__key/telligent-evolution-components-
attachments/01-2142-00-00-00-00-51-36/GlobalPlatform-based-Trusted-
Execution-Environment-and-TrustZone-R.pdf [Last accessed: 2023-Oct-06].

[8] ARM. 2023. Learn the architecture - Introducing Arm Confidential Compute
Architecture - Issue 2.0. https://developer.arm.com/documentation/den0125/
latest [Last accessed: 2023-Oct-06].

[9] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,
and Matei Zaharia. 2010. A View of Cloud Computing. Commun. ACM 53, 4
(apr 2010), 50–58. https://doi.org/10.1145/1721654.1721672

[10] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L.
Stillwell, David Goltzsche, David Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In
Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation (Savannah, GA, USA) (OSDI’16). USENIXAssociation, USA, 689–
703. https://www.usenix.org/system/files/conference/osdi16/osdi16-arnautov.
pdf

[11] Maurice Bailleu, Dimitra Giantsidi, Vasilis Gavrielatos, Do Le Quoc, Vijay Na-
garajan, and Pramod Bhatotia. 2021. Avocado: A Secure In-Memory Distributed
Storage System. In 2021 USENIX Annual Technical Conference (USENIX ATC 21).
USENIX Association, USA, 65–79. https://www.usenix.org/system/files/atc21-
bailleu.pdf

[12] Maurice Bailleu, Jörg Thalheim, Pramod Bhatotia, Christof Fetzer, Michio
Honda, and Kapil Vaswani. 2019. Speicher: Securing LSM-Based Key-Value
Stores Using Shielded Execution. In Proceedings of the 17th USENIX Conference

on File and Storage Technologies (Boston, MA, USA) (FAST’19). USENIX Associa-
tion, USA, 173–190. https://www.usenix.org/system/files/fast19-bailleu.pdf

[13] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding Applica-
tions from an Untrusted Cloud with Haven. ACM Trans. Comput. Syst. 33, 3,
Article 8 (aug 2015), 26 pages. https://doi.org/10.1145/2799647

[14] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. 2017. Hybrids on Steroids:
SGX-Based High Performance BFT. In Proceedings of the Twelfth European
Conference on Computer Systems (Belgrade, Serbia) (EuroSys ’17). Association
for Computing Machinery, New York, NY, USA, 222–237. https://doi.org/10.
1145/3064176.3064213

[15] bellard. 2021. QuickJS. https://bellard.org/quickjs/ [Last accessed: 2023-Oct-06].
[16] Mihir Bellare and Phillip Rogaway. 1995. Optimal asymmetric encryption

- How to Encrypt with RSA. In Advances in Cryptology — EUROCRYPT’94,
Alfredo De Santis (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 92–111.
https://doi.org/10.1007/BFb0053428

[17] Sam Blackshear, Evan Cheng, David L. Dill, Victor Gao, Ben Maurer, Todd
Nowacki, Alistair Pott, Shaz Qadeer, Rain, Dario Russi, Stephane Sezer, Tim Za-
kian, and Runtian Zhou. 2019. Move: A Language With Programmable Resources.
Technical Report. Calibra. https://developers.diem.com/papers/diem-move-a-
language-with-programmable-resources/2019-06-18.pdf [Last accessed: 2023-
Oct-06].

[18] Sharon Boeyen, Stefan Santesson, Tim Polk, Russ Housley, Stephen Farrell, and
David Cooper. 2008. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. RFC 5280. https://doi.org/10.17487/
RFC5280

[19] Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp, Daniel Gruss,
and Michael Schwarz. 2022. ÆPIC Leak: Architecturally Leaking Uninitialized
Data from the Microarchitecture. In 31st USENIX Security Symposium (USENIX
Security 22). USENIX Association, Boston, MA, 3917–3934. https://www.usenix.
org/system/files/sec22-borrello.pdf

[20] Marcus Brandenburger, Christian Cachin, Rüdiger Kapitza, and Alessandro
Sorniotti. 2018. Blockchain and Trusted Computing: Problems, Pitfalls, and a
Solution for Hyperledger Fabric. arXiv:1805.08541 [cs.DC] https://arxiv.org/
abs/1805.08541

[21] Marcus Brandenburger, Christian Cachin, Matthias Lorenz, and Rüdiger Kapitza.
2017. Rollback and Forking Detection for Trusted Execution Environments Us-
ing Lightweight Collective Memory. In 2017 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE Computer Society,
USA, 157–168. https://doi.org/10.1109/DSN.2017.45

[22] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias
Lorenz, Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza. 2016. Secure-
Keeper: Confidential ZooKeeper Using Intel SGX. In Proceedings of the 17th
International Middleware Conference (Trento, Italy) (Middleware ’16). Associ-
ation for Computing Machinery, New York, NY, USA, Article 14, 13 pages.
https://doi.org/10.1145/2988336.2988350

[23] Mark Cavage and Manu Sporny. 2019. Signing HTTP Messages. Internet-
Draft draft-cavage-http-signatures-12. Internet Engineering Task Force. https:
//datatracker.ietf.org/doc/draft-cavage-http-signatures/12/ Work in Progress.

[24] Shanwei Cen and Bo Zhang. 2017. Trusted Time and Monotonic Counters
with Intel Software Guard Extensions Platform Services. Technical Report. In-
tel. https://community.intel.com/legacyfs/online/drupal_files/managed/1b/a2/
Intel-SGX-Platform-Services.pdf [Last accessed: 2023-Oct-06].

[25] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski,
James Hunter, and Mike Barnett. 2018. FASTER: A Concurrent Key-Value
Store with In-Place Updates. In Proceedings of the 2018 International Conference
on Management of Data (Houston, TX, USA) (SIGMOD ’18). Association for
Computing Machinery, New York, NY, USA, 275–290. https://doi.org/10.1145/
3183713.3196898

[26] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah
Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2019. Ekiden: A Platform
for Confidentiality-Preserving, Trustworthy, and Performant Smart Contracts.
In 2019 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE
Computer Society, USA, 185–200. https://doi.org/10.1109/EuroSP.2019.00023

[27] ConsenSys. 2022. Quorum. https://github.com/ConsenSys/quorum [Last
accessed: 2023-Oct-06].

[28] Kata Containers. 2021. [RFC] [WIP] Confidential Computing Enablement.
https://github.com/kata-containers/kata-containers/issues/1332 [Last accessed:
2023-Oct-06].

[29] Kata Containers. 2022. Kata Containers. https://github.com/kata-containers
[Last accessed: 2023-Oct-06].

[30] Corda. 2022. Corda. https://github.com/corda/corda [Last accessed: 2023-Oct-
06].

[31] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. Cryptology
ePrint Archive, Paper 2016/086. https://eprint.iacr.org/2016/086

[32] Jinhua Cui, Shweta Shinde, Satyaki Sen, Prateek Saxena, and Pinghai Yuan.
2022. Dynamic Binary Translation for SGX Enclaves. ACM Trans. Priv. Secur.
25, 4, Article 32 (jul 2022), 40 pages. https://doi.org/10.1145/3532862

[33] Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiangshan Yu. 2022.
DAMYSUS: Streamlined BFT Consensus Leveraging Trusted Components.13

https://doi.org/10.1145/3338466.3358916
https://doi.org/10.1145/3338466.3358916
https://entethalliance.github.io/trusted-computing/spec.html
https://entethalliance.github.io/trusted-computing/spec.html
https://community.amd.com/t5/business/microsoft-azure-confidential-computing-powered-by-3rd-gen-epyc/ba-p/497796
https://community.amd.com/t5/business/microsoft-azure-confidential-computing-powered-by-3rd-gen-epyc/ba-p/497796
https://www.usenix.org/system/files/osdi23-angel.pdf
https://doi.org/10.1145/3318464.3386141
https://doi.org/10.1145/3318464.3386141
https://doi.org/10.1145/3448016.3457312
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-51-36/GlobalPlatform-based-Trusted-Execution-Environment-and-TrustZone-R.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-51-36/GlobalPlatform-based-Trusted-Execution-Environment-and-TrustZone-R.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-51-36/GlobalPlatform-based-Trusted-Execution-Environment-and-TrustZone-R.pdf
https://developer.arm.com/documentation/den0125/latest
https://developer.arm.com/documentation/den0125/latest
https://doi.org/10.1145/1721654.1721672
https://www.usenix.org/system/files/conference/osdi16/osdi16-arnautov.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-arnautov.pdf
https://www.usenix.org/system/files/atc21-bailleu.pdf
https://www.usenix.org/system/files/atc21-bailleu.pdf
https://www.usenix.org/system/files/fast19-bailleu.pdf
https://doi.org/10.1145/2799647
https://doi.org/10.1145/3064176.3064213
https://doi.org/10.1145/3064176.3064213
https://bellard.org/quickjs/
https://doi.org/10.1007/BFb0053428
https://developers.diem.com/papers/diem-move-a-language-with-programmable-resources/2019-06-18.pdf
https://developers.diem.com/papers/diem-move-a-language-with-programmable-resources/2019-06-18.pdf
https://doi.org/10.17487/RFC5280
https://doi.org/10.17487/RFC5280
https://www.usenix.org/system/files/sec22-borrello.pdf
https://www.usenix.org/system/files/sec22-borrello.pdf
https://arxiv.org/abs/1805.08541
https://arxiv.org/abs/1805.08541
https://arxiv.org/abs/1805.08541
https://doi.org/10.1109/DSN.2017.45
https://doi.org/10.1145/2988336.2988350
https://datatracker.ietf.org/doc/draft-cavage-http-signatures/12/
https://datatracker.ietf.org/doc/draft-cavage-http-signatures/12/
https://community.intel.com/legacyfs/online/drupal_files/managed/1b/a2/Intel-SGX-Platform-Services.pdf
https://community.intel.com/legacyfs/online/drupal_files/managed/1b/a2/Intel-SGX-Platform-Services.pdf
https://doi.org/10.1145/3183713.3196898
https://doi.org/10.1145/3183713.3196898
https://doi.org/10.1109/EuroSP.2019.00023
https://github.com/ConsenSys/quorum
https://github.com/kata-containers/kata-containers/issues/1332
https://github.com/kata-containers
https://github.com/corda/corda
https://eprint.iacr.org/2016/086
https://doi.org/10.1145/3532862

Heidi Howard, Fritz Alder, Edward Ashton, Amaury Chamayou, Sylvan Clebsch, Manuel Costa, Antoine Delignat-Lavaud, Cédric Fournet, Andrew Jeffery, Matthew Kerner, Fotios
Kounelis, Markus A. Kuppe, Julien Maffre, Mark Russinovich, and Christoph M. Wintersteiger

In Proceedings of the Seventeenth European Conference on Computer Systems
(Rennes, France) (EuroSys ’22). Association for Computing Machinery, New
York, NY, USA, 1–16. https://doi.org/10.1145/3492321.3519568

[34] Antoine Delignat-Lavaud, Cédric Fournet, Kapil Vaswani, Sylvan Clebsch, Maik
Riechert, Manuel Costa, and Mark Russinovich. 2023. Why Should I Trust Your
Code? Confidential Computing Enables Users to Authenticate Code Running
in TEEs, but Users Also Need Evidence This Code is Trustworthy. Queue 21, 4
(sep 2023), 94–122. https://doi.org/10.1145/3623460

[35] W. Diffie and M. Hellman. 1976. New directions in cryptography. IEEE Transac-
tions on Information Theory 22, 6 (1976), 644–654. https://doi.org/10.1109/TIT.
1976.1055638

[36] Muhammad El-Hindi, Tobias Ziegler, Matthias Heinrich, Adrian Lutsch,
Zheguang Zhao, and Carsten Binnig. 2022. Benchmarking the Second Genera-
tion of Intel SGX Hardware. In Data Management on New Hardware (Philadel-
phia, PA, USA) (DaMoN’22). Association for Computing Machinery, New York,
NY, USA, Article 5, 8 pages. https://doi.org/10.1145/3533737.3535098

[37] Open Enclave. 2022. Open Enclave SDK. https://github.com/openenclave/
openenclave [Last accessed: 2023-Oct-06].

[38] etcd v3.5. 2021. Operations Guide: Runtime reconfiguration - Cluster reconfig-
uration operations. https://etcd.io/docs/v3.1/op-guide/runtime-configuration/
#cluster-reconfiguration-operations [Last accessed: 2023-Oct-06].

[39] Dimitra Giantsidi, Maurice Bailleu, Natacha Crooks, and Pramod Bhatotia. 2022.
Treaty: Secure Distributed Transactions. In 2022 52nd Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN). IEEE Computer
Society, USA, 14–27. https://doi.org/10.1109/DSN53405.2022.00015

[40] S. Goldwasser, S. Micali, and C. Rackoff. 1989. The Knowledge Complexity of
Interactive Proof Systems. SIAM J. Comput. 18, 1 (feb 1989), 186–208. https:
//doi.org/10.1137/0218012

[41] Vincent Gramoli, Rachid Guerraoui, Andrei Lebedev, Chris Natoli, and Gauthier
Voron. 2023. Diablo: A Benchmark Suite for Blockchains. In Proceedings of the
Eighteenth European Conference on Computer Systems (Rome, Italy) (EuroSys ’23).
Association for Computing Machinery, New York, NY, USA, 540–556. https:
//doi.org/10.1145/3552326.3567482

[42] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Istvan Haller,
and Manuel Costa. 2017. Strong and Efficient Cache Side-Channel Protection
Using Hardware Transactional Memory. In Proceedings of the 26th USENIX
Conference on Security Symposium (Vancouver, BC, Canada) (SEC’17). USENIX
Association, USA, 217–233. https://www.usenix.org/system/files/conference/
usenixsecurity17/sec17-gruss.pdf

[43] Suyash Gupta, Sajjad Rahnama, Shubham Pandey, Natacha Crooks, and Mo-
hammad Sadoghi. 2023. Dissecting BFT Consensus: In Trusted Components
We Trust!. In Proceedings of the Eighteenth European Conference on Computer
Systems (Rome, Italy) (EuroSys ’23). Association for Computing Machinery, New
York, NY, USA, 521–539. https://doi.org/10.1145/3552326.3587455

[44] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel.
2016. Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data.
In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation (Savannah, GA, USA) (OSDI’16). USENIXAssociation, USA, 533–
549. https://www.usenix.org/system/files/conference/osdi16/osdi16-hunt.pdf

[45] Hyperledger. 2021. Fabric Private Chaincode RPC 1.0. https:
//github.com/hyperledger/fabric-rfcs/blob/main/text/0000-fabric-private-
chaincode-1.0.md [Last accessed: 2023-Oct-06].

[46] Hyperledger. 2022. Hyperledger Fabric. https://github.com/hyperledger/fabric
[Last accessed: 2023-Oct-06].

[47] Hyperledger. 2022. Hyperledger Fabric Private Chaincode. https://github.com/
hyperledger/fabric-private-chaincode [Last accessed: 2023-Oct-06].

[48] Intel. 2016. Introduction to Intel SGX Sealing. https://www.intel.com/
content/www/us/en/developer/articles/technical/introduction-to-intel-sgx-
sealing.html [Last accessed: 2023-Oct-06].

[49] Intel. 2018. Performance Considerations for Intel Software Guard Exten-
sions (Intel SGX) Applications. https://community.intel.com/legacyfs/online/
drupal_files/managed/09/37/Intel-SGX-Performance-Considerations.pdf [Last
accessed: 2023-Oct-06].

[50] Intel. 2020. AMD SEV-SNP: Strengthening VM isolation with integrity pro-
tection and more. https://www.amd.com/system/files/TechDocs/SEV-SNP-
strengthening-vm-isolation-with-integrity-protection-and-more.pdf [Last
accessed: 2023-Oct-06].

[51] Intel. 2021. Intel Trust Domain Extensions - White Paper. https://cdrdv2.intel.
com/v1/dl/getContent/690419 [Last accessed: 2023-Oct-06].

[52] Intel. 2021. Product Brief: 3rd Gen Intel Xeon Scalable Proces-
sors. https://www.intel.com/content/www/us/en/products/docs/processors/
xeon/3rd-gen-xeon-scalable-processors-brief.html [Last accessed: 2023-Oct-
06].

[53] Intel. 2021. Unable to find Alternatives to Monotonic Counter Ap-
plication Programming Interfaces (APIs) in Intel Software Guard Ex-
tensions (Intel SGX) for Linux* to Prevent Sealing Rollback Attacks.
https://www.intel.com/content/www/us/en/support/articles/000057968/
software/intel-security-products.html Article ID: 000057968 [Last accessed:

2023-Oct-06].
[54] Intel. 2022. Intel Software Guard Extensions (Intel SGX) SDK for Linux OS -

Developer Reference. https://download.01.org/intel-sgx/latest/linux-latest/
docs/Intel_SGX_Developer_Reference_Linux_2.17_Open_Source.pdf Revision
2.17 [Last accessed: 2023-Oct-06].

[55] Intel. 2022. Which Platforms Support Intel Software Guard Extensions (Intel
SGX) SGX2? https://www.intel.com/content/www/us/en/support/articles/
000058764/software/intel-security-products.html Article ID: 000058764 [Last
accessed: 2023-Oct-06].

[56] Matthew A. Johnson, Stavros Volos, Ken Gordon, Sean T. Allen, Christoph M.
Wintersteiger, Sylvan Clebsch, John Starks, andManuel Costa. 2023. Parma: Con-
fidential Containers via Attested Execution Policies. arXiv:2302.03976 [cs.CR]
https://arxiv.org/abs/2302.03976

[57] Michael Jones, John Bradley, and Nat Sakimura. 2015. JSON Web Token (JWT).
RFC 7519. https://doi.org/10.17487/RFC7519

[58] Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. 2011. Zab: High-
Performance Broadcast for Primary-Backup Systems. In Proceedings of the 2011
IEEE/IFIP 41st International Conference on Dependable Systems & Networks (DSN
’11). IEEE Computer Society, USA, 245 – 256. https://doi.org/10.1109/DSN.2011.
5958223

[59] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2019. Datacenter RPCs
Can Be General and Fast. In Proceedings of the 16th USENIX Conference on
Networked Systems Design and Implementation (Boston, MA, USA) (NSDI’19).
USENIX Association, USA, 1–16. https://www.usenix.org/system/files/nsdi19-
kalia.pdf

[60] David Kaplan. 2017. Protecting VM Register State with SEV-ES.
https://www.amd.com/content/dam/amd/en/documents/epyc-business-
docs/white-papers/Protecting-VM-Register-State-with-SEV-ES.pdf [Last
accessed: 2023-Oct-06].

[61] David Kaplan, Jeremy Powell, and Tom Woller. 2021. AMD Memory Encryp-
tion. https://www.amd.com/content/dam/amd/en/documents/epyc-business-
docs/white-papers/memory-encryption-white-paper.pdf [Last accessed: 2023-
Oct-06].

[62] Antonios Katsarakis, Vasilis Gavrielatos, M.R. Siavash Katebzadeh, Arpit Joshi,
Aleksandar Dragojevic, Boris Grot, and Vijay Nagarajan. 2020. Hermes: A
Fast, Fault-Tolerant and Linearizable Replication Protocol. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Lausanne, Switzerland) (ASP-
LOS ’20). Association for Computing Machinery, New York, NY, USA, 201–217.
https://doi.org/10.1145/3373376.3378496

[63] Taehoon Kim, Joongun Park, Jaewook Woo, Seungheun Jeon, and Jaehyuk
Huh. 2019. ShieldStore: Shielded In-Memory Key-Value Storage with SGX.
In Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden, Germany)
(EuroSys ’19). Association for ComputingMachinery, NewYork, NY, USA, Article
14, 15 pages. https://doi.org/10.1145/3302424.3303951

[64] Robert Krahn, Bohdan Trach, Anjo Vahldiek-Oberwagner, Thomas Knauth,
Pramod Bhatotia, and Christof Fetzer. 2018. Pesos: Policy Enhanced Secure
Object Store. In Proceedings of the Thirteenth EuroSys Conference (Porto, Portu-
gal) (EuroSys ’18). Association for Computing Machinery, New York, NY, USA,
Article 25, 17 pages. https://doi.org/10.1145/3190508.3190518

[65] Sandeep Kumar and Smruti R. Sarangi. 2021. SecureFS: A Secure File System
for Intel SGX. In Proceedings of the 24th International Symposium on Research in
Attacks, Intrusions and Defenses (San Sebastian, Spain) (RAID ’21). Association
for Computing Machinery, New York, NY, USA, 91–102. https://doi.org/10.
1145/3471621.3471840

[66] Hyperledger Labs. 2022. Hyperledger Private Data Objects. https://github.
com/hyperledger-labs/private-data-objects

[67] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput. Syst. 16,
2 (may 1998), 133 – 169. https://doi.org/10.1145/279227.279229

[68] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley Professional, Pearson Edu-
cation, USA. https://lamport.azurewebsites.net/tla/book.html [Last accessed:
2023-Oct-06].

[69] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn
Song. 2020. Keystone: An Open Framework for Architecting Trusted Execution
Environments. In Proceedings of the Fifteenth European Conference on Computer
Systems (Heraklion, Greece) (EuroSys ’20). Association for Computing Machin-
ery, New York, NY, USA, Article 38, 16 pages. https://doi.org/10.1145/3342195.
3387532

[70] Mingyu Li, Jinhao Zhu, Tianxu Zhang, Cheng Tan, Yubin Xia, Sebastian Angel,
and Haibo Chen. 2021. Bringing Decentralized Search to Decentralized Services.
In 15th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 21). USENIXAssociation, USA, 331–347. https://www.usenix.org/system/
files/osdi21-li.pdf

[71] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh, Yousuf Sait,
and Gareth Stockwell. 2022. Design and Verification of the Arm Confidential
Compute Architecture. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22). USENIX Association, Carlsbad, CA, 465–484.

14

https://doi.org/10.1145/3492321.3519568
https://doi.org/10.1145/3623460
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1145/3533737.3535098
https://github.com/openenclave/openenclave
https://github.com/openenclave/openenclave
https://etcd.io/docs/v3.1/op-guide/runtime-configuration/#cluster-reconfiguration-operations
https://etcd.io/docs/v3.1/op-guide/runtime-configuration/#cluster-reconfiguration-operations
https://doi.org/10.1109/DSN53405.2022.00015
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1145/3552326.3567482
https://doi.org/10.1145/3552326.3567482
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-gruss.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-gruss.pdf
https://doi.org/10.1145/3552326.3587455
https://www.usenix.org/system/files/conference/osdi16/osdi16-hunt.pdf
https://github.com/hyperledger/fabric-rfcs/blob/main/text/0000-fabric-private-chaincode-1.0.md
https://github.com/hyperledger/fabric-rfcs/blob/main/text/0000-fabric-private-chaincode-1.0.md
https://github.com/hyperledger/fabric-rfcs/blob/main/text/0000-fabric-private-chaincode-1.0.md
https://github.com/hyperledger/fabric
https://github.com/hyperledger/fabric-private-chaincode
https://github.com/hyperledger/fabric-private-chaincode
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-intel-sgx-sealing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-intel-sgx-sealing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-intel-sgx-sealing.html
https://community.intel.com/legacyfs/online/drupal_files/managed/09/37/Intel-SGX-Performance-Considerations.pdf
https://community.intel.com/legacyfs/online/drupal_files/managed/09/37/Intel-SGX-Performance-Considerations.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/3rd-gen-xeon-scalable-processors-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/3rd-gen-xeon-scalable-processors-brief.html
https://www.intel.com/content/www/us/en/support/articles/000057968/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000057968/software/intel-security-products.html
https://download.01.org/intel-sgx/latest/linux-latest/docs/Intel_SGX_Developer_Reference_Linux_2.17_Open_Source.pdf
https://download.01.org/intel-sgx/latest/linux-latest/docs/Intel_SGX_Developer_Reference_Linux_2.17_Open_Source.pdf
https://www.intel.com/content/www/us/en/support/articles/000058764/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000058764/software/intel-security-products.html
https://arxiv.org/abs/2302.03976
https://arxiv.org/abs/2302.03976
https://doi.org/10.17487/RFC7519
https://doi.org/10.1109/DSN.2011.5958223
https://doi.org/10.1109/DSN.2011.5958223
https://www.usenix.org/system/files/nsdi19-kalia.pdf
https://www.usenix.org/system/files/nsdi19-kalia.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/Protecting-VM-Register-State-with-SEV-ES.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/Protecting-VM-Register-State-with-SEV-ES.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://doi.org/10.1145/3373376.3378496
https://doi.org/10.1145/3302424.3303951
https://doi.org/10.1145/3190508.3190518
https://doi.org/10.1145/3471621.3471840
https://doi.org/10.1145/3471621.3471840
https://github.com/hyperledger-labs/private-data-objects
https://github.com/hyperledger-labs/private-data-objects
https://doi.org/10.1145/279227.279229
https://lamport.azurewebsites.net/tla/book.html
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/3342195.3387532
https://www.usenix.org/system/files/osdi21-li.pdf
https://www.usenix.org/system/files/osdi21-li.pdf

Confidential Consortium Framework: Secure Multiparty Applications with Confidentiality, Integrity, and High Availability

https://www.usenix.org/system/files/osdi22-li.pdf
[72] Paul Liétar, Theodore Butler, Sylvan Clebsch, Sophia Drossopoulou, Juliana

Franco, Matthew J. Parkinson, Alex Shamis, Christoph M. Wintersteiger, and
David Chisnall. 2019. Snmalloc: A Message Passing Allocator. In Proceedings
of the 2019 ACM SIGPLAN International Symposium on Memory Management
(Phoenix, AZ, USA) (ISMM 2019). Association for Computing Machinery, New
York, NY, USA, 122–135. https://doi.org/10.1145/3315573.3329980

[73] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-
Louis Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Rüdi-
ger Kapitza, Christof Fetzer, and Peter Pietzuch. 2017. Glamdring: Automatic
Application Partitioning for Intel SGX. In Proceedings of the 2017 USENIX Con-
ference on Usenix Annual Technical Conference (Santa Clara, CA, USA) (USENIX
ATC ’17). USENIX Association, USA, 285–298. https://www.usenix.org/system/
files/conference/atc17/atc17-lind.pdf

[74] N. A. Lynch and A. A. Shvartsman. 1997. Robust Emulation of Shared Memory
Using Dynamic Quorum-Acknowledged Broadcasts. In Proceedings of the 27th
International Symposium on Fault-Tolerant Computing (FTCS ’97) (FTCS ’97).
IEEE Computer Society, USA, 272. https://doi.org/10.1109/FTCS.1997.614100

[75] André Martin, Cong Lian, Franz Gregor, Robert Krahn, Valerio Schiavoni, Pascal
Felber, and Christof Fetzer. 2021. ADAM-CS: Advanced Asynchronous Mono-
tonic Counter Service. In 2021 51st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE Computer Society, USA, 426–437.
https://doi.org/10.1109/DSN48987.2021.00053

[76] Paulo Martins, Leonel Sousa, and Artur Mariano. 2017. A Survey on Fully
Homomorphic Encryption: An Engineering Perspective. ACM Comput. Surv.
50, 6, Article 83 (dec 2017), 33 pages. https://doi.org/10.1145/3124441

[77] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE: Rollback Protection
for Trusted Execution. In Proceedings of the 26th USENIX Conference on Security
Symposium (Vancouver, BC, Canada) (SEC’17). USENIX Association, USA, 1289–
1306. https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-
matetic.pdf

[78] Ralph C. Merkle. 1987. A Digital Signature Based on a Conventional Encryption
Function. In A Conference on the Theory and Applications of Cryptographic
Techniques on Advances in Cryptology (CRYPTO ’87). Springer-Verlag, Berlin,
Heidelberg, 369–378. https://doi.org/10.1007/3-540-48184-2_32

[79] Ines Messadi, Shivananda Neumann, Nico Weichbrodt, Lennart Almstedt, Mo-
hammadMahhouk, and Rüdiger Kapitza. 2021. Precursor: A Fast, Client-Centric
and Trusted Key-Value Store Using RDMA and Intel SGX. In Proceedings of
the 22nd International Middleware Conference (Québec city, Canada) (Middle-
ware ’21). Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3464298.3476129

[80] Microsoft. 2022. LSKV. https://github.com/microsoft/LSKV [Last accessed:
2023-Oct-06].

[81] Microsoft. 2022. Merklecpp. https://github.com/microsoft/merklecpp [Last
accessed: 2023-Oct-06].

[82] Microsoft. 2022. Microsoft Azure confidential ledger. https://learn.microsoft.
com/en-us/azure/confidential-ledger/overview [Last accessed: 2023-Oct-06].

[83] Microsoft. 2022. scitt-ccf-ledger. https://github.com/microsoft/scitt-ccf-ledger
[Last accessed: 2023-Oct-06].

[84] Microsoft. 2022. W3C DID for Confidential Consortium Framework. https:
//github.com/microsoft/did-ccf [Last accessed: 2023-Oct-06].

[85] Microsoft. 2023. Confidential Consortium Framework Documentation. https:
//microsoft.github.io/CCF/main/ [Last accessed: 2023-Oct-06].

[86] Microsoft. 2023. DCsv3 and DCdsv3-series. https://learn.microsoft.com/en-
us/azure/virtual-machines/dcv3-series [Last accessed: 2023-Oct-06].

[87] Microsoft. 2023. Default constitution for CCF. https://github.com/microsoft/
CCF/tree/main/samples/constitutions/default [Last accessed: 2023-Oct-06].

[88] Microsoft. 2023. TLA+ Specifications for the Confidential Consortium Frame-
work. https://github.com/microsoft/CCF/tree/main/tla [Last accessed: 2023-
Oct-06].

[89] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss,
and Frank Piessens. 2020. Plundervolt: Software-based Fault Injection Attacks
against Intel SGX. In Proceedings of the 41st IEEE Symposium on Security and
Privacy (S&P’20). IEEE Computer Society, USA, 1466–1482. https://doi.org/10.
1109/SP40000.2020.00057

[90] Jianyu Niu, Wei Peng, Xiaokuan Zhang, and Yinqian Zhang. 2022. NARRATOR:
Secure and Practical State Continuity for Trusted Execution in the Cloud. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security (Los Angeles, CA, USA) (CCS ’22). Association for Computing Machin-
ery, New York, NY, USA, 2385–2399. https://doi.org/10.1145/3548606.3560620

[91] National Institute of Standards and Technology (NIST). 2015. FIPS 180-4: Secure
Hash Standard. http://dx.doi.org/10.6028/NIST.FIPS.180-4

[92] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Andre Martin, Christof Fetzer,
and Mark Silberstein. 2018. Varys: Protecting SGX Enclaves from Practical Side-
Channel Attacks. In Proceedings of the 2018 USENIX Conference on Usenix Annual
Technical Conference (Boston, MA, USA) (USENIX ATC ’18). USENIX Association,
USA, 227–239. https://www.usenix.org/system/files/conference/atc18/atc18-

oleksenko.pdf
[93] Diego Ongaro. 2014. Consensus: Bridging Theory and Practice. Ph.D. Dissertation.

Stanford. https://web.stanford.edu/~ouster/cgi-bin/papers/OngaroPhD.pdf
[Last accessed: 2023-Oct-06].

[94] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference (Philadelphia, PA) (USENIX ATC’14). USENIX As-
sociation, USA, 305 – 320. https://www.usenix.org/system/files/conference/
atc14/atc14-paper-ongaro.pdf

[95] OpenSSL. 2023. OpenSSL homepage. https://www.openssl.org/ [Last accessed:
2023-Oct-06].

[96] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein. 2017.
Eleos: ExitLess OS Services for SGX Enclaves. In Proceedings of the Twelfth
European Conference on Computer Systems (Belgrade, Serbia) (EuroSys ’17).
Association for Computing Machinery, New York, NY, USA, 238–253. https:
//doi.org/10.1145/3064176.3064219

[97] European Parliament. 2016. General Data Protection Regulation (GDPR)
2016/679. https://eur-lex.europa.eu/eli/reg/2016/679/oj [Last accessed: 2023-
Oct-06].

[98] Moritz Platt, Johannes Sedlmeir, Daniel Platt, Jiahua Xu, Paolo Tasca, Nikhil
Vadgama, and Juan Ignacio Ibañez. 2021. The Energy Footprint of Blockchain
Consensus Mechanisms Beyond Proof-of-Work. In 2021 IEEE 21st International
Conference on Software Quality, Reliability and Security Companion (QRS-C).
IEEE Computer Society, USA, 1135–1144. https://doi.org/10.1109/QRS-C55045.
2021.00168

[99] Peter Pogorski. 2023. Announcing public preview of confidential containers on
Azure Container Instances. https://techcommunity.microsoft.com/t5/apps-
on-azure-blog/announcing-public-preview-of-confidential-containers-on-
azure/ba-p/3755623 [Last accessed: 2023-Oct-06].

[100] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB: A Secure
Database Using SGX. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, USA, 264–278. https://doi.org/10.1109/SP.2018.00025

[101] Anil Rao. 2022. Rising to the Challenge - Data Security with Intel Con-
fidential Computing. https://community.intel.com/t5/Blogs/Products-
and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-
Confidential/post/1353141 [Last accessed: 2023-Oct-06].

[102] Mark Russinovich, Edward Ashton, Christine Avanessians, Miguel Castro,
Amaury Chamayou, Sylvan Clebsch, Manuel Costa, Cédric Fournet, Matthew
Kerner, Sid Krishna, Julien Maffre, Thomas Moscibroda, Kartik Nayak, Olya
Ohrimenko, Felix Schuster, Roy Schwartz, Alex Shamis, Olga Vrousgou, and
Christoph M. Wintersteiger. 2019. CCF: A Framework for Building Con-
fidential Verifiable Replicated Services. Technical Report MSR-TR-2019-16.
Microsoft. https://www.microsoft.com/en-us/research/publication/ccf-a-
framework-for-building-confidential-verifiable-replicated-services/ [Last ac-
cessed: 2023-Oct-06].

[103] Mark Russinovich, Manuel Costa, Cédric Fournet, David Chisnall, Antoine
Delignat-Lavaud, Sylvan Clebsch, Kapil Vaswani, and Vikas Bhatia. 2021. To-
ward Confidential Cloud Computing. Commun. ACM 64, 6 (May 2021), 54–61.
https://doi.org/10.1145/3453930

[104] Joseph A. Salowey, David McGrew, and Abhijit Choudhury. 2008. AES Galois
Counter Mode (GCM) Cipher Suites for TLS. RFC 5288. https://doi.org/10.
17487/RFC5288

[105] J. Schaad. 2017. CBOR Object Signing and Encryption (COSE). RFC 8852. RFC
Editor. https://doi.org/10.17487/RFC8152

[106] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
Data Analytics in the Cloud Using SGX. In Proceedings of the 2015 IEEE Sym-
posium on Security and Privacy (SP ’15). IEEE Computer Society, USA, 38–54.
https://doi.org/10.1109/SP.2015.10

[107] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. 2017. Malware Guard Extension: Using SGX to Conceal Cache Attacks.
In Detection of Intrusions and Malware, and Vulnerability Assessment, Michalis
Polychronakis and Michael Meier (Eds.). Springer International Publishing,
Cham, 3–24. https://doi.org/10.1007/978-3-319-60876-1_1

[108] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (nov 1979),
612–613. https://doi.org/10.1145/359168.359176

[109] Alex Shamis, Peter Pietzuch, Burcu Canakci, Miguel Castro, Cedric Fournet,
Edward Ashton, Amaury Chamayou, Sylvan Clebsch, Antoine Delignat-Lavaud,
Matthew Kerner, Julien Maffre, Olga Vrousgou, Christoph M. Wintersteiger,
Manuel Costa, and Mark Russinovich. 2022. IA-CCF: Individual Accountability
for Permissioned Ledgers. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22). USENIX Association, Renton, WA, 467–
491. https://www.usenix.org/system/files/nsdi22-paper-shamis.pdf

[110] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin
Xia, and Shoumeng Yan. 2020. Occlum: Secure and Efficient Multitasking Inside
a Single Enclave of Intel SGX. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for Computing

15

https://www.usenix.org/system/files/osdi22-li.pdf
https://doi.org/10.1145/3315573.3329980
https://www.usenix.org/system/files/conference/atc17/atc17-lind.pdf
https://www.usenix.org/system/files/conference/atc17/atc17-lind.pdf
https://doi.org/10.1109/FTCS.1997.614100
https://doi.org/10.1109/DSN48987.2021.00053
https://doi.org/10.1145/3124441
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-matetic.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-matetic.pdf
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1145/3464298.3476129
https://github.com/microsoft/LSKV
https://github.com/microsoft/merklecpp
https://learn.microsoft.com/en-us/azure/confidential-ledger/overview
https://learn.microsoft.com/en-us/azure/confidential-ledger/overview
https://github.com/microsoft/scitt-ccf-ledger
https://github.com/microsoft/did-ccf
https://github.com/microsoft/did-ccf
https://microsoft.github.io/CCF/main/
https://microsoft.github.io/CCF/main/
https://learn.microsoft.com/en-us/azure/virtual-machines/dcv3-series
https://learn.microsoft.com/en-us/azure/virtual-machines/dcv3-series
https://github.com/microsoft/CCF/tree/main/samples/constitutions/default
https://github.com/microsoft/CCF/tree/main/samples/constitutions/default
https://github.com/microsoft/CCF/tree/main/tla
https://doi.org/10.1109/SP40000.2020.00057
https://doi.org/10.1109/SP40000.2020.00057
https://doi.org/10.1145/3548606.3560620
http://dx.doi.org/10.6028/NIST.FIPS.180-4
https://www.usenix.org/system/files/conference/atc18/atc18-oleksenko.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-oleksenko.pdf
https://web.stanford.edu/~ouster/cgi-bin/papers/OngaroPhD.pdf
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf
https://www.openssl.org/
https://doi.org/10.1145/3064176.3064219
https://doi.org/10.1145/3064176.3064219
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.1109/QRS-C55045.2021.00168
https://doi.org/10.1109/QRS-C55045.2021.00168
https://techcommunity.microsoft.com/t5/apps-on-azure-blog/announcing-public-preview-of-confidential-containers-on-azure/ba-p/3755623
https://techcommunity.microsoft.com/t5/apps-on-azure-blog/announcing-public-preview-of-confidential-containers-on-azure/ba-p/3755623
https://techcommunity.microsoft.com/t5/apps-on-azure-blog/announcing-public-preview-of-confidential-containers-on-azure/ba-p/3755623
https://doi.org/10.1109/SP.2018.00025
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://www.microsoft.com/en-us/research/publication/ccf-a-framework-for-building-confidential-verifiable-replicated-services/
https://www.microsoft.com/en-us/research/publication/ccf-a-framework-for-building-confidential-verifiable-replicated-services/
https://doi.org/10.1145/3453930
https://doi.org/10.17487/RFC5288
https://doi.org/10.17487/RFC5288
https://doi.org/10.17487/RFC8152
https://doi.org/10.1109/SP.2015.10
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1145/359168.359176
https://www.usenix.org/system/files/nsdi22-paper-shamis.pdf

Heidi Howard, Fritz Alder, Edward Ashton, Amaury Chamayou, Sylvan Clebsch, Manuel Costa, Antoine Delignat-Lavaud, Cédric Fournet, Andrew Jeffery, Matthew Kerner, Fotios
Kounelis, Markus A. Kuppe, Julien Maffre, Mark Russinovich, and Christoph M. Wintersteiger

Machinery, New York, NY, USA, 955–970. https://doi.org/10.1145/3373376.
3378469

[111] Signal. 2022. Private Contact Discovery Service (Public Archive). https:
//github.com/signalapp/ContactDiscoveryService/ [Last accessed: 2023-Oct-
06].

[112] Jatinder Singh, Jennifer Cobbe, Do Le Quoc, and Zahra Tarkhani. 2021. Enclaves
in the Clouds: Legal Considerations and Broader Implications. Commun. ACM
64, 5 (apr 2021), 42–51. https://doi.org/10.1145/3447543

[113] Rohit Sinha and Mihai Christodorescu. 2018. VeritasDB: High Throughput
Key-Value Store with Integrity. Cryptology ePrint Archive, Paper 2018/251.
https://eprint.iacr.org/2018/251

[114] Shubhra Sinha. 2022. Microsoft introduces preview of Azure Managed Confiden-
tial Consortium Framework. https://techcommunity.microsoft.com/t5/azure-
confidential-computing/microsoft-introduces-preview-of-azure-managed-
confidential/ba-p/3648986 [Last accessed: 2023-Oct-06].

[115] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery, Josep
Torrellas, and Christopher W. Fletcher. 2019. MicroScope: Enabling Microarchi-
tectural Replay Attacks. In Proceedings of the 46th International Symposium on
Computer Architecture (Phoenix, Arizona) (ISCA ’19). Association for Comput-
ing Machinery, New York, NY, USA, 318–331. https://doi.org/10.1145/3307650.
3322228

[116] Michael J. Steindorfer and Jurgen J. Vinju. 2016. Fast and Lean Immutable
Multi-Maps on the JVM based on Heterogeneous Hash-Array Mapped Tries.
CoRR abs/1608.01036 (2016). arXiv:1608.01036 http://arxiv.org/abs/1608.01036

[117] Yuanyuan Sun, Sheng Wang, Huorong Li, and Feifei Li. 2021. Building Enclave-
Native Storage Engines for Practical Encrypted Databases. Proc. VLDB Endow.
14, 6 (apr 2021), 1019–1032. https://doi.org/10.14778/3447689.3447705

[118] Edgeless Systems. 2022. Constellation: Always Encrypted Kubernetes. https:
//github.com/edgelesssys/constellation [Last accessed: 2023-Oct-06].

[119] Edgeless Systems. 2022. EGo. https://github.com/edgelesssys/ego [Last
accessed: 2023-Oct-06].

[120] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William
Jannen, Jitin John, Harry A. Kalodner, Vrushali Kulkarni, Daniela Oliveira,
and Donald E. Porter. 2014. Cooperation and Security Isolation of Library
OSes for Multi-Process Applications. In Proceedings of the Ninth European
Conference on Computer Systems (Amsterdam, The Netherlands) (EuroSys ’14).
Association for Computing Machinery, New York, NY, USA, Article 9, 14 pages.
https://doi.org/10.1145/2592798.2592812

[121] Chia-Che Tsai, Donald E. Porter, andMona Vij. 2017. Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX. In 2017 USENIX Annual Tech-
nical Conference (Santa Clara, CA, USA) (USENIX ATC ’17). USENIX Association,
USA, 645–658. https://www.usenix.org/system/files/conference/atc17/atc17-
tsai.pdf

[122] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Tran-
sient out-of-Order Execution. In Proceedings of the 27th USENIX Conference on

Security Symposium (Baltimore, MD, USA) (SEC’18). USENIX Association, USA,
991–1008. https://www.usenix.org/system/files/conference/usenixsecurity18/
sec18-van_bulck.pdf

[123] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Marina Minkin,
Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens.
2020. LVI: Hijacking Transient Execution through Microarchitectural Load
Value Injection. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, USA, 54–72. https://doi.org/10.1109/SP40000.2020.00089

[124] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom. 2020.
SGAxe: How SGX Fails in Practice. https://sgaxe.com/files/SGAxe.pdf [Last
accessed: 2023-Oct-06].

[125] Stephan van Schaik, Alex Seto, Thomas Yurek, Adam Batori, Bader AlBassam,
Christina Garman, Daniel Genkin, AndrewMiller, Eyal Ronen, and Yuval Yarom.
2022. SoK: SGX.Fail: How Stuff Get eXposed. https://sgx.fail.

[126] Weili Wang, Sen Deng, Jianyu Niu, Michael K. Reiter, and Yinqian Zhang. 2022.
ENGRAFT: Enclave-Guarded Raft on Byzantine Faulty Nodes. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security
(Los Angeles, CA, USA) (CCS ’22). Association for Computing Machinery, New
York, NY, USA, 2841–2855. https://doi.org/10.1145/3548606.3560639

[127] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Global-Scale Se-
cure Multiparty Computation. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security (Dallas, Texas, USA) (CCS
’17). Association for Computing Machinery, New York, NY, USA, 39–56. https:
//doi.org/10.1145/3133956.3133979

[128] Ofir Weisse, Valeria Bertacco, and Todd Austin. 2017. Regaining Lost Cycles
with HotCalls: A Fast Interface for SGX Secure Enclaves. SIGARCH Comput.
Archit. News 45, 2 (jun 2017), 81–93. https://doi.org/10.1145/3140659.3080208

[129] Michael E Whitman and Herbert J Mattord. 2011. Principles of information
security, 4th edition. Course Technology Inc, USA.

[130] Siyuan Xia, Zhiru Zhu, Chris Zhu, Jinjin Zhao, Kyle Chard, Aaron J. Elmore,
Ian Foster, Michael Franklin, Sanjay Krishnan, and Raul Castro Fernandez. 2022.
Data Station: Delegated, Trustworthy, and Auditable Computation to Enable
Data-Sharing Consortia with a Data Escrow. Proc. VLDB Endow. 15, 11 (sep
2022), 3172–3185. https://doi.org/10.14778/3551793.3551861

[131] Yang Xiao, Ning Zhang, Jin Li, Wenjing Lou, and Y. Thomas Hou. 2020. Priva-
cyGuard: Enforcing Private Data Usage Control with Blockchain and Attested
Off-Chain Contract Execution. In Computer Security - ESORICS 2020: 25th Eu-
ropean Symposium on Research in Computer Security, ESORICS 2020, Guildford,
UK, September 14-18, 2020, Proceedings, Part II (Guildford, United Kingdom).
Springer-Verlag, Berlin, Heidelberg, 610–629. https://doi.org/10.1007/978-3-
030-59013-0_30

[132] Sravya Yandamuri, Ittai Abraham, Kartik Nayak, and Michael Reiter. 2021. Brief
Announcement: Communication-Efficient BFT Using Small Trusted Hardware
to Tolerate Minority Corruption. In 35th International Symposium on Distributed
Computing (DISC 2021) (Leibniz International Proceedings in Informatics (LIPIcs)),
Seth Gilbert (Ed.), Vol. 209. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 62:1–62:4. https://doi.org/10.4230/LIPIcs.DISC.2021.62

16

https://doi.org/10.1145/3373376.3378469
https://doi.org/10.1145/3373376.3378469
https://github.com/signalapp/ContactDiscoveryService/
https://github.com/signalapp/ContactDiscoveryService/
https://doi.org/10.1145/3447543
https://eprint.iacr.org/2018/251
https://techcommunity.microsoft.com/t5/azure-confidential-computing/microsoft-introduces-preview-of-azure-managed-confidential/ba-p/3648986
https://techcommunity.microsoft.com/t5/azure-confidential-computing/microsoft-introduces-preview-of-azure-managed-confidential/ba-p/3648986
https://techcommunity.microsoft.com/t5/azure-confidential-computing/microsoft-introduces-preview-of-azure-managed-confidential/ba-p/3648986
https://doi.org/10.1145/3307650.3322228
https://doi.org/10.1145/3307650.3322228
http://arxiv.org/abs/1608.01036
https://doi.org/10.14778/3447689.3447705
https://github.com/edgelesssys/constellation
https://github.com/edgelesssys/constellation
https://github.com/edgelesssys/ego
https://doi.org/10.1145/2592798.2592812
https://www.usenix.org/system/files/conference/atc17/atc17-tsai.pdf
https://www.usenix.org/system/files/conference/atc17/atc17-tsai.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-van_bulck.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-van_bulck.pdf
https://doi.org/10.1109/SP40000.2020.00089
https://sgaxe.com/files/SGAxe.pdf
https://sgx.fail
https://doi.org/10.1145/3548606.3560639
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1145/3133956.3133979
https://doi.org/10.1145/3140659.3080208
https://doi.org/10.14778/3551793.3551861
https://doi.org/10.1007/978-3-030-59013-0_30
https://doi.org/10.1007/978-3-030-59013-0_30
https://doi.org/10.4230/LIPIcs.DISC.2021.62

	Abstract
	1 Introduction & Motivation
	2 CCF Overview
	3 Intra-node Architecture
	3.1 Application logic
	3.2 Integrity protected ledger
	3.3 Transactional key-value store
	3.4 Read-only & historical transactions
	3.5 Verifiable receipts

	4 Inter-node Architecture
	4.1 Transaction replication
	4.2 Primary elections
	4.3 User interaction
	4.4 Atomic reconfiguration
	4.5 Node retirement

	5 Multiparty Governance
	5.1 Governance proposals & ballots
	5.2 Disaster recovery protocol

	6 Discussion
	6.1 Confidentiality
	6.2 Integrity
	6.3 High availability
	6.4 Pragmatism

	7 Implementation & Evaluation
	8 Related Work
	8.1 Approaches without TEEs
	8.2 TEE-based approaches

	9 Conclusion & Future Work
	Acknowledgments
	References

