From 04abf66d78420c410da9bf9e4ba82d88223f95b1 Mon Sep 17 00:00:00 2001 From: Chris Basoglu Date: Fri, 25 Mar 2016 17:31:02 -0700 Subject: [PATCH] Prepend timestamp to log lines when tracing flag is turned on --- .../03_ResNet_Train_AddBNEval_Test.log.160 | 12828 +++++----- .../04_ResNet_56_Train_AddBNEval_Test.log.160 | 19804 ++++++++-------- Source/CNTK/CNTK.cpp | 157 +- Source/Common/Include/ProgressTracing.h | 36 +- Source/Common/fileutil.cpp | 5 - .../ComputationNetworkAnalysis.cpp | 4 +- .../ComputationNetworkEvaluation.cpp | 23 +- Source/SGDLib/SGD.cpp | 191 +- Source/SGDLib/SGD.h | 2 +- .../DoublePrecision/baseline.cpu.txt | 8 +- .../DoublePrecision/baseline.gpu.txt | 8 +- .../DoublePrecision/baseline.windows.cpu.txt | 8 +- .../DoublePrecision/baseline.windows.gpu.txt | 8 +- .../SinglePrecision/baseline.cpu.txt | 8 +- .../SinglePrecision/baseline.gpu.txt | 8 +- .../SinglePrecision/baseline.windows.cpu.txt | 8 +- .../SinglePrecision/baseline.windows.gpu.txt | 8 +- .../01_OneHidden/baseline.linux.debug.cpu.txt | 2 +- .../01_OneHidden/baseline.linux.debug.gpu.txt | 2 +- .../baseline.linux.release.cpu.txt | 2 +- .../baseline.linux.release.gpu.txt | 2 +- .../baseline.windows.debug.cpu.txt | 2 +- .../baseline.windows.debug.gpu.txt | 2 +- .../baseline.windows.release.cpu.txt | 2 +- .../baseline.windows.release.gpu.txt | 2 +- .../Image/MNIST/01_OneHidden/testcases.yml | 2 +- .../baseline.linux.debug.cpu.txt | 2 +- .../baseline.linux.debug.gpu.txt | 2 +- .../baseline.linux.release.cpu.txt | 2 +- .../baseline.linux.release.gpu.txt | 2 +- .../baseline.windows.debug.cpu.txt | 2 +- .../baseline.windows.debug.gpu.txt | 2 +- .../baseline.windows.release.cpu.txt | 2 +- .../baseline.windows.release.gpu.txt | 2 +- .../Image/MNIST/02_Convolution/testcases.yml | 2 +- .../baseline.linux.debug.cpu.txt | 2 +- .../baseline.linux.debug.gpu.txt | 2 +- .../baseline.linux.release.cpu.txt | 2 +- .../baseline.linux.release.gpu.txt | 2 +- .../baseline.windows.debug.cpu.txt | 2 +- .../baseline.windows.debug.gpu.txt | 2 +- .../baseline.windows.release.cpu.txt | 2 +- .../baseline.windows.release.gpu.txt | 2 +- .../MNIST/03_ConvBatchNorm/testcases.yml | 2 +- .../MultiGpu/baseline.linux.debug.cpu.txt | 2 +- .../MultiGpu/baseline.linux.debug.gpu.txt | 2 +- .../MultiGpu/baseline.linux.release.cpu.txt | 2 +- .../MultiGpu/baseline.linux.release.gpu.txt | 2 +- .../MultiGpu/baseline.windows.debug.cpu.txt | 2 +- .../MultiGpu/baseline.windows.debug.gpu.txt | 2 +- .../MultiGpu/baseline.windows.release.cpu.txt | 2 +- .../MultiGpu/baseline.windows.release.gpu.txt | 2 +- .../Other/Simple2d/MultiGpu/testcases.yml | 2 +- .../Simple/baseline.linux.debug.cpu.txt | 2 +- .../Simple/baseline.linux.debug.gpu.txt | 2 +- .../Simple/baseline.linux.release.cpu.txt | 2 +- .../Simple/baseline.linux.release.gpu.txt | 2 +- .../Simple/baseline.windows.debug.cpu.txt | 2 +- .../Simple/baseline.windows.debug.gpu.txt | 2 +- .../Simple/baseline.windows.release.cpu.txt | 2 +- .../Simple/baseline.windows.release.gpu.txt | 2 +- .../Other/Simple2d/Simple/testcases.yml | 2 +- .../FeedForward/baseline.linux.debug.cpu.txt | 2 +- .../FeedForward/baseline.linux.debug.gpu.txt | 2 +- .../baseline.linux.release.cpu.txt | 2 +- .../baseline.linux.release.gpu.txt | 2 +- .../baseline.windows.debug.cpu.txt | 2 +- .../baseline.windows.debug.gpu.txt | 2 +- .../baseline.windows.release.cpu.txt | 2 +- .../baseline.windows.release.gpu.txt | 2 +- .../Speech/AN4/FeedForward/testcases.yml | 2 +- .../AN4/LSTM/baseline.linux.debug.cpu.txt | 2 +- .../AN4/LSTM/baseline.linux.debug.gpu.txt | 2 +- .../AN4/LSTM/baseline.linux.release.cpu.txt | 2 +- .../AN4/LSTM/baseline.linux.release.gpu.txt | 2 +- .../AN4/LSTM/baseline.windows.debug.cpu.txt | 2 +- .../AN4/LSTM/baseline.windows.debug.gpu.txt | 2 +- .../AN4/LSTM/baseline.windows.release.cpu.txt | 2 +- .../AN4/LSTM/baseline.windows.release.gpu.txt | 2 +- .../Examples/Speech/AN4/LSTM/testcases.yml | 2 +- .../RNN/baseline.linux.debug.cpu.txt | 2 +- .../RNN/baseline.linux.debug.gpu.txt | 2 +- .../RNN/baseline.linux.release.cpu.txt | 2 +- .../RNN/baseline.linux.release.gpu.txt | 2 +- .../RNN/baseline.windows.debug.cpu.txt | 2 +- .../RNN/baseline.windows.debug.gpu.txt | 2 +- .../RNN/baseline.windows.release.cpu.txt | 2 +- .../RNN/baseline.windows.release.gpu.txt | 2 +- .../Text/PennTreebank/RNN/testcases.yml | 2 +- .../AlexNet/baseline.linux.debug.gpu.txt | 2 +- .../AlexNet/baseline.linux.release.gpu.txt | 4 +- .../AlexNet/baseline.windows.debug.gpu.txt | 2 +- .../AlexNet/baseline.windows.release.gpu.txt | 2 +- .../EndToEndTests/Image/AlexNet/testcases.yml | 8 +- .../QuickE2E/baseline.linux.debug.gpu.txt | 4 +- .../QuickE2E/baseline.linux.release.gpu.txt | 4 +- .../QuickE2E/baseline.windows.debug.cpu.txt | 4 +- .../QuickE2E/baseline.windows.debug.gpu.txt | 4 +- .../QuickE2E/baseline.windows.release.cpu.txt | 4 +- .../QuickE2E/baseline.windows.release.gpu.txt | 4 +- .../Image/QuickE2E/testcases.yml | 8 +- .../ModelExport/Model0/baseline.txt | 2 +- .../ModelExport/Model0/testcases.yml | 2 +- .../ModelExport/Model1/baseline.txt | 2 +- .../ModelExport/Model1/testcases.yml | 2 +- .../DoublePrecision/baseline.cpu.txt | 8 +- .../DoublePrecision/baseline.gpu.txt | 8 +- .../DoublePrecision/baseline.windows.cpu.txt | 8 +- .../DoublePrecision/baseline.windows.gpu.txt | 8 +- .../SinglePrecision/baseline.cpu.txt | 8 +- .../SinglePrecision/baseline.gpu.txt | 8 +- .../SinglePrecision/baseline.windows.cpu.txt | 8 +- .../SinglePrecision/baseline.windows.gpu.txt | 8 +- .../baseline.cpu.txt | 2 +- .../baseline.gpu.txt | 2 +- .../baseline.windows.cpu.txt | 2 +- .../baseline.windows.gpu.txt | 2 +- .../DiscriminativePreTraining/testcases.yml | 8 +- .../Parallel1BitQuantization/baseline.cpu.txt | 6 +- .../Parallel1BitQuantization/baseline.gpu.txt | 6 +- .../baseline.windows.cpu.txt | 6 +- .../baseline.windows.gpu.txt | 6 +- .../baseline.cpu.txt | 6 +- .../baseline.gpu.txt | 6 +- .../baseline.windows.cpu.txt | 6 +- .../baseline.windows.gpu.txt | 6 +- .../ParallelCrossValidation/baseline.cpu.txt | 4 +- .../ParallelCrossValidation/baseline.gpu.txt | 4 +- .../baseline.windows.cpu.txt | 4 +- .../baseline.windows.gpu.txt | 4 +- .../ParallelNoQuantization/baseline.cpu.txt | 6 +- .../ParallelNoQuantization/baseline.gpu.txt | 6 +- .../baseline.windows.cpu.txt | 6 +- .../baseline.windows.gpu.txt | 6 +- .../baseline.cpu.txt | 6 +- .../baseline.gpu.txt | 6 +- .../baseline.windows.cpu.txt | 6 +- .../baseline.windows.gpu.txt | 6 +- .../DNN/SequenceTraining/baseline.gpu.txt | 2 +- .../SequenceTraining/baseline.windows.gpu.txt | 2 +- .../Speech/DNN/SequenceTraining/testcases.yml | 8 +- .../Speech/DNN/WriteCommand/baseline.cpu.txt | 2 +- .../Speech/DNN/WriteCommand/baseline.gpu.txt | 2 +- .../DNN/WriteCommand/baseline.windows.cpu.txt | 2 +- .../DNN/WriteCommand/baseline.windows.gpu.txt | 2 +- .../Speech/DNN/WriteCommand/testcases.yml | 8 +- .../baseline.cpu.txt | 2 +- .../baseline.gpu.txt | 2 +- .../baseline.windows.cpu.txt | 2 +- .../baseline.windows.gpu.txt | 2 +- .../DNN/DiscriminativePreTraining/run-test | 6 - .../DiscriminativePreTraining/testcases.yml | 8 +- .../Parallel1BitQuantization/baseline.cpu.txt | 6 +- .../Parallel1BitQuantization/baseline.gpu.txt | 6 +- .../baseline.windows.cpu.txt | 6 +- .../baseline.windows.gpu.txt | 6 +- .../DNN/Parallel1BitQuantization/run-test | 6 - .../baseline.cpu.txt | 6 +- .../baseline.gpu.txt | 6 +- .../baseline.windows.cpu.txt | 6 +- .../baseline.windows.gpu.txt | 6 +- .../run-test | 6 - .../ParallelNoQuantization/baseline.cpu.txt | 6 +- .../ParallelNoQuantization/baseline.gpu.txt | 6 +- .../baseline.windows.cpu.txt | 6 +- .../baseline.windows.gpu.txt | 6 +- .../DNN/ParallelNoQuantization/run-test | 6 - .../baseline.cpu.txt | 6 +- .../baseline.gpu.txt | 6 +- .../baseline.windows.cpu.txt | 6 +- .../baseline.windows.gpu.txt | 6 +- .../run-test | 6 - .../QuickE2E/baseline.cpu.txt | 4 +- .../QuickE2E/baseline.gpu.txt | 4 +- .../QuickE2E/baseline.windows.cpu.txt | 4 +- .../QuickE2E/baseline.windows.gpu.txt | 4 +- .../QuickE2E/run-test | 6 - .../QuickE2E/testcases.yml | 8 +- .../SVD/baseline.cpu.txt | 2 +- .../SVD/baseline.gpu.txt | 2 +- .../SVD/baseline.windows.cpu.txt | 2 +- .../SVD/baseline.windows.gpu.txt | 2 +- .../ExperimentalHtkmlfReader/SVD/run-test | 6 - .../SVD/testcases.yml | 10 +- .../LSTM/FullUtterance/baseline.cpu.txt | 2 +- .../LSTM/FullUtterance/baseline.gpu.txt | 2 +- .../FullUtterance/baseline.windows.cpu.txt | 2 +- .../FullUtterance/baseline.windows.gpu.txt | 2 +- .../Speech/LSTM/FullUtterance/testcases.yml | 8 +- .../LSTM/Truncated-Kaldi/baseline.cpu.txt | 2 +- .../LSTM/Truncated-Kaldi/baseline.gpu.txt | 2 +- .../Speech/LSTM/Truncated-Kaldi/testcases.yml | 8 +- .../Speech/LSTM/Truncated/baseline.cpu.txt | 2 +- .../Speech/LSTM/Truncated/baseline.gpu.txt | 2 +- .../LSTM/Truncated/baseline.windows.cpu.txt | 2 +- .../LSTM/Truncated/baseline.windows.gpu.txt | 2 +- .../Speech/LSTM/Truncated/testcases.yml | 8 +- .../Speech/QuickE2E/baseline.cpu.txt | 4 +- .../Speech/QuickE2E/baseline.gpu.txt | 4 +- .../Speech/QuickE2E/baseline.windows.cpu.txt | 4 +- .../Speech/QuickE2E/baseline.windows.gpu.txt | 4 +- .../Speech/QuickE2E/testcases.yml | 8 +- .../EndToEndTests/Speech/SVD/baseline.cpu.txt | 2 +- .../EndToEndTests/Speech/SVD/baseline.gpu.txt | 2 +- .../Speech/SVD/baseline.windows.cpu.txt | 2 +- .../Speech/SVD/baseline.windows.gpu.txt | 2 +- Tests/EndToEndTests/Speech/SVD/testcases.yml | 10 +- .../Speech/Simple/baseline.cpu.txt | 4 +- .../Speech/Simple/baseline.gpu.txt | 4 +- .../Speech/Simple/baseline.windows.cpu.txt | 4 +- .../Speech/Simple/baseline.windows.gpu.txt | 4 +- .../EndToEndTests/Speech/Simple/testcases.yml | 8 +- .../Text/SparseDSSM/baseline.cpu.txt | 16 +- .../Text/SparseDSSM/baseline.gpu.txt | 16 +- .../Text/SparseDSSM/baseline.windows.cpu.txt | 16 +- .../Text/SparseDSSM/baseline.windows.gpu.txt | 16 +- Tests/EndToEndTests/run-test-common | 2 +- 217 files changed, 16989 insertions(+), 16919 deletions(-) diff --git a/Examples/Image/Miscellaneous/CIFAR-10/Output/03_ResNet_Train_AddBNEval_Test.log.160 b/Examples/Image/Miscellaneous/CIFAR-10/Output/03_ResNet_Train_AddBNEval_Test.log.160 index 2cbc9ba9e..3f57ee6c2 100644 --- a/Examples/Image/Miscellaneous/CIFAR-10/Output/03_ResNet_Train_AddBNEval_Test.log.160 +++ b/Examples/Image/Miscellaneous/CIFAR-10/Output/03_ResNet_Train_AddBNEval_Test.log.160 @@ -1,6414 +1,6414 @@ -------------------------------------------------------------------- -Build info: - - Built time: Jan 12 2016 14:46:20 - Last modified date: Mon Jan 11 11:39:54 2016 - CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.0 - Build Branch: - Build SHA1: - Built by alexeyk on z840-01 - Build Path: C:\src\cntk\Source\CNTK\ -------------------------------------------------------------------- -running on z840-01 at 2016/01/14 10:36:01 -command line: -..\..\..\..\x64\Release\CNTK.exe configFile=03_ResNet.config - ->>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>> -RootDir = "." -ConfigDir = "$RootDir$" -DataDir = "$RootDir$" -OutputDir = "$RootDir$/Output" -ModelDir = "$OutputDir$/Models" -ndlMacros=$ConfigDir$/Macros.ndl -precision=float -deviceId=Auto -prefetch=true -parallelTrain=false -command=Train:AddBNEval:Test -stderr=$OutputDir$/03_ResNet -traceLevel=1 -numMBsToShowResult=200 -Proj16to32Filename = $ConfigDir$/16to32.txt -Proj32to64Filename = $ConfigDir$/32to64.txt -Train=[ - action=train - modelPath=$ModelDir$/03_ResNet - NDLNetworkBuilder=[ - networkDescription=$ConfigDir$/03_ResNet.ndl - ] - SGD=[ - epochSize=0 - minibatchSize=128 - learningRatesPerMB=1.0*80:0.1*40:0.01 - momentumPerMB=0.9 - maxEpochs=160 - L2RegWeight=0.0001 - dropoutRate=0 - ParallelTrain=[ - parallelizationMethod=DataParallelSGD - distributedMBReading=true - parallelizationStartEpoch=1 - DataParallelSGD=[ - gradientBits=32 - ] - ] - ] - reader=[ - readerType=ImageReader - file=$DataDir$/train_map.txt - randomize=Auto - features=[ - width=32 - height=32 - channels=3 - cropType=Random - cropRatio=0.8 - jitterType=UniRatio - interpolations=Linear - meanFile=$ConfigDir$/CIFAR-10_mean.xml - ] - labels=[ - labelDim=10 - ] - ] -] -AddBNEval=[ - action=edit - CurModel=$ModelDir$/03_ResNet - NewModel=$ModelDir$/03_ResNet.Eval - editPath=$ConfigDir$/03_ResNet.mel -] -Test=[ - action=test - modelPath=$ModelDir$/03_ResNet.Eval - minibatchSize=512 - NDLNetworkBuilder=[ - networkDescription=$ConfigDir$/03_ResNet.ndl - ] - reader=[ - readerType=ImageReader - file=$DataDir$/test_map.txt - randomize=Auto - features=[ - width=32 - height=32 - channels=3 - cropType=Center - cropRatio=1 - jitterType=UniRatio - interpolations=Linear - meanFile=$ConfigDir$/CIFAR-10_mean.xml - ] - labels=[ - labelDim=10 - ] - ] -] - -<<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<< - ->>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>> -RootDir = "." -ConfigDir = "." -DataDir = "." -OutputDir = "./Output" -ModelDir = "./Output/Models" -ndlMacros=./Macros.ndl -precision=float -deviceId=Auto -prefetch=true -parallelTrain=false -command=Train:AddBNEval:Test -stderr=./Output/03_ResNet -traceLevel=1 -numMBsToShowResult=200 -Proj16to32Filename = ./16to32.txt -Proj32to64Filename = ./32to64.txt -Train=[ - action=train - modelPath=./Output/Models/03_ResNet - NDLNetworkBuilder=[ - networkDescription=./03_ResNet.ndl - ] - SGD=[ - epochSize=0 - minibatchSize=128 - learningRatesPerMB=1.0*80:0.1*40:0.01 - momentumPerMB=0.9 - maxEpochs=160 - L2RegWeight=0.0001 - dropoutRate=0 - ParallelTrain=[ - parallelizationMethod=DataParallelSGD - distributedMBReading=true - parallelizationStartEpoch=1 - DataParallelSGD=[ - gradientBits=32 - ] - ] - ] - reader=[ - readerType=ImageReader - file=./train_map.txt - randomize=Auto - features=[ - width=32 - height=32 - channels=3 - cropType=Random - cropRatio=0.8 - jitterType=UniRatio - interpolations=Linear - meanFile=./CIFAR-10_mean.xml - ] - labels=[ - labelDim=10 - ] - ] -] -AddBNEval=[ - action=edit - CurModel=./Output/Models/03_ResNet - NewModel=./Output/Models/03_ResNet.Eval - editPath=./03_ResNet.mel -] -Test=[ - action=test - modelPath=./Output/Models/03_ResNet.Eval - minibatchSize=512 - NDLNetworkBuilder=[ - networkDescription=./03_ResNet.ndl - ] - reader=[ - readerType=ImageReader - file=./test_map.txt - randomize=Auto - features=[ - width=32 - height=32 - channels=3 - cropType=Center - cropRatio=1 - jitterType=UniRatio - interpolations=Linear - meanFile=./CIFAR-10_mean.xml - ] - labels=[ - labelDim=10 - ] - ] -] - -<<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<< - ->>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>> -configparameters: 03_ResNet.config:AddBNEval=[ - action=edit - CurModel=./Output/Models/03_ResNet - NewModel=./Output/Models/03_ResNet.Eval - editPath=./03_ResNet.mel -] - -configparameters: 03_ResNet.config:command=Train:AddBNEval:Test -configparameters: 03_ResNet.config:ConfigDir=. -configparameters: 03_ResNet.config:DataDir=. -configparameters: 03_ResNet.config:deviceId=Auto -configparameters: 03_ResNet.config:ModelDir=./Output/Models -configparameters: 03_ResNet.config:ndlMacros=./Macros.ndl -configparameters: 03_ResNet.config:numMBsToShowResult=200 -configparameters: 03_ResNet.config:OutputDir=./Output -configparameters: 03_ResNet.config:parallelTrain=false -configparameters: 03_ResNet.config:precision=float -configparameters: 03_ResNet.config:prefetch=true -configparameters: 03_ResNet.config:Proj16to32Filename=./16to32.txt -configparameters: 03_ResNet.config:Proj32to64Filename=./32to64.txt -configparameters: 03_ResNet.config:RootDir=. -configparameters: 03_ResNet.config:stderr=./Output/03_ResNet -configparameters: 03_ResNet.config:Test=[ - action=test - modelPath=./Output/Models/03_ResNet.Eval - minibatchSize=512 - NDLNetworkBuilder=[ - networkDescription=./03_ResNet.ndl - ] - reader=[ - readerType=ImageReader - file=./test_map.txt - randomize=Auto - features=[ - width=32 - height=32 - channels=3 - cropType=Center - cropRatio=1 - jitterType=UniRatio - interpolations=Linear - meanFile=./CIFAR-10_mean.xml - ] - labels=[ - labelDim=10 - ] - ] -] - -configparameters: 03_ResNet.config:traceLevel=1 -configparameters: 03_ResNet.config:Train=[ - action=train - modelPath=./Output/Models/03_ResNet - NDLNetworkBuilder=[ - networkDescription=./03_ResNet.ndl - ] - SGD=[ - epochSize=0 - minibatchSize=128 - learningRatesPerMB=1.0*80:0.1*40:0.01 - momentumPerMB=0.9 - maxEpochs=160 - L2RegWeight=0.0001 - dropoutRate=0 - ParallelTrain=[ - parallelizationMethod=DataParallelSGD - distributedMBReading=true - parallelizationStartEpoch=1 - DataParallelSGD=[ - gradientBits=32 - ] - ] - ] - reader=[ - readerType=ImageReader - file=./train_map.txt - randomize=Auto - features=[ - width=32 - height=32 - channels=3 - cropType=Random - cropRatio=0.8 - jitterType=UniRatio - interpolations=Linear - meanFile=./CIFAR-10_mean.xml - ] - labels=[ - labelDim=10 - ] - ] -] - -<<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<< -command: Train AddBNEval Test -precision = float -CNTKModelPath: ./Output/Models/03_ResNet -CNTKCommandTrainInfo: Train : 160 -CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 160 -CNTKCommandTrainBegin: Train -LockDevice: Locked GPU 0 to test availability. -LockDevice: Unlocked GPU 0 after testing. -LockDevice: Locked GPU 2 to test availability. -LockDevice: Unlocked GPU 2 after testing. -LockDevice: Locked GPU 1 to test availability. -LockDevice: Unlocked GPU 1 after testing. -LockDevice: Locked GPU 0 for exclusive use. -NDLBuilder Using GPU 0 -Microsoft::MSR::CNTK::GPUMatrix::SetGaussianRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4 - -Post-processing network... - -3 roots: - Err = ErrorPrediction - OutputNodes.z = Plus - CE = CrossEntropyWithSoftmax -FormNestedNetwork: WARNING: Was called twice for Err ErrorPrediction operation -FormNestedNetwork: WARNING: Was called twice for OutputNodes.z Plus operation -FormNestedNetwork: WARNING: Was called twice for CE CrossEntropyWithSoftmax operation - - -Validating for node Err. 187 nodes to process in pass 1. - -Validating --> labels = InputValue -> [10 [10], MBSize 0] -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] -Validating --> Err = ErrorPrediction(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] - -Validating for node Err. 78 nodes to process in pass 2. - -Validating --> labels = InputValue -> [10 [10], MBSize 0] -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] -Validating --> Err = ErrorPrediction(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] - -Validating for node Err, final verification. - -Validating --> labels = InputValue -> [10 [10], MBSize 0] -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] -Validating --> Err = ErrorPrediction(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] - -108 out of 187 nodes do not share the minibatch layout with the input data. - - -Validating for node OutputNodes.z. 185 nodes to process in pass 1. - -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] - -Validating for node OutputNodes.z. 77 nodes to process in pass 2. - -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] - -Validating for node OutputNodes.z, final verification. - -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] - -107 out of 185 nodes do not share the minibatch layout with the input data. - - -Validating for node CE. 187 nodes to process in pass 1. - -Validating --> labels = InputValue -> [10 [10], MBSize 0] -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] -Validating --> CE = CrossEntropyWithSoftmax(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] - -Validating for node CE. 78 nodes to process in pass 2. - -Validating --> labels = InputValue -> [10 [10], MBSize 0] -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] -Validating --> CE = CrossEntropyWithSoftmax(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] - -Validating for node CE, final verification. - -Validating --> labels = InputValue -> [10 [10], MBSize 0] -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] -Validating --> CE = CrossEntropyWithSoftmax(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] - -108 out of 187 nodes do not share the minibatch layout with the input data. - -Post-processing network complete. - -SGD using GPU 0. - -Training criterion node(s): - CE = CrossEntropyWithSoftmax - -Evaluation criterion node(s): - Err = ErrorPrediction - - -Allocating matrices for forward and/or backward propagation. -No PreCompute nodes found, skipping PreCompute step -Set Max Temp Mem Size For Convolution Nodes to 0 samples. -Starting Epoch 1: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. -#NLop10# -Tensor Op: Op 10: 32 x 32 x 16 x 128 x 1 -> 32 x 32 x 16 x 128 x 1 -24 procs 32 warps 2147483647 65535 65535 max grid on GeForce GTX TITAN X -3 procs 32 warps 2147483647 65535 65535 max grid on Quadro K620 -14 procs 32 warps 2147483647 65535 65535 max grid on GeForce GTX TITAN -Tensor Op: Op 15: 32 x 32 x 16 x 128 x 1 op 32 x 32 x 16 x 128 x 1 -> 32 x 32 x 16 x 128 x 1 - Epoch[ 1 of 160]-Minibatch[ 1- 200]: SamplesSeen = 25600; TrainLossPerSample = 1.78511215; EvalErr[0]PerSample = 0.67218750; TotalTime = 15.4090s; SamplesPerSecond = 1661.4 -Finished Epoch[ 1 of 160]: [Training Set] TrainLossPerSample = 1.6011882; EvalErrPerSample = 0.59435999; AvgLearningRatePerSample = 0.0078125; EpochTime=26.129 -Starting Epoch 2: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[ 2 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 1.18311264; EvalErr[0]PerSample = 0.42843750; TotalTime = 11.4034s; SamplesPerSecond = 2245.0 -Finished Epoch[ 2 of 160]: [Training Set] TrainLossPerSample = 1.1033459; EvalErrPerSample = 0.3969; AvgLearningRatePerSample = 0.0078125; EpochTime=22.1287 -Starting Epoch 3: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[ 3 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.90734154; EvalErr[0]PerSample = 0.32207031; TotalTime = 11.3750s; SamplesPerSecond = 2250.5 -Finished Epoch[ 3 of 160]: [Training Set] TrainLossPerSample = 0.86615896; EvalErrPerSample = 0.30719998; AvgLearningRatePerSample = 0.0078125; EpochTime=22.0657 -Starting Epoch 4: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[ 4 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.77141624; EvalErr[0]PerSample = 0.27066406; TotalTime = 11.4567s; SamplesPerSecond = 2234.5 -Finished Epoch[ 4 of 160]: [Training Set] TrainLossPerSample = 0.75146842; EvalErrPerSample = 0.26264; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2146 -Starting Epoch 5: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[ 5 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.68756187; EvalErr[0]PerSample = 0.23796875; TotalTime = 11.4042s; SamplesPerSecond = 2244.8 -Finished Epoch[ 5 of 160]: [Training Set] TrainLossPerSample = 0.67170274; EvalErrPerSample = 0.23289999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.1571 -Starting Epoch 6: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[ 6 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.61656025; EvalErr[0]PerSample = 0.21398438; TotalTime = 11.4800s; SamplesPerSecond = 2230.0 -Finished Epoch[ 6 of 160]: [Training Set] TrainLossPerSample = 0.612014; EvalErrPerSample = 0.21263999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2553 -Starting Epoch 7: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[ 7 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.58124241; EvalErr[0]PerSample = 0.20335938; TotalTime = 11.4640s; SamplesPerSecond = 2233.1 -Finished Epoch[ 7 of 160]: [Training Set] TrainLossPerSample = 0.56962705; EvalErrPerSample = 0.19909999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2453 -Starting Epoch 8: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[ 8 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.54073845; EvalErr[0]PerSample = 0.18796875; TotalTime = 11.5047s; SamplesPerSecond = 2225.2 -Finished Epoch[ 8 of 160]: [Training Set] TrainLossPerSample = 0.53796959; EvalErrPerSample = 0.18616; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3345 -Starting Epoch 9: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[ 9 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.50834869; EvalErr[0]PerSample = 0.17632813; TotalTime = 11.5167s; SamplesPerSecond = 2222.9 -Finished Epoch[ 9 of 160]: [Training Set] TrainLossPerSample = 0.51177925; EvalErrPerSample = 0.17704; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3221 -Starting Epoch 10: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[10 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.48615803; EvalErr[0]PerSample = 0.16917969; TotalTime = 11.4815s; SamplesPerSecond = 2229.7 -Finished Epoch[10 of 160]: [Training Set] TrainLossPerSample = 0.49343586; EvalErrPerSample = 0.17158; AvgLearningRatePerSample = 0.0078125; EpochTime=22.286 -Starting Epoch 11: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[11 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.46868595; EvalErr[0]PerSample = 0.16312500; TotalTime = 11.4115s; SamplesPerSecond = 2243.4 -Finished Epoch[11 of 160]: [Training Set] TrainLossPerSample = 0.46725979; EvalErrPerSample = 0.16214; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2195 -Starting Epoch 12: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[12 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.45617180; EvalErr[0]PerSample = 0.15531250; TotalTime = 11.4316s; SamplesPerSecond = 2239.4 -Finished Epoch[12 of 160]: [Training Set] TrainLossPerSample = 0.44944596; EvalErrPerSample = 0.15497999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2204 -Starting Epoch 13: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[13 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.43442238; EvalErr[0]PerSample = 0.15031250; TotalTime = 11.5970s; SamplesPerSecond = 2207.5 -Finished Epoch[13 of 160]: [Training Set] TrainLossPerSample = 0.43854889; EvalErrPerSample = 0.15235999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.4304 -Starting Epoch 14: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[14 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.41474213; EvalErr[0]PerSample = 0.14265625; TotalTime = 11.5551s; SamplesPerSecond = 2215.5 -Finished Epoch[14 of 160]: [Training Set] TrainLossPerSample = 0.42394838; EvalErrPerSample = 0.14659999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3929 -Starting Epoch 15: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[15 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.40827648; EvalErr[0]PerSample = 0.14167969; TotalTime = 11.5593s; SamplesPerSecond = 2214.7 -Finished Epoch[15 of 160]: [Training Set] TrainLossPerSample = 0.40738714; EvalErrPerSample = 0.14126; AvgLearningRatePerSample = 0.0078125; EpochTime=22.404 -Starting Epoch 16: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[16 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.39572418; EvalErr[0]PerSample = 0.13765625; TotalTime = 11.6490s; SamplesPerSecond = 2197.6 -Finished Epoch[16 of 160]: [Training Set] TrainLossPerSample = 0.4007735; EvalErrPerSample = 0.13798; AvgLearningRatePerSample = 0.0078125; EpochTime=22.4156 -Starting Epoch 17: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[17 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.38931370; EvalErr[0]PerSample = 0.13757813; TotalTime = 11.4136s; SamplesPerSecond = 2242.9 -Finished Epoch[17 of 160]: [Training Set] TrainLossPerSample = 0.39249194; EvalErrPerSample = 0.13716; AvgLearningRatePerSample = 0.0078125; EpochTime=22.1748 -Starting Epoch 18: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[18 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.37350758; EvalErr[0]PerSample = 0.12980469; TotalTime = 11.5431s; SamplesPerSecond = 2217.8 -Finished Epoch[18 of 160]: [Training Set] TrainLossPerSample = 0.37985951; EvalErrPerSample = 0.13271999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3177 -Starting Epoch 19: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[19 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.37046688; EvalErr[0]PerSample = 0.12742187; TotalTime = 11.4904s; SamplesPerSecond = 2228.0 -Finished Epoch[19 of 160]: [Training Set] TrainLossPerSample = 0.37240577; EvalErrPerSample = 0.12842; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2594 -Starting Epoch 20: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[20 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.36126266; EvalErr[0]PerSample = 0.12656250; TotalTime = 11.5121s; SamplesPerSecond = 2223.7 -Finished Epoch[20 of 160]: [Training Set] TrainLossPerSample = 0.36667159; EvalErrPerSample = 0.12833999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2756 -Starting Epoch 21: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[21 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.36016537; EvalErr[0]PerSample = 0.12242188; TotalTime = 11.5126s; SamplesPerSecond = 2223.7 -Finished Epoch[21 of 160]: [Training Set] TrainLossPerSample = 0.35836998; EvalErrPerSample = 0.12233999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2811 -Starting Epoch 22: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[22 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.34188179; EvalErr[0]PerSample = 0.11910156; TotalTime = 11.5167s; SamplesPerSecond = 2222.9 -Finished Epoch[22 of 160]: [Training Set] TrainLossPerSample = 0.34598714; EvalErrPerSample = 0.12013999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3214 -Starting Epoch 23: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[23 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.34518520; EvalErr[0]PerSample = 0.11894531; TotalTime = 11.5177s; SamplesPerSecond = 2222.7 -Finished Epoch[23 of 160]: [Training Set] TrainLossPerSample = 0.34407225; EvalErrPerSample = 0.11892; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3061 -Starting Epoch 24: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[24 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.33347424; EvalErr[0]PerSample = 0.11660156; TotalTime = 11.5769s; SamplesPerSecond = 2211.3 -Finished Epoch[24 of 160]: [Training Set] TrainLossPerSample = 0.34192094; EvalErrPerSample = 0.11848; AvgLearningRatePerSample = 0.0078125; EpochTime=22.368 -Starting Epoch 25: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[25 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.33844280; EvalErr[0]PerSample = 0.11648438; TotalTime = 11.5529s; SamplesPerSecond = 2215.9 -Finished Epoch[25 of 160]: [Training Set] TrainLossPerSample = 0.3405562; EvalErrPerSample = 0.11768; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3158 -Starting Epoch 26: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[26 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.32573421; EvalErr[0]PerSample = 0.11328125; TotalTime = 11.4885s; SamplesPerSecond = 2228.3 -Finished Epoch[26 of 160]: [Training Set] TrainLossPerSample = 0.3283667; EvalErrPerSample = 0.11268; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3241 -Starting Epoch 27: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[27 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.32139095; EvalErr[0]PerSample = 0.11300781; TotalTime = 11.5773s; SamplesPerSecond = 2211.2 -Finished Epoch[27 of 160]: [Training Set] TrainLossPerSample = 0.32817245; EvalErrPerSample = 0.11406; AvgLearningRatePerSample = 0.0078125; EpochTime=22.345 -Starting Epoch 28: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[28 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.31476902; EvalErr[0]PerSample = 0.11074219; TotalTime = 11.4481s; SamplesPerSecond = 2236.2 -Finished Epoch[28 of 160]: [Training Set] TrainLossPerSample = 0.32170638; EvalErrPerSample = 0.1133; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2168 -Starting Epoch 29: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[29 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.30912992; EvalErr[0]PerSample = 0.10859375; TotalTime = 11.4067s; SamplesPerSecond = 2244.3 -Finished Epoch[29 of 160]: [Training Set] TrainLossPerSample = 0.31786552; EvalErrPerSample = 0.11086; AvgLearningRatePerSample = 0.0078125; EpochTime=22.1891 -Starting Epoch 30: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[30 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.30547693; EvalErr[0]PerSample = 0.10496094; TotalTime = 11.5656s; SamplesPerSecond = 2213.5 -Finished Epoch[30 of 160]: [Training Set] TrainLossPerSample = 0.31253323; EvalErrPerSample = 0.1078; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3465 -Starting Epoch 31: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[31 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.30724499; EvalErr[0]PerSample = 0.10769531; TotalTime = 11.5380s; SamplesPerSecond = 2218.8 -Finished Epoch[31 of 160]: [Training Set] TrainLossPerSample = 0.31017771; EvalErrPerSample = 0.10802; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3988 -Starting Epoch 32: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[32 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.30443895; EvalErr[0]PerSample = 0.10660156; TotalTime = 11.5474s; SamplesPerSecond = 2216.9 -Finished Epoch[32 of 160]: [Training Set] TrainLossPerSample = 0.31054172; EvalErrPerSample = 0.10764; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3142 -Starting Epoch 33: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[33 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.29248705; EvalErr[0]PerSample = 0.10175781; TotalTime = 11.4051s; SamplesPerSecond = 2244.6 -Finished Epoch[33 of 160]: [Training Set] TrainLossPerSample = 0.30296284; EvalErrPerSample = 0.10422; AvgLearningRatePerSample = 0.0078125; EpochTime=22.1968 -Starting Epoch 34: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[34 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.30263618; EvalErr[0]PerSample = 0.10550781; TotalTime = 11.5888s; SamplesPerSecond = 2209.0 -Finished Epoch[34 of 160]: [Training Set] TrainLossPerSample = 0.30190024; EvalErrPerSample = 0.10473999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.4491 -Starting Epoch 35: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[35 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.29659115; EvalErr[0]PerSample = 0.10171875; TotalTime = 11.6140s; SamplesPerSecond = 2204.2 -Finished Epoch[35 of 160]: [Training Set] TrainLossPerSample = 0.29864648; EvalErrPerSample = 0.10306; AvgLearningRatePerSample = 0.0078125; EpochTime=22.4411 -Starting Epoch 36: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[36 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.28713980; EvalErr[0]PerSample = 0.10027344; TotalTime = 11.5617s; SamplesPerSecond = 2214.2 -Finished Epoch[36 of 160]: [Training Set] TrainLossPerSample = 0.29245624; EvalErrPerSample = 0.10234; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3455 -Starting Epoch 37: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[37 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.28737648; EvalErr[0]PerSample = 0.09847656; TotalTime = 11.4851s; SamplesPerSecond = 2229.0 -Finished Epoch[37 of 160]: [Training Set] TrainLossPerSample = 0.29400381; EvalErrPerSample = 0.10157999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3035 -Starting Epoch 38: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[38 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.28604475; EvalErr[0]PerSample = 0.09699219; TotalTime = 11.6237s; SamplesPerSecond = 2202.4 -Finished Epoch[38 of 160]: [Training Set] TrainLossPerSample = 0.29055047; EvalErrPerSample = 0.1006; AvgLearningRatePerSample = 0.0078125; EpochTime=22.41 -Starting Epoch 39: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[39 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.28677174; EvalErr[0]PerSample = 0.09929688; TotalTime = 11.6037s; SamplesPerSecond = 2206.2 -Finished Epoch[39 of 160]: [Training Set] TrainLossPerSample = 0.28853956; EvalErrPerSample = 0.101; AvgLearningRatePerSample = 0.0078125; EpochTime=22.4156 -Starting Epoch 40: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[40 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.27731121; EvalErr[0]PerSample = 0.09699219; TotalTime = 11.5688s; SamplesPerSecond = 2212.9 -Finished Epoch[40 of 160]: [Training Set] TrainLossPerSample = 0.28800672; EvalErrPerSample = 0.099959999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3445 -Starting Epoch 41: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[41 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.28877285; EvalErr[0]PerSample = 0.10156250; TotalTime = 11.5167s; SamplesPerSecond = 2222.9 -Finished Epoch[41 of 160]: [Training Set] TrainLossPerSample = 0.28422225; EvalErrPerSample = 0.098719999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.355 -Starting Epoch 42: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[42 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.27758221; EvalErr[0]PerSample = 0.09710937; TotalTime = 11.5935s; SamplesPerSecond = 2208.1 -Finished Epoch[42 of 160]: [Training Set] TrainLossPerSample = 0.28059965; EvalErrPerSample = 0.097819999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.7852 -Starting Epoch 43: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[43 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.27680891; EvalErr[0]PerSample = 0.09644531; TotalTime = 11.6198s; SamplesPerSecond = 2203.1 -Finished Epoch[43 of 160]: [Training Set] TrainLossPerSample = 0.28217828; EvalErrPerSample = 0.098200001; AvgLearningRatePerSample = 0.0078125; EpochTime=22.4529 -Starting Epoch 44: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[44 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.27107407; EvalErr[0]PerSample = 0.09421875; TotalTime = 11.5929s; SamplesPerSecond = 2208.2 -Finished Epoch[44 of 160]: [Training Set] TrainLossPerSample = 0.27688959; EvalErrPerSample = 0.096079998; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3608 -Starting Epoch 45: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[45 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.27329311; EvalErr[0]PerSample = 0.09585937; TotalTime = 11.4535s; SamplesPerSecond = 2235.1 -Finished Epoch[45 of 160]: [Training Set] TrainLossPerSample = 0.27860796; EvalErrPerSample = 0.097539999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2187 -Starting Epoch 46: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[46 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.26291889; EvalErr[0]PerSample = 0.09253906; TotalTime = 11.4315s; SamplesPerSecond = 2239.4 -Finished Epoch[46 of 160]: [Training Set] TrainLossPerSample = 0.27177998; EvalErrPerSample = 0.095179997; AvgLearningRatePerSample = 0.0078125; EpochTime=22.1909 -Starting Epoch 47: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[47 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.27016382; EvalErr[0]PerSample = 0.09503906; TotalTime = 11.4016s; SamplesPerSecond = 2245.3 -Finished Epoch[47 of 160]: [Training Set] TrainLossPerSample = 0.27474955; EvalErrPerSample = 0.096859999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.1576 -Starting Epoch 48: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[48 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25722231; EvalErr[0]PerSample = 0.08960938; TotalTime = 11.4404s; SamplesPerSecond = 2237.7 -Finished Epoch[48 of 160]: [Training Set] TrainLossPerSample = 0.26707178; EvalErrPerSample = 0.09296; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2165 -Starting Epoch 49: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[49 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25658318; EvalErr[0]PerSample = 0.08960938; TotalTime = 11.5004s; SamplesPerSecond = 2226.0 -Finished Epoch[49 of 160]: [Training Set] TrainLossPerSample = 0.26653028; EvalErrPerSample = 0.093059994; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2617 -Starting Epoch 50: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[50 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.26309399; EvalErr[0]PerSample = 0.09062500; TotalTime = 11.4840s; SamplesPerSecond = 2229.2 -Finished Epoch[50 of 160]: [Training Set] TrainLossPerSample = 0.27242121; EvalErrPerSample = 0.094359994; AvgLearningRatePerSample = 0.0078125; EpochTime=22.4308 -Starting Epoch 51: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[51 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25116308; EvalErr[0]PerSample = 0.08757813; TotalTime = 11.5958s; SamplesPerSecond = 2207.7 -Finished Epoch[51 of 160]: [Training Set] TrainLossPerSample = 0.26714918; EvalErrPerSample = 0.093719997; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3675 -Starting Epoch 52: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[52 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25991890; EvalErr[0]PerSample = 0.09207031; TotalTime = 11.4533s; SamplesPerSecond = 2235.2 -Finished Epoch[52 of 160]: [Training Set] TrainLossPerSample = 0.2633768; EvalErrPerSample = 0.09268; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3111 -Starting Epoch 53: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[53 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25488058; EvalErr[0]PerSample = 0.08957031; TotalTime = 11.5890s; SamplesPerSecond = 2209.0 -Finished Epoch[53 of 160]: [Training Set] TrainLossPerSample = 0.26292121; EvalErrPerSample = 0.092160001; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3534 -Starting Epoch 54: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[54 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24893934; EvalErr[0]PerSample = 0.08859375; TotalTime = 11.5135s; SamplesPerSecond = 2223.5 -Finished Epoch[54 of 160]: [Training Set] TrainLossPerSample = 0.25717214; EvalErrPerSample = 0.090659998; AvgLearningRatePerSample = 0.0078125; EpochTime=22.4264 -Starting Epoch 55: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[55 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25861763; EvalErr[0]PerSample = 0.09019531; TotalTime = 11.6295s; SamplesPerSecond = 2201.3 -Finished Epoch[55 of 160]: [Training Set] TrainLossPerSample = 0.26373541; EvalErrPerSample = 0.091260001; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3938 -Starting Epoch 56: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[56 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25139614; EvalErr[0]PerSample = 0.08546875; TotalTime = 11.5303s; SamplesPerSecond = 2220.2 -Finished Epoch[56 of 160]: [Training Set] TrainLossPerSample = 0.25967881; EvalErrPerSample = 0.089499995; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2997 -Starting Epoch 57: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[57 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24860460; EvalErr[0]PerSample = 0.08734375; TotalTime = 11.5494s; SamplesPerSecond = 2216.6 -Finished Epoch[57 of 160]: [Training Set] TrainLossPerSample = 0.25601548; EvalErrPerSample = 0.090059996; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3412 -Starting Epoch 58: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[58 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24636944; EvalErr[0]PerSample = 0.08496094; TotalTime = 11.5079s; SamplesPerSecond = 2224.6 -Finished Epoch[58 of 160]: [Training Set] TrainLossPerSample = 0.25675642; EvalErrPerSample = 0.088599995; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3309 -Starting Epoch 59: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[59 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25354239; EvalErr[0]PerSample = 0.09003906; TotalTime = 11.5633s; SamplesPerSecond = 2213.9 -Finished Epoch[59 of 160]: [Training Set] TrainLossPerSample = 0.25516802; EvalErrPerSample = 0.090879999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3313 -Starting Epoch 60: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[60 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24986008; EvalErr[0]PerSample = 0.08527344; TotalTime = 11.4490s; SamplesPerSecond = 2236.0 -Finished Epoch[60 of 160]: [Training Set] TrainLossPerSample = 0.25723642; EvalErrPerSample = 0.088979997; AvgLearningRatePerSample = 0.0078125; EpochTime=22.242 -Starting Epoch 61: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[61 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24366058; EvalErr[0]PerSample = 0.08671875; TotalTime = 11.5741s; SamplesPerSecond = 2211.8 -Finished Epoch[61 of 160]: [Training Set] TrainLossPerSample = 0.25719753; EvalErrPerSample = 0.091239996; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3397 -Starting Epoch 62: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[62 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24259378; EvalErr[0]PerSample = 0.08492187; TotalTime = 11.5269s; SamplesPerSecond = 2220.9 -Finished Epoch[62 of 160]: [Training Set] TrainLossPerSample = 0.2515817; EvalErrPerSample = 0.088679999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3014 -Starting Epoch 63: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[63 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24029449; EvalErr[0]PerSample = 0.08460938; TotalTime = 11.5659s; SamplesPerSecond = 2213.4 -Finished Epoch[63 of 160]: [Training Set] TrainLossPerSample = 0.25265002; EvalErrPerSample = 0.088959999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3815 -Starting Epoch 64: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[64 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23263992; EvalErr[0]PerSample = 0.08144531; TotalTime = 11.5963s; SamplesPerSecond = 2207.6 -Finished Epoch[64 of 160]: [Training Set] TrainLossPerSample = 0.24182168; EvalErrPerSample = 0.084859997; AvgLearningRatePerSample = 0.0078125; EpochTime=22.4068 -Starting Epoch 65: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[65 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24372847; EvalErr[0]PerSample = 0.08410156; TotalTime = 11.5519s; SamplesPerSecond = 2216.1 -Finished Epoch[65 of 160]: [Training Set] TrainLossPerSample = 0.25128376; EvalErrPerSample = 0.087699994; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3194 -Starting Epoch 66: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[66 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23706863; EvalErr[0]PerSample = 0.08332031; TotalTime = 11.5141s; SamplesPerSecond = 2223.4 -Finished Epoch[66 of 160]: [Training Set] TrainLossPerSample = 0.2469063; EvalErrPerSample = 0.085879996; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2777 -Starting Epoch 67: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[67 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23676601; EvalErr[0]PerSample = 0.08445313; TotalTime = 11.4886s; SamplesPerSecond = 2228.3 -Finished Epoch[67 of 160]: [Training Set] TrainLossPerSample = 0.2486082; EvalErrPerSample = 0.087859996; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2538 -Starting Epoch 68: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[68 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23655962; EvalErr[0]PerSample = 0.08148437; TotalTime = 11.5050s; SamplesPerSecond = 2225.1 -Finished Epoch[68 of 160]: [Training Set] TrainLossPerSample = 0.24334124; EvalErrPerSample = 0.084699996; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2913 -Starting Epoch 69: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[69 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23345692; EvalErr[0]PerSample = 0.08085937; TotalTime = 11.5400s; SamplesPerSecond = 2218.4 -Finished Epoch[69 of 160]: [Training Set] TrainLossPerSample = 0.241666; EvalErrPerSample = 0.083919995; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3544 -Starting Epoch 70: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[70 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23493608; EvalErr[0]PerSample = 0.08160156; TotalTime = 11.5393s; SamplesPerSecond = 2218.5 -Finished Epoch[70 of 160]: [Training Set] TrainLossPerSample = 0.24537624; EvalErrPerSample = 0.084799998; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3067 -Starting Epoch 71: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[71 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23666447; EvalErr[0]PerSample = 0.08300781; TotalTime = 11.5368s; SamplesPerSecond = 2219.0 -Finished Epoch[71 of 160]: [Training Set] TrainLossPerSample = 0.24771863; EvalErrPerSample = 0.086999997; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3618 -Starting Epoch 72: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[72 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24186720; EvalErr[0]PerSample = 0.08511719; TotalTime = 11.5608s; SamplesPerSecond = 2214.4 -Finished Epoch[72 of 160]: [Training Set] TrainLossPerSample = 0.2442316; EvalErrPerSample = 0.085159995; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3384 -Starting Epoch 73: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[73 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23745417; EvalErr[0]PerSample = 0.08406250; TotalTime = 11.5428s; SamplesPerSecond = 2217.8 -Finished Epoch[73 of 160]: [Training Set] TrainLossPerSample = 0.24105896; EvalErrPerSample = 0.084639996; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3139 -Starting Epoch 74: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[74 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25070684; EvalErr[0]PerSample = 0.08886719; TotalTime = 11.4398s; SamplesPerSecond = 2237.8 -Finished Epoch[74 of 160]: [Training Set] TrainLossPerSample = 0.24804311; EvalErrPerSample = 0.087299995; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2443 -Starting Epoch 75: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[75 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23875351; EvalErr[0]PerSample = 0.08117188; TotalTime = 11.5714s; SamplesPerSecond = 2212.3 -Finished Epoch[75 of 160]: [Training Set] TrainLossPerSample = 0.24082842; EvalErrPerSample = 0.083080001; AvgLearningRatePerSample = 0.0078125; EpochTime=22.366 -Starting Epoch 76: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[76 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23140110; EvalErr[0]PerSample = 0.08203125; TotalTime = 11.5559s; SamplesPerSecond = 2215.3 -Finished Epoch[76 of 160]: [Training Set] TrainLossPerSample = 0.24258973; EvalErrPerSample = 0.084919997; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3202 -Starting Epoch 77: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[77 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23099312; EvalErr[0]PerSample = 0.08105469; TotalTime = 11.5710s; SamplesPerSecond = 2212.4 -Finished Epoch[77 of 160]: [Training Set] TrainLossPerSample = 0.24171358; EvalErrPerSample = 0.084399998; AvgLearningRatePerSample = 0.0078125; EpochTime=22.416 -Starting Epoch 78: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[78 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.22422340; EvalErr[0]PerSample = 0.07945312; TotalTime = 11.5828s; SamplesPerSecond = 2210.2 -Finished Epoch[78 of 160]: [Training Set] TrainLossPerSample = 0.23471047; EvalErrPerSample = 0.083219998; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3526 -Starting Epoch 79: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[79 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23049221; EvalErr[0]PerSample = 0.08292969; TotalTime = 11.5700s; SamplesPerSecond = 2212.6 -Finished Epoch[79 of 160]: [Training Set] TrainLossPerSample = 0.237709; EvalErrPerSample = 0.083939999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3438 -Starting Epoch 80: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[80 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23512028; EvalErr[0]PerSample = 0.08218750; TotalTime = 11.4967s; SamplesPerSecond = 2226.7 -Finished Epoch[80 of 160]: [Training Set] TrainLossPerSample = 0.23986502; EvalErrPerSample = 0.084139995; AvgLearningRatePerSample = 0.0078125; EpochTime=22.32 -Starting Epoch 81: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[81 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.18993895; EvalErr[0]PerSample = 0.06554688; TotalTime = 11.5483s; SamplesPerSecond = 2216.8 -Finished Epoch[81 of 160]: [Training Set] TrainLossPerSample = 0.16793214; EvalErrPerSample = 0.057559997; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3134 -Starting Epoch 82: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[82 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.13101171; EvalErr[0]PerSample = 0.04542969; TotalTime = 11.5430s; SamplesPerSecond = 2217.8 -Finished Epoch[82 of 160]: [Training Set] TrainLossPerSample = 0.12739825; EvalErrPerSample = 0.04394; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3113 -Starting Epoch 83: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[83 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.11582967; EvalErr[0]PerSample = 0.03949219; TotalTime = 11.5821s; SamplesPerSecond = 2210.3 -Finished Epoch[83 of 160]: [Training Set] TrainLossPerSample = 0.11576424; EvalErrPerSample = 0.03926; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.4228 -Starting Epoch 84: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[84 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.10656901; EvalErr[0]PerSample = 0.03722656; TotalTime = 11.5453s; SamplesPerSecond = 2217.4 -Finished Epoch[84 of 160]: [Training Set] TrainLossPerSample = 0.106635; EvalErrPerSample = 0.03644; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.5034 -Starting Epoch 85: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[85 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.09979140; EvalErr[0]PerSample = 0.03359375; TotalTime = 11.4506s; SamplesPerSecond = 2235.7 -Finished Epoch[85 of 160]: [Training Set] TrainLossPerSample = 0.10094135; EvalErrPerSample = 0.033980001; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2631 -Starting Epoch 86: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[86 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.09689341; EvalErr[0]PerSample = 0.03265625; TotalTime = 11.5657s; SamplesPerSecond = 2213.4 -Finished Epoch[86 of 160]: [Training Set] TrainLossPerSample = 0.096568428; EvalErrPerSample = 0.033059999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3286 -Starting Epoch 87: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[87 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.09459194; EvalErr[0]PerSample = 0.03140625; TotalTime = 11.4668s; SamplesPerSecond = 2232.5 -Finished Epoch[87 of 160]: [Training Set] TrainLossPerSample = 0.09401314; EvalErrPerSample = 0.031119999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2404 -Starting Epoch 88: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[88 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.09019656; EvalErr[0]PerSample = 0.02929688; TotalTime = 11.4755s; SamplesPerSecond = 2230.8 -Finished Epoch[88 of 160]: [Training Set] TrainLossPerSample = 0.090820439; EvalErrPerSample = 0.030199999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2533 -Starting Epoch 89: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[89 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.08303898; EvalErr[0]PerSample = 0.02785156; TotalTime = 11.5285s; SamplesPerSecond = 2220.6 -Finished Epoch[89 of 160]: [Training Set] TrainLossPerSample = 0.086739741; EvalErrPerSample = 0.02956; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.307 -Starting Epoch 90: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[90 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.08771500; EvalErr[0]PerSample = 0.02984375; TotalTime = 11.5321s; SamplesPerSecond = 2219.9 -Finished Epoch[90 of 160]: [Training Set] TrainLossPerSample = 0.087390222; EvalErrPerSample = 0.03018; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3574 -Starting Epoch 91: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[91 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.08021155; EvalErr[0]PerSample = 0.02699219; TotalTime = 11.5502s; SamplesPerSecond = 2216.4 -Finished Epoch[91 of 160]: [Training Set] TrainLossPerSample = 0.080674298; EvalErrPerSample = 0.027319999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3191 -Starting Epoch 92: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[92 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.08322118; EvalErr[0]PerSample = 0.02910156; TotalTime = 11.5210s; SamplesPerSecond = 2222.0 -Finished Epoch[92 of 160]: [Training Set] TrainLossPerSample = 0.08106219; EvalErrPerSample = 0.028339999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2938 -Starting Epoch 93: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[93 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.08073726; EvalErr[0]PerSample = 0.02789062; TotalTime = 11.3990s; SamplesPerSecond = 2245.8 -Finished Epoch[93 of 160]: [Training Set] TrainLossPerSample = 0.079686686; EvalErrPerSample = 0.027419999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2285 -Starting Epoch 94: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[94 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.07666363; EvalErr[0]PerSample = 0.02695313; TotalTime = 11.5560s; SamplesPerSecond = 2215.3 -Finished Epoch[94 of 160]: [Training Set] TrainLossPerSample = 0.077968039; EvalErrPerSample = 0.027099999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3268 -Starting Epoch 95: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[95 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.07550663; EvalErr[0]PerSample = 0.02609375; TotalTime = 11.4795s; SamplesPerSecond = 2230.1 -Finished Epoch[95 of 160]: [Training Set] TrainLossPerSample = 0.076805077; EvalErrPerSample = 0.02616; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2683 -Starting Epoch 96: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[96 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.07483893; EvalErr[0]PerSample = 0.02652344; TotalTime = 11.4940s; SamplesPerSecond = 2227.3 -Finished Epoch[96 of 160]: [Training Set] TrainLossPerSample = 0.073900625; EvalErrPerSample = 0.025839999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2583 -Starting Epoch 97: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[97 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.07033884; EvalErr[0]PerSample = 0.02421875; TotalTime = 11.4972s; SamplesPerSecond = 2226.6 -Finished Epoch[97 of 160]: [Training Set] TrainLossPerSample = 0.072241709; EvalErrPerSample = 0.025239998; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3373 -Starting Epoch 98: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[98 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.07043020; EvalErr[0]PerSample = 0.02421875; TotalTime = 11.5606s; SamplesPerSecond = 2214.4 -Finished Epoch[98 of 160]: [Training Set] TrainLossPerSample = 0.070759542; EvalErrPerSample = 0.024279999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.328 -Starting Epoch 99: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[99 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.07046758; EvalErr[0]PerSample = 0.02503906; TotalTime = 11.5808s; SamplesPerSecond = 2210.5 -Finished Epoch[99 of 160]: [Training Set] TrainLossPerSample = 0.069847755; EvalErrPerSample = 0.024219999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3476 -Starting Epoch 100: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[100 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.06165749; EvalErr[0]PerSample = 0.02144531; TotalTime = 11.5168s; SamplesPerSecond = 2222.8 -Finished Epoch[100 of 160]: [Training Set] TrainLossPerSample = 0.066228345; EvalErrPerSample = 0.02266; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2882 -Starting Epoch 101: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[101 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.06483539; EvalErr[0]PerSample = 0.02242188; TotalTime = 11.5478s; SamplesPerSecond = 2216.9 -Finished Epoch[101 of 160]: [Training Set] TrainLossPerSample = 0.066535138; EvalErrPerSample = 0.022839999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.382 -Starting Epoch 102: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[102 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.06374743; EvalErr[0]PerSample = 0.02113281; TotalTime = 11.7412s; SamplesPerSecond = 2180.4 -Finished Epoch[102 of 160]: [Training Set] TrainLossPerSample = 0.06468109; EvalErrPerSample = 0.021979999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.5325 -Starting Epoch 103: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[103 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.06524000; EvalErr[0]PerSample = 0.02261719; TotalTime = 11.5928s; SamplesPerSecond = 2208.3 -Finished Epoch[103 of 160]: [Training Set] TrainLossPerSample = 0.065452188; EvalErrPerSample = 0.021879999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3876 -Starting Epoch 104: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[104 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.06336018; EvalErr[0]PerSample = 0.02117188; TotalTime = 11.5741s; SamplesPerSecond = 2211.8 -Finished Epoch[104 of 160]: [Training Set] TrainLossPerSample = 0.064649269; EvalErrPerSample = 0.021819999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3409 -Starting Epoch 105: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[105 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05928923; EvalErr[0]PerSample = 0.02039062; TotalTime = 11.4805s; SamplesPerSecond = 2229.9 -Finished Epoch[105 of 160]: [Training Set] TrainLossPerSample = 0.062256567; EvalErrPerSample = 0.021199999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2864 -Starting Epoch 106: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[106 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05956097; EvalErr[0]PerSample = 0.02070312; TotalTime = 11.5877s; SamplesPerSecond = 2209.2 -Finished Epoch[106 of 160]: [Training Set] TrainLossPerSample = 0.059500545; EvalErrPerSample = 0.02076; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3573 -Starting Epoch 107: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[107 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05682479; EvalErr[0]PerSample = 0.01898438; TotalTime = 11.4687s; SamplesPerSecond = 2232.2 -Finished Epoch[107 of 160]: [Training Set] TrainLossPerSample = 0.05800005; EvalErrPerSample = 0.019579999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3035 -Starting Epoch 108: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[108 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05657757; EvalErr[0]PerSample = 0.01890625; TotalTime = 11.5761s; SamplesPerSecond = 2211.4 -Finished Epoch[108 of 160]: [Training Set] TrainLossPerSample = 0.059094436; EvalErrPerSample = 0.02004; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3386 -Starting Epoch 109: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[109 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05917750; EvalErr[0]PerSample = 0.01945313; TotalTime = 11.5089s; SamplesPerSecond = 2224.4 -Finished Epoch[109 of 160]: [Training Set] TrainLossPerSample = 0.057597388; EvalErrPerSample = 0.01898; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2734 -Starting Epoch 110: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[110 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05674717; EvalErr[0]PerSample = 0.01968750; TotalTime = 11.5447s; SamplesPerSecond = 2217.5 -Finished Epoch[110 of 160]: [Training Set] TrainLossPerSample = 0.05731637; EvalErrPerSample = 0.019819999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3039 -Starting Epoch 111: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[111 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05444533; EvalErr[0]PerSample = 0.01945313; TotalTime = 11.4688s; SamplesPerSecond = 2232.1 -Finished Epoch[111 of 160]: [Training Set] TrainLossPerSample = 0.055398725; EvalErrPerSample = 0.01956; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.244 -Starting Epoch 112: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[112 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05179993; EvalErr[0]PerSample = 0.01710938; TotalTime = 11.5138s; SamplesPerSecond = 2223.4 -Finished Epoch[112 of 160]: [Training Set] TrainLossPerSample = 0.053484067; EvalErrPerSample = 0.018139999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.273 -Starting Epoch 113: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[113 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05144035; EvalErr[0]PerSample = 0.01714844; TotalTime = 11.5189s; SamplesPerSecond = 2222.4 -Finished Epoch[113 of 160]: [Training Set] TrainLossPerSample = 0.053684823; EvalErrPerSample = 0.018139999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.298 -Starting Epoch 114: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[114 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05280342; EvalErr[0]PerSample = 0.01742188; TotalTime = 11.5954s; SamplesPerSecond = 2207.8 -Finished Epoch[114 of 160]: [Training Set] TrainLossPerSample = 0.05435824; EvalErrPerSample = 0.0184; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.4052 -Starting Epoch 115: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[115 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05222118; EvalErr[0]PerSample = 0.01757813; TotalTime = 11.6020s; SamplesPerSecond = 2206.5 -Finished Epoch[115 of 160]: [Training Set] TrainLossPerSample = 0.05275812; EvalErrPerSample = 0.0177; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3742 -Starting Epoch 116: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[116 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05418136; EvalErr[0]PerSample = 0.01832031; TotalTime = 11.5462s; SamplesPerSecond = 2217.2 -Finished Epoch[116 of 160]: [Training Set] TrainLossPerSample = 0.05442594; EvalErrPerSample = 0.018379999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3169 -Starting Epoch 117: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[117 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05089517; EvalErr[0]PerSample = 0.01753906; TotalTime = 11.4854s; SamplesPerSecond = 2228.9 -Finished Epoch[117 of 160]: [Training Set] TrainLossPerSample = 0.051556218; EvalErrPerSample = 0.018059999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2698 -Starting Epoch 118: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[118 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.04923437; EvalErr[0]PerSample = 0.01722656; TotalTime = 11.6094s; SamplesPerSecond = 2205.1 -Finished Epoch[118 of 160]: [Training Set] TrainLossPerSample = 0.051423203; EvalErrPerSample = 0.01756; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3705 -Starting Epoch 119: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[119 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.04878937; EvalErr[0]PerSample = 0.01687500; TotalTime = 11.5243s; SamplesPerSecond = 2221.4 -Finished Epoch[119 of 160]: [Training Set] TrainLossPerSample = 0.049813163; EvalErrPerSample = 0.01692; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3001 -Starting Epoch 120: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[120 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.04832996; EvalErr[0]PerSample = 0.01691406; TotalTime = 11.4980s; SamplesPerSecond = 2226.5 -Finished Epoch[120 of 160]: [Training Set] TrainLossPerSample = 0.049110278; EvalErrPerSample = 0.01716; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3303 -Starting Epoch 121: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[121 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.04482439; EvalErr[0]PerSample = 0.01488281; TotalTime = 11.5958s; SamplesPerSecond = 2207.7 -Finished Epoch[121 of 160]: [Training Set] TrainLossPerSample = 0.043392066; EvalErrPerSample = 0.01438; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.4054 -Starting Epoch 122: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[122 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.04098450; EvalErr[0]PerSample = 0.01304687; TotalTime = 11.5422s; SamplesPerSecond = 2217.9 -Finished Epoch[122 of 160]: [Training Set] TrainLossPerSample = 0.040084258; EvalErrPerSample = 0.0129; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.4305 -Starting Epoch 123: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[123 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03640993; EvalErr[0]PerSample = 0.01175781; TotalTime = 11.5831s; SamplesPerSecond = 2210.1 -Finished Epoch[123 of 160]: [Training Set] TrainLossPerSample = 0.03892789; EvalErrPerSample = 0.01236; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3743 -Starting Epoch 124: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[124 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03714126; EvalErr[0]PerSample = 0.01171875; TotalTime = 11.5510s; SamplesPerSecond = 2216.3 -Finished Epoch[124 of 160]: [Training Set] TrainLossPerSample = 0.038824685; EvalErrPerSample = 0.01272; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3909 -Starting Epoch 125: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[125 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03836004; EvalErr[0]PerSample = 0.01242188; TotalTime = 11.5348s; SamplesPerSecond = 2219.4 -Finished Epoch[125 of 160]: [Training Set] TrainLossPerSample = 0.03861165; EvalErrPerSample = 0.01212; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2952 -Starting Epoch 126: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[126 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03456074; EvalErr[0]PerSample = 0.01113281; TotalTime = 11.5272s; SamplesPerSecond = 2220.8 -Finished Epoch[126 of 160]: [Training Set] TrainLossPerSample = 0.035167199; EvalErrPerSample = 0.01126; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2908 -Starting Epoch 127: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[127 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03603784; EvalErr[0]PerSample = 0.01101562; TotalTime = 11.3989s; SamplesPerSecond = 2245.8 -Finished Epoch[127 of 160]: [Training Set] TrainLossPerSample = 0.035970744; EvalErrPerSample = 0.01098; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.226 -Starting Epoch 128: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[128 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03553395; EvalErr[0]PerSample = 0.01175781; TotalTime = 11.5519s; SamplesPerSecond = 2216.1 -Finished Epoch[128 of 160]: [Training Set] TrainLossPerSample = 0.035689104; EvalErrPerSample = 0.01156; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3882 -Starting Epoch 129: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[129 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03523235; EvalErr[0]PerSample = 0.01109375; TotalTime = 11.5823s; SamplesPerSecond = 2210.3 -Finished Epoch[129 of 160]: [Training Set] TrainLossPerSample = 0.036777027; EvalErrPerSample = 0.01176; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3416 -Starting Epoch 130: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[130 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03563953; EvalErr[0]PerSample = 0.01058594; TotalTime = 11.4850s; SamplesPerSecond = 2229.0 -Finished Epoch[130 of 160]: [Training Set] TrainLossPerSample = 0.034818619; EvalErrPerSample = 0.010559999; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2438 -Starting Epoch 131: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[131 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03574152; EvalErr[0]PerSample = 0.01187500; TotalTime = 11.4836s; SamplesPerSecond = 2229.3 -Finished Epoch[131 of 160]: [Training Set] TrainLossPerSample = 0.035892151; EvalErrPerSample = 0.01174; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2433 -Starting Epoch 132: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[132 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03485843; EvalErr[0]PerSample = 0.01152344; TotalTime = 11.4668s; SamplesPerSecond = 2232.5 -Finished Epoch[132 of 160]: [Training Set] TrainLossPerSample = 0.035623327; EvalErrPerSample = 0.01148; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2302 -Starting Epoch 133: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[133 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03582706; EvalErr[0]PerSample = 0.01058594; TotalTime = 11.4449s; SamplesPerSecond = 2236.8 -Finished Epoch[133 of 160]: [Training Set] TrainLossPerSample = 0.035650004; EvalErrPerSample = 0.01076; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2876 -Starting Epoch 134: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[134 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03308557; EvalErr[0]PerSample = 0.01031250; TotalTime = 11.5628s; SamplesPerSecond = 2214.0 -Finished Epoch[134 of 160]: [Training Set] TrainLossPerSample = 0.034471795; EvalErrPerSample = 0.010679999; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3507 -Starting Epoch 135: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[135 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03313774; EvalErr[0]PerSample = 0.01011719; TotalTime = 11.5699s; SamplesPerSecond = 2212.6 -Finished Epoch[135 of 160]: [Training Set] TrainLossPerSample = 0.03418766; EvalErrPerSample = 0.01052; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.356 -Starting Epoch 136: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[136 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03477723; EvalErr[0]PerSample = 0.01121094; TotalTime = 11.5129s; SamplesPerSecond = 2223.6 -Finished Epoch[136 of 160]: [Training Set] TrainLossPerSample = 0.0342177; EvalErrPerSample = 0.01064; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2738 -Starting Epoch 137: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[137 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03409709; EvalErr[0]PerSample = 0.01007813; TotalTime = 11.4740s; SamplesPerSecond = 2231.1 -Finished Epoch[137 of 160]: [Training Set] TrainLossPerSample = 0.034409851; EvalErrPerSample = 0.01076; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2606 -Starting Epoch 138: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[138 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03408328; EvalErr[0]PerSample = 0.01019531; TotalTime = 11.6197s; SamplesPerSecond = 2203.1 -Finished Epoch[138 of 160]: [Training Set] TrainLossPerSample = 0.03398142; EvalErrPerSample = 0.01034; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.4016 -Starting Epoch 139: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[139 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03391739; EvalErr[0]PerSample = 0.01003906; TotalTime = 11.5855s; SamplesPerSecond = 2209.7 -Finished Epoch[139 of 160]: [Training Set] TrainLossPerSample = 0.034369528; EvalErrPerSample = 0.0105; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.4288 -Starting Epoch 140: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[140 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03432070; EvalErr[0]PerSample = 0.01093750; TotalTime = 11.5739s; SamplesPerSecond = 2211.9 -Finished Epoch[140 of 160]: [Training Set] TrainLossPerSample = 0.034433346; EvalErrPerSample = 0.01072; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3479 -Starting Epoch 141: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[141 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03326862; EvalErr[0]PerSample = 0.01023438; TotalTime = 11.5483s; SamplesPerSecond = 2216.8 -Finished Epoch[141 of 160]: [Training Set] TrainLossPerSample = 0.03355087; EvalErrPerSample = 0.01038; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.326 -Starting Epoch 142: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[142 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03197437; EvalErr[0]PerSample = 0.00988281; TotalTime = 11.4156s; SamplesPerSecond = 2242.6 -Finished Epoch[142 of 160]: [Training Set] TrainLossPerSample = 0.032701213; EvalErrPerSample = 0.0098000001; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.1816 -Starting Epoch 143: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[143 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03477237; EvalErr[0]PerSample = 0.01089844; TotalTime = 11.5553s; SamplesPerSecond = 2215.4 -Finished Epoch[143 of 160]: [Training Set] TrainLossPerSample = 0.034088843; EvalErrPerSample = 0.01066; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3259 -Starting Epoch 144: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[144 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03017725; EvalErr[0]PerSample = 0.00953125; TotalTime = 11.5897s; SamplesPerSecond = 2208.9 -Finished Epoch[144 of 160]: [Training Set] TrainLossPerSample = 0.031698398; EvalErrPerSample = 0.0099999998; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.5923 -Starting Epoch 145: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[145 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03448967; EvalErr[0]PerSample = 0.01074219; TotalTime = 11.4235s; SamplesPerSecond = 2241.0 -Finished Epoch[145 of 160]: [Training Set] TrainLossPerSample = 0.033083703; EvalErrPerSample = 0.01002; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.1806 -Starting Epoch 146: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[146 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03416681; EvalErr[0]PerSample = 0.01136719; TotalTime = 11.3855s; SamplesPerSecond = 2248.5 -Finished Epoch[146 of 160]: [Training Set] TrainLossPerSample = 0.034353275; EvalErrPerSample = 0.010799999; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.1946 -Starting Epoch 147: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[147 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03433434; EvalErr[0]PerSample = 0.01101562; TotalTime = 11.5644s; SamplesPerSecond = 2213.7 -Finished Epoch[147 of 160]: [Training Set] TrainLossPerSample = 0.034649722; EvalErrPerSample = 0.011279999; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3273 -Starting Epoch 148: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[148 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03219655; EvalErr[0]PerSample = 0.00988281; TotalTime = 11.5637s; SamplesPerSecond = 2213.8 -Finished Epoch[148 of 160]: [Training Set] TrainLossPerSample = 0.031285692; EvalErrPerSample = 0.0094999997; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3287 -Starting Epoch 149: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[149 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03190110; EvalErr[0]PerSample = 0.01046875; TotalTime = 11.4602s; SamplesPerSecond = 2233.8 -Finished Epoch[149 of 160]: [Training Set] TrainLossPerSample = 0.031930499; EvalErrPerSample = 0.0101; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2852 -Starting Epoch 150: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[150 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03089277; EvalErr[0]PerSample = 0.00921875; TotalTime = 11.5981s; SamplesPerSecond = 2207.3 -Finished Epoch[150 of 160]: [Training Set] TrainLossPerSample = 0.031741869; EvalErrPerSample = 0.00954; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.4059 -Starting Epoch 151: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[151 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03341821; EvalErr[0]PerSample = 0.01105469; TotalTime = 11.5961s; SamplesPerSecond = 2207.6 -Finished Epoch[151 of 160]: [Training Set] TrainLossPerSample = 0.032794204; EvalErrPerSample = 0.01036; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.435 -Starting Epoch 152: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[152 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03127065; EvalErr[0]PerSample = 0.00937500; TotalTime = 11.5746s; SamplesPerSecond = 2211.7 -Finished Epoch[152 of 160]: [Training Set] TrainLossPerSample = 0.032228082; EvalErrPerSample = 0.0098599996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3883 -Starting Epoch 153: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[153 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03200430; EvalErr[0]PerSample = 0.01007813; TotalTime = 11.5357s; SamplesPerSecond = 2219.2 -Finished Epoch[153 of 160]: [Training Set] TrainLossPerSample = 0.031472486; EvalErrPerSample = 0.0098999999; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2992 -Starting Epoch 154: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[154 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03112781; EvalErr[0]PerSample = 0.00890625; TotalTime = 11.4339s; SamplesPerSecond = 2239.0 -Finished Epoch[154 of 160]: [Training Set] TrainLossPerSample = 0.030955072; EvalErrPerSample = 0.00954; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2657 -Starting Epoch 155: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[155 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03170617; EvalErr[0]PerSample = 0.00941406; TotalTime = 11.5475s; SamplesPerSecond = 2216.9 -Finished Epoch[155 of 160]: [Training Set] TrainLossPerSample = 0.031180983; EvalErrPerSample = 0.0093200002; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3148 -Starting Epoch 156: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[156 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.02884187; EvalErr[0]PerSample = 0.00929687; TotalTime = 11.4932s; SamplesPerSecond = 2227.4 -Finished Epoch[156 of 160]: [Training Set] TrainLossPerSample = 0.030790305; EvalErrPerSample = 0.0097199995; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3262 -Starting Epoch 157: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[157 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03166680; EvalErr[0]PerSample = 0.00992188; TotalTime = 11.6570s; SamplesPerSecond = 2196.1 -Finished Epoch[157 of 160]: [Training Set] TrainLossPerSample = 0.031061091; EvalErrPerSample = 0.0094599994; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.4556 -Starting Epoch 158: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[158 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03136421; EvalErr[0]PerSample = 0.00906250; TotalTime = 11.5571s; SamplesPerSecond = 2215.1 -Finished Epoch[158 of 160]: [Training Set] TrainLossPerSample = 0.029945096; EvalErrPerSample = 0.0084999995; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3185 -Starting Epoch 159: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[159 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03113249; EvalErr[0]PerSample = 0.00976563; TotalTime = 11.5817s; SamplesPerSecond = 2210.4 -Finished Epoch[159 of 160]: [Training Set] TrainLossPerSample = 0.03114122; EvalErrPerSample = 0.0093599996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.343 -Starting Epoch 160: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[160 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03009957; EvalErr[0]PerSample = 0.00886719; TotalTime = 11.5242s; SamplesPerSecond = 2221.4 -Finished Epoch[160 of 160]: [Training Set] TrainLossPerSample = 0.03085361; EvalErrPerSample = 0.00942; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3018 -CNTKCommandTrainEnd: Train -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. -WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -Post-processing network... - -3 roots: - OutputNodes.z = Plus - Err = ErrorPrediction - CE = CrossEntropyWithSoftmax -FormNestedNetwork: WARNING: Was called twice for OutputNodes.z Plus operation -FormNestedNetwork: WARNING: Was called twice for Err ErrorPrediction operation -FormNestedNetwork: WARNING: Was called twice for CE CrossEntropyWithSoftmax operation - - -Validating for node OutputNodes.z. 185 nodes to process in pass 1. - -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] - -Validating for node OutputNodes.z. 77 nodes to process in pass 2. - -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] - -Validating for node OutputNodes.z, final verification. - -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] - -107 out of 185 nodes do not share the minibatch layout with the input data. - - -Validating for node Err. 187 nodes to process in pass 1. - -Validating --> labels = InputValue -> [10 [10], MBSize 0] -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] -Validating --> Err = ErrorPrediction(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] - -Validating for node Err. 78 nodes to process in pass 2. - -Validating --> labels = InputValue -> [10 [10], MBSize 0] -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] -Validating --> Err = ErrorPrediction(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] - -Validating for node Err, final verification. - -Validating --> labels = InputValue -> [10 [10], MBSize 0] -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] -Validating --> Err = ErrorPrediction(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] - -108 out of 187 nodes do not share the minibatch layout with the input data. - - -Validating for node CE. 187 nodes to process in pass 1. - -Validating --> labels = InputValue -> [10 [10], MBSize 0] -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] -Validating --> CE = CrossEntropyWithSoftmax(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] - -Validating for node CE. 78 nodes to process in pass 2. - -Validating --> labels = InputValue -> [10 [10], MBSize 0] -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] -Validating --> CE = CrossEntropyWithSoftmax(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] - -Validating for node CE, final verification. - -Validating --> labels = InputValue -> [10 [10], MBSize 0] -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] -Validating --> CE = CrossEntropyWithSoftmax(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] - -108 out of 187 nodes do not share the minibatch layout with the input data. - -Post-processing network complete. - -Post-processing network... - -3 roots: - OutputNodes.z = Plus - Err = ErrorPrediction - CE = CrossEntropyWithSoftmax -FormNestedNetwork: WARNING: Was called twice for OutputNodes.z Plus operation -FormNestedNetwork: WARNING: Was called twice for Err ErrorPrediction operation -FormNestedNetwork: WARNING: Was called twice for CE CrossEntropyWithSoftmax operation - - -Validating for node OutputNodes.z. 185 nodes to process in pass 1. - -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] - -Validating for node OutputNodes.z. 77 nodes to process in pass 2. - -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] - -Validating for node OutputNodes.z, final verification. - -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] - -107 out of 185 nodes do not share the minibatch layout with the input data. - - -Validating for node Err. 187 nodes to process in pass 1. - -Validating --> labels = InputValue -> [10 [10], MBSize 0] -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] -Validating --> Err = ErrorPrediction(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] - -Validating for node Err. 78 nodes to process in pass 2. - -Validating --> labels = InputValue -> [10 [10], MBSize 0] -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] -Validating --> Err = ErrorPrediction(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] - -Validating for node Err, final verification. - -Validating --> labels = InputValue -> [10 [10], MBSize 0] -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] -Validating --> Err = ErrorPrediction(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] - -108 out of 187 nodes do not share the minibatch layout with the input data. - - -Validating for node CE. 187 nodes to process in pass 1. - -Validating --> labels = InputValue -> [10 [10], MBSize 0] -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] -Validating --> CE = CrossEntropyWithSoftmax(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] - -Validating for node CE. 78 nodes to process in pass 2. - -Validating --> labels = InputValue -> [10 [10], MBSize 0] -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] -Validating --> CE = CrossEntropyWithSoftmax(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] - -Validating for node CE, final verification. - -Validating --> labels = InputValue -> [10 [10], MBSize 0] -Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] -Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] -Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] -Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] -Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] -Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] -Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] -Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] -Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] -Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] -Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] -Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. - -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] -Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] -Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] -Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] -Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] -Validating --> CE = CrossEntropyWithSoftmax(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] - -108 out of 187 nodes do not share the minibatch layout with the input data. - -Post-processing network complete. -evalNodeNames are not specified, using all the default evalnodes and training criterion nodes. - - -Allocating matrices for forward and/or backward propagation. -Minibatch[1-20]: Samples Seen = 10000 Err: ErrorPrediction/Sample = 0.0819 CE: CrossEntropyWithSoftmax/Sample = 0.35141698 -Final Results: Minibatch[1-20]: Samples Seen = 10000 Err: ErrorPrediction/Sample = 0.0819 CE: CrossEntropyWithSoftmax/Sample = 0.35141698 Perplexity = 1.4210798 -COMPLETED +------------------------------------------------------------------- +Build info: + + Built time: Jan 12 2016 14:46:20 + Last modified date: Mon Jan 11 11:39:54 2016 + CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.0 + Build Branch: + Build SHA1: + Built by alexeyk on z840-01 + Build Path: C:\src\cntk\Source\CNTK\ +------------------------------------------------------------------- +running on z840-01 at 2016/01/14 10:36:01 +command line: +..\..\..\..\x64\Release\CNTK.exe configFile=03_ResNet.config + +>>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>> +RootDir = "." +ConfigDir = "$RootDir$" +DataDir = "$RootDir$" +OutputDir = "$RootDir$/Output" +ModelDir = "$OutputDir$/Models" +ndlMacros=$ConfigDir$/Macros.ndl +precision=float +deviceId=Auto +prefetch=true +parallelTrain=false +command=Train:AddBNEval:Test +stderr=$OutputDir$/03_ResNet +traceLevel=1 +numMBsToShowResult=200 +Proj16to32Filename = $ConfigDir$/16to32.txt +Proj32to64Filename = $ConfigDir$/32to64.txt +Train=[ + action=train + modelPath=$ModelDir$/03_ResNet + NDLNetworkBuilder=[ + networkDescription=$ConfigDir$/03_ResNet.ndl + ] + SGD=[ + epochSize=0 + minibatchSize=128 + learningRatesPerMB=1.0*80:0.1*40:0.01 + momentumPerMB=0.9 + maxEpochs=160 + L2RegWeight=0.0001 + dropoutRate=0 + ParallelTrain=[ + parallelizationMethod=DataParallelSGD + distributedMBReading=true + parallelizationStartEpoch=1 + DataParallelSGD=[ + gradientBits=32 + ] + ] + ] + reader=[ + readerType=ImageReader + file=$DataDir$/train_map.txt + randomize=Auto + features=[ + width=32 + height=32 + channels=3 + cropType=Random + cropRatio=0.8 + jitterType=UniRatio + interpolations=Linear + meanFile=$ConfigDir$/CIFAR-10_mean.xml + ] + labels=[ + labelDim=10 + ] + ] +] +AddBNEval=[ + action=edit + CurModel=$ModelDir$/03_ResNet + NewModel=$ModelDir$/03_ResNet.Eval + editPath=$ConfigDir$/03_ResNet.mel +] +Test=[ + action=test + modelPath=$ModelDir$/03_ResNet.Eval + minibatchSize=512 + NDLNetworkBuilder=[ + networkDescription=$ConfigDir$/03_ResNet.ndl + ] + reader=[ + readerType=ImageReader + file=$DataDir$/test_map.txt + randomize=Auto + features=[ + width=32 + height=32 + channels=3 + cropType=Center + cropRatio=1 + jitterType=UniRatio + interpolations=Linear + meanFile=$ConfigDir$/CIFAR-10_mean.xml + ] + labels=[ + labelDim=10 + ] + ] +] + +<<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<< + +>>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>> +RootDir = "." +ConfigDir = "." +DataDir = "." +OutputDir = "./Output" +ModelDir = "./Output/Models" +ndlMacros=./Macros.ndl +precision=float +deviceId=Auto +prefetch=true +parallelTrain=false +command=Train:AddBNEval:Test +stderr=./Output/03_ResNet +traceLevel=1 +numMBsToShowResult=200 +Proj16to32Filename = ./16to32.txt +Proj32to64Filename = ./32to64.txt +Train=[ + action=train + modelPath=./Output/Models/03_ResNet + NDLNetworkBuilder=[ + networkDescription=./03_ResNet.ndl + ] + SGD=[ + epochSize=0 + minibatchSize=128 + learningRatesPerMB=1.0*80:0.1*40:0.01 + momentumPerMB=0.9 + maxEpochs=160 + L2RegWeight=0.0001 + dropoutRate=0 + ParallelTrain=[ + parallelizationMethod=DataParallelSGD + distributedMBReading=true + parallelizationStartEpoch=1 + DataParallelSGD=[ + gradientBits=32 + ] + ] + ] + reader=[ + readerType=ImageReader + file=./train_map.txt + randomize=Auto + features=[ + width=32 + height=32 + channels=3 + cropType=Random + cropRatio=0.8 + jitterType=UniRatio + interpolations=Linear + meanFile=./CIFAR-10_mean.xml + ] + labels=[ + labelDim=10 + ] + ] +] +AddBNEval=[ + action=edit + CurModel=./Output/Models/03_ResNet + NewModel=./Output/Models/03_ResNet.Eval + editPath=./03_ResNet.mel +] +Test=[ + action=test + modelPath=./Output/Models/03_ResNet.Eval + minibatchSize=512 + NDLNetworkBuilder=[ + networkDescription=./03_ResNet.ndl + ] + reader=[ + readerType=ImageReader + file=./test_map.txt + randomize=Auto + features=[ + width=32 + height=32 + channels=3 + cropType=Center + cropRatio=1 + jitterType=UniRatio + interpolations=Linear + meanFile=./CIFAR-10_mean.xml + ] + labels=[ + labelDim=10 + ] + ] +] + +<<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<< + +>>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>> +configparameters: 03_ResNet.config:AddBNEval=[ + action=edit + CurModel=./Output/Models/03_ResNet + NewModel=./Output/Models/03_ResNet.Eval + editPath=./03_ResNet.mel +] + +configparameters: 03_ResNet.config:command=Train:AddBNEval:Test +configparameters: 03_ResNet.config:ConfigDir=. +configparameters: 03_ResNet.config:DataDir=. +configparameters: 03_ResNet.config:deviceId=Auto +configparameters: 03_ResNet.config:ModelDir=./Output/Models +configparameters: 03_ResNet.config:ndlMacros=./Macros.ndl +configparameters: 03_ResNet.config:numMBsToShowResult=200 +configparameters: 03_ResNet.config:OutputDir=./Output +configparameters: 03_ResNet.config:parallelTrain=false +configparameters: 03_ResNet.config:precision=float +configparameters: 03_ResNet.config:prefetch=true +configparameters: 03_ResNet.config:Proj16to32Filename=./16to32.txt +configparameters: 03_ResNet.config:Proj32to64Filename=./32to64.txt +configparameters: 03_ResNet.config:RootDir=. +configparameters: 03_ResNet.config:stderr=./Output/03_ResNet +configparameters: 03_ResNet.config:Test=[ + action=test + modelPath=./Output/Models/03_ResNet.Eval + minibatchSize=512 + NDLNetworkBuilder=[ + networkDescription=./03_ResNet.ndl + ] + reader=[ + readerType=ImageReader + file=./test_map.txt + randomize=Auto + features=[ + width=32 + height=32 + channels=3 + cropType=Center + cropRatio=1 + jitterType=UniRatio + interpolations=Linear + meanFile=./CIFAR-10_mean.xml + ] + labels=[ + labelDim=10 + ] + ] +] + +configparameters: 03_ResNet.config:traceLevel=1 +configparameters: 03_ResNet.config:Train=[ + action=train + modelPath=./Output/Models/03_ResNet + NDLNetworkBuilder=[ + networkDescription=./03_ResNet.ndl + ] + SGD=[ + epochSize=0 + minibatchSize=128 + learningRatesPerMB=1.0*80:0.1*40:0.01 + momentumPerMB=0.9 + maxEpochs=160 + L2RegWeight=0.0001 + dropoutRate=0 + ParallelTrain=[ + parallelizationMethod=DataParallelSGD + distributedMBReading=true + parallelizationStartEpoch=1 + DataParallelSGD=[ + gradientBits=32 + ] + ] + ] + reader=[ + readerType=ImageReader + file=./train_map.txt + randomize=Auto + features=[ + width=32 + height=32 + channels=3 + cropType=Random + cropRatio=0.8 + jitterType=UniRatio + interpolations=Linear + meanFile=./CIFAR-10_mean.xml + ] + labels=[ + labelDim=10 + ] + ] +] + +<<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<< +command: Train AddBNEval Test +precision = float +CNTKModelPath: ./Output/Models/03_ResNet +CNTKCommandTrainInfo: Train : 160 +CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 160 +CNTKCommandTrainBegin: Train +LockDevice: Locked GPU 0 to test availability. +LockDevice: Unlocked GPU 0 after testing. +LockDevice: Locked GPU 2 to test availability. +LockDevice: Unlocked GPU 2 after testing. +LockDevice: Locked GPU 1 to test availability. +LockDevice: Unlocked GPU 1 after testing. +LockDevice: Locked GPU 0 for exclusive use. +NDLBuilder Using GPU 0 +Microsoft::MSR::CNTK::GPUMatrix::SetGaussianRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4 + +Post-processing network... + +3 roots: + Err = ErrorPrediction + OutputNodes.z = Plus + CE = CrossEntropyWithSoftmax +FormNestedNetwork: WARNING: Was called twice for Err ErrorPrediction operation +FormNestedNetwork: WARNING: Was called twice for OutputNodes.z Plus operation +FormNestedNetwork: WARNING: Was called twice for CE CrossEntropyWithSoftmax operation + + +Validating for node Err. 187 nodes to process in pass 1. + +Validating --> labels = InputValue -> [10 [10], MBSize 0] +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] +Validating --> Err = ErrorPrediction(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] + +Validating for node Err. 78 nodes to process in pass 2. + +Validating --> labels = InputValue -> [10 [10], MBSize 0] +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] +Validating --> Err = ErrorPrediction(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] + +Validating for node Err, final verification. + +Validating --> labels = InputValue -> [10 [10], MBSize 0] +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] +Validating --> Err = ErrorPrediction(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] + +108 out of 187 nodes do not share the minibatch layout with the input data. + + +Validating for node OutputNodes.z. 185 nodes to process in pass 1. + +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] + +Validating for node OutputNodes.z. 77 nodes to process in pass 2. + +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] + +Validating for node OutputNodes.z, final verification. + +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] + +107 out of 185 nodes do not share the minibatch layout with the input data. + + +Validating for node CE. 187 nodes to process in pass 1. + +Validating --> labels = InputValue -> [10 [10], MBSize 0] +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] +Validating --> CE = CrossEntropyWithSoftmax(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] + +Validating for node CE. 78 nodes to process in pass 2. + +Validating --> labels = InputValue -> [10 [10], MBSize 0] +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] +Validating --> CE = CrossEntropyWithSoftmax(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] + +Validating for node CE, final verification. + +Validating --> labels = InputValue -> [10 [10], MBSize 0] +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] +Validating --> CE = CrossEntropyWithSoftmax(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] + +108 out of 187 nodes do not share the minibatch layout with the input data. + +Post-processing network complete. + +SGD using GPU 0. + +Training criterion node(s): + CE = CrossEntropyWithSoftmax + +Evaluation criterion node(s): + Err = ErrorPrediction + + +Allocating matrices for forward and/or backward propagation. +No PreCompute nodes found, skipping PreCompute step +Set Max Temp Mem Size For Convolution Nodes to 0 samples. +Starting Epoch 1: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. +#NLop10# +Tensor Op: Op 10: 32 x 32 x 16 x 128 x 1 -> 32 x 32 x 16 x 128 x 1 +24 procs 32 warps 2147483647 65535 65535 max grid on GeForce GTX TITAN X +3 procs 32 warps 2147483647 65535 65535 max grid on Quadro K620 +14 procs 32 warps 2147483647 65535 65535 max grid on GeForce GTX TITAN +Tensor Op: Op 15: 32 x 32 x 16 x 128 x 1 op 32 x 32 x 16 x 128 x 1 -> 32 x 32 x 16 x 128 x 1 + Epoch[ 1 of 160]-Minibatch[ 1- 200]: SamplesSeen = 25600; TrainLossPerSample = 1.78511215; EvalErr[0]PerSample = 0.67218750; TotalTime = 15.4090s; SamplesPerSecond = 1661.4 +Finished Epoch[ 1 of 160]: [Training Set] TrainLossPerSample = 1.6011882; EvalErrPerSample = 0.59435999; AvgLearningRatePerSample = 0.0078125; EpochTime=26.129 +Starting Epoch 2: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[ 2 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 1.18311264; EvalErr[0]PerSample = 0.42843750; TotalTime = 11.4034s; SamplesPerSecond = 2245.0 +Finished Epoch[ 2 of 160]: [Training Set] TrainLossPerSample = 1.1033459; EvalErrPerSample = 0.3969; AvgLearningRatePerSample = 0.0078125; EpochTime=22.1287 +Starting Epoch 3: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[ 3 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.90734154; EvalErr[0]PerSample = 0.32207031; TotalTime = 11.3750s; SamplesPerSecond = 2250.5 +Finished Epoch[ 3 of 160]: [Training Set] TrainLossPerSample = 0.86615896; EvalErrPerSample = 0.30719998; AvgLearningRatePerSample = 0.0078125; EpochTime=22.0657 +Starting Epoch 4: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[ 4 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.77141624; EvalErr[0]PerSample = 0.27066406; TotalTime = 11.4567s; SamplesPerSecond = 2234.5 +Finished Epoch[ 4 of 160]: [Training Set] TrainLossPerSample = 0.75146842; EvalErrPerSample = 0.26264; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2146 +Starting Epoch 5: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[ 5 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.68756187; EvalErr[0]PerSample = 0.23796875; TotalTime = 11.4042s; SamplesPerSecond = 2244.8 +Finished Epoch[ 5 of 160]: [Training Set] TrainLossPerSample = 0.67170274; EvalErrPerSample = 0.23289999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.1571 +Starting Epoch 6: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[ 6 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.61656025; EvalErr[0]PerSample = 0.21398438; TotalTime = 11.4800s; SamplesPerSecond = 2230.0 +Finished Epoch[ 6 of 160]: [Training Set] TrainLossPerSample = 0.612014; EvalErrPerSample = 0.21263999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2553 +Starting Epoch 7: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[ 7 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.58124241; EvalErr[0]PerSample = 0.20335938; TotalTime = 11.4640s; SamplesPerSecond = 2233.1 +Finished Epoch[ 7 of 160]: [Training Set] TrainLossPerSample = 0.56962705; EvalErrPerSample = 0.19909999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2453 +Starting Epoch 8: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[ 8 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.54073845; EvalErr[0]PerSample = 0.18796875; TotalTime = 11.5047s; SamplesPerSecond = 2225.2 +Finished Epoch[ 8 of 160]: [Training Set] TrainLossPerSample = 0.53796959; EvalErrPerSample = 0.18616; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3345 +Starting Epoch 9: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[ 9 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.50834869; EvalErr[0]PerSample = 0.17632813; TotalTime = 11.5167s; SamplesPerSecond = 2222.9 +Finished Epoch[ 9 of 160]: [Training Set] TrainLossPerSample = 0.51177925; EvalErrPerSample = 0.17704; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3221 +Starting Epoch 10: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[10 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.48615803; EvalErr[0]PerSample = 0.16917969; TotalTime = 11.4815s; SamplesPerSecond = 2229.7 +Finished Epoch[10 of 160]: [Training Set] TrainLossPerSample = 0.49343586; EvalErrPerSample = 0.17158; AvgLearningRatePerSample = 0.0078125; EpochTime=22.286 +Starting Epoch 11: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[11 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.46868595; EvalErr[0]PerSample = 0.16312500; TotalTime = 11.4115s; SamplesPerSecond = 2243.4 +Finished Epoch[11 of 160]: [Training Set] TrainLossPerSample = 0.46725979; EvalErrPerSample = 0.16214; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2195 +Starting Epoch 12: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[12 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.45617180; EvalErr[0]PerSample = 0.15531250; TotalTime = 11.4316s; SamplesPerSecond = 2239.4 +Finished Epoch[12 of 160]: [Training Set] TrainLossPerSample = 0.44944596; EvalErrPerSample = 0.15497999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2204 +Starting Epoch 13: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[13 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.43442238; EvalErr[0]PerSample = 0.15031250; TotalTime = 11.5970s; SamplesPerSecond = 2207.5 +Finished Epoch[13 of 160]: [Training Set] TrainLossPerSample = 0.43854889; EvalErrPerSample = 0.15235999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.4304 +Starting Epoch 14: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[14 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.41474213; EvalErr[0]PerSample = 0.14265625; TotalTime = 11.5551s; SamplesPerSecond = 2215.5 +Finished Epoch[14 of 160]: [Training Set] TrainLossPerSample = 0.42394838; EvalErrPerSample = 0.14659999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3929 +Starting Epoch 15: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[15 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.40827648; EvalErr[0]PerSample = 0.14167969; TotalTime = 11.5593s; SamplesPerSecond = 2214.7 +Finished Epoch[15 of 160]: [Training Set] TrainLossPerSample = 0.40738714; EvalErrPerSample = 0.14126; AvgLearningRatePerSample = 0.0078125; EpochTime=22.404 +Starting Epoch 16: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[16 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.39572418; EvalErr[0]PerSample = 0.13765625; TotalTime = 11.6490s; SamplesPerSecond = 2197.6 +Finished Epoch[16 of 160]: [Training Set] TrainLossPerSample = 0.4007735; EvalErrPerSample = 0.13798; AvgLearningRatePerSample = 0.0078125; EpochTime=22.4156 +Starting Epoch 17: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[17 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.38931370; EvalErr[0]PerSample = 0.13757813; TotalTime = 11.4136s; SamplesPerSecond = 2242.9 +Finished Epoch[17 of 160]: [Training Set] TrainLossPerSample = 0.39249194; EvalErrPerSample = 0.13716; AvgLearningRatePerSample = 0.0078125; EpochTime=22.1748 +Starting Epoch 18: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[18 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.37350758; EvalErr[0]PerSample = 0.12980469; TotalTime = 11.5431s; SamplesPerSecond = 2217.8 +Finished Epoch[18 of 160]: [Training Set] TrainLossPerSample = 0.37985951; EvalErrPerSample = 0.13271999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3177 +Starting Epoch 19: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[19 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.37046688; EvalErr[0]PerSample = 0.12742187; TotalTime = 11.4904s; SamplesPerSecond = 2228.0 +Finished Epoch[19 of 160]: [Training Set] TrainLossPerSample = 0.37240577; EvalErrPerSample = 0.12842; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2594 +Starting Epoch 20: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[20 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.36126266; EvalErr[0]PerSample = 0.12656250; TotalTime = 11.5121s; SamplesPerSecond = 2223.7 +Finished Epoch[20 of 160]: [Training Set] TrainLossPerSample = 0.36667159; EvalErrPerSample = 0.12833999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2756 +Starting Epoch 21: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[21 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.36016537; EvalErr[0]PerSample = 0.12242188; TotalTime = 11.5126s; SamplesPerSecond = 2223.7 +Finished Epoch[21 of 160]: [Training Set] TrainLossPerSample = 0.35836998; EvalErrPerSample = 0.12233999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2811 +Starting Epoch 22: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[22 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.34188179; EvalErr[0]PerSample = 0.11910156; TotalTime = 11.5167s; SamplesPerSecond = 2222.9 +Finished Epoch[22 of 160]: [Training Set] TrainLossPerSample = 0.34598714; EvalErrPerSample = 0.12013999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3214 +Starting Epoch 23: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[23 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.34518520; EvalErr[0]PerSample = 0.11894531; TotalTime = 11.5177s; SamplesPerSecond = 2222.7 +Finished Epoch[23 of 160]: [Training Set] TrainLossPerSample = 0.34407225; EvalErrPerSample = 0.11892; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3061 +Starting Epoch 24: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[24 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.33347424; EvalErr[0]PerSample = 0.11660156; TotalTime = 11.5769s; SamplesPerSecond = 2211.3 +Finished Epoch[24 of 160]: [Training Set] TrainLossPerSample = 0.34192094; EvalErrPerSample = 0.11848; AvgLearningRatePerSample = 0.0078125; EpochTime=22.368 +Starting Epoch 25: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[25 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.33844280; EvalErr[0]PerSample = 0.11648438; TotalTime = 11.5529s; SamplesPerSecond = 2215.9 +Finished Epoch[25 of 160]: [Training Set] TrainLossPerSample = 0.3405562; EvalErrPerSample = 0.11768; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3158 +Starting Epoch 26: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[26 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.32573421; EvalErr[0]PerSample = 0.11328125; TotalTime = 11.4885s; SamplesPerSecond = 2228.3 +Finished Epoch[26 of 160]: [Training Set] TrainLossPerSample = 0.3283667; EvalErrPerSample = 0.11268; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3241 +Starting Epoch 27: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[27 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.32139095; EvalErr[0]PerSample = 0.11300781; TotalTime = 11.5773s; SamplesPerSecond = 2211.2 +Finished Epoch[27 of 160]: [Training Set] TrainLossPerSample = 0.32817245; EvalErrPerSample = 0.11406; AvgLearningRatePerSample = 0.0078125; EpochTime=22.345 +Starting Epoch 28: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[28 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.31476902; EvalErr[0]PerSample = 0.11074219; TotalTime = 11.4481s; SamplesPerSecond = 2236.2 +Finished Epoch[28 of 160]: [Training Set] TrainLossPerSample = 0.32170638; EvalErrPerSample = 0.1133; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2168 +Starting Epoch 29: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[29 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.30912992; EvalErr[0]PerSample = 0.10859375; TotalTime = 11.4067s; SamplesPerSecond = 2244.3 +Finished Epoch[29 of 160]: [Training Set] TrainLossPerSample = 0.31786552; EvalErrPerSample = 0.11086; AvgLearningRatePerSample = 0.0078125; EpochTime=22.1891 +Starting Epoch 30: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[30 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.30547693; EvalErr[0]PerSample = 0.10496094; TotalTime = 11.5656s; SamplesPerSecond = 2213.5 +Finished Epoch[30 of 160]: [Training Set] TrainLossPerSample = 0.31253323; EvalErrPerSample = 0.1078; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3465 +Starting Epoch 31: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[31 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.30724499; EvalErr[0]PerSample = 0.10769531; TotalTime = 11.5380s; SamplesPerSecond = 2218.8 +Finished Epoch[31 of 160]: [Training Set] TrainLossPerSample = 0.31017771; EvalErrPerSample = 0.10802; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3988 +Starting Epoch 32: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[32 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.30443895; EvalErr[0]PerSample = 0.10660156; TotalTime = 11.5474s; SamplesPerSecond = 2216.9 +Finished Epoch[32 of 160]: [Training Set] TrainLossPerSample = 0.31054172; EvalErrPerSample = 0.10764; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3142 +Starting Epoch 33: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[33 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.29248705; EvalErr[0]PerSample = 0.10175781; TotalTime = 11.4051s; SamplesPerSecond = 2244.6 +Finished Epoch[33 of 160]: [Training Set] TrainLossPerSample = 0.30296284; EvalErrPerSample = 0.10422; AvgLearningRatePerSample = 0.0078125; EpochTime=22.1968 +Starting Epoch 34: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[34 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.30263618; EvalErr[0]PerSample = 0.10550781; TotalTime = 11.5888s; SamplesPerSecond = 2209.0 +Finished Epoch[34 of 160]: [Training Set] TrainLossPerSample = 0.30190024; EvalErrPerSample = 0.10473999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.4491 +Starting Epoch 35: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[35 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.29659115; EvalErr[0]PerSample = 0.10171875; TotalTime = 11.6140s; SamplesPerSecond = 2204.2 +Finished Epoch[35 of 160]: [Training Set] TrainLossPerSample = 0.29864648; EvalErrPerSample = 0.10306; AvgLearningRatePerSample = 0.0078125; EpochTime=22.4411 +Starting Epoch 36: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[36 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.28713980; EvalErr[0]PerSample = 0.10027344; TotalTime = 11.5617s; SamplesPerSecond = 2214.2 +Finished Epoch[36 of 160]: [Training Set] TrainLossPerSample = 0.29245624; EvalErrPerSample = 0.10234; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3455 +Starting Epoch 37: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[37 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.28737648; EvalErr[0]PerSample = 0.09847656; TotalTime = 11.4851s; SamplesPerSecond = 2229.0 +Finished Epoch[37 of 160]: [Training Set] TrainLossPerSample = 0.29400381; EvalErrPerSample = 0.10157999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3035 +Starting Epoch 38: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[38 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.28604475; EvalErr[0]PerSample = 0.09699219; TotalTime = 11.6237s; SamplesPerSecond = 2202.4 +Finished Epoch[38 of 160]: [Training Set] TrainLossPerSample = 0.29055047; EvalErrPerSample = 0.1006; AvgLearningRatePerSample = 0.0078125; EpochTime=22.41 +Starting Epoch 39: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[39 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.28677174; EvalErr[0]PerSample = 0.09929688; TotalTime = 11.6037s; SamplesPerSecond = 2206.2 +Finished Epoch[39 of 160]: [Training Set] TrainLossPerSample = 0.28853956; EvalErrPerSample = 0.101; AvgLearningRatePerSample = 0.0078125; EpochTime=22.4156 +Starting Epoch 40: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[40 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.27731121; EvalErr[0]PerSample = 0.09699219; TotalTime = 11.5688s; SamplesPerSecond = 2212.9 +Finished Epoch[40 of 160]: [Training Set] TrainLossPerSample = 0.28800672; EvalErrPerSample = 0.099959999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3445 +Starting Epoch 41: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[41 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.28877285; EvalErr[0]PerSample = 0.10156250; TotalTime = 11.5167s; SamplesPerSecond = 2222.9 +Finished Epoch[41 of 160]: [Training Set] TrainLossPerSample = 0.28422225; EvalErrPerSample = 0.098719999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.355 +Starting Epoch 42: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[42 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.27758221; EvalErr[0]PerSample = 0.09710937; TotalTime = 11.5935s; SamplesPerSecond = 2208.1 +Finished Epoch[42 of 160]: [Training Set] TrainLossPerSample = 0.28059965; EvalErrPerSample = 0.097819999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.7852 +Starting Epoch 43: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[43 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.27680891; EvalErr[0]PerSample = 0.09644531; TotalTime = 11.6198s; SamplesPerSecond = 2203.1 +Finished Epoch[43 of 160]: [Training Set] TrainLossPerSample = 0.28217828; EvalErrPerSample = 0.098200001; AvgLearningRatePerSample = 0.0078125; EpochTime=22.4529 +Starting Epoch 44: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[44 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.27107407; EvalErr[0]PerSample = 0.09421875; TotalTime = 11.5929s; SamplesPerSecond = 2208.2 +Finished Epoch[44 of 160]: [Training Set] TrainLossPerSample = 0.27688959; EvalErrPerSample = 0.096079998; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3608 +Starting Epoch 45: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[45 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.27329311; EvalErr[0]PerSample = 0.09585937; TotalTime = 11.4535s; SamplesPerSecond = 2235.1 +Finished Epoch[45 of 160]: [Training Set] TrainLossPerSample = 0.27860796; EvalErrPerSample = 0.097539999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2187 +Starting Epoch 46: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[46 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.26291889; EvalErr[0]PerSample = 0.09253906; TotalTime = 11.4315s; SamplesPerSecond = 2239.4 +Finished Epoch[46 of 160]: [Training Set] TrainLossPerSample = 0.27177998; EvalErrPerSample = 0.095179997; AvgLearningRatePerSample = 0.0078125; EpochTime=22.1909 +Starting Epoch 47: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[47 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.27016382; EvalErr[0]PerSample = 0.09503906; TotalTime = 11.4016s; SamplesPerSecond = 2245.3 +Finished Epoch[47 of 160]: [Training Set] TrainLossPerSample = 0.27474955; EvalErrPerSample = 0.096859999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.1576 +Starting Epoch 48: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[48 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25722231; EvalErr[0]PerSample = 0.08960938; TotalTime = 11.4404s; SamplesPerSecond = 2237.7 +Finished Epoch[48 of 160]: [Training Set] TrainLossPerSample = 0.26707178; EvalErrPerSample = 0.09296; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2165 +Starting Epoch 49: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[49 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25658318; EvalErr[0]PerSample = 0.08960938; TotalTime = 11.5004s; SamplesPerSecond = 2226.0 +Finished Epoch[49 of 160]: [Training Set] TrainLossPerSample = 0.26653028; EvalErrPerSample = 0.093059994; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2617 +Starting Epoch 50: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[50 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.26309399; EvalErr[0]PerSample = 0.09062500; TotalTime = 11.4840s; SamplesPerSecond = 2229.2 +Finished Epoch[50 of 160]: [Training Set] TrainLossPerSample = 0.27242121; EvalErrPerSample = 0.094359994; AvgLearningRatePerSample = 0.0078125; EpochTime=22.4308 +Starting Epoch 51: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[51 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25116308; EvalErr[0]PerSample = 0.08757813; TotalTime = 11.5958s; SamplesPerSecond = 2207.7 +Finished Epoch[51 of 160]: [Training Set] TrainLossPerSample = 0.26714918; EvalErrPerSample = 0.093719997; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3675 +Starting Epoch 52: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[52 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25991890; EvalErr[0]PerSample = 0.09207031; TotalTime = 11.4533s; SamplesPerSecond = 2235.2 +Finished Epoch[52 of 160]: [Training Set] TrainLossPerSample = 0.2633768; EvalErrPerSample = 0.09268; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3111 +Starting Epoch 53: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[53 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25488058; EvalErr[0]PerSample = 0.08957031; TotalTime = 11.5890s; SamplesPerSecond = 2209.0 +Finished Epoch[53 of 160]: [Training Set] TrainLossPerSample = 0.26292121; EvalErrPerSample = 0.092160001; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3534 +Starting Epoch 54: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[54 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24893934; EvalErr[0]PerSample = 0.08859375; TotalTime = 11.5135s; SamplesPerSecond = 2223.5 +Finished Epoch[54 of 160]: [Training Set] TrainLossPerSample = 0.25717214; EvalErrPerSample = 0.090659998; AvgLearningRatePerSample = 0.0078125; EpochTime=22.4264 +Starting Epoch 55: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[55 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25861763; EvalErr[0]PerSample = 0.09019531; TotalTime = 11.6295s; SamplesPerSecond = 2201.3 +Finished Epoch[55 of 160]: [Training Set] TrainLossPerSample = 0.26373541; EvalErrPerSample = 0.091260001; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3938 +Starting Epoch 56: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[56 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25139614; EvalErr[0]PerSample = 0.08546875; TotalTime = 11.5303s; SamplesPerSecond = 2220.2 +Finished Epoch[56 of 160]: [Training Set] TrainLossPerSample = 0.25967881; EvalErrPerSample = 0.089499995; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2997 +Starting Epoch 57: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[57 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24860460; EvalErr[0]PerSample = 0.08734375; TotalTime = 11.5494s; SamplesPerSecond = 2216.6 +Finished Epoch[57 of 160]: [Training Set] TrainLossPerSample = 0.25601548; EvalErrPerSample = 0.090059996; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3412 +Starting Epoch 58: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[58 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24636944; EvalErr[0]PerSample = 0.08496094; TotalTime = 11.5079s; SamplesPerSecond = 2224.6 +Finished Epoch[58 of 160]: [Training Set] TrainLossPerSample = 0.25675642; EvalErrPerSample = 0.088599995; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3309 +Starting Epoch 59: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[59 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25354239; EvalErr[0]PerSample = 0.09003906; TotalTime = 11.5633s; SamplesPerSecond = 2213.9 +Finished Epoch[59 of 160]: [Training Set] TrainLossPerSample = 0.25516802; EvalErrPerSample = 0.090879999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3313 +Starting Epoch 60: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[60 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24986008; EvalErr[0]PerSample = 0.08527344; TotalTime = 11.4490s; SamplesPerSecond = 2236.0 +Finished Epoch[60 of 160]: [Training Set] TrainLossPerSample = 0.25723642; EvalErrPerSample = 0.088979997; AvgLearningRatePerSample = 0.0078125; EpochTime=22.242 +Starting Epoch 61: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[61 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24366058; EvalErr[0]PerSample = 0.08671875; TotalTime = 11.5741s; SamplesPerSecond = 2211.8 +Finished Epoch[61 of 160]: [Training Set] TrainLossPerSample = 0.25719753; EvalErrPerSample = 0.091239996; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3397 +Starting Epoch 62: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[62 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24259378; EvalErr[0]PerSample = 0.08492187; TotalTime = 11.5269s; SamplesPerSecond = 2220.9 +Finished Epoch[62 of 160]: [Training Set] TrainLossPerSample = 0.2515817; EvalErrPerSample = 0.088679999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3014 +Starting Epoch 63: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[63 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24029449; EvalErr[0]PerSample = 0.08460938; TotalTime = 11.5659s; SamplesPerSecond = 2213.4 +Finished Epoch[63 of 160]: [Training Set] TrainLossPerSample = 0.25265002; EvalErrPerSample = 0.088959999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3815 +Starting Epoch 64: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[64 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23263992; EvalErr[0]PerSample = 0.08144531; TotalTime = 11.5963s; SamplesPerSecond = 2207.6 +Finished Epoch[64 of 160]: [Training Set] TrainLossPerSample = 0.24182168; EvalErrPerSample = 0.084859997; AvgLearningRatePerSample = 0.0078125; EpochTime=22.4068 +Starting Epoch 65: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[65 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24372847; EvalErr[0]PerSample = 0.08410156; TotalTime = 11.5519s; SamplesPerSecond = 2216.1 +Finished Epoch[65 of 160]: [Training Set] TrainLossPerSample = 0.25128376; EvalErrPerSample = 0.087699994; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3194 +Starting Epoch 66: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[66 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23706863; EvalErr[0]PerSample = 0.08332031; TotalTime = 11.5141s; SamplesPerSecond = 2223.4 +Finished Epoch[66 of 160]: [Training Set] TrainLossPerSample = 0.2469063; EvalErrPerSample = 0.085879996; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2777 +Starting Epoch 67: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[67 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23676601; EvalErr[0]PerSample = 0.08445313; TotalTime = 11.4886s; SamplesPerSecond = 2228.3 +Finished Epoch[67 of 160]: [Training Set] TrainLossPerSample = 0.2486082; EvalErrPerSample = 0.087859996; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2538 +Starting Epoch 68: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[68 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23655962; EvalErr[0]PerSample = 0.08148437; TotalTime = 11.5050s; SamplesPerSecond = 2225.1 +Finished Epoch[68 of 160]: [Training Set] TrainLossPerSample = 0.24334124; EvalErrPerSample = 0.084699996; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2913 +Starting Epoch 69: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[69 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23345692; EvalErr[0]PerSample = 0.08085937; TotalTime = 11.5400s; SamplesPerSecond = 2218.4 +Finished Epoch[69 of 160]: [Training Set] TrainLossPerSample = 0.241666; EvalErrPerSample = 0.083919995; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3544 +Starting Epoch 70: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[70 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23493608; EvalErr[0]PerSample = 0.08160156; TotalTime = 11.5393s; SamplesPerSecond = 2218.5 +Finished Epoch[70 of 160]: [Training Set] TrainLossPerSample = 0.24537624; EvalErrPerSample = 0.084799998; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3067 +Starting Epoch 71: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[71 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23666447; EvalErr[0]PerSample = 0.08300781; TotalTime = 11.5368s; SamplesPerSecond = 2219.0 +Finished Epoch[71 of 160]: [Training Set] TrainLossPerSample = 0.24771863; EvalErrPerSample = 0.086999997; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3618 +Starting Epoch 72: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[72 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24186720; EvalErr[0]PerSample = 0.08511719; TotalTime = 11.5608s; SamplesPerSecond = 2214.4 +Finished Epoch[72 of 160]: [Training Set] TrainLossPerSample = 0.2442316; EvalErrPerSample = 0.085159995; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3384 +Starting Epoch 73: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[73 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23745417; EvalErr[0]PerSample = 0.08406250; TotalTime = 11.5428s; SamplesPerSecond = 2217.8 +Finished Epoch[73 of 160]: [Training Set] TrainLossPerSample = 0.24105896; EvalErrPerSample = 0.084639996; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3139 +Starting Epoch 74: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[74 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25070684; EvalErr[0]PerSample = 0.08886719; TotalTime = 11.4398s; SamplesPerSecond = 2237.8 +Finished Epoch[74 of 160]: [Training Set] TrainLossPerSample = 0.24804311; EvalErrPerSample = 0.087299995; AvgLearningRatePerSample = 0.0078125; EpochTime=22.2443 +Starting Epoch 75: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[75 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23875351; EvalErr[0]PerSample = 0.08117188; TotalTime = 11.5714s; SamplesPerSecond = 2212.3 +Finished Epoch[75 of 160]: [Training Set] TrainLossPerSample = 0.24082842; EvalErrPerSample = 0.083080001; AvgLearningRatePerSample = 0.0078125; EpochTime=22.366 +Starting Epoch 76: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[76 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23140110; EvalErr[0]PerSample = 0.08203125; TotalTime = 11.5559s; SamplesPerSecond = 2215.3 +Finished Epoch[76 of 160]: [Training Set] TrainLossPerSample = 0.24258973; EvalErrPerSample = 0.084919997; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3202 +Starting Epoch 77: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[77 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23099312; EvalErr[0]PerSample = 0.08105469; TotalTime = 11.5710s; SamplesPerSecond = 2212.4 +Finished Epoch[77 of 160]: [Training Set] TrainLossPerSample = 0.24171358; EvalErrPerSample = 0.084399998; AvgLearningRatePerSample = 0.0078125; EpochTime=22.416 +Starting Epoch 78: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[78 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.22422340; EvalErr[0]PerSample = 0.07945312; TotalTime = 11.5828s; SamplesPerSecond = 2210.2 +Finished Epoch[78 of 160]: [Training Set] TrainLossPerSample = 0.23471047; EvalErrPerSample = 0.083219998; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3526 +Starting Epoch 79: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[79 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23049221; EvalErr[0]PerSample = 0.08292969; TotalTime = 11.5700s; SamplesPerSecond = 2212.6 +Finished Epoch[79 of 160]: [Training Set] TrainLossPerSample = 0.237709; EvalErrPerSample = 0.083939999; AvgLearningRatePerSample = 0.0078125; EpochTime=22.3438 +Starting Epoch 80: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[80 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23512028; EvalErr[0]PerSample = 0.08218750; TotalTime = 11.4967s; SamplesPerSecond = 2226.7 +Finished Epoch[80 of 160]: [Training Set] TrainLossPerSample = 0.23986502; EvalErrPerSample = 0.084139995; AvgLearningRatePerSample = 0.0078125; EpochTime=22.32 +Starting Epoch 81: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[81 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.18993895; EvalErr[0]PerSample = 0.06554688; TotalTime = 11.5483s; SamplesPerSecond = 2216.8 +Finished Epoch[81 of 160]: [Training Set] TrainLossPerSample = 0.16793214; EvalErrPerSample = 0.057559997; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3134 +Starting Epoch 82: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[82 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.13101171; EvalErr[0]PerSample = 0.04542969; TotalTime = 11.5430s; SamplesPerSecond = 2217.8 +Finished Epoch[82 of 160]: [Training Set] TrainLossPerSample = 0.12739825; EvalErrPerSample = 0.04394; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3113 +Starting Epoch 83: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[83 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.11582967; EvalErr[0]PerSample = 0.03949219; TotalTime = 11.5821s; SamplesPerSecond = 2210.3 +Finished Epoch[83 of 160]: [Training Set] TrainLossPerSample = 0.11576424; EvalErrPerSample = 0.03926; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.4228 +Starting Epoch 84: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[84 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.10656901; EvalErr[0]PerSample = 0.03722656; TotalTime = 11.5453s; SamplesPerSecond = 2217.4 +Finished Epoch[84 of 160]: [Training Set] TrainLossPerSample = 0.106635; EvalErrPerSample = 0.03644; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.5034 +Starting Epoch 85: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[85 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.09979140; EvalErr[0]PerSample = 0.03359375; TotalTime = 11.4506s; SamplesPerSecond = 2235.7 +Finished Epoch[85 of 160]: [Training Set] TrainLossPerSample = 0.10094135; EvalErrPerSample = 0.033980001; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2631 +Starting Epoch 86: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[86 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.09689341; EvalErr[0]PerSample = 0.03265625; TotalTime = 11.5657s; SamplesPerSecond = 2213.4 +Finished Epoch[86 of 160]: [Training Set] TrainLossPerSample = 0.096568428; EvalErrPerSample = 0.033059999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3286 +Starting Epoch 87: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[87 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.09459194; EvalErr[0]PerSample = 0.03140625; TotalTime = 11.4668s; SamplesPerSecond = 2232.5 +Finished Epoch[87 of 160]: [Training Set] TrainLossPerSample = 0.09401314; EvalErrPerSample = 0.031119999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2404 +Starting Epoch 88: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[88 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.09019656; EvalErr[0]PerSample = 0.02929688; TotalTime = 11.4755s; SamplesPerSecond = 2230.8 +Finished Epoch[88 of 160]: [Training Set] TrainLossPerSample = 0.090820439; EvalErrPerSample = 0.030199999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2533 +Starting Epoch 89: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[89 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.08303898; EvalErr[0]PerSample = 0.02785156; TotalTime = 11.5285s; SamplesPerSecond = 2220.6 +Finished Epoch[89 of 160]: [Training Set] TrainLossPerSample = 0.086739741; EvalErrPerSample = 0.02956; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.307 +Starting Epoch 90: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[90 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.08771500; EvalErr[0]PerSample = 0.02984375; TotalTime = 11.5321s; SamplesPerSecond = 2219.9 +Finished Epoch[90 of 160]: [Training Set] TrainLossPerSample = 0.087390222; EvalErrPerSample = 0.03018; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3574 +Starting Epoch 91: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[91 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.08021155; EvalErr[0]PerSample = 0.02699219; TotalTime = 11.5502s; SamplesPerSecond = 2216.4 +Finished Epoch[91 of 160]: [Training Set] TrainLossPerSample = 0.080674298; EvalErrPerSample = 0.027319999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3191 +Starting Epoch 92: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[92 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.08322118; EvalErr[0]PerSample = 0.02910156; TotalTime = 11.5210s; SamplesPerSecond = 2222.0 +Finished Epoch[92 of 160]: [Training Set] TrainLossPerSample = 0.08106219; EvalErrPerSample = 0.028339999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2938 +Starting Epoch 93: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[93 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.08073726; EvalErr[0]PerSample = 0.02789062; TotalTime = 11.3990s; SamplesPerSecond = 2245.8 +Finished Epoch[93 of 160]: [Training Set] TrainLossPerSample = 0.079686686; EvalErrPerSample = 0.027419999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2285 +Starting Epoch 94: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[94 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.07666363; EvalErr[0]PerSample = 0.02695313; TotalTime = 11.5560s; SamplesPerSecond = 2215.3 +Finished Epoch[94 of 160]: [Training Set] TrainLossPerSample = 0.077968039; EvalErrPerSample = 0.027099999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3268 +Starting Epoch 95: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[95 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.07550663; EvalErr[0]PerSample = 0.02609375; TotalTime = 11.4795s; SamplesPerSecond = 2230.1 +Finished Epoch[95 of 160]: [Training Set] TrainLossPerSample = 0.076805077; EvalErrPerSample = 0.02616; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2683 +Starting Epoch 96: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[96 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.07483893; EvalErr[0]PerSample = 0.02652344; TotalTime = 11.4940s; SamplesPerSecond = 2227.3 +Finished Epoch[96 of 160]: [Training Set] TrainLossPerSample = 0.073900625; EvalErrPerSample = 0.025839999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2583 +Starting Epoch 97: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[97 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.07033884; EvalErr[0]PerSample = 0.02421875; TotalTime = 11.4972s; SamplesPerSecond = 2226.6 +Finished Epoch[97 of 160]: [Training Set] TrainLossPerSample = 0.072241709; EvalErrPerSample = 0.025239998; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3373 +Starting Epoch 98: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[98 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.07043020; EvalErr[0]PerSample = 0.02421875; TotalTime = 11.5606s; SamplesPerSecond = 2214.4 +Finished Epoch[98 of 160]: [Training Set] TrainLossPerSample = 0.070759542; EvalErrPerSample = 0.024279999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.328 +Starting Epoch 99: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[99 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.07046758; EvalErr[0]PerSample = 0.02503906; TotalTime = 11.5808s; SamplesPerSecond = 2210.5 +Finished Epoch[99 of 160]: [Training Set] TrainLossPerSample = 0.069847755; EvalErrPerSample = 0.024219999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3476 +Starting Epoch 100: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[100 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.06165749; EvalErr[0]PerSample = 0.02144531; TotalTime = 11.5168s; SamplesPerSecond = 2222.8 +Finished Epoch[100 of 160]: [Training Set] TrainLossPerSample = 0.066228345; EvalErrPerSample = 0.02266; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2882 +Starting Epoch 101: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[101 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.06483539; EvalErr[0]PerSample = 0.02242188; TotalTime = 11.5478s; SamplesPerSecond = 2216.9 +Finished Epoch[101 of 160]: [Training Set] TrainLossPerSample = 0.066535138; EvalErrPerSample = 0.022839999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.382 +Starting Epoch 102: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[102 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.06374743; EvalErr[0]PerSample = 0.02113281; TotalTime = 11.7412s; SamplesPerSecond = 2180.4 +Finished Epoch[102 of 160]: [Training Set] TrainLossPerSample = 0.06468109; EvalErrPerSample = 0.021979999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.5325 +Starting Epoch 103: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[103 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.06524000; EvalErr[0]PerSample = 0.02261719; TotalTime = 11.5928s; SamplesPerSecond = 2208.3 +Finished Epoch[103 of 160]: [Training Set] TrainLossPerSample = 0.065452188; EvalErrPerSample = 0.021879999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3876 +Starting Epoch 104: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[104 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.06336018; EvalErr[0]PerSample = 0.02117188; TotalTime = 11.5741s; SamplesPerSecond = 2211.8 +Finished Epoch[104 of 160]: [Training Set] TrainLossPerSample = 0.064649269; EvalErrPerSample = 0.021819999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3409 +Starting Epoch 105: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[105 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05928923; EvalErr[0]PerSample = 0.02039062; TotalTime = 11.4805s; SamplesPerSecond = 2229.9 +Finished Epoch[105 of 160]: [Training Set] TrainLossPerSample = 0.062256567; EvalErrPerSample = 0.021199999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2864 +Starting Epoch 106: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[106 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05956097; EvalErr[0]PerSample = 0.02070312; TotalTime = 11.5877s; SamplesPerSecond = 2209.2 +Finished Epoch[106 of 160]: [Training Set] TrainLossPerSample = 0.059500545; EvalErrPerSample = 0.02076; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3573 +Starting Epoch 107: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[107 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05682479; EvalErr[0]PerSample = 0.01898438; TotalTime = 11.4687s; SamplesPerSecond = 2232.2 +Finished Epoch[107 of 160]: [Training Set] TrainLossPerSample = 0.05800005; EvalErrPerSample = 0.019579999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3035 +Starting Epoch 108: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[108 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05657757; EvalErr[0]PerSample = 0.01890625; TotalTime = 11.5761s; SamplesPerSecond = 2211.4 +Finished Epoch[108 of 160]: [Training Set] TrainLossPerSample = 0.059094436; EvalErrPerSample = 0.02004; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3386 +Starting Epoch 109: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[109 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05917750; EvalErr[0]PerSample = 0.01945313; TotalTime = 11.5089s; SamplesPerSecond = 2224.4 +Finished Epoch[109 of 160]: [Training Set] TrainLossPerSample = 0.057597388; EvalErrPerSample = 0.01898; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2734 +Starting Epoch 110: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[110 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05674717; EvalErr[0]PerSample = 0.01968750; TotalTime = 11.5447s; SamplesPerSecond = 2217.5 +Finished Epoch[110 of 160]: [Training Set] TrainLossPerSample = 0.05731637; EvalErrPerSample = 0.019819999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3039 +Starting Epoch 111: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[111 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05444533; EvalErr[0]PerSample = 0.01945313; TotalTime = 11.4688s; SamplesPerSecond = 2232.1 +Finished Epoch[111 of 160]: [Training Set] TrainLossPerSample = 0.055398725; EvalErrPerSample = 0.01956; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.244 +Starting Epoch 112: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[112 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05179993; EvalErr[0]PerSample = 0.01710938; TotalTime = 11.5138s; SamplesPerSecond = 2223.4 +Finished Epoch[112 of 160]: [Training Set] TrainLossPerSample = 0.053484067; EvalErrPerSample = 0.018139999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.273 +Starting Epoch 113: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[113 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05144035; EvalErr[0]PerSample = 0.01714844; TotalTime = 11.5189s; SamplesPerSecond = 2222.4 +Finished Epoch[113 of 160]: [Training Set] TrainLossPerSample = 0.053684823; EvalErrPerSample = 0.018139999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.298 +Starting Epoch 114: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[114 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05280342; EvalErr[0]PerSample = 0.01742188; TotalTime = 11.5954s; SamplesPerSecond = 2207.8 +Finished Epoch[114 of 160]: [Training Set] TrainLossPerSample = 0.05435824; EvalErrPerSample = 0.0184; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.4052 +Starting Epoch 115: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[115 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05222118; EvalErr[0]PerSample = 0.01757813; TotalTime = 11.6020s; SamplesPerSecond = 2206.5 +Finished Epoch[115 of 160]: [Training Set] TrainLossPerSample = 0.05275812; EvalErrPerSample = 0.0177; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3742 +Starting Epoch 116: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[116 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05418136; EvalErr[0]PerSample = 0.01832031; TotalTime = 11.5462s; SamplesPerSecond = 2217.2 +Finished Epoch[116 of 160]: [Training Set] TrainLossPerSample = 0.05442594; EvalErrPerSample = 0.018379999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3169 +Starting Epoch 117: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[117 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05089517; EvalErr[0]PerSample = 0.01753906; TotalTime = 11.4854s; SamplesPerSecond = 2228.9 +Finished Epoch[117 of 160]: [Training Set] TrainLossPerSample = 0.051556218; EvalErrPerSample = 0.018059999; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.2698 +Starting Epoch 118: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[118 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.04923437; EvalErr[0]PerSample = 0.01722656; TotalTime = 11.6094s; SamplesPerSecond = 2205.1 +Finished Epoch[118 of 160]: [Training Set] TrainLossPerSample = 0.051423203; EvalErrPerSample = 0.01756; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3705 +Starting Epoch 119: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[119 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.04878937; EvalErr[0]PerSample = 0.01687500; TotalTime = 11.5243s; SamplesPerSecond = 2221.4 +Finished Epoch[119 of 160]: [Training Set] TrainLossPerSample = 0.049813163; EvalErrPerSample = 0.01692; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3001 +Starting Epoch 120: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[120 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.04832996; EvalErr[0]PerSample = 0.01691406; TotalTime = 11.4980s; SamplesPerSecond = 2226.5 +Finished Epoch[120 of 160]: [Training Set] TrainLossPerSample = 0.049110278; EvalErrPerSample = 0.01716; AvgLearningRatePerSample = 0.00078125001; EpochTime=22.3303 +Starting Epoch 121: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[121 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.04482439; EvalErr[0]PerSample = 0.01488281; TotalTime = 11.5958s; SamplesPerSecond = 2207.7 +Finished Epoch[121 of 160]: [Training Set] TrainLossPerSample = 0.043392066; EvalErrPerSample = 0.01438; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.4054 +Starting Epoch 122: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[122 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.04098450; EvalErr[0]PerSample = 0.01304687; TotalTime = 11.5422s; SamplesPerSecond = 2217.9 +Finished Epoch[122 of 160]: [Training Set] TrainLossPerSample = 0.040084258; EvalErrPerSample = 0.0129; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.4305 +Starting Epoch 123: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[123 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03640993; EvalErr[0]PerSample = 0.01175781; TotalTime = 11.5831s; SamplesPerSecond = 2210.1 +Finished Epoch[123 of 160]: [Training Set] TrainLossPerSample = 0.03892789; EvalErrPerSample = 0.01236; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3743 +Starting Epoch 124: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[124 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03714126; EvalErr[0]PerSample = 0.01171875; TotalTime = 11.5510s; SamplesPerSecond = 2216.3 +Finished Epoch[124 of 160]: [Training Set] TrainLossPerSample = 0.038824685; EvalErrPerSample = 0.01272; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3909 +Starting Epoch 125: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[125 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03836004; EvalErr[0]PerSample = 0.01242188; TotalTime = 11.5348s; SamplesPerSecond = 2219.4 +Finished Epoch[125 of 160]: [Training Set] TrainLossPerSample = 0.03861165; EvalErrPerSample = 0.01212; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2952 +Starting Epoch 126: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[126 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03456074; EvalErr[0]PerSample = 0.01113281; TotalTime = 11.5272s; SamplesPerSecond = 2220.8 +Finished Epoch[126 of 160]: [Training Set] TrainLossPerSample = 0.035167199; EvalErrPerSample = 0.01126; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2908 +Starting Epoch 127: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[127 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03603784; EvalErr[0]PerSample = 0.01101562; TotalTime = 11.3989s; SamplesPerSecond = 2245.8 +Finished Epoch[127 of 160]: [Training Set] TrainLossPerSample = 0.035970744; EvalErrPerSample = 0.01098; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.226 +Starting Epoch 128: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[128 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03553395; EvalErr[0]PerSample = 0.01175781; TotalTime = 11.5519s; SamplesPerSecond = 2216.1 +Finished Epoch[128 of 160]: [Training Set] TrainLossPerSample = 0.035689104; EvalErrPerSample = 0.01156; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3882 +Starting Epoch 129: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[129 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03523235; EvalErr[0]PerSample = 0.01109375; TotalTime = 11.5823s; SamplesPerSecond = 2210.3 +Finished Epoch[129 of 160]: [Training Set] TrainLossPerSample = 0.036777027; EvalErrPerSample = 0.01176; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3416 +Starting Epoch 130: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[130 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03563953; EvalErr[0]PerSample = 0.01058594; TotalTime = 11.4850s; SamplesPerSecond = 2229.0 +Finished Epoch[130 of 160]: [Training Set] TrainLossPerSample = 0.034818619; EvalErrPerSample = 0.010559999; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2438 +Starting Epoch 131: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[131 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03574152; EvalErr[0]PerSample = 0.01187500; TotalTime = 11.4836s; SamplesPerSecond = 2229.3 +Finished Epoch[131 of 160]: [Training Set] TrainLossPerSample = 0.035892151; EvalErrPerSample = 0.01174; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2433 +Starting Epoch 132: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[132 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03485843; EvalErr[0]PerSample = 0.01152344; TotalTime = 11.4668s; SamplesPerSecond = 2232.5 +Finished Epoch[132 of 160]: [Training Set] TrainLossPerSample = 0.035623327; EvalErrPerSample = 0.01148; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2302 +Starting Epoch 133: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[133 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03582706; EvalErr[0]PerSample = 0.01058594; TotalTime = 11.4449s; SamplesPerSecond = 2236.8 +Finished Epoch[133 of 160]: [Training Set] TrainLossPerSample = 0.035650004; EvalErrPerSample = 0.01076; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2876 +Starting Epoch 134: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[134 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03308557; EvalErr[0]PerSample = 0.01031250; TotalTime = 11.5628s; SamplesPerSecond = 2214.0 +Finished Epoch[134 of 160]: [Training Set] TrainLossPerSample = 0.034471795; EvalErrPerSample = 0.010679999; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3507 +Starting Epoch 135: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[135 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03313774; EvalErr[0]PerSample = 0.01011719; TotalTime = 11.5699s; SamplesPerSecond = 2212.6 +Finished Epoch[135 of 160]: [Training Set] TrainLossPerSample = 0.03418766; EvalErrPerSample = 0.01052; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.356 +Starting Epoch 136: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[136 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03477723; EvalErr[0]PerSample = 0.01121094; TotalTime = 11.5129s; SamplesPerSecond = 2223.6 +Finished Epoch[136 of 160]: [Training Set] TrainLossPerSample = 0.0342177; EvalErrPerSample = 0.01064; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2738 +Starting Epoch 137: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[137 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03409709; EvalErr[0]PerSample = 0.01007813; TotalTime = 11.4740s; SamplesPerSecond = 2231.1 +Finished Epoch[137 of 160]: [Training Set] TrainLossPerSample = 0.034409851; EvalErrPerSample = 0.01076; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2606 +Starting Epoch 138: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[138 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03408328; EvalErr[0]PerSample = 0.01019531; TotalTime = 11.6197s; SamplesPerSecond = 2203.1 +Finished Epoch[138 of 160]: [Training Set] TrainLossPerSample = 0.03398142; EvalErrPerSample = 0.01034; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.4016 +Starting Epoch 139: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[139 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03391739; EvalErr[0]PerSample = 0.01003906; TotalTime = 11.5855s; SamplesPerSecond = 2209.7 +Finished Epoch[139 of 160]: [Training Set] TrainLossPerSample = 0.034369528; EvalErrPerSample = 0.0105; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.4288 +Starting Epoch 140: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[140 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03432070; EvalErr[0]PerSample = 0.01093750; TotalTime = 11.5739s; SamplesPerSecond = 2211.9 +Finished Epoch[140 of 160]: [Training Set] TrainLossPerSample = 0.034433346; EvalErrPerSample = 0.01072; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3479 +Starting Epoch 141: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[141 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03326862; EvalErr[0]PerSample = 0.01023438; TotalTime = 11.5483s; SamplesPerSecond = 2216.8 +Finished Epoch[141 of 160]: [Training Set] TrainLossPerSample = 0.03355087; EvalErrPerSample = 0.01038; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.326 +Starting Epoch 142: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[142 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03197437; EvalErr[0]PerSample = 0.00988281; TotalTime = 11.4156s; SamplesPerSecond = 2242.6 +Finished Epoch[142 of 160]: [Training Set] TrainLossPerSample = 0.032701213; EvalErrPerSample = 0.0098000001; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.1816 +Starting Epoch 143: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[143 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03477237; EvalErr[0]PerSample = 0.01089844; TotalTime = 11.5553s; SamplesPerSecond = 2215.4 +Finished Epoch[143 of 160]: [Training Set] TrainLossPerSample = 0.034088843; EvalErrPerSample = 0.01066; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3259 +Starting Epoch 144: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[144 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03017725; EvalErr[0]PerSample = 0.00953125; TotalTime = 11.5897s; SamplesPerSecond = 2208.9 +Finished Epoch[144 of 160]: [Training Set] TrainLossPerSample = 0.031698398; EvalErrPerSample = 0.0099999998; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.5923 +Starting Epoch 145: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[145 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03448967; EvalErr[0]PerSample = 0.01074219; TotalTime = 11.4235s; SamplesPerSecond = 2241.0 +Finished Epoch[145 of 160]: [Training Set] TrainLossPerSample = 0.033083703; EvalErrPerSample = 0.01002; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.1806 +Starting Epoch 146: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[146 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03416681; EvalErr[0]PerSample = 0.01136719; TotalTime = 11.3855s; SamplesPerSecond = 2248.5 +Finished Epoch[146 of 160]: [Training Set] TrainLossPerSample = 0.034353275; EvalErrPerSample = 0.010799999; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.1946 +Starting Epoch 147: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[147 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03433434; EvalErr[0]PerSample = 0.01101562; TotalTime = 11.5644s; SamplesPerSecond = 2213.7 +Finished Epoch[147 of 160]: [Training Set] TrainLossPerSample = 0.034649722; EvalErrPerSample = 0.011279999; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3273 +Starting Epoch 148: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[148 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03219655; EvalErr[0]PerSample = 0.00988281; TotalTime = 11.5637s; SamplesPerSecond = 2213.8 +Finished Epoch[148 of 160]: [Training Set] TrainLossPerSample = 0.031285692; EvalErrPerSample = 0.0094999997; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3287 +Starting Epoch 149: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[149 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03190110; EvalErr[0]PerSample = 0.01046875; TotalTime = 11.4602s; SamplesPerSecond = 2233.8 +Finished Epoch[149 of 160]: [Training Set] TrainLossPerSample = 0.031930499; EvalErrPerSample = 0.0101; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2852 +Starting Epoch 150: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[150 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03089277; EvalErr[0]PerSample = 0.00921875; TotalTime = 11.5981s; SamplesPerSecond = 2207.3 +Finished Epoch[150 of 160]: [Training Set] TrainLossPerSample = 0.031741869; EvalErrPerSample = 0.00954; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.4059 +Starting Epoch 151: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[151 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03341821; EvalErr[0]PerSample = 0.01105469; TotalTime = 11.5961s; SamplesPerSecond = 2207.6 +Finished Epoch[151 of 160]: [Training Set] TrainLossPerSample = 0.032794204; EvalErrPerSample = 0.01036; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.435 +Starting Epoch 152: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[152 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03127065; EvalErr[0]PerSample = 0.00937500; TotalTime = 11.5746s; SamplesPerSecond = 2211.7 +Finished Epoch[152 of 160]: [Training Set] TrainLossPerSample = 0.032228082; EvalErrPerSample = 0.0098599996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3883 +Starting Epoch 153: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[153 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03200430; EvalErr[0]PerSample = 0.01007813; TotalTime = 11.5357s; SamplesPerSecond = 2219.2 +Finished Epoch[153 of 160]: [Training Set] TrainLossPerSample = 0.031472486; EvalErrPerSample = 0.0098999999; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2992 +Starting Epoch 154: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[154 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03112781; EvalErr[0]PerSample = 0.00890625; TotalTime = 11.4339s; SamplesPerSecond = 2239.0 +Finished Epoch[154 of 160]: [Training Set] TrainLossPerSample = 0.030955072; EvalErrPerSample = 0.00954; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.2657 +Starting Epoch 155: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[155 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03170617; EvalErr[0]PerSample = 0.00941406; TotalTime = 11.5475s; SamplesPerSecond = 2216.9 +Finished Epoch[155 of 160]: [Training Set] TrainLossPerSample = 0.031180983; EvalErrPerSample = 0.0093200002; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3148 +Starting Epoch 156: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[156 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.02884187; EvalErr[0]PerSample = 0.00929687; TotalTime = 11.4932s; SamplesPerSecond = 2227.4 +Finished Epoch[156 of 160]: [Training Set] TrainLossPerSample = 0.030790305; EvalErrPerSample = 0.0097199995; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3262 +Starting Epoch 157: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[157 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03166680; EvalErr[0]PerSample = 0.00992188; TotalTime = 11.6570s; SamplesPerSecond = 2196.1 +Finished Epoch[157 of 160]: [Training Set] TrainLossPerSample = 0.031061091; EvalErrPerSample = 0.0094599994; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.4556 +Starting Epoch 158: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[158 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03136421; EvalErr[0]PerSample = 0.00906250; TotalTime = 11.5571s; SamplesPerSecond = 2215.1 +Finished Epoch[158 of 160]: [Training Set] TrainLossPerSample = 0.029945096; EvalErrPerSample = 0.0084999995; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3185 +Starting Epoch 159: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[159 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03113249; EvalErr[0]PerSample = 0.00976563; TotalTime = 11.5817s; SamplesPerSecond = 2210.4 +Finished Epoch[159 of 160]: [Training Set] TrainLossPerSample = 0.03114122; EvalErrPerSample = 0.0093599996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.343 +Starting Epoch 160: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[160 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03009957; EvalErr[0]PerSample = 0.00886719; TotalTime = 11.5242s; SamplesPerSecond = 2221.4 +Finished Epoch[160 of 160]: [Training Set] TrainLossPerSample = 0.03085361; EvalErrPerSample = 0.00942; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=22.3018 +CNTKCommandTrainEnd: Train +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. +WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + +Post-processing network... + +3 roots: + OutputNodes.z = Plus + Err = ErrorPrediction + CE = CrossEntropyWithSoftmax +FormNestedNetwork: WARNING: Was called twice for OutputNodes.z Plus operation +FormNestedNetwork: WARNING: Was called twice for Err ErrorPrediction operation +FormNestedNetwork: WARNING: Was called twice for CE CrossEntropyWithSoftmax operation + + +Validating for node OutputNodes.z. 185 nodes to process in pass 1. + +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] + +Validating for node OutputNodes.z. 77 nodes to process in pass 2. + +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] + +Validating for node OutputNodes.z, final verification. + +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1])WARNING: trying to use cuDNN on unsupported platform. It is safe to ignore the warning if it's produced during model editing command. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] + +107 out of 185 nodes do not share the minibatch layout with the input data. + + +Validating for node Err. 187 nodes to process in pass 1. + +Validating --> labels = InputValue -> [10 [10], MBSize 0] +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] +Validating --> Err = ErrorPrediction(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] + +Validating for node Err. 78 nodes to process in pass 2. + +Validating --> labels = InputValue -> [10 [10], MBSize 0] +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] +Validating --> Err = ErrorPrediction(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] + +Validating for node Err, final verification. + +Validating --> labels = InputValue -> [10 [10], MBSize 0] +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] +Validating --> Err = ErrorPrediction(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] + +108 out of 187 nodes do not share the minibatch layout with the input data. + + +Validating for node CE. 187 nodes to process in pass 1. + +Validating --> labels = InputValue -> [10 [10], MBSize 0] +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] +Validating --> CE = CrossEntropyWithSoftmax(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] + +Validating for node CE. 78 nodes to process in pass 2. + +Validating --> labels = InputValue -> [10 [10], MBSize 0] +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] +Validating --> CE = CrossEntropyWithSoftmax(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] + +Validating for node CE, final verification. + +Validating --> labels = InputValue -> [10 [10], MBSize 0] +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] +Validating --> CE = CrossEntropyWithSoftmax(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] + +108 out of 187 nodes do not share the minibatch layout with the input data. + +Post-processing network complete. + +Post-processing network... + +3 roots: + OutputNodes.z = Plus + Err = ErrorPrediction + CE = CrossEntropyWithSoftmax +FormNestedNetwork: WARNING: Was called twice for OutputNodes.z Plus operation +FormNestedNetwork: WARNING: Was called twice for Err ErrorPrediction operation +FormNestedNetwork: WARNING: Was called twice for CE CrossEntropyWithSoftmax operation + + +Validating for node OutputNodes.z. 185 nodes to process in pass 1. + +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] + +Validating for node OutputNodes.z. 77 nodes to process in pass 2. + +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] + +Validating for node OutputNodes.z, final verification. + +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] + +107 out of 185 nodes do not share the minibatch layout with the input data. + + +Validating for node Err. 187 nodes to process in pass 1. + +Validating --> labels = InputValue -> [10 [10], MBSize 0] +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] +Validating --> Err = ErrorPrediction(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] + +Validating for node Err. 78 nodes to process in pass 2. + +Validating --> labels = InputValue -> [10 [10], MBSize 0] +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] +Validating --> Err = ErrorPrediction(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] + +Validating for node Err, final verification. + +Validating --> labels = InputValue -> [10 [10], MBSize 0] +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] +Validating --> Err = ErrorPrediction(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] + +108 out of 187 nodes do not share the minibatch layout with the input data. + + +Validating for node CE. 187 nodes to process in pass 1. + +Validating --> labels = InputValue -> [10 [10], MBSize 0] +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] +Validating --> CE = CrossEntropyWithSoftmax(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] + +Validating for node CE. 78 nodes to process in pass 2. + +Validating --> labels = InputValue -> [10 [10], MBSize 0] +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] +Validating --> CE = CrossEntropyWithSoftmax(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] + +Validating for node CE, final verification. + +Validating --> labels = InputValue -> [10 [10], MBSize 0] +Validating --> OutputNodes.W = LearnableParameter -> [10 [10], 64] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 [64], 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 [64], 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 [32], 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 [32], 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 [16], 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 [16], 144] +Validating --> conv1.c.W = LearnableParameter -> [16 [16], 27] +Validating --> features = InputValue -> [3072 [32 x 32 x 3], MBSize 0] +Validating --> conv1.c.c = Convolution(conv1.c.W[16, 27], features[3072 [32 x 32 x 3] {W=32, H=3, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> conv1.c.y = BatchNormalization(conv1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.c.sc[16, 1], conv1.c.b[16, 1], conv1.c.m[16, 1], conv1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> conv1.y = RectifiedLinear(conv1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.c = Convolution(rn1_1.c1.c.W[16, 144], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c1.c.y = BatchNormalization(rn1_1.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c1.c.sc[16, 1], rn1_1.c1.c.b[16, 1], rn1_1.c1.c.m[16, 1], rn1_1.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.c = Convolution(rn1_1.c2.W[16, 144], rn1_1.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_1.c2.y = BatchNormalization(rn1_1.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.c2.sc[16, 1], rn1_1.c2.b[16, 1], rn1_1.c2.m[16, 1], rn1_1.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.p = Plus(rn1_1.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], conv1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.c = Convolution(rn1_2.c1.c.W[16, 144], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c1.c.y = BatchNormalization(rn1_2.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c1.c.sc[16, 1], rn1_2.c1.c.b[16, 1], rn1_2.c1.c.m[16, 1], rn1_2.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.c = Convolution(rn1_2.c2.W[16, 144], rn1_2.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_2.c2.y = BatchNormalization(rn1_2.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.c2.sc[16, 1], rn1_2.c2.b[16, 1], rn1_2.c2.m[16, 1], rn1_2.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.p = Plus(rn1_2.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.c = Convolution(rn1_3.c1.c.W[16, 144], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.c.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c1.c.y = BatchNormalization(rn1_3.c1.c.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c1.c.sc[16, 1], rn1_3.c1.c.b[16, 1], rn1_3.c1.c.m[16, 1], rn1_3.c1.c.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.c = Convolution(rn1_3.c2.W[16, 144], rn1_3.c1.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn1_3.c2.y = BatchNormalization(rn1_3.c2.c[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_3.c2.sc[16, 1], rn1_3.c2.b[16, 1], rn1_3.c2.m[16, 1], rn1_3.c2.isd[16, 1]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.p = Plus(rn1_3.c2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0], rn1_2.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [16384 [32 x 32 x 16], MBSize 0] +Validating --> rn2_1.c1.c.c = Convolution(rn2_1.c1.c.W[32, 144], rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_1.c1.c.y = BatchNormalization(rn2_1.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.c1.c.sc[32, 1], rn2_1.c1.c.b[32, 1], rn2_1.c1.c.m[32, 1], rn2_1.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.c2.c = Convolution(rn2_1.c2.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c2.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c2.y = BatchNormalization(rn2_1.c2.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c2.sc[16, 1], rn2_1.c2.b[16, 1], rn2_1.c2.m[16, 1], rn2_1.c2.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.pool = MaxPooling(rn1_3.y[16384 [32 x 32 x 16] {W=32, H=16, C=32}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.p = Plus(rn2_1.c2.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.pool[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.W = LearnableParameter -> [16 [16], 288] +Validating --> rn2_1.c3.c = Convolution(rn2_1.c3.W[16, 288], rn2_1.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.c3.sc = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.b = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.m = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.isd = LearnableParameter -> [16 [16], 1] +Validating --> rn2_1.c3.y = BatchNormalization(rn2_1.c3.c[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.sc[16, 1], rn2_1.c3.b[16, 1], rn2_1.c3.m[16, 1], rn2_1.c3.isd[16, 1]) -> [4096 [16 x 16 x 16], MBSize 0] +Validating --> rn2_1.r = RowStack(rn2_1.p[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0], rn2_1.c3.y[4096 [16 x 16 x 16] {W=16, H=16, C=16}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.r[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.c = Convolution(rn2_2.c1.c.W[32, 288], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c1.c.y = BatchNormalization(rn2_2.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c1.c.sc[32, 1], rn2_2.c1.c.b[32, 1], rn2_2.c1.c.m[32, 1], rn2_2.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.c = Convolution(rn2_2.c2.W[32, 288], rn2_2.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_2.c2.y = BatchNormalization(rn2_2.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.c2.sc[32, 1], rn2_2.c2.b[32, 1], rn2_2.c2.m[32, 1], rn2_2.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.p = Plus(rn2_2.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.c = Convolution(rn2_3.c1.c.W[32, 288], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.c.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c1.c.y = BatchNormalization(rn2_3.c1.c.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c1.c.sc[32, 1], rn2_3.c1.c.b[32, 1], rn2_3.c1.c.m[32, 1], rn2_3.c1.c.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.c = Convolution(rn2_3.c2.W[32, 288], rn2_3.c1.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn2_3.c2.y = BatchNormalization(rn2_3.c2.c[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_3.c2.sc[32, 1], rn2_3.c2.b[32, 1], rn2_3.c2.m[32, 1], rn2_3.c2.isd[32, 1]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.p = Plus(rn2_3.c2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0], rn2_2.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [8192 [16 x 16 x 32], MBSize 0] +Validating --> rn3_1.c1.c.c = Convolution(rn3_1.c1.c.W[64, 288], rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_1.c1.c.y = BatchNormalization(rn3_1.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.c1.c.sc[64, 1], rn3_1.c1.c.b[64, 1], rn3_1.c1.c.m[64, 1], rn3_1.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.c2.c = Convolution(rn3_1.c2.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c2.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c2.y = BatchNormalization(rn3_1.c2.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c2.sc[32, 1], rn3_1.c2.b[32, 1], rn3_1.c2.m[32, 1], rn3_1.c2.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.pool = MaxPooling(rn2_3.y[8192 [16 x 16 x 32] {W=16, H=32, C=16}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.p = Plus(rn3_1.c2.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.pool[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.W = LearnableParameter -> [32 [32], 576] +Validating --> rn3_1.c3.c = Convolution(rn3_1.c3.W[32, 576], rn3_1.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.c3.sc = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.b = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.m = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.isd = LearnableParameter -> [32 [32], 1] +Validating --> rn3_1.c3.y = BatchNormalization(rn3_1.c3.c[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.sc[32, 1], rn3_1.c3.b[32, 1], rn3_1.c3.m[32, 1], rn3_1.c3.isd[32, 1]) -> [2048 [8 x 8 x 32], MBSize 0] +Validating --> rn3_1.r = RowStack(rn3_1.p[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0], rn3_1.c3.y[2048 [8 x 8 x 32] {W=8, H=32, C=8}, MBSize 0])WARNING: RowStack operation cannot inherit image size information from its child. Image size info is lost. + -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.r[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.c = Convolution(rn3_2.c1.c.W[64, 576], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c1.c.y = BatchNormalization(rn3_2.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c1.c.sc[64, 1], rn3_2.c1.c.b[64, 1], rn3_2.c1.c.m[64, 1], rn3_2.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.c = Convolution(rn3_2.c2.W[64, 576], rn3_2.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_2.c2.y = BatchNormalization(rn3_2.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.c2.sc[64, 1], rn3_2.c2.b[64, 1], rn3_2.c2.m[64, 1], rn3_2.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.p = Plus(rn3_2.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.c = Convolution(rn3_3.c1.c.W[64, 576], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.c.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c1.c.y = BatchNormalization(rn3_3.c1.c.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c1.c.sc[64, 1], rn3_3.c1.c.b[64, 1], rn3_3.c1.c.m[64, 1], rn3_3.c1.c.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.c = Convolution(rn3_3.c2.W[64, 576], rn3_3.c1.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.c2.sc = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.b = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.m = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.isd = LearnableParameter -> [64 [64], 1] +Validating --> rn3_3.c2.y = BatchNormalization(rn3_3.c2.c[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_3.c2.sc[64, 1], rn3_3.c2.b[64, 1], rn3_3.c2.m[64, 1], rn3_3.c2.isd[64, 1]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.p = Plus(rn3_3.c2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0], rn3_2.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [4096 [8 x 8 x 64], MBSize 0] +Validating --> pool = AveragePooling(rn3_3.y[4096 [8 x 8 x 64] {W=8, H=64, C=8}, MBSize 0]) -> [64 [1 x 1 x 64], MBSize 0] +Validating --> OutputNodes.t = Times(OutputNodes.W[10, 64], pool[64 [1 x 1 x 64], MBSize 0]) -> [10 [10], MBSize 0] +Validating --> OutputNodes.b = LearnableParameter -> [10 [10], 1] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10, MBSize 0], OutputNodes.b[10, 1]) -> [10 [10], MBSize 0] +Validating --> CE = CrossEntropyWithSoftmax(labels[10, MBSize 0], OutputNodes.z[10, MBSize 0]) -> [1 [1], 1] + +108 out of 187 nodes do not share the minibatch layout with the input data. + +Post-processing network complete. +evalNodeNames are not specified, using all the default evalnodes and training criterion nodes. + + +Allocating matrices for forward and/or backward propagation. +Minibatch[1-20]: Samples Seen = 10000 Err: ErrorPrediction/Sample = 0.0819 CE: CrossEntropyWithSoftmax/Sample = 0.35141698 +Final Results: Minibatch[1-20]: Samples Seen = 10000 Err: ErrorPrediction/Sample = 0.0819 CE: CrossEntropyWithSoftmax/Sample = 0.35141698 Perplexity = 1.4210798 +__COMPLETED__ diff --git a/Examples/Image/Miscellaneous/CIFAR-10/Output/04_ResNet_56_Train_AddBNEval_Test.log.160 b/Examples/Image/Miscellaneous/CIFAR-10/Output/04_ResNet_56_Train_AddBNEval_Test.log.160 index b309edeed..d1de5c398 100644 --- a/Examples/Image/Miscellaneous/CIFAR-10/Output/04_ResNet_56_Train_AddBNEval_Test.log.160 +++ b/Examples/Image/Miscellaneous/CIFAR-10/Output/04_ResNet_56_Train_AddBNEval_Test.log.160 @@ -1,9902 +1,9902 @@ -------------------------------------------------------------------- -Build info: - - Built time: Feb 26 2016 16:36:12 - Last modified date: Thu Feb 25 12:56:12 2016 - Build type: Release - Build target: GPU - With 1bit-SGD: no - CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5 - CUB_PATH: C:\src\cub - CUDNN_PATH: C:\NVIDIA\cudnn-4.0\cuda - Build Branch: - Build SHA1: (modified) - Built by alexeyk on z840-01 - Build Path: C:\src\cntk\Source\CNTK\ -------------------------------------------------------------------- -running on z840-01 at 2016/02/26 17:43:42 -command line: -C:\src\cntk\x64\Release\CNTK.exe configFile=04_ResNet_56.cntk - ->>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>> -RootDir = "." -ConfigDir = "$RootDir$" -DataDir = "$RootDir$" -OutputDir = "$RootDir$/Output" -ModelDir = "$OutputDir$/Models" -ndlMacros="$ConfigDir$/Macros.ndl" -precision="float" -deviceId="Auto" -prefetch="true" -parallelTrain="false" -command=Train:AddBNEval:Test -stderr="$OutputDir$/04_ResNet_56" -traceLevel=1 -numMBsToShowResult=200 -Proj16to32Filename = "$ConfigDir$/16to32.txt" -Proj32to64Filename = "$ConfigDir$/32to64.txt" -Train=[ - action="train" - modelPath="$ModelDir$/04_ResNet_56" - NDLNetworkBuilder=[ - networkDescription="$ConfigDir$/04_ResNet_56.ndl" - ] - SGD=[ - epochSize=0 - minibatchSize=128 - learningRatesPerMB=0.1*1:1.0*80:0.1*40:0.01 - momentumPerMB=0.9 - maxEpochs=160 - L2RegWeight=0.0001 - dropoutRate=0 - ParallelTrain=[ - parallelizationMethod="DataParallelSGD" - distributedMBReading="true" - parallelizationStartEpoch=1 - DataParallelSGD=[ - gradientBits=32 - ] - ] - ] - reader=[ - readerType="ImageReader" - file="$DataDir$/train_map.txt" - randomize="Auto" - features=[ - width=32 - height=32 - channels=3 - cropType="Random" - cropRatio=0.8 - jitterType="UniRatio" - interpolations="Linear" - meanFile="$ConfigDir$/CIFAR-10_mean.xml" - ] - labels=[ - labelDim=10 - ] - ] -] -AddBNEval=[ - action="edit" - CurModel="$ModelDir$/04_ResNet_56" - NewModel="$ModelDir$/04_ResNet_56.Eval" - editPath="$ConfigDir$/03_ResNet.mel" -] -Test=[ - action="test" - modelPath="$ModelDir$/04_ResNet_56.Eval" - minibatchSize=512 - reader=[ - readerType="ImageReader" - file="$DataDir$/test_map.txt" - randomize="None" - features=[ - width=32 - height=32 - channels=3 - cropType="Center" - cropRatio=1 - jitterType="UniRatio" - interpolations="Linear" - meanFile="$ConfigDir$/CIFAR-10_mean.xml" - ] - labels=[ - labelDim=10 - ] - ] -] - -<<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<< - ->>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>> -RootDir = "." -ConfigDir = "." -DataDir = "." -OutputDir = "./Output" -ModelDir = "./Output/Models" -ndlMacros="./Macros.ndl" -precision="float" -deviceId="Auto" -prefetch="true" -parallelTrain="false" -command=Train:AddBNEval:Test -stderr="./Output/04_ResNet_56" -traceLevel=1 -numMBsToShowResult=200 -Proj16to32Filename = "./16to32.txt" -Proj32to64Filename = "./32to64.txt" -Train=[ - action="train" - modelPath="./Output/Models/04_ResNet_56" - NDLNetworkBuilder=[ - networkDescription="./04_ResNet_56.ndl" - ] - SGD=[ - epochSize=0 - minibatchSize=128 - learningRatesPerMB=0.1*1:1.0*80:0.1*40:0.01 - momentumPerMB=0.9 - maxEpochs=160 - L2RegWeight=0.0001 - dropoutRate=0 - ParallelTrain=[ - parallelizationMethod="DataParallelSGD" - distributedMBReading="true" - parallelizationStartEpoch=1 - DataParallelSGD=[ - gradientBits=32 - ] - ] - ] - reader=[ - readerType="ImageReader" - file="./train_map.txt" - randomize="Auto" - features=[ - width=32 - height=32 - channels=3 - cropType="Random" - cropRatio=0.8 - jitterType="UniRatio" - interpolations="Linear" - meanFile="./CIFAR-10_mean.xml" - ] - labels=[ - labelDim=10 - ] - ] -] -AddBNEval=[ - action="edit" - CurModel="./Output/Models/04_ResNet_56" - NewModel="./Output/Models/04_ResNet_56.Eval" - editPath="./03_ResNet.mel" -] -Test=[ - action="test" - modelPath="./Output/Models/04_ResNet_56.Eval" - minibatchSize=512 - reader=[ - readerType="ImageReader" - file="./test_map.txt" - randomize="None" - features=[ - width=32 - height=32 - channels=3 - cropType="Center" - cropRatio=1 - jitterType="UniRatio" - interpolations="Linear" - meanFile="./CIFAR-10_mean.xml" - ] - labels=[ - labelDim=10 - ] - ] -] - -<<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<< - ->>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>> -configparameters: 04_ResNet_56.cntk:AddBNEval=[ - action="edit" - CurModel="./Output/Models/04_ResNet_56" - NewModel="./Output/Models/04_ResNet_56.Eval" - editPath="./03_ResNet.mel" -] - -configparameters: 04_ResNet_56.cntk:command=Train:AddBNEval:Test -configparameters: 04_ResNet_56.cntk:ConfigDir=. -configparameters: 04_ResNet_56.cntk:DataDir=. -configparameters: 04_ResNet_56.cntk:deviceId=Auto -configparameters: 04_ResNet_56.cntk:ModelDir=./Output/Models -configparameters: 04_ResNet_56.cntk:ndlMacros=./Macros.ndl -configparameters: 04_ResNet_56.cntk:numMBsToShowResult=200 -configparameters: 04_ResNet_56.cntk:OutputDir=./Output -configparameters: 04_ResNet_56.cntk:parallelTrain=false -configparameters: 04_ResNet_56.cntk:precision=float -configparameters: 04_ResNet_56.cntk:prefetch=true -configparameters: 04_ResNet_56.cntk:Proj16to32Filename=./16to32.txt -configparameters: 04_ResNet_56.cntk:Proj32to64Filename=./32to64.txt -configparameters: 04_ResNet_56.cntk:RootDir=. -configparameters: 04_ResNet_56.cntk:stderr=./Output/04_ResNet_56 -configparameters: 04_ResNet_56.cntk:Test=[ - action="test" - modelPath="./Output/Models/04_ResNet_56.Eval" - minibatchSize=512 - reader=[ - readerType="ImageReader" - file="./test_map.txt" - randomize="None" - features=[ - width=32 - height=32 - channels=3 - cropType="Center" - cropRatio=1 - jitterType="UniRatio" - interpolations="Linear" - meanFile="./CIFAR-10_mean.xml" - ] - labels=[ - labelDim=10 - ] - ] -] - -configparameters: 04_ResNet_56.cntk:traceLevel=1 -configparameters: 04_ResNet_56.cntk:Train=[ - action="train" - modelPath="./Output/Models/04_ResNet_56" - NDLNetworkBuilder=[ - networkDescription="./04_ResNet_56.ndl" - ] - SGD=[ - epochSize=0 - minibatchSize=128 - learningRatesPerMB=0.1*1:1.0*80:0.1*40:0.01 - momentumPerMB=0.9 - maxEpochs=160 - L2RegWeight=0.0001 - dropoutRate=0 - ParallelTrain=[ - parallelizationMethod="DataParallelSGD" - distributedMBReading="true" - parallelizationStartEpoch=1 - DataParallelSGD=[ - gradientBits=32 - ] - ] - ] - reader=[ - readerType="ImageReader" - file="./train_map.txt" - randomize="Auto" - features=[ - width=32 - height=32 - channels=3 - cropType="Random" - cropRatio=0.8 - jitterType="UniRatio" - interpolations="Linear" - meanFile="./CIFAR-10_mean.xml" - ] - labels=[ - labelDim=10 - ] - ] -] - -<<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<< -command: Train AddBNEval Test -precision = float -CNTKModelPath: ./Output/Models/04_ResNet_56 -CNTKCommandTrainInfo: Train : 160 -CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 160 -CNTKCommandTrainBegin: Train -LockDevice: Locked GPU 0 to test availability. -LockDevice: Unlocked GPU 0 after testing. -LockDevice: Locked GPU 1 to test availability. -LockDevice: Unlocked GPU 1 after testing. -LockDevice: Locked GPU 2 to test availability. -LockDevice: Unlocked GPU 2 after testing. -LockDevice: Locked GPU 0 for exclusive use. -NDLBuilder Using GPU 0 -Microsoft::MSR::CNTK::GPUMatrix::SetGaussianRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4 - -Post-processing network... - -3 roots: - CE = CrossEntropyWithSoftmax - Err = ErrorPrediction - OutputNodes.z = Plus -FormNestedNetwork: WARNING: Was called twice for CE CrossEntropyWithSoftmax operation -FormNestedNetwork: WARNING: Was called twice for Err ErrorPrediction operation -FormNestedNetwork: WARNING: Was called twice for OutputNodes.z Plus operation - - -Validating network. 949 nodes to process in pass 1. - -Validating --> labels = InputValue -> [10 x *] -Validating --> OutputNodes.W = LearnableParameter -> [10 x 64] -Validating --> rn3_18.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_18.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_17.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_17.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_16.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_16.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_15.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_15.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_14.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_14.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_13.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_13.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_12.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_12.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_11.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_11.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_10.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_10.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_9.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_9.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_8.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_8.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_7.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_7.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_6.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_6.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_5.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_5.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_4.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_4.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 x 288] -Validating --> rn2_18.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_18.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_17.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_17.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_16.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_16.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_15.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_15.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_14.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_14.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_13.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_13.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_12.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_12.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_11.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_11.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_10.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_10.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_9.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_9.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_8.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_8.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_7.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_7.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_6.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_6.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_5.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_5.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_4.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_4.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 x 144] -Validating --> rn1_18.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_18.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_17.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_17.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_16.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_16.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_15.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_15.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_14.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_14.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_13.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_13.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_12.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_12.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_11.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_11.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_10.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_10.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_9.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_9.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_8.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_8.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_7.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_7.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_6.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_6.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_5.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_5.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_4.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_4.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> conv1.c.W = LearnableParameter -> [16 x 27] -Validating --> features = InputValue -> [32 x 32 x 3 x *] -Validating --> conv1.c.c.c = Convolution(conv1.c.W[16 x 27], features[32 x 32 x 3 x * {W=32, H=3, C=32}]) -> [32 x 32 x 16 x *] -Validating --> conv1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.y = BatchNormalization(conv1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.c.c.sc[16 x 1], conv1.c.c.b[16 x 1], conv1.c.c.m[16 x 1], conv1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> conv1.y = RectifiedLinear(conv1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.c.c.c = Convolution(rn1_1.c1.c.W[16 x 144], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.y = BatchNormalization(rn1_1.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c1.c.c.sc[16 x 1], rn1_1.c1.c.c.b[16 x 1], rn1_1.c1.c.c.m[16 x 1], rn1_1.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c2.c.c = Convolution(rn1_1.c2.W[16 x 144], rn1_1.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.y = BatchNormalization(rn1_1.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c2.c.sc[16 x 1], rn1_1.c2.c.b[16 x 1], rn1_1.c2.c.m[16 x 1], rn1_1.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.p = Plus(rn1_1.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.c.c.c = Convolution(rn1_2.c1.c.W[16 x 144], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.y = BatchNormalization(rn1_2.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c1.c.c.sc[16 x 1], rn1_2.c1.c.c.b[16 x 1], rn1_2.c1.c.c.m[16 x 1], rn1_2.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c2.c.c = Convolution(rn1_2.c2.W[16 x 144], rn1_2.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.y = BatchNormalization(rn1_2.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c2.c.sc[16 x 1], rn1_2.c2.c.b[16 x 1], rn1_2.c2.c.m[16 x 1], rn1_2.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.p = Plus(rn1_2.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.c.c.c = Convolution(rn1_3.c1.c.W[16 x 144], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.y = BatchNormalization(rn1_3.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c1.c.c.sc[16 x 1], rn1_3.c1.c.c.b[16 x 1], rn1_3.c1.c.c.m[16 x 1], rn1_3.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c2.c.c = Convolution(rn1_3.c2.W[16 x 144], rn1_3.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.y = BatchNormalization(rn1_3.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c2.c.sc[16 x 1], rn1_3.c2.c.b[16 x 1], rn1_3.c2.c.m[16 x 1], rn1_3.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.p = Plus(rn1_3.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.c.c.c = Convolution(rn1_4.c1.c.W[16 x 144], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.y = BatchNormalization(rn1_4.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c1.c.c.sc[16 x 1], rn1_4.c1.c.c.b[16 x 1], rn1_4.c1.c.c.m[16 x 1], rn1_4.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.y = RectifiedLinear(rn1_4.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c2.c.c = Convolution(rn1_4.c2.W[16 x 144], rn1_4.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.y = BatchNormalization(rn1_4.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c2.c.sc[16 x 1], rn1_4.c2.c.b[16 x 1], rn1_4.c2.c.m[16 x 1], rn1_4.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.p = Plus(rn1_4.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.y = RectifiedLinear(rn1_4.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.c.c.c = Convolution(rn1_5.c1.c.W[16 x 144], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.y = BatchNormalization(rn1_5.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c1.c.c.sc[16 x 1], rn1_5.c1.c.c.b[16 x 1], rn1_5.c1.c.c.m[16 x 1], rn1_5.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.y = RectifiedLinear(rn1_5.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c2.c.c = Convolution(rn1_5.c2.W[16 x 144], rn1_5.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.y = BatchNormalization(rn1_5.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c2.c.sc[16 x 1], rn1_5.c2.c.b[16 x 1], rn1_5.c2.c.m[16 x 1], rn1_5.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.p = Plus(rn1_5.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.y = RectifiedLinear(rn1_5.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.c.c.c = Convolution(rn1_6.c1.c.W[16 x 144], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.y = BatchNormalization(rn1_6.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c1.c.c.sc[16 x 1], rn1_6.c1.c.c.b[16 x 1], rn1_6.c1.c.c.m[16 x 1], rn1_6.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.y = RectifiedLinear(rn1_6.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c2.c.c = Convolution(rn1_6.c2.W[16 x 144], rn1_6.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.y = BatchNormalization(rn1_6.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c2.c.sc[16 x 1], rn1_6.c2.c.b[16 x 1], rn1_6.c2.c.m[16 x 1], rn1_6.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.p = Plus(rn1_6.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.y = RectifiedLinear(rn1_6.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.c.c.c = Convolution(rn1_7.c1.c.W[16 x 144], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.y = BatchNormalization(rn1_7.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c1.c.c.sc[16 x 1], rn1_7.c1.c.c.b[16 x 1], rn1_7.c1.c.c.m[16 x 1], rn1_7.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.y = RectifiedLinear(rn1_7.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c2.c.c = Convolution(rn1_7.c2.W[16 x 144], rn1_7.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.y = BatchNormalization(rn1_7.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c2.c.sc[16 x 1], rn1_7.c2.c.b[16 x 1], rn1_7.c2.c.m[16 x 1], rn1_7.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.p = Plus(rn1_7.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.y = RectifiedLinear(rn1_7.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.c.c.c = Convolution(rn1_8.c1.c.W[16 x 144], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.y = BatchNormalization(rn1_8.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c1.c.c.sc[16 x 1], rn1_8.c1.c.c.b[16 x 1], rn1_8.c1.c.c.m[16 x 1], rn1_8.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.y = RectifiedLinear(rn1_8.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c2.c.c = Convolution(rn1_8.c2.W[16 x 144], rn1_8.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.y = BatchNormalization(rn1_8.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c2.c.sc[16 x 1], rn1_8.c2.c.b[16 x 1], rn1_8.c2.c.m[16 x 1], rn1_8.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.p = Plus(rn1_8.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.y = RectifiedLinear(rn1_8.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.c.c.c = Convolution(rn1_9.c1.c.W[16 x 144], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.y = BatchNormalization(rn1_9.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c1.c.c.sc[16 x 1], rn1_9.c1.c.c.b[16 x 1], rn1_9.c1.c.c.m[16 x 1], rn1_9.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.y = RectifiedLinear(rn1_9.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c2.c.c = Convolution(rn1_9.c2.W[16 x 144], rn1_9.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.y = BatchNormalization(rn1_9.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c2.c.sc[16 x 1], rn1_9.c2.c.b[16 x 1], rn1_9.c2.c.m[16 x 1], rn1_9.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.p = Plus(rn1_9.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.y = RectifiedLinear(rn1_9.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.c.c.c = Convolution(rn1_10.c1.c.W[16 x 144], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.y = BatchNormalization(rn1_10.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c1.c.c.sc[16 x 1], rn1_10.c1.c.c.b[16 x 1], rn1_10.c1.c.c.m[16 x 1], rn1_10.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.y = RectifiedLinear(rn1_10.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c2.c.c = Convolution(rn1_10.c2.W[16 x 144], rn1_10.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.y = BatchNormalization(rn1_10.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c2.c.sc[16 x 1], rn1_10.c2.c.b[16 x 1], rn1_10.c2.c.m[16 x 1], rn1_10.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.p = Plus(rn1_10.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.y = RectifiedLinear(rn1_10.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.c.c.c = Convolution(rn1_11.c1.c.W[16 x 144], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.y = BatchNormalization(rn1_11.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c1.c.c.sc[16 x 1], rn1_11.c1.c.c.b[16 x 1], rn1_11.c1.c.c.m[16 x 1], rn1_11.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.y = RectifiedLinear(rn1_11.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c2.c.c = Convolution(rn1_11.c2.W[16 x 144], rn1_11.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.y = BatchNormalization(rn1_11.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c2.c.sc[16 x 1], rn1_11.c2.c.b[16 x 1], rn1_11.c2.c.m[16 x 1], rn1_11.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.p = Plus(rn1_11.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.y = RectifiedLinear(rn1_11.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.c.c.c = Convolution(rn1_12.c1.c.W[16 x 144], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.y = BatchNormalization(rn1_12.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c1.c.c.sc[16 x 1], rn1_12.c1.c.c.b[16 x 1], rn1_12.c1.c.c.m[16 x 1], rn1_12.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.y = RectifiedLinear(rn1_12.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c2.c.c = Convolution(rn1_12.c2.W[16 x 144], rn1_12.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.y = BatchNormalization(rn1_12.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c2.c.sc[16 x 1], rn1_12.c2.c.b[16 x 1], rn1_12.c2.c.m[16 x 1], rn1_12.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.p = Plus(rn1_12.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.y = RectifiedLinear(rn1_12.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.c.c.c = Convolution(rn1_13.c1.c.W[16 x 144], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.y = BatchNormalization(rn1_13.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c1.c.c.sc[16 x 1], rn1_13.c1.c.c.b[16 x 1], rn1_13.c1.c.c.m[16 x 1], rn1_13.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.y = RectifiedLinear(rn1_13.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c2.c.c = Convolution(rn1_13.c2.W[16 x 144], rn1_13.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.y = BatchNormalization(rn1_13.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c2.c.sc[16 x 1], rn1_13.c2.c.b[16 x 1], rn1_13.c2.c.m[16 x 1], rn1_13.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.p = Plus(rn1_13.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.y = RectifiedLinear(rn1_13.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.c.c.c = Convolution(rn1_14.c1.c.W[16 x 144], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.y = BatchNormalization(rn1_14.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c1.c.c.sc[16 x 1], rn1_14.c1.c.c.b[16 x 1], rn1_14.c1.c.c.m[16 x 1], rn1_14.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.y = RectifiedLinear(rn1_14.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c2.c.c = Convolution(rn1_14.c2.W[16 x 144], rn1_14.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.y = BatchNormalization(rn1_14.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c2.c.sc[16 x 1], rn1_14.c2.c.b[16 x 1], rn1_14.c2.c.m[16 x 1], rn1_14.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.p = Plus(rn1_14.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.y = RectifiedLinear(rn1_14.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.c.c.c = Convolution(rn1_15.c1.c.W[16 x 144], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.y = BatchNormalization(rn1_15.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c1.c.c.sc[16 x 1], rn1_15.c1.c.c.b[16 x 1], rn1_15.c1.c.c.m[16 x 1], rn1_15.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.y = RectifiedLinear(rn1_15.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c2.c.c = Convolution(rn1_15.c2.W[16 x 144], rn1_15.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.y = BatchNormalization(rn1_15.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c2.c.sc[16 x 1], rn1_15.c2.c.b[16 x 1], rn1_15.c2.c.m[16 x 1], rn1_15.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.p = Plus(rn1_15.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.y = RectifiedLinear(rn1_15.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.c.c.c = Convolution(rn1_16.c1.c.W[16 x 144], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.y = BatchNormalization(rn1_16.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c1.c.c.sc[16 x 1], rn1_16.c1.c.c.b[16 x 1], rn1_16.c1.c.c.m[16 x 1], rn1_16.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.y = RectifiedLinear(rn1_16.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c2.c.c = Convolution(rn1_16.c2.W[16 x 144], rn1_16.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.y = BatchNormalization(rn1_16.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c2.c.sc[16 x 1], rn1_16.c2.c.b[16 x 1], rn1_16.c2.c.m[16 x 1], rn1_16.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.p = Plus(rn1_16.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.y = RectifiedLinear(rn1_16.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.c.c.c = Convolution(rn1_17.c1.c.W[16 x 144], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.y = BatchNormalization(rn1_17.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c1.c.c.sc[16 x 1], rn1_17.c1.c.c.b[16 x 1], rn1_17.c1.c.c.m[16 x 1], rn1_17.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.y = RectifiedLinear(rn1_17.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c2.c.c = Convolution(rn1_17.c2.W[16 x 144], rn1_17.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.y = BatchNormalization(rn1_17.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c2.c.sc[16 x 1], rn1_17.c2.c.b[16 x 1], rn1_17.c2.c.m[16 x 1], rn1_17.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.p = Plus(rn1_17.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.y = RectifiedLinear(rn1_17.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.c.c.c = Convolution(rn1_18.c1.c.W[16 x 144], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.y = BatchNormalization(rn1_18.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c1.c.c.sc[16 x 1], rn1_18.c1.c.c.b[16 x 1], rn1_18.c1.c.c.m[16 x 1], rn1_18.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.y = RectifiedLinear(rn1_18.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c2.c.c = Convolution(rn1_18.c2.W[16 x 144], rn1_18.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.y = BatchNormalization(rn1_18.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c2.c.sc[16 x 1], rn1_18.c2.c.b[16 x 1], rn1_18.c2.c.m[16 x 1], rn1_18.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.p = Plus(rn1_18.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.y = RectifiedLinear(rn1_18.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn2_1.c1.c.c.c = Convolution(rn2_1.c1.c.W[32 x 144], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.y = BatchNormalization(rn2_1.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c1.c.c.sc[32 x 1], rn2_1.c1.c.c.b[32 x 1], rn2_1.c1.c.c.m[32 x 1], rn2_1.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c2.c.c = Convolution(rn2_1.c2.W[32 x 288], rn2_1.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.y = BatchNormalization(rn2_1.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c2.c.sc[32 x 1], rn2_1.c2.c.b[32 x 1], rn2_1.c2.c.m[32 x 1], rn2_1.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1_Wproj = LearnableParameter -> [32 x 16] -Validating --> rn2_1.c_proj.c = Convolution(rn2_1_Wproj[32 x 16], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c_proj.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.y = BatchNormalization(rn2_1.c_proj.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.sc[32 x 1], rn2_1.c_proj.b[32 x 1], rn2_1.c_proj.m[32 x 1], rn2_1.c_proj.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.p = Plus(rn2_1.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.c.c.c = Convolution(rn2_2.c1.c.W[32 x 288], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.y = BatchNormalization(rn2_2.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c1.c.c.sc[32 x 1], rn2_2.c1.c.c.b[32 x 1], rn2_2.c1.c.c.m[32 x 1], rn2_2.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c2.c.c = Convolution(rn2_2.c2.W[32 x 288], rn2_2.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.y = BatchNormalization(rn2_2.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c2.c.sc[32 x 1], rn2_2.c2.c.b[32 x 1], rn2_2.c2.c.m[32 x 1], rn2_2.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.p = Plus(rn2_2.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.c.c.c = Convolution(rn2_3.c1.c.W[32 x 288], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.y = BatchNormalization(rn2_3.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c1.c.c.sc[32 x 1], rn2_3.c1.c.c.b[32 x 1], rn2_3.c1.c.c.m[32 x 1], rn2_3.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c2.c.c = Convolution(rn2_3.c2.W[32 x 288], rn2_3.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.y = BatchNormalization(rn2_3.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c2.c.sc[32 x 1], rn2_3.c2.c.b[32 x 1], rn2_3.c2.c.m[32 x 1], rn2_3.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.p = Plus(rn2_3.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.c.c.c = Convolution(rn2_4.c1.c.W[32 x 288], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.y = BatchNormalization(rn2_4.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c1.c.c.sc[32 x 1], rn2_4.c1.c.c.b[32 x 1], rn2_4.c1.c.c.m[32 x 1], rn2_4.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.y = RectifiedLinear(rn2_4.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c2.c.c = Convolution(rn2_4.c2.W[32 x 288], rn2_4.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.y = BatchNormalization(rn2_4.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c2.c.sc[32 x 1], rn2_4.c2.c.b[32 x 1], rn2_4.c2.c.m[32 x 1], rn2_4.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.p = Plus(rn2_4.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.y = RectifiedLinear(rn2_4.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.c.c.c = Convolution(rn2_5.c1.c.W[32 x 288], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.y = BatchNormalization(rn2_5.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c1.c.c.sc[32 x 1], rn2_5.c1.c.c.b[32 x 1], rn2_5.c1.c.c.m[32 x 1], rn2_5.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.y = RectifiedLinear(rn2_5.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c2.c.c = Convolution(rn2_5.c2.W[32 x 288], rn2_5.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.y = BatchNormalization(rn2_5.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c2.c.sc[32 x 1], rn2_5.c2.c.b[32 x 1], rn2_5.c2.c.m[32 x 1], rn2_5.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.p = Plus(rn2_5.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.y = RectifiedLinear(rn2_5.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.c.c.c = Convolution(rn2_6.c1.c.W[32 x 288], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.y = BatchNormalization(rn2_6.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c1.c.c.sc[32 x 1], rn2_6.c1.c.c.b[32 x 1], rn2_6.c1.c.c.m[32 x 1], rn2_6.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.y = RectifiedLinear(rn2_6.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c2.c.c = Convolution(rn2_6.c2.W[32 x 288], rn2_6.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.y = BatchNormalization(rn2_6.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c2.c.sc[32 x 1], rn2_6.c2.c.b[32 x 1], rn2_6.c2.c.m[32 x 1], rn2_6.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.p = Plus(rn2_6.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.y = RectifiedLinear(rn2_6.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.c.c.c = Convolution(rn2_7.c1.c.W[32 x 288], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.y = BatchNormalization(rn2_7.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c1.c.c.sc[32 x 1], rn2_7.c1.c.c.b[32 x 1], rn2_7.c1.c.c.m[32 x 1], rn2_7.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.y = RectifiedLinear(rn2_7.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c2.c.c = Convolution(rn2_7.c2.W[32 x 288], rn2_7.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.y = BatchNormalization(rn2_7.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c2.c.sc[32 x 1], rn2_7.c2.c.b[32 x 1], rn2_7.c2.c.m[32 x 1], rn2_7.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.p = Plus(rn2_7.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.y = RectifiedLinear(rn2_7.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.c.c.c = Convolution(rn2_8.c1.c.W[32 x 288], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.y = BatchNormalization(rn2_8.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c1.c.c.sc[32 x 1], rn2_8.c1.c.c.b[32 x 1], rn2_8.c1.c.c.m[32 x 1], rn2_8.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.y = RectifiedLinear(rn2_8.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c2.c.c = Convolution(rn2_8.c2.W[32 x 288], rn2_8.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.y = BatchNormalization(rn2_8.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c2.c.sc[32 x 1], rn2_8.c2.c.b[32 x 1], rn2_8.c2.c.m[32 x 1], rn2_8.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.p = Plus(rn2_8.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.y = RectifiedLinear(rn2_8.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.c.c.c = Convolution(rn2_9.c1.c.W[32 x 288], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.y = BatchNormalization(rn2_9.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c1.c.c.sc[32 x 1], rn2_9.c1.c.c.b[32 x 1], rn2_9.c1.c.c.m[32 x 1], rn2_9.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.y = RectifiedLinear(rn2_9.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c2.c.c = Convolution(rn2_9.c2.W[32 x 288], rn2_9.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.y = BatchNormalization(rn2_9.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c2.c.sc[32 x 1], rn2_9.c2.c.b[32 x 1], rn2_9.c2.c.m[32 x 1], rn2_9.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.p = Plus(rn2_9.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.y = RectifiedLinear(rn2_9.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.c.c.c = Convolution(rn2_10.c1.c.W[32 x 288], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.y = BatchNormalization(rn2_10.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c1.c.c.sc[32 x 1], rn2_10.c1.c.c.b[32 x 1], rn2_10.c1.c.c.m[32 x 1], rn2_10.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.y = RectifiedLinear(rn2_10.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c2.c.c = Convolution(rn2_10.c2.W[32 x 288], rn2_10.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.y = BatchNormalization(rn2_10.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c2.c.sc[32 x 1], rn2_10.c2.c.b[32 x 1], rn2_10.c2.c.m[32 x 1], rn2_10.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.p = Plus(rn2_10.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.y = RectifiedLinear(rn2_10.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.c.c.c = Convolution(rn2_11.c1.c.W[32 x 288], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.y = BatchNormalization(rn2_11.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c1.c.c.sc[32 x 1], rn2_11.c1.c.c.b[32 x 1], rn2_11.c1.c.c.m[32 x 1], rn2_11.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.y = RectifiedLinear(rn2_11.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c2.c.c = Convolution(rn2_11.c2.W[32 x 288], rn2_11.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.y = BatchNormalization(rn2_11.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c2.c.sc[32 x 1], rn2_11.c2.c.b[32 x 1], rn2_11.c2.c.m[32 x 1], rn2_11.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.p = Plus(rn2_11.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.y = RectifiedLinear(rn2_11.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.c.c.c = Convolution(rn2_12.c1.c.W[32 x 288], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.y = BatchNormalization(rn2_12.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c1.c.c.sc[32 x 1], rn2_12.c1.c.c.b[32 x 1], rn2_12.c1.c.c.m[32 x 1], rn2_12.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.y = RectifiedLinear(rn2_12.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c2.c.c = Convolution(rn2_12.c2.W[32 x 288], rn2_12.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.y = BatchNormalization(rn2_12.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c2.c.sc[32 x 1], rn2_12.c2.c.b[32 x 1], rn2_12.c2.c.m[32 x 1], rn2_12.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.p = Plus(rn2_12.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.y = RectifiedLinear(rn2_12.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.c.c.c = Convolution(rn2_13.c1.c.W[32 x 288], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.y = BatchNormalization(rn2_13.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c1.c.c.sc[32 x 1], rn2_13.c1.c.c.b[32 x 1], rn2_13.c1.c.c.m[32 x 1], rn2_13.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.y = RectifiedLinear(rn2_13.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c2.c.c = Convolution(rn2_13.c2.W[32 x 288], rn2_13.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.y = BatchNormalization(rn2_13.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c2.c.sc[32 x 1], rn2_13.c2.c.b[32 x 1], rn2_13.c2.c.m[32 x 1], rn2_13.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.p = Plus(rn2_13.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.y = RectifiedLinear(rn2_13.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.c.c.c = Convolution(rn2_14.c1.c.W[32 x 288], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.y = BatchNormalization(rn2_14.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c1.c.c.sc[32 x 1], rn2_14.c1.c.c.b[32 x 1], rn2_14.c1.c.c.m[32 x 1], rn2_14.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.y = RectifiedLinear(rn2_14.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c2.c.c = Convolution(rn2_14.c2.W[32 x 288], rn2_14.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.y = BatchNormalization(rn2_14.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c2.c.sc[32 x 1], rn2_14.c2.c.b[32 x 1], rn2_14.c2.c.m[32 x 1], rn2_14.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.p = Plus(rn2_14.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.y = RectifiedLinear(rn2_14.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.c.c.c = Convolution(rn2_15.c1.c.W[32 x 288], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.y = BatchNormalization(rn2_15.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c1.c.c.sc[32 x 1], rn2_15.c1.c.c.b[32 x 1], rn2_15.c1.c.c.m[32 x 1], rn2_15.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.y = RectifiedLinear(rn2_15.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c2.c.c = Convolution(rn2_15.c2.W[32 x 288], rn2_15.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.y = BatchNormalization(rn2_15.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c2.c.sc[32 x 1], rn2_15.c2.c.b[32 x 1], rn2_15.c2.c.m[32 x 1], rn2_15.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.p = Plus(rn2_15.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.y = RectifiedLinear(rn2_15.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.c.c.c = Convolution(rn2_16.c1.c.W[32 x 288], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.y = BatchNormalization(rn2_16.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c1.c.c.sc[32 x 1], rn2_16.c1.c.c.b[32 x 1], rn2_16.c1.c.c.m[32 x 1], rn2_16.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.y = RectifiedLinear(rn2_16.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c2.c.c = Convolution(rn2_16.c2.W[32 x 288], rn2_16.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.y = BatchNormalization(rn2_16.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c2.c.sc[32 x 1], rn2_16.c2.c.b[32 x 1], rn2_16.c2.c.m[32 x 1], rn2_16.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.p = Plus(rn2_16.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.y = RectifiedLinear(rn2_16.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.c.c.c = Convolution(rn2_17.c1.c.W[32 x 288], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.y = BatchNormalization(rn2_17.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c1.c.c.sc[32 x 1], rn2_17.c1.c.c.b[32 x 1], rn2_17.c1.c.c.m[32 x 1], rn2_17.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.y = RectifiedLinear(rn2_17.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c2.c.c = Convolution(rn2_17.c2.W[32 x 288], rn2_17.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.y = BatchNormalization(rn2_17.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c2.c.sc[32 x 1], rn2_17.c2.c.b[32 x 1], rn2_17.c2.c.m[32 x 1], rn2_17.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.p = Plus(rn2_17.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.y = RectifiedLinear(rn2_17.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.c.c.c = Convolution(rn2_18.c1.c.W[32 x 288], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.y = BatchNormalization(rn2_18.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c1.c.c.sc[32 x 1], rn2_18.c1.c.c.b[32 x 1], rn2_18.c1.c.c.m[32 x 1], rn2_18.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.y = RectifiedLinear(rn2_18.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c2.c.c = Convolution(rn2_18.c2.W[32 x 288], rn2_18.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.y = BatchNormalization(rn2_18.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c2.c.sc[32 x 1], rn2_18.c2.c.b[32 x 1], rn2_18.c2.c.m[32 x 1], rn2_18.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.p = Plus(rn2_18.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.y = RectifiedLinear(rn2_18.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn3_1.c1.c.c.c = Convolution(rn3_1.c1.c.W[64 x 288], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.y = BatchNormalization(rn3_1.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c1.c.c.sc[64 x 1], rn3_1.c1.c.c.b[64 x 1], rn3_1.c1.c.c.m[64 x 1], rn3_1.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c2.c.c = Convolution(rn3_1.c2.W[64 x 576], rn3_1.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.y = BatchNormalization(rn3_1.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c2.c.sc[64 x 1], rn3_1.c2.c.b[64 x 1], rn3_1.c2.c.m[64 x 1], rn3_1.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1_Wproj = LearnableParameter -> [64 x 32] -Validating --> rn3_1.c_proj.c = Convolution(rn3_1_Wproj[64 x 32], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c_proj.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.y = BatchNormalization(rn3_1.c_proj.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.sc[64 x 1], rn3_1.c_proj.b[64 x 1], rn3_1.c_proj.m[64 x 1], rn3_1.c_proj.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.p = Plus(rn3_1.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.c.c.c = Convolution(rn3_2.c1.c.W[64 x 576], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.y = BatchNormalization(rn3_2.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c1.c.c.sc[64 x 1], rn3_2.c1.c.c.b[64 x 1], rn3_2.c1.c.c.m[64 x 1], rn3_2.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c2.c.c = Convolution(rn3_2.c2.W[64 x 576], rn3_2.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.y = BatchNormalization(rn3_2.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c2.c.sc[64 x 1], rn3_2.c2.c.b[64 x 1], rn3_2.c2.c.m[64 x 1], rn3_2.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.p = Plus(rn3_2.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.c.c.c = Convolution(rn3_3.c1.c.W[64 x 576], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.y = BatchNormalization(rn3_3.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c1.c.c.sc[64 x 1], rn3_3.c1.c.c.b[64 x 1], rn3_3.c1.c.c.m[64 x 1], rn3_3.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c2.c.c = Convolution(rn3_3.c2.W[64 x 576], rn3_3.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.y = BatchNormalization(rn3_3.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c2.c.sc[64 x 1], rn3_3.c2.c.b[64 x 1], rn3_3.c2.c.m[64 x 1], rn3_3.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.p = Plus(rn3_3.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.c.c.c = Convolution(rn3_4.c1.c.W[64 x 576], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.y = BatchNormalization(rn3_4.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c1.c.c.sc[64 x 1], rn3_4.c1.c.c.b[64 x 1], rn3_4.c1.c.c.m[64 x 1], rn3_4.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.y = RectifiedLinear(rn3_4.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c2.c.c = Convolution(rn3_4.c2.W[64 x 576], rn3_4.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.y = BatchNormalization(rn3_4.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c2.c.sc[64 x 1], rn3_4.c2.c.b[64 x 1], rn3_4.c2.c.m[64 x 1], rn3_4.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.p = Plus(rn3_4.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.y = RectifiedLinear(rn3_4.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.c.c.c = Convolution(rn3_5.c1.c.W[64 x 576], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.y = BatchNormalization(rn3_5.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c1.c.c.sc[64 x 1], rn3_5.c1.c.c.b[64 x 1], rn3_5.c1.c.c.m[64 x 1], rn3_5.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.y = RectifiedLinear(rn3_5.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c2.c.c = Convolution(rn3_5.c2.W[64 x 576], rn3_5.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.y = BatchNormalization(rn3_5.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c2.c.sc[64 x 1], rn3_5.c2.c.b[64 x 1], rn3_5.c2.c.m[64 x 1], rn3_5.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.p = Plus(rn3_5.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.y = RectifiedLinear(rn3_5.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.c.c.c = Convolution(rn3_6.c1.c.W[64 x 576], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.y = BatchNormalization(rn3_6.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c1.c.c.sc[64 x 1], rn3_6.c1.c.c.b[64 x 1], rn3_6.c1.c.c.m[64 x 1], rn3_6.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.y = RectifiedLinear(rn3_6.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c2.c.c = Convolution(rn3_6.c2.W[64 x 576], rn3_6.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.y = BatchNormalization(rn3_6.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c2.c.sc[64 x 1], rn3_6.c2.c.b[64 x 1], rn3_6.c2.c.m[64 x 1], rn3_6.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.p = Plus(rn3_6.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.y = RectifiedLinear(rn3_6.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.c.c.c = Convolution(rn3_7.c1.c.W[64 x 576], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.y = BatchNormalization(rn3_7.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c1.c.c.sc[64 x 1], rn3_7.c1.c.c.b[64 x 1], rn3_7.c1.c.c.m[64 x 1], rn3_7.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.y = RectifiedLinear(rn3_7.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c2.c.c = Convolution(rn3_7.c2.W[64 x 576], rn3_7.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.y = BatchNormalization(rn3_7.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c2.c.sc[64 x 1], rn3_7.c2.c.b[64 x 1], rn3_7.c2.c.m[64 x 1], rn3_7.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.p = Plus(rn3_7.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.y = RectifiedLinear(rn3_7.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.c.c.c = Convolution(rn3_8.c1.c.W[64 x 576], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.y = BatchNormalization(rn3_8.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c1.c.c.sc[64 x 1], rn3_8.c1.c.c.b[64 x 1], rn3_8.c1.c.c.m[64 x 1], rn3_8.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.y = RectifiedLinear(rn3_8.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c2.c.c = Convolution(rn3_8.c2.W[64 x 576], rn3_8.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.y = BatchNormalization(rn3_8.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c2.c.sc[64 x 1], rn3_8.c2.c.b[64 x 1], rn3_8.c2.c.m[64 x 1], rn3_8.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.p = Plus(rn3_8.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.y = RectifiedLinear(rn3_8.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.c.c.c = Convolution(rn3_9.c1.c.W[64 x 576], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.y = BatchNormalization(rn3_9.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c1.c.c.sc[64 x 1], rn3_9.c1.c.c.b[64 x 1], rn3_9.c1.c.c.m[64 x 1], rn3_9.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.y = RectifiedLinear(rn3_9.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c2.c.c = Convolution(rn3_9.c2.W[64 x 576], rn3_9.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.y = BatchNormalization(rn3_9.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c2.c.sc[64 x 1], rn3_9.c2.c.b[64 x 1], rn3_9.c2.c.m[64 x 1], rn3_9.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.p = Plus(rn3_9.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.y = RectifiedLinear(rn3_9.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.c.c.c = Convolution(rn3_10.c1.c.W[64 x 576], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.y = BatchNormalization(rn3_10.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c1.c.c.sc[64 x 1], rn3_10.c1.c.c.b[64 x 1], rn3_10.c1.c.c.m[64 x 1], rn3_10.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.y = RectifiedLinear(rn3_10.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c2.c.c = Convolution(rn3_10.c2.W[64 x 576], rn3_10.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.y = BatchNormalization(rn3_10.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c2.c.sc[64 x 1], rn3_10.c2.c.b[64 x 1], rn3_10.c2.c.m[64 x 1], rn3_10.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.p = Plus(rn3_10.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.y = RectifiedLinear(rn3_10.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.c.c.c = Convolution(rn3_11.c1.c.W[64 x 576], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.y = BatchNormalization(rn3_11.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c1.c.c.sc[64 x 1], rn3_11.c1.c.c.b[64 x 1], rn3_11.c1.c.c.m[64 x 1], rn3_11.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.y = RectifiedLinear(rn3_11.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c2.c.c = Convolution(rn3_11.c2.W[64 x 576], rn3_11.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.y = BatchNormalization(rn3_11.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c2.c.sc[64 x 1], rn3_11.c2.c.b[64 x 1], rn3_11.c2.c.m[64 x 1], rn3_11.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.p = Plus(rn3_11.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.y = RectifiedLinear(rn3_11.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.c.c.c = Convolution(rn3_12.c1.c.W[64 x 576], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.y = BatchNormalization(rn3_12.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c1.c.c.sc[64 x 1], rn3_12.c1.c.c.b[64 x 1], rn3_12.c1.c.c.m[64 x 1], rn3_12.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.y = RectifiedLinear(rn3_12.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c2.c.c = Convolution(rn3_12.c2.W[64 x 576], rn3_12.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.y = BatchNormalization(rn3_12.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c2.c.sc[64 x 1], rn3_12.c2.c.b[64 x 1], rn3_12.c2.c.m[64 x 1], rn3_12.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.p = Plus(rn3_12.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.y = RectifiedLinear(rn3_12.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.c.c.c = Convolution(rn3_13.c1.c.W[64 x 576], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.y = BatchNormalization(rn3_13.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c1.c.c.sc[64 x 1], rn3_13.c1.c.c.b[64 x 1], rn3_13.c1.c.c.m[64 x 1], rn3_13.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.y = RectifiedLinear(rn3_13.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c2.c.c = Convolution(rn3_13.c2.W[64 x 576], rn3_13.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.y = BatchNormalization(rn3_13.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c2.c.sc[64 x 1], rn3_13.c2.c.b[64 x 1], rn3_13.c2.c.m[64 x 1], rn3_13.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.p = Plus(rn3_13.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.y = RectifiedLinear(rn3_13.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.c.c.c = Convolution(rn3_14.c1.c.W[64 x 576], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.y = BatchNormalization(rn3_14.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c1.c.c.sc[64 x 1], rn3_14.c1.c.c.b[64 x 1], rn3_14.c1.c.c.m[64 x 1], rn3_14.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.y = RectifiedLinear(rn3_14.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c2.c.c = Convolution(rn3_14.c2.W[64 x 576], rn3_14.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.y = BatchNormalization(rn3_14.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c2.c.sc[64 x 1], rn3_14.c2.c.b[64 x 1], rn3_14.c2.c.m[64 x 1], rn3_14.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.p = Plus(rn3_14.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.y = RectifiedLinear(rn3_14.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.c.c.c = Convolution(rn3_15.c1.c.W[64 x 576], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.y = BatchNormalization(rn3_15.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c1.c.c.sc[64 x 1], rn3_15.c1.c.c.b[64 x 1], rn3_15.c1.c.c.m[64 x 1], rn3_15.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.y = RectifiedLinear(rn3_15.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c2.c.c = Convolution(rn3_15.c2.W[64 x 576], rn3_15.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.y = BatchNormalization(rn3_15.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c2.c.sc[64 x 1], rn3_15.c2.c.b[64 x 1], rn3_15.c2.c.m[64 x 1], rn3_15.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.p = Plus(rn3_15.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.y = RectifiedLinear(rn3_15.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.c.c.c = Convolution(rn3_16.c1.c.W[64 x 576], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.y = BatchNormalization(rn3_16.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c1.c.c.sc[64 x 1], rn3_16.c1.c.c.b[64 x 1], rn3_16.c1.c.c.m[64 x 1], rn3_16.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.y = RectifiedLinear(rn3_16.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c2.c.c = Convolution(rn3_16.c2.W[64 x 576], rn3_16.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.y = BatchNormalization(rn3_16.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c2.c.sc[64 x 1], rn3_16.c2.c.b[64 x 1], rn3_16.c2.c.m[64 x 1], rn3_16.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.p = Plus(rn3_16.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.y = RectifiedLinear(rn3_16.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.c.c.c = Convolution(rn3_17.c1.c.W[64 x 576], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.y = BatchNormalization(rn3_17.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c1.c.c.sc[64 x 1], rn3_17.c1.c.c.b[64 x 1], rn3_17.c1.c.c.m[64 x 1], rn3_17.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.y = RectifiedLinear(rn3_17.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c2.c.c = Convolution(rn3_17.c2.W[64 x 576], rn3_17.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.y = BatchNormalization(rn3_17.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c2.c.sc[64 x 1], rn3_17.c2.c.b[64 x 1], rn3_17.c2.c.m[64 x 1], rn3_17.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.p = Plus(rn3_17.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.y = RectifiedLinear(rn3_17.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.c.c.c = Convolution(rn3_18.c1.c.W[64 x 576], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.y = BatchNormalization(rn3_18.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c1.c.c.sc[64 x 1], rn3_18.c1.c.c.b[64 x 1], rn3_18.c1.c.c.m[64 x 1], rn3_18.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.y = RectifiedLinear(rn3_18.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c2.c.c = Convolution(rn3_18.c2.W[64 x 576], rn3_18.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.y = BatchNormalization(rn3_18.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c2.c.sc[64 x 1], rn3_18.c2.c.b[64 x 1], rn3_18.c2.c.m[64 x 1], rn3_18.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.p = Plus(rn3_18.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.y = RectifiedLinear(rn3_18.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> pool = AveragePooling(rn3_18.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [1 x 1 x 64 x *] -Validating --> OutputNodes.t = Times(OutputNodes.W[10 x 64], pool[1 x 1 x 64 x *]) -> [10 x *] -Validating --> OutputNodes.b = LearnableParameter -> [10] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10 x *], OutputNodes.b[10]) -> [10 x *] -Validating --> CE = CrossEntropyWithSoftmax(labels[10 x *], OutputNodes.z[10 x *]) -> [1] -Validating --> Err = ErrorPrediction(labels[10 x *], OutputNodes.z[10 x *]) -> [1] - -Validating network. 390 nodes to process in pass 2. - -Validating --> labels = InputValue -> [10 x *] -Validating --> OutputNodes.W = LearnableParameter -> [10 x 64] -Validating --> rn3_18.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_18.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_17.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_17.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_16.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_16.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_15.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_15.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_14.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_14.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_13.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_13.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_12.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_12.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_11.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_11.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_10.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_10.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_9.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_9.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_8.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_8.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_7.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_7.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_6.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_6.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_5.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_5.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_4.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_4.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 x 288] -Validating --> rn2_18.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_18.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_17.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_17.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_16.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_16.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_15.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_15.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_14.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_14.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_13.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_13.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_12.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_12.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_11.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_11.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_10.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_10.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_9.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_9.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_8.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_8.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_7.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_7.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_6.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_6.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_5.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_5.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_4.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_4.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 x 144] -Validating --> rn1_18.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_18.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_17.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_17.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_16.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_16.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_15.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_15.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_14.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_14.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_13.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_13.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_12.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_12.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_11.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_11.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_10.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_10.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_9.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_9.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_8.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_8.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_7.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_7.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_6.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_6.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_5.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_5.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_4.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_4.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> conv1.c.W = LearnableParameter -> [16 x 27] -Validating --> features = InputValue -> [32 x 32 x 3 x *] -Validating --> conv1.c.c.c = Convolution(conv1.c.W[16 x 27], features[32 x 32 x 3 x * {W=32, H=3, C=32}]) -> [32 x 32 x 16 x *] -Validating --> conv1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.y = BatchNormalization(conv1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.c.c.sc[16 x 1], conv1.c.c.b[16 x 1], conv1.c.c.m[16 x 1], conv1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> conv1.y = RectifiedLinear(conv1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.c.c.c = Convolution(rn1_1.c1.c.W[16 x 144], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.y = BatchNormalization(rn1_1.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c1.c.c.sc[16 x 1], rn1_1.c1.c.c.b[16 x 1], rn1_1.c1.c.c.m[16 x 1], rn1_1.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c2.c.c = Convolution(rn1_1.c2.W[16 x 144], rn1_1.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.y = BatchNormalization(rn1_1.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c2.c.sc[16 x 1], rn1_1.c2.c.b[16 x 1], rn1_1.c2.c.m[16 x 1], rn1_1.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.p = Plus(rn1_1.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.c.c.c = Convolution(rn1_2.c1.c.W[16 x 144], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.y = BatchNormalization(rn1_2.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c1.c.c.sc[16 x 1], rn1_2.c1.c.c.b[16 x 1], rn1_2.c1.c.c.m[16 x 1], rn1_2.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c2.c.c = Convolution(rn1_2.c2.W[16 x 144], rn1_2.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.y = BatchNormalization(rn1_2.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c2.c.sc[16 x 1], rn1_2.c2.c.b[16 x 1], rn1_2.c2.c.m[16 x 1], rn1_2.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.p = Plus(rn1_2.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.c.c.c = Convolution(rn1_3.c1.c.W[16 x 144], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.y = BatchNormalization(rn1_3.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c1.c.c.sc[16 x 1], rn1_3.c1.c.c.b[16 x 1], rn1_3.c1.c.c.m[16 x 1], rn1_3.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c2.c.c = Convolution(rn1_3.c2.W[16 x 144], rn1_3.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.y = BatchNormalization(rn1_3.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c2.c.sc[16 x 1], rn1_3.c2.c.b[16 x 1], rn1_3.c2.c.m[16 x 1], rn1_3.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.p = Plus(rn1_3.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.c.c.c = Convolution(rn1_4.c1.c.W[16 x 144], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.y = BatchNormalization(rn1_4.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c1.c.c.sc[16 x 1], rn1_4.c1.c.c.b[16 x 1], rn1_4.c1.c.c.m[16 x 1], rn1_4.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.y = RectifiedLinear(rn1_4.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c2.c.c = Convolution(rn1_4.c2.W[16 x 144], rn1_4.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.y = BatchNormalization(rn1_4.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c2.c.sc[16 x 1], rn1_4.c2.c.b[16 x 1], rn1_4.c2.c.m[16 x 1], rn1_4.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.p = Plus(rn1_4.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.y = RectifiedLinear(rn1_4.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.c.c.c = Convolution(rn1_5.c1.c.W[16 x 144], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.y = BatchNormalization(rn1_5.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c1.c.c.sc[16 x 1], rn1_5.c1.c.c.b[16 x 1], rn1_5.c1.c.c.m[16 x 1], rn1_5.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.y = RectifiedLinear(rn1_5.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c2.c.c = Convolution(rn1_5.c2.W[16 x 144], rn1_5.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.y = BatchNormalization(rn1_5.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c2.c.sc[16 x 1], rn1_5.c2.c.b[16 x 1], rn1_5.c2.c.m[16 x 1], rn1_5.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.p = Plus(rn1_5.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.y = RectifiedLinear(rn1_5.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.c.c.c = Convolution(rn1_6.c1.c.W[16 x 144], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.y = BatchNormalization(rn1_6.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c1.c.c.sc[16 x 1], rn1_6.c1.c.c.b[16 x 1], rn1_6.c1.c.c.m[16 x 1], rn1_6.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.y = RectifiedLinear(rn1_6.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c2.c.c = Convolution(rn1_6.c2.W[16 x 144], rn1_6.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.y = BatchNormalization(rn1_6.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c2.c.sc[16 x 1], rn1_6.c2.c.b[16 x 1], rn1_6.c2.c.m[16 x 1], rn1_6.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.p = Plus(rn1_6.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.y = RectifiedLinear(rn1_6.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.c.c.c = Convolution(rn1_7.c1.c.W[16 x 144], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.y = BatchNormalization(rn1_7.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c1.c.c.sc[16 x 1], rn1_7.c1.c.c.b[16 x 1], rn1_7.c1.c.c.m[16 x 1], rn1_7.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.y = RectifiedLinear(rn1_7.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c2.c.c = Convolution(rn1_7.c2.W[16 x 144], rn1_7.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.y = BatchNormalization(rn1_7.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c2.c.sc[16 x 1], rn1_7.c2.c.b[16 x 1], rn1_7.c2.c.m[16 x 1], rn1_7.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.p = Plus(rn1_7.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.y = RectifiedLinear(rn1_7.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.c.c.c = Convolution(rn1_8.c1.c.W[16 x 144], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.y = BatchNormalization(rn1_8.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c1.c.c.sc[16 x 1], rn1_8.c1.c.c.b[16 x 1], rn1_8.c1.c.c.m[16 x 1], rn1_8.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.y = RectifiedLinear(rn1_8.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c2.c.c = Convolution(rn1_8.c2.W[16 x 144], rn1_8.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.y = BatchNormalization(rn1_8.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c2.c.sc[16 x 1], rn1_8.c2.c.b[16 x 1], rn1_8.c2.c.m[16 x 1], rn1_8.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.p = Plus(rn1_8.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.y = RectifiedLinear(rn1_8.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.c.c.c = Convolution(rn1_9.c1.c.W[16 x 144], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.y = BatchNormalization(rn1_9.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c1.c.c.sc[16 x 1], rn1_9.c1.c.c.b[16 x 1], rn1_9.c1.c.c.m[16 x 1], rn1_9.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.y = RectifiedLinear(rn1_9.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c2.c.c = Convolution(rn1_9.c2.W[16 x 144], rn1_9.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.y = BatchNormalization(rn1_9.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c2.c.sc[16 x 1], rn1_9.c2.c.b[16 x 1], rn1_9.c2.c.m[16 x 1], rn1_9.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.p = Plus(rn1_9.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.y = RectifiedLinear(rn1_9.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.c.c.c = Convolution(rn1_10.c1.c.W[16 x 144], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.y = BatchNormalization(rn1_10.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c1.c.c.sc[16 x 1], rn1_10.c1.c.c.b[16 x 1], rn1_10.c1.c.c.m[16 x 1], rn1_10.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.y = RectifiedLinear(rn1_10.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c2.c.c = Convolution(rn1_10.c2.W[16 x 144], rn1_10.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.y = BatchNormalization(rn1_10.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c2.c.sc[16 x 1], rn1_10.c2.c.b[16 x 1], rn1_10.c2.c.m[16 x 1], rn1_10.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.p = Plus(rn1_10.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.y = RectifiedLinear(rn1_10.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.c.c.c = Convolution(rn1_11.c1.c.W[16 x 144], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.y = BatchNormalization(rn1_11.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c1.c.c.sc[16 x 1], rn1_11.c1.c.c.b[16 x 1], rn1_11.c1.c.c.m[16 x 1], rn1_11.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.y = RectifiedLinear(rn1_11.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c2.c.c = Convolution(rn1_11.c2.W[16 x 144], rn1_11.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.y = BatchNormalization(rn1_11.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c2.c.sc[16 x 1], rn1_11.c2.c.b[16 x 1], rn1_11.c2.c.m[16 x 1], rn1_11.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.p = Plus(rn1_11.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.y = RectifiedLinear(rn1_11.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.c.c.c = Convolution(rn1_12.c1.c.W[16 x 144], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.y = BatchNormalization(rn1_12.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c1.c.c.sc[16 x 1], rn1_12.c1.c.c.b[16 x 1], rn1_12.c1.c.c.m[16 x 1], rn1_12.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.y = RectifiedLinear(rn1_12.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c2.c.c = Convolution(rn1_12.c2.W[16 x 144], rn1_12.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.y = BatchNormalization(rn1_12.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c2.c.sc[16 x 1], rn1_12.c2.c.b[16 x 1], rn1_12.c2.c.m[16 x 1], rn1_12.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.p = Plus(rn1_12.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.y = RectifiedLinear(rn1_12.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.c.c.c = Convolution(rn1_13.c1.c.W[16 x 144], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.y = BatchNormalization(rn1_13.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c1.c.c.sc[16 x 1], rn1_13.c1.c.c.b[16 x 1], rn1_13.c1.c.c.m[16 x 1], rn1_13.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.y = RectifiedLinear(rn1_13.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c2.c.c = Convolution(rn1_13.c2.W[16 x 144], rn1_13.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.y = BatchNormalization(rn1_13.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c2.c.sc[16 x 1], rn1_13.c2.c.b[16 x 1], rn1_13.c2.c.m[16 x 1], rn1_13.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.p = Plus(rn1_13.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.y = RectifiedLinear(rn1_13.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.c.c.c = Convolution(rn1_14.c1.c.W[16 x 144], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.y = BatchNormalization(rn1_14.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c1.c.c.sc[16 x 1], rn1_14.c1.c.c.b[16 x 1], rn1_14.c1.c.c.m[16 x 1], rn1_14.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.y = RectifiedLinear(rn1_14.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c2.c.c = Convolution(rn1_14.c2.W[16 x 144], rn1_14.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.y = BatchNormalization(rn1_14.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c2.c.sc[16 x 1], rn1_14.c2.c.b[16 x 1], rn1_14.c2.c.m[16 x 1], rn1_14.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.p = Plus(rn1_14.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.y = RectifiedLinear(rn1_14.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.c.c.c = Convolution(rn1_15.c1.c.W[16 x 144], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.y = BatchNormalization(rn1_15.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c1.c.c.sc[16 x 1], rn1_15.c1.c.c.b[16 x 1], rn1_15.c1.c.c.m[16 x 1], rn1_15.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.y = RectifiedLinear(rn1_15.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c2.c.c = Convolution(rn1_15.c2.W[16 x 144], rn1_15.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.y = BatchNormalization(rn1_15.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c2.c.sc[16 x 1], rn1_15.c2.c.b[16 x 1], rn1_15.c2.c.m[16 x 1], rn1_15.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.p = Plus(rn1_15.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.y = RectifiedLinear(rn1_15.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.c.c.c = Convolution(rn1_16.c1.c.W[16 x 144], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.y = BatchNormalization(rn1_16.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c1.c.c.sc[16 x 1], rn1_16.c1.c.c.b[16 x 1], rn1_16.c1.c.c.m[16 x 1], rn1_16.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.y = RectifiedLinear(rn1_16.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c2.c.c = Convolution(rn1_16.c2.W[16 x 144], rn1_16.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.y = BatchNormalization(rn1_16.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c2.c.sc[16 x 1], rn1_16.c2.c.b[16 x 1], rn1_16.c2.c.m[16 x 1], rn1_16.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.p = Plus(rn1_16.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.y = RectifiedLinear(rn1_16.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.c.c.c = Convolution(rn1_17.c1.c.W[16 x 144], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.y = BatchNormalization(rn1_17.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c1.c.c.sc[16 x 1], rn1_17.c1.c.c.b[16 x 1], rn1_17.c1.c.c.m[16 x 1], rn1_17.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.y = RectifiedLinear(rn1_17.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c2.c.c = Convolution(rn1_17.c2.W[16 x 144], rn1_17.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.y = BatchNormalization(rn1_17.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c2.c.sc[16 x 1], rn1_17.c2.c.b[16 x 1], rn1_17.c2.c.m[16 x 1], rn1_17.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.p = Plus(rn1_17.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.y = RectifiedLinear(rn1_17.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.c.c.c = Convolution(rn1_18.c1.c.W[16 x 144], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.y = BatchNormalization(rn1_18.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c1.c.c.sc[16 x 1], rn1_18.c1.c.c.b[16 x 1], rn1_18.c1.c.c.m[16 x 1], rn1_18.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.y = RectifiedLinear(rn1_18.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c2.c.c = Convolution(rn1_18.c2.W[16 x 144], rn1_18.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.y = BatchNormalization(rn1_18.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c2.c.sc[16 x 1], rn1_18.c2.c.b[16 x 1], rn1_18.c2.c.m[16 x 1], rn1_18.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.p = Plus(rn1_18.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.y = RectifiedLinear(rn1_18.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn2_1.c1.c.c.c = Convolution(rn2_1.c1.c.W[32 x 144], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.y = BatchNormalization(rn2_1.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c1.c.c.sc[32 x 1], rn2_1.c1.c.c.b[32 x 1], rn2_1.c1.c.c.m[32 x 1], rn2_1.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c2.c.c = Convolution(rn2_1.c2.W[32 x 288], rn2_1.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.y = BatchNormalization(rn2_1.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c2.c.sc[32 x 1], rn2_1.c2.c.b[32 x 1], rn2_1.c2.c.m[32 x 1], rn2_1.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1_Wproj = LearnableParameter -> [32 x 16] -Validating --> rn2_1.c_proj.c = Convolution(rn2_1_Wproj[32 x 16], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c_proj.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.y = BatchNormalization(rn2_1.c_proj.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.sc[32 x 1], rn2_1.c_proj.b[32 x 1], rn2_1.c_proj.m[32 x 1], rn2_1.c_proj.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.p = Plus(rn2_1.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.c.c.c = Convolution(rn2_2.c1.c.W[32 x 288], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.y = BatchNormalization(rn2_2.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c1.c.c.sc[32 x 1], rn2_2.c1.c.c.b[32 x 1], rn2_2.c1.c.c.m[32 x 1], rn2_2.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c2.c.c = Convolution(rn2_2.c2.W[32 x 288], rn2_2.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.y = BatchNormalization(rn2_2.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c2.c.sc[32 x 1], rn2_2.c2.c.b[32 x 1], rn2_2.c2.c.m[32 x 1], rn2_2.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.p = Plus(rn2_2.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.c.c.c = Convolution(rn2_3.c1.c.W[32 x 288], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.y = BatchNormalization(rn2_3.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c1.c.c.sc[32 x 1], rn2_3.c1.c.c.b[32 x 1], rn2_3.c1.c.c.m[32 x 1], rn2_3.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c2.c.c = Convolution(rn2_3.c2.W[32 x 288], rn2_3.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.y = BatchNormalization(rn2_3.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c2.c.sc[32 x 1], rn2_3.c2.c.b[32 x 1], rn2_3.c2.c.m[32 x 1], rn2_3.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.p = Plus(rn2_3.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.c.c.c = Convolution(rn2_4.c1.c.W[32 x 288], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.y = BatchNormalization(rn2_4.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c1.c.c.sc[32 x 1], rn2_4.c1.c.c.b[32 x 1], rn2_4.c1.c.c.m[32 x 1], rn2_4.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.y = RectifiedLinear(rn2_4.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c2.c.c = Convolution(rn2_4.c2.W[32 x 288], rn2_4.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.y = BatchNormalization(rn2_4.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c2.c.sc[32 x 1], rn2_4.c2.c.b[32 x 1], rn2_4.c2.c.m[32 x 1], rn2_4.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.p = Plus(rn2_4.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.y = RectifiedLinear(rn2_4.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.c.c.c = Convolution(rn2_5.c1.c.W[32 x 288], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.y = BatchNormalization(rn2_5.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c1.c.c.sc[32 x 1], rn2_5.c1.c.c.b[32 x 1], rn2_5.c1.c.c.m[32 x 1], rn2_5.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.y = RectifiedLinear(rn2_5.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c2.c.c = Convolution(rn2_5.c2.W[32 x 288], rn2_5.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.y = BatchNormalization(rn2_5.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c2.c.sc[32 x 1], rn2_5.c2.c.b[32 x 1], rn2_5.c2.c.m[32 x 1], rn2_5.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.p = Plus(rn2_5.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.y = RectifiedLinear(rn2_5.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.c.c.c = Convolution(rn2_6.c1.c.W[32 x 288], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.y = BatchNormalization(rn2_6.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c1.c.c.sc[32 x 1], rn2_6.c1.c.c.b[32 x 1], rn2_6.c1.c.c.m[32 x 1], rn2_6.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.y = RectifiedLinear(rn2_6.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c2.c.c = Convolution(rn2_6.c2.W[32 x 288], rn2_6.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.y = BatchNormalization(rn2_6.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c2.c.sc[32 x 1], rn2_6.c2.c.b[32 x 1], rn2_6.c2.c.m[32 x 1], rn2_6.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.p = Plus(rn2_6.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.y = RectifiedLinear(rn2_6.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.c.c.c = Convolution(rn2_7.c1.c.W[32 x 288], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.y = BatchNormalization(rn2_7.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c1.c.c.sc[32 x 1], rn2_7.c1.c.c.b[32 x 1], rn2_7.c1.c.c.m[32 x 1], rn2_7.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.y = RectifiedLinear(rn2_7.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c2.c.c = Convolution(rn2_7.c2.W[32 x 288], rn2_7.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.y = BatchNormalization(rn2_7.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c2.c.sc[32 x 1], rn2_7.c2.c.b[32 x 1], rn2_7.c2.c.m[32 x 1], rn2_7.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.p = Plus(rn2_7.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.y = RectifiedLinear(rn2_7.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.c.c.c = Convolution(rn2_8.c1.c.W[32 x 288], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.y = BatchNormalization(rn2_8.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c1.c.c.sc[32 x 1], rn2_8.c1.c.c.b[32 x 1], rn2_8.c1.c.c.m[32 x 1], rn2_8.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.y = RectifiedLinear(rn2_8.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c2.c.c = Convolution(rn2_8.c2.W[32 x 288], rn2_8.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.y = BatchNormalization(rn2_8.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c2.c.sc[32 x 1], rn2_8.c2.c.b[32 x 1], rn2_8.c2.c.m[32 x 1], rn2_8.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.p = Plus(rn2_8.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.y = RectifiedLinear(rn2_8.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.c.c.c = Convolution(rn2_9.c1.c.W[32 x 288], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.y = BatchNormalization(rn2_9.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c1.c.c.sc[32 x 1], rn2_9.c1.c.c.b[32 x 1], rn2_9.c1.c.c.m[32 x 1], rn2_9.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.y = RectifiedLinear(rn2_9.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c2.c.c = Convolution(rn2_9.c2.W[32 x 288], rn2_9.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.y = BatchNormalization(rn2_9.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c2.c.sc[32 x 1], rn2_9.c2.c.b[32 x 1], rn2_9.c2.c.m[32 x 1], rn2_9.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.p = Plus(rn2_9.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.y = RectifiedLinear(rn2_9.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.c.c.c = Convolution(rn2_10.c1.c.W[32 x 288], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.y = BatchNormalization(rn2_10.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c1.c.c.sc[32 x 1], rn2_10.c1.c.c.b[32 x 1], rn2_10.c1.c.c.m[32 x 1], rn2_10.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.y = RectifiedLinear(rn2_10.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c2.c.c = Convolution(rn2_10.c2.W[32 x 288], rn2_10.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.y = BatchNormalization(rn2_10.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c2.c.sc[32 x 1], rn2_10.c2.c.b[32 x 1], rn2_10.c2.c.m[32 x 1], rn2_10.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.p = Plus(rn2_10.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.y = RectifiedLinear(rn2_10.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.c.c.c = Convolution(rn2_11.c1.c.W[32 x 288], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.y = BatchNormalization(rn2_11.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c1.c.c.sc[32 x 1], rn2_11.c1.c.c.b[32 x 1], rn2_11.c1.c.c.m[32 x 1], rn2_11.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.y = RectifiedLinear(rn2_11.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c2.c.c = Convolution(rn2_11.c2.W[32 x 288], rn2_11.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.y = BatchNormalization(rn2_11.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c2.c.sc[32 x 1], rn2_11.c2.c.b[32 x 1], rn2_11.c2.c.m[32 x 1], rn2_11.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.p = Plus(rn2_11.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.y = RectifiedLinear(rn2_11.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.c.c.c = Convolution(rn2_12.c1.c.W[32 x 288], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.y = BatchNormalization(rn2_12.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c1.c.c.sc[32 x 1], rn2_12.c1.c.c.b[32 x 1], rn2_12.c1.c.c.m[32 x 1], rn2_12.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.y = RectifiedLinear(rn2_12.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c2.c.c = Convolution(rn2_12.c2.W[32 x 288], rn2_12.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.y = BatchNormalization(rn2_12.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c2.c.sc[32 x 1], rn2_12.c2.c.b[32 x 1], rn2_12.c2.c.m[32 x 1], rn2_12.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.p = Plus(rn2_12.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.y = RectifiedLinear(rn2_12.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.c.c.c = Convolution(rn2_13.c1.c.W[32 x 288], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.y = BatchNormalization(rn2_13.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c1.c.c.sc[32 x 1], rn2_13.c1.c.c.b[32 x 1], rn2_13.c1.c.c.m[32 x 1], rn2_13.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.y = RectifiedLinear(rn2_13.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c2.c.c = Convolution(rn2_13.c2.W[32 x 288], rn2_13.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.y = BatchNormalization(rn2_13.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c2.c.sc[32 x 1], rn2_13.c2.c.b[32 x 1], rn2_13.c2.c.m[32 x 1], rn2_13.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.p = Plus(rn2_13.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.y = RectifiedLinear(rn2_13.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.c.c.c = Convolution(rn2_14.c1.c.W[32 x 288], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.y = BatchNormalization(rn2_14.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c1.c.c.sc[32 x 1], rn2_14.c1.c.c.b[32 x 1], rn2_14.c1.c.c.m[32 x 1], rn2_14.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.y = RectifiedLinear(rn2_14.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c2.c.c = Convolution(rn2_14.c2.W[32 x 288], rn2_14.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.y = BatchNormalization(rn2_14.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c2.c.sc[32 x 1], rn2_14.c2.c.b[32 x 1], rn2_14.c2.c.m[32 x 1], rn2_14.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.p = Plus(rn2_14.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.y = RectifiedLinear(rn2_14.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.c.c.c = Convolution(rn2_15.c1.c.W[32 x 288], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.y = BatchNormalization(rn2_15.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c1.c.c.sc[32 x 1], rn2_15.c1.c.c.b[32 x 1], rn2_15.c1.c.c.m[32 x 1], rn2_15.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.y = RectifiedLinear(rn2_15.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c2.c.c = Convolution(rn2_15.c2.W[32 x 288], rn2_15.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.y = BatchNormalization(rn2_15.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c2.c.sc[32 x 1], rn2_15.c2.c.b[32 x 1], rn2_15.c2.c.m[32 x 1], rn2_15.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.p = Plus(rn2_15.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.y = RectifiedLinear(rn2_15.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.c.c.c = Convolution(rn2_16.c1.c.W[32 x 288], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.y = BatchNormalization(rn2_16.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c1.c.c.sc[32 x 1], rn2_16.c1.c.c.b[32 x 1], rn2_16.c1.c.c.m[32 x 1], rn2_16.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.y = RectifiedLinear(rn2_16.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c2.c.c = Convolution(rn2_16.c2.W[32 x 288], rn2_16.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.y = BatchNormalization(rn2_16.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c2.c.sc[32 x 1], rn2_16.c2.c.b[32 x 1], rn2_16.c2.c.m[32 x 1], rn2_16.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.p = Plus(rn2_16.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.y = RectifiedLinear(rn2_16.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.c.c.c = Convolution(rn2_17.c1.c.W[32 x 288], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.y = BatchNormalization(rn2_17.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c1.c.c.sc[32 x 1], rn2_17.c1.c.c.b[32 x 1], rn2_17.c1.c.c.m[32 x 1], rn2_17.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.y = RectifiedLinear(rn2_17.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c2.c.c = Convolution(rn2_17.c2.W[32 x 288], rn2_17.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.y = BatchNormalization(rn2_17.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c2.c.sc[32 x 1], rn2_17.c2.c.b[32 x 1], rn2_17.c2.c.m[32 x 1], rn2_17.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.p = Plus(rn2_17.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.y = RectifiedLinear(rn2_17.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.c.c.c = Convolution(rn2_18.c1.c.W[32 x 288], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.y = BatchNormalization(rn2_18.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c1.c.c.sc[32 x 1], rn2_18.c1.c.c.b[32 x 1], rn2_18.c1.c.c.m[32 x 1], rn2_18.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.y = RectifiedLinear(rn2_18.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c2.c.c = Convolution(rn2_18.c2.W[32 x 288], rn2_18.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.y = BatchNormalization(rn2_18.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c2.c.sc[32 x 1], rn2_18.c2.c.b[32 x 1], rn2_18.c2.c.m[32 x 1], rn2_18.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.p = Plus(rn2_18.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.y = RectifiedLinear(rn2_18.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn3_1.c1.c.c.c = Convolution(rn3_1.c1.c.W[64 x 288], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.y = BatchNormalization(rn3_1.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c1.c.c.sc[64 x 1], rn3_1.c1.c.c.b[64 x 1], rn3_1.c1.c.c.m[64 x 1], rn3_1.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c2.c.c = Convolution(rn3_1.c2.W[64 x 576], rn3_1.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.y = BatchNormalization(rn3_1.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c2.c.sc[64 x 1], rn3_1.c2.c.b[64 x 1], rn3_1.c2.c.m[64 x 1], rn3_1.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1_Wproj = LearnableParameter -> [64 x 32] -Validating --> rn3_1.c_proj.c = Convolution(rn3_1_Wproj[64 x 32], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c_proj.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.y = BatchNormalization(rn3_1.c_proj.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.sc[64 x 1], rn3_1.c_proj.b[64 x 1], rn3_1.c_proj.m[64 x 1], rn3_1.c_proj.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.p = Plus(rn3_1.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.c.c.c = Convolution(rn3_2.c1.c.W[64 x 576], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.y = BatchNormalization(rn3_2.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c1.c.c.sc[64 x 1], rn3_2.c1.c.c.b[64 x 1], rn3_2.c1.c.c.m[64 x 1], rn3_2.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c2.c.c = Convolution(rn3_2.c2.W[64 x 576], rn3_2.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.y = BatchNormalization(rn3_2.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c2.c.sc[64 x 1], rn3_2.c2.c.b[64 x 1], rn3_2.c2.c.m[64 x 1], rn3_2.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.p = Plus(rn3_2.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.c.c.c = Convolution(rn3_3.c1.c.W[64 x 576], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.y = BatchNormalization(rn3_3.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c1.c.c.sc[64 x 1], rn3_3.c1.c.c.b[64 x 1], rn3_3.c1.c.c.m[64 x 1], rn3_3.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c2.c.c = Convolution(rn3_3.c2.W[64 x 576], rn3_3.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.y = BatchNormalization(rn3_3.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c2.c.sc[64 x 1], rn3_3.c2.c.b[64 x 1], rn3_3.c2.c.m[64 x 1], rn3_3.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.p = Plus(rn3_3.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.c.c.c = Convolution(rn3_4.c1.c.W[64 x 576], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.y = BatchNormalization(rn3_4.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c1.c.c.sc[64 x 1], rn3_4.c1.c.c.b[64 x 1], rn3_4.c1.c.c.m[64 x 1], rn3_4.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.y = RectifiedLinear(rn3_4.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c2.c.c = Convolution(rn3_4.c2.W[64 x 576], rn3_4.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.y = BatchNormalization(rn3_4.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c2.c.sc[64 x 1], rn3_4.c2.c.b[64 x 1], rn3_4.c2.c.m[64 x 1], rn3_4.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.p = Plus(rn3_4.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.y = RectifiedLinear(rn3_4.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.c.c.c = Convolution(rn3_5.c1.c.W[64 x 576], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.y = BatchNormalization(rn3_5.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c1.c.c.sc[64 x 1], rn3_5.c1.c.c.b[64 x 1], rn3_5.c1.c.c.m[64 x 1], rn3_5.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.y = RectifiedLinear(rn3_5.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c2.c.c = Convolution(rn3_5.c2.W[64 x 576], rn3_5.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.y = BatchNormalization(rn3_5.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c2.c.sc[64 x 1], rn3_5.c2.c.b[64 x 1], rn3_5.c2.c.m[64 x 1], rn3_5.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.p = Plus(rn3_5.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.y = RectifiedLinear(rn3_5.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.c.c.c = Convolution(rn3_6.c1.c.W[64 x 576], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.y = BatchNormalization(rn3_6.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c1.c.c.sc[64 x 1], rn3_6.c1.c.c.b[64 x 1], rn3_6.c1.c.c.m[64 x 1], rn3_6.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.y = RectifiedLinear(rn3_6.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c2.c.c = Convolution(rn3_6.c2.W[64 x 576], rn3_6.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.y = BatchNormalization(rn3_6.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c2.c.sc[64 x 1], rn3_6.c2.c.b[64 x 1], rn3_6.c2.c.m[64 x 1], rn3_6.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.p = Plus(rn3_6.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.y = RectifiedLinear(rn3_6.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.c.c.c = Convolution(rn3_7.c1.c.W[64 x 576], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.y = BatchNormalization(rn3_7.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c1.c.c.sc[64 x 1], rn3_7.c1.c.c.b[64 x 1], rn3_7.c1.c.c.m[64 x 1], rn3_7.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.y = RectifiedLinear(rn3_7.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c2.c.c = Convolution(rn3_7.c2.W[64 x 576], rn3_7.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.y = BatchNormalization(rn3_7.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c2.c.sc[64 x 1], rn3_7.c2.c.b[64 x 1], rn3_7.c2.c.m[64 x 1], rn3_7.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.p = Plus(rn3_7.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.y = RectifiedLinear(rn3_7.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.c.c.c = Convolution(rn3_8.c1.c.W[64 x 576], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.y = BatchNormalization(rn3_8.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c1.c.c.sc[64 x 1], rn3_8.c1.c.c.b[64 x 1], rn3_8.c1.c.c.m[64 x 1], rn3_8.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.y = RectifiedLinear(rn3_8.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c2.c.c = Convolution(rn3_8.c2.W[64 x 576], rn3_8.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.y = BatchNormalization(rn3_8.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c2.c.sc[64 x 1], rn3_8.c2.c.b[64 x 1], rn3_8.c2.c.m[64 x 1], rn3_8.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.p = Plus(rn3_8.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.y = RectifiedLinear(rn3_8.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.c.c.c = Convolution(rn3_9.c1.c.W[64 x 576], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.y = BatchNormalization(rn3_9.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c1.c.c.sc[64 x 1], rn3_9.c1.c.c.b[64 x 1], rn3_9.c1.c.c.m[64 x 1], rn3_9.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.y = RectifiedLinear(rn3_9.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c2.c.c = Convolution(rn3_9.c2.W[64 x 576], rn3_9.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.y = BatchNormalization(rn3_9.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c2.c.sc[64 x 1], rn3_9.c2.c.b[64 x 1], rn3_9.c2.c.m[64 x 1], rn3_9.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.p = Plus(rn3_9.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.y = RectifiedLinear(rn3_9.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.c.c.c = Convolution(rn3_10.c1.c.W[64 x 576], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.y = BatchNormalization(rn3_10.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c1.c.c.sc[64 x 1], rn3_10.c1.c.c.b[64 x 1], rn3_10.c1.c.c.m[64 x 1], rn3_10.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.y = RectifiedLinear(rn3_10.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c2.c.c = Convolution(rn3_10.c2.W[64 x 576], rn3_10.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.y = BatchNormalization(rn3_10.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c2.c.sc[64 x 1], rn3_10.c2.c.b[64 x 1], rn3_10.c2.c.m[64 x 1], rn3_10.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.p = Plus(rn3_10.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.y = RectifiedLinear(rn3_10.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.c.c.c = Convolution(rn3_11.c1.c.W[64 x 576], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.y = BatchNormalization(rn3_11.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c1.c.c.sc[64 x 1], rn3_11.c1.c.c.b[64 x 1], rn3_11.c1.c.c.m[64 x 1], rn3_11.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.y = RectifiedLinear(rn3_11.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c2.c.c = Convolution(rn3_11.c2.W[64 x 576], rn3_11.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.y = BatchNormalization(rn3_11.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c2.c.sc[64 x 1], rn3_11.c2.c.b[64 x 1], rn3_11.c2.c.m[64 x 1], rn3_11.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.p = Plus(rn3_11.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.y = RectifiedLinear(rn3_11.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.c.c.c = Convolution(rn3_12.c1.c.W[64 x 576], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.y = BatchNormalization(rn3_12.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c1.c.c.sc[64 x 1], rn3_12.c1.c.c.b[64 x 1], rn3_12.c1.c.c.m[64 x 1], rn3_12.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.y = RectifiedLinear(rn3_12.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c2.c.c = Convolution(rn3_12.c2.W[64 x 576], rn3_12.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.y = BatchNormalization(rn3_12.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c2.c.sc[64 x 1], rn3_12.c2.c.b[64 x 1], rn3_12.c2.c.m[64 x 1], rn3_12.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.p = Plus(rn3_12.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.y = RectifiedLinear(rn3_12.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.c.c.c = Convolution(rn3_13.c1.c.W[64 x 576], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.y = BatchNormalization(rn3_13.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c1.c.c.sc[64 x 1], rn3_13.c1.c.c.b[64 x 1], rn3_13.c1.c.c.m[64 x 1], rn3_13.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.y = RectifiedLinear(rn3_13.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c2.c.c = Convolution(rn3_13.c2.W[64 x 576], rn3_13.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.y = BatchNormalization(rn3_13.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c2.c.sc[64 x 1], rn3_13.c2.c.b[64 x 1], rn3_13.c2.c.m[64 x 1], rn3_13.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.p = Plus(rn3_13.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.y = RectifiedLinear(rn3_13.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.c.c.c = Convolution(rn3_14.c1.c.W[64 x 576], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.y = BatchNormalization(rn3_14.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c1.c.c.sc[64 x 1], rn3_14.c1.c.c.b[64 x 1], rn3_14.c1.c.c.m[64 x 1], rn3_14.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.y = RectifiedLinear(rn3_14.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c2.c.c = Convolution(rn3_14.c2.W[64 x 576], rn3_14.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.y = BatchNormalization(rn3_14.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c2.c.sc[64 x 1], rn3_14.c2.c.b[64 x 1], rn3_14.c2.c.m[64 x 1], rn3_14.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.p = Plus(rn3_14.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.y = RectifiedLinear(rn3_14.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.c.c.c = Convolution(rn3_15.c1.c.W[64 x 576], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.y = BatchNormalization(rn3_15.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c1.c.c.sc[64 x 1], rn3_15.c1.c.c.b[64 x 1], rn3_15.c1.c.c.m[64 x 1], rn3_15.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.y = RectifiedLinear(rn3_15.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c2.c.c = Convolution(rn3_15.c2.W[64 x 576], rn3_15.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.y = BatchNormalization(rn3_15.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c2.c.sc[64 x 1], rn3_15.c2.c.b[64 x 1], rn3_15.c2.c.m[64 x 1], rn3_15.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.p = Plus(rn3_15.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.y = RectifiedLinear(rn3_15.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.c.c.c = Convolution(rn3_16.c1.c.W[64 x 576], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.y = BatchNormalization(rn3_16.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c1.c.c.sc[64 x 1], rn3_16.c1.c.c.b[64 x 1], rn3_16.c1.c.c.m[64 x 1], rn3_16.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.y = RectifiedLinear(rn3_16.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c2.c.c = Convolution(rn3_16.c2.W[64 x 576], rn3_16.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.y = BatchNormalization(rn3_16.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c2.c.sc[64 x 1], rn3_16.c2.c.b[64 x 1], rn3_16.c2.c.m[64 x 1], rn3_16.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.p = Plus(rn3_16.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.y = RectifiedLinear(rn3_16.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.c.c.c = Convolution(rn3_17.c1.c.W[64 x 576], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.y = BatchNormalization(rn3_17.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c1.c.c.sc[64 x 1], rn3_17.c1.c.c.b[64 x 1], rn3_17.c1.c.c.m[64 x 1], rn3_17.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.y = RectifiedLinear(rn3_17.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c2.c.c = Convolution(rn3_17.c2.W[64 x 576], rn3_17.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.y = BatchNormalization(rn3_17.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c2.c.sc[64 x 1], rn3_17.c2.c.b[64 x 1], rn3_17.c2.c.m[64 x 1], rn3_17.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.p = Plus(rn3_17.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.y = RectifiedLinear(rn3_17.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.c.c.c = Convolution(rn3_18.c1.c.W[64 x 576], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.y = BatchNormalization(rn3_18.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c1.c.c.sc[64 x 1], rn3_18.c1.c.c.b[64 x 1], rn3_18.c1.c.c.m[64 x 1], rn3_18.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.y = RectifiedLinear(rn3_18.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c2.c.c = Convolution(rn3_18.c2.W[64 x 576], rn3_18.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.y = BatchNormalization(rn3_18.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c2.c.sc[64 x 1], rn3_18.c2.c.b[64 x 1], rn3_18.c2.c.m[64 x 1], rn3_18.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.p = Plus(rn3_18.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.y = RectifiedLinear(rn3_18.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> pool = AveragePooling(rn3_18.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [1 x 1 x 64 x *] -Validating --> OutputNodes.t = Times(OutputNodes.W[10 x 64], pool[1 x 1 x 64 x *]) -> [10 x *] -Validating --> OutputNodes.b = LearnableParameter -> [10] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10 x *], OutputNodes.b[10]) -> [10 x *] -Validating --> CE = CrossEntropyWithSoftmax(labels[10 x *], OutputNodes.z[10 x *]) -> [1] -Validating --> Err = ErrorPrediction(labels[10 x *], OutputNodes.z[10 x *]) -> [1] - -Validating network, final pass. - -Validating --> labels = InputValue -> [10 x *] -Validating --> OutputNodes.W = LearnableParameter -> [10 x 64] -Validating --> rn3_18.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_18.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_17.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_17.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_16.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_16.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_15.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_15.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_14.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_14.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_13.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_13.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_12.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_12.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_11.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_11.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_10.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_10.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_9.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_9.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_8.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_8.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_7.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_7.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_6.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_6.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_5.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_5.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_4.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_4.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 x 288] -Validating --> rn2_18.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_18.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_17.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_17.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_16.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_16.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_15.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_15.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_14.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_14.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_13.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_13.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_12.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_12.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_11.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_11.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_10.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_10.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_9.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_9.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_8.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_8.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_7.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_7.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_6.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_6.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_5.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_5.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_4.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_4.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 x 144] -Validating --> rn1_18.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_18.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_17.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_17.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_16.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_16.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_15.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_15.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_14.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_14.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_13.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_13.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_12.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_12.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_11.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_11.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_10.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_10.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_9.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_9.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_8.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_8.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_7.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_7.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_6.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_6.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_5.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_5.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_4.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_4.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> conv1.c.W = LearnableParameter -> [16 x 27] -Validating --> features = InputValue -> [32 x 32 x 3 x *] -Validating --> conv1.c.c.c = Convolution(conv1.c.W[16 x 27], features[32 x 32 x 3 x * {W=32, H=3, C=32}]) -> [32 x 32 x 16 x *] -Validating --> conv1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.y = BatchNormalization(conv1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.c.c.sc[16 x 1], conv1.c.c.b[16 x 1], conv1.c.c.m[16 x 1], conv1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> conv1.y = RectifiedLinear(conv1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.c.c.c = Convolution(rn1_1.c1.c.W[16 x 144], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.y = BatchNormalization(rn1_1.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c1.c.c.sc[16 x 1], rn1_1.c1.c.c.b[16 x 1], rn1_1.c1.c.c.m[16 x 1], rn1_1.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c2.c.c = Convolution(rn1_1.c2.W[16 x 144], rn1_1.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.y = BatchNormalization(rn1_1.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c2.c.sc[16 x 1], rn1_1.c2.c.b[16 x 1], rn1_1.c2.c.m[16 x 1], rn1_1.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.p = Plus(rn1_1.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.c.c.c = Convolution(rn1_2.c1.c.W[16 x 144], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.y = BatchNormalization(rn1_2.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c1.c.c.sc[16 x 1], rn1_2.c1.c.c.b[16 x 1], rn1_2.c1.c.c.m[16 x 1], rn1_2.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c2.c.c = Convolution(rn1_2.c2.W[16 x 144], rn1_2.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.y = BatchNormalization(rn1_2.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c2.c.sc[16 x 1], rn1_2.c2.c.b[16 x 1], rn1_2.c2.c.m[16 x 1], rn1_2.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.p = Plus(rn1_2.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.c.c.c = Convolution(rn1_3.c1.c.W[16 x 144], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.y = BatchNormalization(rn1_3.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c1.c.c.sc[16 x 1], rn1_3.c1.c.c.b[16 x 1], rn1_3.c1.c.c.m[16 x 1], rn1_3.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c2.c.c = Convolution(rn1_3.c2.W[16 x 144], rn1_3.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.y = BatchNormalization(rn1_3.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c2.c.sc[16 x 1], rn1_3.c2.c.b[16 x 1], rn1_3.c2.c.m[16 x 1], rn1_3.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.p = Plus(rn1_3.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.c.c.c = Convolution(rn1_4.c1.c.W[16 x 144], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.y = BatchNormalization(rn1_4.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c1.c.c.sc[16 x 1], rn1_4.c1.c.c.b[16 x 1], rn1_4.c1.c.c.m[16 x 1], rn1_4.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.y = RectifiedLinear(rn1_4.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c2.c.c = Convolution(rn1_4.c2.W[16 x 144], rn1_4.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.y = BatchNormalization(rn1_4.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c2.c.sc[16 x 1], rn1_4.c2.c.b[16 x 1], rn1_4.c2.c.m[16 x 1], rn1_4.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.p = Plus(rn1_4.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.y = RectifiedLinear(rn1_4.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.c.c.c = Convolution(rn1_5.c1.c.W[16 x 144], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.y = BatchNormalization(rn1_5.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c1.c.c.sc[16 x 1], rn1_5.c1.c.c.b[16 x 1], rn1_5.c1.c.c.m[16 x 1], rn1_5.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.y = RectifiedLinear(rn1_5.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c2.c.c = Convolution(rn1_5.c2.W[16 x 144], rn1_5.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.y = BatchNormalization(rn1_5.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c2.c.sc[16 x 1], rn1_5.c2.c.b[16 x 1], rn1_5.c2.c.m[16 x 1], rn1_5.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.p = Plus(rn1_5.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.y = RectifiedLinear(rn1_5.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.c.c.c = Convolution(rn1_6.c1.c.W[16 x 144], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.y = BatchNormalization(rn1_6.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c1.c.c.sc[16 x 1], rn1_6.c1.c.c.b[16 x 1], rn1_6.c1.c.c.m[16 x 1], rn1_6.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.y = RectifiedLinear(rn1_6.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c2.c.c = Convolution(rn1_6.c2.W[16 x 144], rn1_6.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.y = BatchNormalization(rn1_6.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c2.c.sc[16 x 1], rn1_6.c2.c.b[16 x 1], rn1_6.c2.c.m[16 x 1], rn1_6.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.p = Plus(rn1_6.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.y = RectifiedLinear(rn1_6.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.c.c.c = Convolution(rn1_7.c1.c.W[16 x 144], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.y = BatchNormalization(rn1_7.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c1.c.c.sc[16 x 1], rn1_7.c1.c.c.b[16 x 1], rn1_7.c1.c.c.m[16 x 1], rn1_7.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.y = RectifiedLinear(rn1_7.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c2.c.c = Convolution(rn1_7.c2.W[16 x 144], rn1_7.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.y = BatchNormalization(rn1_7.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c2.c.sc[16 x 1], rn1_7.c2.c.b[16 x 1], rn1_7.c2.c.m[16 x 1], rn1_7.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.p = Plus(rn1_7.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.y = RectifiedLinear(rn1_7.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.c.c.c = Convolution(rn1_8.c1.c.W[16 x 144], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.y = BatchNormalization(rn1_8.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c1.c.c.sc[16 x 1], rn1_8.c1.c.c.b[16 x 1], rn1_8.c1.c.c.m[16 x 1], rn1_8.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.y = RectifiedLinear(rn1_8.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c2.c.c = Convolution(rn1_8.c2.W[16 x 144], rn1_8.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.y = BatchNormalization(rn1_8.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c2.c.sc[16 x 1], rn1_8.c2.c.b[16 x 1], rn1_8.c2.c.m[16 x 1], rn1_8.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.p = Plus(rn1_8.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.y = RectifiedLinear(rn1_8.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.c.c.c = Convolution(rn1_9.c1.c.W[16 x 144], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.y = BatchNormalization(rn1_9.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c1.c.c.sc[16 x 1], rn1_9.c1.c.c.b[16 x 1], rn1_9.c1.c.c.m[16 x 1], rn1_9.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.y = RectifiedLinear(rn1_9.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c2.c.c = Convolution(rn1_9.c2.W[16 x 144], rn1_9.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.y = BatchNormalization(rn1_9.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c2.c.sc[16 x 1], rn1_9.c2.c.b[16 x 1], rn1_9.c2.c.m[16 x 1], rn1_9.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.p = Plus(rn1_9.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.y = RectifiedLinear(rn1_9.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.c.c.c = Convolution(rn1_10.c1.c.W[16 x 144], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.y = BatchNormalization(rn1_10.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c1.c.c.sc[16 x 1], rn1_10.c1.c.c.b[16 x 1], rn1_10.c1.c.c.m[16 x 1], rn1_10.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.y = RectifiedLinear(rn1_10.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c2.c.c = Convolution(rn1_10.c2.W[16 x 144], rn1_10.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.y = BatchNormalization(rn1_10.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c2.c.sc[16 x 1], rn1_10.c2.c.b[16 x 1], rn1_10.c2.c.m[16 x 1], rn1_10.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.p = Plus(rn1_10.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.y = RectifiedLinear(rn1_10.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.c.c.c = Convolution(rn1_11.c1.c.W[16 x 144], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.y = BatchNormalization(rn1_11.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c1.c.c.sc[16 x 1], rn1_11.c1.c.c.b[16 x 1], rn1_11.c1.c.c.m[16 x 1], rn1_11.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.y = RectifiedLinear(rn1_11.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c2.c.c = Convolution(rn1_11.c2.W[16 x 144], rn1_11.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.y = BatchNormalization(rn1_11.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c2.c.sc[16 x 1], rn1_11.c2.c.b[16 x 1], rn1_11.c2.c.m[16 x 1], rn1_11.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.p = Plus(rn1_11.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.y = RectifiedLinear(rn1_11.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.c.c.c = Convolution(rn1_12.c1.c.W[16 x 144], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.y = BatchNormalization(rn1_12.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c1.c.c.sc[16 x 1], rn1_12.c1.c.c.b[16 x 1], rn1_12.c1.c.c.m[16 x 1], rn1_12.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.y = RectifiedLinear(rn1_12.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c2.c.c = Convolution(rn1_12.c2.W[16 x 144], rn1_12.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.y = BatchNormalization(rn1_12.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c2.c.sc[16 x 1], rn1_12.c2.c.b[16 x 1], rn1_12.c2.c.m[16 x 1], rn1_12.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.p = Plus(rn1_12.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.y = RectifiedLinear(rn1_12.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.c.c.c = Convolution(rn1_13.c1.c.W[16 x 144], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.y = BatchNormalization(rn1_13.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c1.c.c.sc[16 x 1], rn1_13.c1.c.c.b[16 x 1], rn1_13.c1.c.c.m[16 x 1], rn1_13.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.y = RectifiedLinear(rn1_13.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c2.c.c = Convolution(rn1_13.c2.W[16 x 144], rn1_13.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.y = BatchNormalization(rn1_13.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c2.c.sc[16 x 1], rn1_13.c2.c.b[16 x 1], rn1_13.c2.c.m[16 x 1], rn1_13.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.p = Plus(rn1_13.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.y = RectifiedLinear(rn1_13.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.c.c.c = Convolution(rn1_14.c1.c.W[16 x 144], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.y = BatchNormalization(rn1_14.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c1.c.c.sc[16 x 1], rn1_14.c1.c.c.b[16 x 1], rn1_14.c1.c.c.m[16 x 1], rn1_14.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.y = RectifiedLinear(rn1_14.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c2.c.c = Convolution(rn1_14.c2.W[16 x 144], rn1_14.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.y = BatchNormalization(rn1_14.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c2.c.sc[16 x 1], rn1_14.c2.c.b[16 x 1], rn1_14.c2.c.m[16 x 1], rn1_14.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.p = Plus(rn1_14.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.y = RectifiedLinear(rn1_14.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.c.c.c = Convolution(rn1_15.c1.c.W[16 x 144], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.y = BatchNormalization(rn1_15.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c1.c.c.sc[16 x 1], rn1_15.c1.c.c.b[16 x 1], rn1_15.c1.c.c.m[16 x 1], rn1_15.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.y = RectifiedLinear(rn1_15.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c2.c.c = Convolution(rn1_15.c2.W[16 x 144], rn1_15.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.y = BatchNormalization(rn1_15.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c2.c.sc[16 x 1], rn1_15.c2.c.b[16 x 1], rn1_15.c2.c.m[16 x 1], rn1_15.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.p = Plus(rn1_15.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.y = RectifiedLinear(rn1_15.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.c.c.c = Convolution(rn1_16.c1.c.W[16 x 144], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.y = BatchNormalization(rn1_16.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c1.c.c.sc[16 x 1], rn1_16.c1.c.c.b[16 x 1], rn1_16.c1.c.c.m[16 x 1], rn1_16.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.y = RectifiedLinear(rn1_16.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c2.c.c = Convolution(rn1_16.c2.W[16 x 144], rn1_16.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.y = BatchNormalization(rn1_16.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c2.c.sc[16 x 1], rn1_16.c2.c.b[16 x 1], rn1_16.c2.c.m[16 x 1], rn1_16.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.p = Plus(rn1_16.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.y = RectifiedLinear(rn1_16.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.c.c.c = Convolution(rn1_17.c1.c.W[16 x 144], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.y = BatchNormalization(rn1_17.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c1.c.c.sc[16 x 1], rn1_17.c1.c.c.b[16 x 1], rn1_17.c1.c.c.m[16 x 1], rn1_17.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.y = RectifiedLinear(rn1_17.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c2.c.c = Convolution(rn1_17.c2.W[16 x 144], rn1_17.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.y = BatchNormalization(rn1_17.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c2.c.sc[16 x 1], rn1_17.c2.c.b[16 x 1], rn1_17.c2.c.m[16 x 1], rn1_17.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.p = Plus(rn1_17.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.y = RectifiedLinear(rn1_17.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.c.c.c = Convolution(rn1_18.c1.c.W[16 x 144], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.y = BatchNormalization(rn1_18.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c1.c.c.sc[16 x 1], rn1_18.c1.c.c.b[16 x 1], rn1_18.c1.c.c.m[16 x 1], rn1_18.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.y = RectifiedLinear(rn1_18.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c2.c.c = Convolution(rn1_18.c2.W[16 x 144], rn1_18.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.y = BatchNormalization(rn1_18.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c2.c.sc[16 x 1], rn1_18.c2.c.b[16 x 1], rn1_18.c2.c.m[16 x 1], rn1_18.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.p = Plus(rn1_18.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.y = RectifiedLinear(rn1_18.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn2_1.c1.c.c.c = Convolution(rn2_1.c1.c.W[32 x 144], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.y = BatchNormalization(rn2_1.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c1.c.c.sc[32 x 1], rn2_1.c1.c.c.b[32 x 1], rn2_1.c1.c.c.m[32 x 1], rn2_1.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c2.c.c = Convolution(rn2_1.c2.W[32 x 288], rn2_1.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.y = BatchNormalization(rn2_1.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c2.c.sc[32 x 1], rn2_1.c2.c.b[32 x 1], rn2_1.c2.c.m[32 x 1], rn2_1.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1_Wproj = LearnableParameter -> [32 x 16] -Validating --> rn2_1.c_proj.c = Convolution(rn2_1_Wproj[32 x 16], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c_proj.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.y = BatchNormalization(rn2_1.c_proj.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.sc[32 x 1], rn2_1.c_proj.b[32 x 1], rn2_1.c_proj.m[32 x 1], rn2_1.c_proj.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.p = Plus(rn2_1.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.c.c.c = Convolution(rn2_2.c1.c.W[32 x 288], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.y = BatchNormalization(rn2_2.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c1.c.c.sc[32 x 1], rn2_2.c1.c.c.b[32 x 1], rn2_2.c1.c.c.m[32 x 1], rn2_2.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c2.c.c = Convolution(rn2_2.c2.W[32 x 288], rn2_2.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.y = BatchNormalization(rn2_2.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c2.c.sc[32 x 1], rn2_2.c2.c.b[32 x 1], rn2_2.c2.c.m[32 x 1], rn2_2.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.p = Plus(rn2_2.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.c.c.c = Convolution(rn2_3.c1.c.W[32 x 288], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.y = BatchNormalization(rn2_3.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c1.c.c.sc[32 x 1], rn2_3.c1.c.c.b[32 x 1], rn2_3.c1.c.c.m[32 x 1], rn2_3.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c2.c.c = Convolution(rn2_3.c2.W[32 x 288], rn2_3.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.y = BatchNormalization(rn2_3.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c2.c.sc[32 x 1], rn2_3.c2.c.b[32 x 1], rn2_3.c2.c.m[32 x 1], rn2_3.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.p = Plus(rn2_3.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.c.c.c = Convolution(rn2_4.c1.c.W[32 x 288], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.y = BatchNormalization(rn2_4.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c1.c.c.sc[32 x 1], rn2_4.c1.c.c.b[32 x 1], rn2_4.c1.c.c.m[32 x 1], rn2_4.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.y = RectifiedLinear(rn2_4.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c2.c.c = Convolution(rn2_4.c2.W[32 x 288], rn2_4.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.y = BatchNormalization(rn2_4.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c2.c.sc[32 x 1], rn2_4.c2.c.b[32 x 1], rn2_4.c2.c.m[32 x 1], rn2_4.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.p = Plus(rn2_4.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.y = RectifiedLinear(rn2_4.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.c.c.c = Convolution(rn2_5.c1.c.W[32 x 288], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.y = BatchNormalization(rn2_5.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c1.c.c.sc[32 x 1], rn2_5.c1.c.c.b[32 x 1], rn2_5.c1.c.c.m[32 x 1], rn2_5.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.y = RectifiedLinear(rn2_5.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c2.c.c = Convolution(rn2_5.c2.W[32 x 288], rn2_5.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.y = BatchNormalization(rn2_5.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c2.c.sc[32 x 1], rn2_5.c2.c.b[32 x 1], rn2_5.c2.c.m[32 x 1], rn2_5.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.p = Plus(rn2_5.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.y = RectifiedLinear(rn2_5.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.c.c.c = Convolution(rn2_6.c1.c.W[32 x 288], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.y = BatchNormalization(rn2_6.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c1.c.c.sc[32 x 1], rn2_6.c1.c.c.b[32 x 1], rn2_6.c1.c.c.m[32 x 1], rn2_6.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.y = RectifiedLinear(rn2_6.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c2.c.c = Convolution(rn2_6.c2.W[32 x 288], rn2_6.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.y = BatchNormalization(rn2_6.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c2.c.sc[32 x 1], rn2_6.c2.c.b[32 x 1], rn2_6.c2.c.m[32 x 1], rn2_6.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.p = Plus(rn2_6.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.y = RectifiedLinear(rn2_6.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.c.c.c = Convolution(rn2_7.c1.c.W[32 x 288], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.y = BatchNormalization(rn2_7.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c1.c.c.sc[32 x 1], rn2_7.c1.c.c.b[32 x 1], rn2_7.c1.c.c.m[32 x 1], rn2_7.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.y = RectifiedLinear(rn2_7.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c2.c.c = Convolution(rn2_7.c2.W[32 x 288], rn2_7.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.y = BatchNormalization(rn2_7.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c2.c.sc[32 x 1], rn2_7.c2.c.b[32 x 1], rn2_7.c2.c.m[32 x 1], rn2_7.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.p = Plus(rn2_7.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.y = RectifiedLinear(rn2_7.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.c.c.c = Convolution(rn2_8.c1.c.W[32 x 288], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.y = BatchNormalization(rn2_8.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c1.c.c.sc[32 x 1], rn2_8.c1.c.c.b[32 x 1], rn2_8.c1.c.c.m[32 x 1], rn2_8.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.y = RectifiedLinear(rn2_8.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c2.c.c = Convolution(rn2_8.c2.W[32 x 288], rn2_8.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.y = BatchNormalization(rn2_8.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c2.c.sc[32 x 1], rn2_8.c2.c.b[32 x 1], rn2_8.c2.c.m[32 x 1], rn2_8.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.p = Plus(rn2_8.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.y = RectifiedLinear(rn2_8.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.c.c.c = Convolution(rn2_9.c1.c.W[32 x 288], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.y = BatchNormalization(rn2_9.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c1.c.c.sc[32 x 1], rn2_9.c1.c.c.b[32 x 1], rn2_9.c1.c.c.m[32 x 1], rn2_9.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.y = RectifiedLinear(rn2_9.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c2.c.c = Convolution(rn2_9.c2.W[32 x 288], rn2_9.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.y = BatchNormalization(rn2_9.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c2.c.sc[32 x 1], rn2_9.c2.c.b[32 x 1], rn2_9.c2.c.m[32 x 1], rn2_9.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.p = Plus(rn2_9.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.y = RectifiedLinear(rn2_9.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.c.c.c = Convolution(rn2_10.c1.c.W[32 x 288], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.y = BatchNormalization(rn2_10.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c1.c.c.sc[32 x 1], rn2_10.c1.c.c.b[32 x 1], rn2_10.c1.c.c.m[32 x 1], rn2_10.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.y = RectifiedLinear(rn2_10.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c2.c.c = Convolution(rn2_10.c2.W[32 x 288], rn2_10.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.y = BatchNormalization(rn2_10.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c2.c.sc[32 x 1], rn2_10.c2.c.b[32 x 1], rn2_10.c2.c.m[32 x 1], rn2_10.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.p = Plus(rn2_10.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.y = RectifiedLinear(rn2_10.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.c.c.c = Convolution(rn2_11.c1.c.W[32 x 288], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.y = BatchNormalization(rn2_11.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c1.c.c.sc[32 x 1], rn2_11.c1.c.c.b[32 x 1], rn2_11.c1.c.c.m[32 x 1], rn2_11.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.y = RectifiedLinear(rn2_11.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c2.c.c = Convolution(rn2_11.c2.W[32 x 288], rn2_11.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.y = BatchNormalization(rn2_11.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c2.c.sc[32 x 1], rn2_11.c2.c.b[32 x 1], rn2_11.c2.c.m[32 x 1], rn2_11.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.p = Plus(rn2_11.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.y = RectifiedLinear(rn2_11.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.c.c.c = Convolution(rn2_12.c1.c.W[32 x 288], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.y = BatchNormalization(rn2_12.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c1.c.c.sc[32 x 1], rn2_12.c1.c.c.b[32 x 1], rn2_12.c1.c.c.m[32 x 1], rn2_12.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.y = RectifiedLinear(rn2_12.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c2.c.c = Convolution(rn2_12.c2.W[32 x 288], rn2_12.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.y = BatchNormalization(rn2_12.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c2.c.sc[32 x 1], rn2_12.c2.c.b[32 x 1], rn2_12.c2.c.m[32 x 1], rn2_12.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.p = Plus(rn2_12.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.y = RectifiedLinear(rn2_12.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.c.c.c = Convolution(rn2_13.c1.c.W[32 x 288], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.y = BatchNormalization(rn2_13.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c1.c.c.sc[32 x 1], rn2_13.c1.c.c.b[32 x 1], rn2_13.c1.c.c.m[32 x 1], rn2_13.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.y = RectifiedLinear(rn2_13.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c2.c.c = Convolution(rn2_13.c2.W[32 x 288], rn2_13.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.y = BatchNormalization(rn2_13.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c2.c.sc[32 x 1], rn2_13.c2.c.b[32 x 1], rn2_13.c2.c.m[32 x 1], rn2_13.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.p = Plus(rn2_13.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.y = RectifiedLinear(rn2_13.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.c.c.c = Convolution(rn2_14.c1.c.W[32 x 288], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.y = BatchNormalization(rn2_14.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c1.c.c.sc[32 x 1], rn2_14.c1.c.c.b[32 x 1], rn2_14.c1.c.c.m[32 x 1], rn2_14.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.y = RectifiedLinear(rn2_14.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c2.c.c = Convolution(rn2_14.c2.W[32 x 288], rn2_14.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.y = BatchNormalization(rn2_14.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c2.c.sc[32 x 1], rn2_14.c2.c.b[32 x 1], rn2_14.c2.c.m[32 x 1], rn2_14.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.p = Plus(rn2_14.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.y = RectifiedLinear(rn2_14.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.c.c.c = Convolution(rn2_15.c1.c.W[32 x 288], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.y = BatchNormalization(rn2_15.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c1.c.c.sc[32 x 1], rn2_15.c1.c.c.b[32 x 1], rn2_15.c1.c.c.m[32 x 1], rn2_15.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.y = RectifiedLinear(rn2_15.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c2.c.c = Convolution(rn2_15.c2.W[32 x 288], rn2_15.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.y = BatchNormalization(rn2_15.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c2.c.sc[32 x 1], rn2_15.c2.c.b[32 x 1], rn2_15.c2.c.m[32 x 1], rn2_15.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.p = Plus(rn2_15.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.y = RectifiedLinear(rn2_15.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.c.c.c = Convolution(rn2_16.c1.c.W[32 x 288], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.y = BatchNormalization(rn2_16.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c1.c.c.sc[32 x 1], rn2_16.c1.c.c.b[32 x 1], rn2_16.c1.c.c.m[32 x 1], rn2_16.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.y = RectifiedLinear(rn2_16.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c2.c.c = Convolution(rn2_16.c2.W[32 x 288], rn2_16.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.y = BatchNormalization(rn2_16.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c2.c.sc[32 x 1], rn2_16.c2.c.b[32 x 1], rn2_16.c2.c.m[32 x 1], rn2_16.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.p = Plus(rn2_16.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.y = RectifiedLinear(rn2_16.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.c.c.c = Convolution(rn2_17.c1.c.W[32 x 288], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.y = BatchNormalization(rn2_17.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c1.c.c.sc[32 x 1], rn2_17.c1.c.c.b[32 x 1], rn2_17.c1.c.c.m[32 x 1], rn2_17.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.y = RectifiedLinear(rn2_17.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c2.c.c = Convolution(rn2_17.c2.W[32 x 288], rn2_17.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.y = BatchNormalization(rn2_17.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c2.c.sc[32 x 1], rn2_17.c2.c.b[32 x 1], rn2_17.c2.c.m[32 x 1], rn2_17.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.p = Plus(rn2_17.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.y = RectifiedLinear(rn2_17.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.c.c.c = Convolution(rn2_18.c1.c.W[32 x 288], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.y = BatchNormalization(rn2_18.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c1.c.c.sc[32 x 1], rn2_18.c1.c.c.b[32 x 1], rn2_18.c1.c.c.m[32 x 1], rn2_18.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.y = RectifiedLinear(rn2_18.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c2.c.c = Convolution(rn2_18.c2.W[32 x 288], rn2_18.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.y = BatchNormalization(rn2_18.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c2.c.sc[32 x 1], rn2_18.c2.c.b[32 x 1], rn2_18.c2.c.m[32 x 1], rn2_18.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.p = Plus(rn2_18.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.y = RectifiedLinear(rn2_18.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn3_1.c1.c.c.c = Convolution(rn3_1.c1.c.W[64 x 288], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.y = BatchNormalization(rn3_1.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c1.c.c.sc[64 x 1], rn3_1.c1.c.c.b[64 x 1], rn3_1.c1.c.c.m[64 x 1], rn3_1.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c2.c.c = Convolution(rn3_1.c2.W[64 x 576], rn3_1.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.y = BatchNormalization(rn3_1.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c2.c.sc[64 x 1], rn3_1.c2.c.b[64 x 1], rn3_1.c2.c.m[64 x 1], rn3_1.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1_Wproj = LearnableParameter -> [64 x 32] -Validating --> rn3_1.c_proj.c = Convolution(rn3_1_Wproj[64 x 32], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c_proj.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.y = BatchNormalization(rn3_1.c_proj.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.sc[64 x 1], rn3_1.c_proj.b[64 x 1], rn3_1.c_proj.m[64 x 1], rn3_1.c_proj.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.p = Plus(rn3_1.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.c.c.c = Convolution(rn3_2.c1.c.W[64 x 576], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.y = BatchNormalization(rn3_2.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c1.c.c.sc[64 x 1], rn3_2.c1.c.c.b[64 x 1], rn3_2.c1.c.c.m[64 x 1], rn3_2.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c2.c.c = Convolution(rn3_2.c2.W[64 x 576], rn3_2.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.y = BatchNormalization(rn3_2.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c2.c.sc[64 x 1], rn3_2.c2.c.b[64 x 1], rn3_2.c2.c.m[64 x 1], rn3_2.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.p = Plus(rn3_2.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.c.c.c = Convolution(rn3_3.c1.c.W[64 x 576], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.y = BatchNormalization(rn3_3.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c1.c.c.sc[64 x 1], rn3_3.c1.c.c.b[64 x 1], rn3_3.c1.c.c.m[64 x 1], rn3_3.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c2.c.c = Convolution(rn3_3.c2.W[64 x 576], rn3_3.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.y = BatchNormalization(rn3_3.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c2.c.sc[64 x 1], rn3_3.c2.c.b[64 x 1], rn3_3.c2.c.m[64 x 1], rn3_3.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.p = Plus(rn3_3.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.c.c.c = Convolution(rn3_4.c1.c.W[64 x 576], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.y = BatchNormalization(rn3_4.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c1.c.c.sc[64 x 1], rn3_4.c1.c.c.b[64 x 1], rn3_4.c1.c.c.m[64 x 1], rn3_4.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.y = RectifiedLinear(rn3_4.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c2.c.c = Convolution(rn3_4.c2.W[64 x 576], rn3_4.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.y = BatchNormalization(rn3_4.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c2.c.sc[64 x 1], rn3_4.c2.c.b[64 x 1], rn3_4.c2.c.m[64 x 1], rn3_4.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.p = Plus(rn3_4.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.y = RectifiedLinear(rn3_4.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.c.c.c = Convolution(rn3_5.c1.c.W[64 x 576], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.y = BatchNormalization(rn3_5.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c1.c.c.sc[64 x 1], rn3_5.c1.c.c.b[64 x 1], rn3_5.c1.c.c.m[64 x 1], rn3_5.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.y = RectifiedLinear(rn3_5.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c2.c.c = Convolution(rn3_5.c2.W[64 x 576], rn3_5.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.y = BatchNormalization(rn3_5.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c2.c.sc[64 x 1], rn3_5.c2.c.b[64 x 1], rn3_5.c2.c.m[64 x 1], rn3_5.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.p = Plus(rn3_5.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.y = RectifiedLinear(rn3_5.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.c.c.c = Convolution(rn3_6.c1.c.W[64 x 576], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.y = BatchNormalization(rn3_6.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c1.c.c.sc[64 x 1], rn3_6.c1.c.c.b[64 x 1], rn3_6.c1.c.c.m[64 x 1], rn3_6.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.y = RectifiedLinear(rn3_6.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c2.c.c = Convolution(rn3_6.c2.W[64 x 576], rn3_6.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.y = BatchNormalization(rn3_6.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c2.c.sc[64 x 1], rn3_6.c2.c.b[64 x 1], rn3_6.c2.c.m[64 x 1], rn3_6.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.p = Plus(rn3_6.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.y = RectifiedLinear(rn3_6.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.c.c.c = Convolution(rn3_7.c1.c.W[64 x 576], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.y = BatchNormalization(rn3_7.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c1.c.c.sc[64 x 1], rn3_7.c1.c.c.b[64 x 1], rn3_7.c1.c.c.m[64 x 1], rn3_7.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.y = RectifiedLinear(rn3_7.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c2.c.c = Convolution(rn3_7.c2.W[64 x 576], rn3_7.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.y = BatchNormalization(rn3_7.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c2.c.sc[64 x 1], rn3_7.c2.c.b[64 x 1], rn3_7.c2.c.m[64 x 1], rn3_7.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.p = Plus(rn3_7.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.y = RectifiedLinear(rn3_7.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.c.c.c = Convolution(rn3_8.c1.c.W[64 x 576], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.y = BatchNormalization(rn3_8.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c1.c.c.sc[64 x 1], rn3_8.c1.c.c.b[64 x 1], rn3_8.c1.c.c.m[64 x 1], rn3_8.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.y = RectifiedLinear(rn3_8.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c2.c.c = Convolution(rn3_8.c2.W[64 x 576], rn3_8.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.y = BatchNormalization(rn3_8.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c2.c.sc[64 x 1], rn3_8.c2.c.b[64 x 1], rn3_8.c2.c.m[64 x 1], rn3_8.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.p = Plus(rn3_8.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.y = RectifiedLinear(rn3_8.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.c.c.c = Convolution(rn3_9.c1.c.W[64 x 576], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.y = BatchNormalization(rn3_9.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c1.c.c.sc[64 x 1], rn3_9.c1.c.c.b[64 x 1], rn3_9.c1.c.c.m[64 x 1], rn3_9.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.y = RectifiedLinear(rn3_9.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c2.c.c = Convolution(rn3_9.c2.W[64 x 576], rn3_9.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.y = BatchNormalization(rn3_9.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c2.c.sc[64 x 1], rn3_9.c2.c.b[64 x 1], rn3_9.c2.c.m[64 x 1], rn3_9.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.p = Plus(rn3_9.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.y = RectifiedLinear(rn3_9.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.c.c.c = Convolution(rn3_10.c1.c.W[64 x 576], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.y = BatchNormalization(rn3_10.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c1.c.c.sc[64 x 1], rn3_10.c1.c.c.b[64 x 1], rn3_10.c1.c.c.m[64 x 1], rn3_10.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.y = RectifiedLinear(rn3_10.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c2.c.c = Convolution(rn3_10.c2.W[64 x 576], rn3_10.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.y = BatchNormalization(rn3_10.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c2.c.sc[64 x 1], rn3_10.c2.c.b[64 x 1], rn3_10.c2.c.m[64 x 1], rn3_10.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.p = Plus(rn3_10.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.y = RectifiedLinear(rn3_10.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.c.c.c = Convolution(rn3_11.c1.c.W[64 x 576], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.y = BatchNormalization(rn3_11.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c1.c.c.sc[64 x 1], rn3_11.c1.c.c.b[64 x 1], rn3_11.c1.c.c.m[64 x 1], rn3_11.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.y = RectifiedLinear(rn3_11.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c2.c.c = Convolution(rn3_11.c2.W[64 x 576], rn3_11.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.y = BatchNormalization(rn3_11.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c2.c.sc[64 x 1], rn3_11.c2.c.b[64 x 1], rn3_11.c2.c.m[64 x 1], rn3_11.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.p = Plus(rn3_11.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.y = RectifiedLinear(rn3_11.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.c.c.c = Convolution(rn3_12.c1.c.W[64 x 576], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.y = BatchNormalization(rn3_12.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c1.c.c.sc[64 x 1], rn3_12.c1.c.c.b[64 x 1], rn3_12.c1.c.c.m[64 x 1], rn3_12.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.y = RectifiedLinear(rn3_12.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c2.c.c = Convolution(rn3_12.c2.W[64 x 576], rn3_12.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.y = BatchNormalization(rn3_12.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c2.c.sc[64 x 1], rn3_12.c2.c.b[64 x 1], rn3_12.c2.c.m[64 x 1], rn3_12.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.p = Plus(rn3_12.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.y = RectifiedLinear(rn3_12.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.c.c.c = Convolution(rn3_13.c1.c.W[64 x 576], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.y = BatchNormalization(rn3_13.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c1.c.c.sc[64 x 1], rn3_13.c1.c.c.b[64 x 1], rn3_13.c1.c.c.m[64 x 1], rn3_13.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.y = RectifiedLinear(rn3_13.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c2.c.c = Convolution(rn3_13.c2.W[64 x 576], rn3_13.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.y = BatchNormalization(rn3_13.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c2.c.sc[64 x 1], rn3_13.c2.c.b[64 x 1], rn3_13.c2.c.m[64 x 1], rn3_13.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.p = Plus(rn3_13.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.y = RectifiedLinear(rn3_13.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.c.c.c = Convolution(rn3_14.c1.c.W[64 x 576], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.y = BatchNormalization(rn3_14.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c1.c.c.sc[64 x 1], rn3_14.c1.c.c.b[64 x 1], rn3_14.c1.c.c.m[64 x 1], rn3_14.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.y = RectifiedLinear(rn3_14.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c2.c.c = Convolution(rn3_14.c2.W[64 x 576], rn3_14.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.y = BatchNormalization(rn3_14.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c2.c.sc[64 x 1], rn3_14.c2.c.b[64 x 1], rn3_14.c2.c.m[64 x 1], rn3_14.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.p = Plus(rn3_14.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.y = RectifiedLinear(rn3_14.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.c.c.c = Convolution(rn3_15.c1.c.W[64 x 576], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.y = BatchNormalization(rn3_15.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c1.c.c.sc[64 x 1], rn3_15.c1.c.c.b[64 x 1], rn3_15.c1.c.c.m[64 x 1], rn3_15.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.y = RectifiedLinear(rn3_15.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c2.c.c = Convolution(rn3_15.c2.W[64 x 576], rn3_15.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.y = BatchNormalization(rn3_15.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c2.c.sc[64 x 1], rn3_15.c2.c.b[64 x 1], rn3_15.c2.c.m[64 x 1], rn3_15.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.p = Plus(rn3_15.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.y = RectifiedLinear(rn3_15.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.c.c.c = Convolution(rn3_16.c1.c.W[64 x 576], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.y = BatchNormalization(rn3_16.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c1.c.c.sc[64 x 1], rn3_16.c1.c.c.b[64 x 1], rn3_16.c1.c.c.m[64 x 1], rn3_16.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.y = RectifiedLinear(rn3_16.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c2.c.c = Convolution(rn3_16.c2.W[64 x 576], rn3_16.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.y = BatchNormalization(rn3_16.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c2.c.sc[64 x 1], rn3_16.c2.c.b[64 x 1], rn3_16.c2.c.m[64 x 1], rn3_16.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.p = Plus(rn3_16.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.y = RectifiedLinear(rn3_16.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.c.c.c = Convolution(rn3_17.c1.c.W[64 x 576], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.y = BatchNormalization(rn3_17.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c1.c.c.sc[64 x 1], rn3_17.c1.c.c.b[64 x 1], rn3_17.c1.c.c.m[64 x 1], rn3_17.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.y = RectifiedLinear(rn3_17.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c2.c.c = Convolution(rn3_17.c2.W[64 x 576], rn3_17.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.y = BatchNormalization(rn3_17.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c2.c.sc[64 x 1], rn3_17.c2.c.b[64 x 1], rn3_17.c2.c.m[64 x 1], rn3_17.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.p = Plus(rn3_17.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.y = RectifiedLinear(rn3_17.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.c.c.c = Convolution(rn3_18.c1.c.W[64 x 576], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.y = BatchNormalization(rn3_18.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c1.c.c.sc[64 x 1], rn3_18.c1.c.c.b[64 x 1], rn3_18.c1.c.c.m[64 x 1], rn3_18.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.y = RectifiedLinear(rn3_18.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c2.c.c = Convolution(rn3_18.c2.W[64 x 576], rn3_18.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.y = BatchNormalization(rn3_18.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c2.c.sc[64 x 1], rn3_18.c2.c.b[64 x 1], rn3_18.c2.c.m[64 x 1], rn3_18.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.p = Plus(rn3_18.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.y = RectifiedLinear(rn3_18.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> pool = AveragePooling(rn3_18.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [1 x 1 x 64 x *] -Validating --> OutputNodes.t = Times(OutputNodes.W[10 x 64], pool[1 x 1 x 64 x *]) -> [10 x *] -Validating --> OutputNodes.b = LearnableParameter -> [10] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10 x *], OutputNodes.b[10]) -> [10 x *] -Validating --> CE = CrossEntropyWithSoftmax(labels[10 x *], OutputNodes.z[10 x *]) -> [1] -Validating --> Err = ErrorPrediction(labels[10 x *], OutputNodes.z[10 x *]) -> [1] - -559 out of 949 nodes do not share the minibatch layout with the input data. - -Post-processing network complete. - -SGD using GPU 0. - -Training criterion node(s): - CE = CrossEntropyWithSoftmax - -Evaluation criterion node(s): - Err = ErrorPrediction - - -Allocating matrices for forward and/or backward propagation. -No PreCompute nodes found, skipping PreCompute step -Starting Epoch 1: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[ 1 of 160]-Minibatch[ 1- 200]: SamplesSeen = 25600; TrainLossPerSample = 2.08201447; EvalErr[0]PerSample = 0.79109375; TotalTime = 37.3101s; SamplesPerSecond = 686.1 -Finished Epoch[ 1 of 160]: [Training Set] TrainLossPerSample = 1.9284772; EvalErrPerSample = 0.73097998; AvgLearningRatePerSample = 0.00078125001; EpochTime=69.7251 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.1' -Starting Epoch 2: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[ 2 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 1.80199310; EvalErr[0]PerSample = 0.68078125; TotalTime = 34.7295s; SamplesPerSecond = 737.1 -Finished Epoch[ 2 of 160]: [Training Set] TrainLossPerSample = 1.6386911; EvalErrPerSample = 0.61193997; AvgLearningRatePerSample = 0.0078125; EpochTime=67.9925 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.2' -Starting Epoch 3: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[ 3 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 1.25481010; EvalErr[0]PerSample = 0.45394531; TotalTime = 34.5533s; SamplesPerSecond = 740.9 -Finished Epoch[ 3 of 160]: [Training Set] TrainLossPerSample = 1.1870104; EvalErrPerSample = 0.42773998; AvgLearningRatePerSample = 0.0078125; EpochTime=67.6327 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.3' -Starting Epoch 4: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[ 4 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 1.00952705; EvalErr[0]PerSample = 0.36304687; TotalTime = 34.5927s; SamplesPerSecond = 740.0 -Finished Epoch[ 4 of 160]: [Training Set] TrainLossPerSample = 0.97715324; EvalErrPerSample = 0.34739998; AvgLearningRatePerSample = 0.0078125; EpochTime=67.5202 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.4' -Starting Epoch 5: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[ 5 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.84818413; EvalErr[0]PerSample = 0.29589844; TotalTime = 34.3363s; SamplesPerSecond = 745.6 -Finished Epoch[ 5 of 160]: [Training Set] TrainLossPerSample = 0.83634055; EvalErrPerSample = 0.29328001; AvgLearningRatePerSample = 0.0078125; EpochTime=67.0961 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.5' -Starting Epoch 6: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[ 6 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.74924049; EvalErr[0]PerSample = 0.26066406; TotalTime = 34.2546s; SamplesPerSecond = 747.3 -Finished Epoch[ 6 of 160]: [Training Set] TrainLossPerSample = 0.73574179; EvalErrPerSample = 0.25577998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9549 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.6' -Starting Epoch 7: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[ 7 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.66103149; EvalErr[0]PerSample = 0.22968750; TotalTime = 34.2366s; SamplesPerSecond = 747.7 -Finished Epoch[ 7 of 160]: [Training Set] TrainLossPerSample = 0.65649849; EvalErrPerSample = 0.22679999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8964 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.7' -Starting Epoch 8: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[ 8 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.59962826; EvalErr[0]PerSample = 0.20585938; TotalTime = 34.2398s; SamplesPerSecond = 747.7 -Finished Epoch[ 8 of 160]: [Training Set] TrainLossPerSample = 0.59828544; EvalErrPerSample = 0.20622; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8987 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.8' -Starting Epoch 9: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[ 9 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.56160091; EvalErr[0]PerSample = 0.19425781; TotalTime = 34.2457s; SamplesPerSecond = 747.5 -Finished Epoch[ 9 of 160]: [Training Set] TrainLossPerSample = 0.56435287; EvalErrPerSample = 0.19484; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9167 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.9' -Starting Epoch 10: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[10 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.52267384; EvalErr[0]PerSample = 0.18140625; TotalTime = 34.2539s; SamplesPerSecond = 747.4 -Finished Epoch[10 of 160]: [Training Set] TrainLossPerSample = 0.517959; EvalErrPerSample = 0.17936; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9219 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.10' -Starting Epoch 11: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[11 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.49345413; EvalErr[0]PerSample = 0.17046875; TotalTime = 34.2380s; SamplesPerSecond = 747.7 -Finished Epoch[11 of 160]: [Training Set] TrainLossPerSample = 0.48473847; EvalErrPerSample = 0.16725999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9081 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.11' -Starting Epoch 12: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[12 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.46631210; EvalErr[0]PerSample = 0.16121094; TotalTime = 34.2568s; SamplesPerSecond = 747.3 -Finished Epoch[12 of 160]: [Training Set] TrainLossPerSample = 0.46427867; EvalErrPerSample = 0.16023999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.989 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.12' -Starting Epoch 13: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[13 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.44940582; EvalErr[0]PerSample = 0.15414063; TotalTime = 34.2965s; SamplesPerSecond = 746.4 -Finished Epoch[13 of 160]: [Training Set] TrainLossPerSample = 0.44242746; EvalErrPerSample = 0.15223999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9538 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.13' -Starting Epoch 14: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[14 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.41690651; EvalErr[0]PerSample = 0.14292969; TotalTime = 34.2325s; SamplesPerSecond = 747.8 -Finished Epoch[14 of 160]: [Training Set] TrainLossPerSample = 0.41924006; EvalErrPerSample = 0.1444; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8936 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.14' -Starting Epoch 15: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[15 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.39440144; EvalErr[0]PerSample = 0.13656250; TotalTime = 34.2478s; SamplesPerSecond = 747.5 -Finished Epoch[15 of 160]: [Training Set] TrainLossPerSample = 0.39710063; EvalErrPerSample = 0.13676; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9095 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.15' -Starting Epoch 16: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[16 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.38027695; EvalErr[0]PerSample = 0.13261719; TotalTime = 34.2563s; SamplesPerSecond = 747.3 -Finished Epoch[16 of 160]: [Training Set] TrainLossPerSample = 0.38623425; EvalErrPerSample = 0.13339999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9354 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.16' -Starting Epoch 17: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[17 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.36578236; EvalErr[0]PerSample = 0.12671875; TotalTime = 34.2493s; SamplesPerSecond = 747.5 -Finished Epoch[17 of 160]: [Training Set] TrainLossPerSample = 0.37244275; EvalErrPerSample = 0.12964; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9117 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.17' -Starting Epoch 18: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[18 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.35585205; EvalErr[0]PerSample = 0.12257813; TotalTime = 34.2442s; SamplesPerSecond = 747.6 -Finished Epoch[18 of 160]: [Training Set] TrainLossPerSample = 0.3557232; EvalErrPerSample = 0.12323999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9115 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.18' -Starting Epoch 19: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[19 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.34668755; EvalErr[0]PerSample = 0.11957031; TotalTime = 34.2499s; SamplesPerSecond = 747.4 -Finished Epoch[19 of 160]: [Training Set] TrainLossPerSample = 0.34480327; EvalErrPerSample = 0.11832; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9097 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.19' -Starting Epoch 20: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[20 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.32466316; EvalErr[0]PerSample = 0.11343750; TotalTime = 34.2563s; SamplesPerSecond = 747.3 -Finished Epoch[20 of 160]: [Training Set] TrainLossPerSample = 0.33182383; EvalErrPerSample = 0.11554; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9279 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.20' -Starting Epoch 21: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[21 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.32254467; EvalErr[0]PerSample = 0.11250000; TotalTime = 34.3100s; SamplesPerSecond = 746.1 -Finished Epoch[21 of 160]: [Training Set] TrainLossPerSample = 0.32774779; EvalErrPerSample = 0.11279999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.964 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.21' -Starting Epoch 22: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[22 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.31498192; EvalErr[0]PerSample = 0.10781250; TotalTime = 34.2773s; SamplesPerSecond = 746.8 -Finished Epoch[22 of 160]: [Training Set] TrainLossPerSample = 0.31775412; EvalErrPerSample = 0.11024; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9334 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.22' -Starting Epoch 23: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[23 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.30091822; EvalErr[0]PerSample = 0.10332031; TotalTime = 34.2440s; SamplesPerSecond = 747.6 -Finished Epoch[23 of 160]: [Training Set] TrainLossPerSample = 0.30627075; EvalErrPerSample = 0.10588; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8985 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.23' -Starting Epoch 24: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[24 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.29784729; EvalErr[0]PerSample = 0.10226563; TotalTime = 34.2371s; SamplesPerSecond = 747.7 -Finished Epoch[24 of 160]: [Training Set] TrainLossPerSample = 0.30072364; EvalErrPerSample = 0.10337999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8912 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.24' -Starting Epoch 25: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[25 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.28111343; EvalErr[0]PerSample = 0.09546875; TotalTime = 34.2373s; SamplesPerSecond = 747.7 -Finished Epoch[25 of 160]: [Training Set] TrainLossPerSample = 0.29015899; EvalErrPerSample = 0.09956; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8986 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.25' -Starting Epoch 26: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[26 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.28119558; EvalErr[0]PerSample = 0.09894531; TotalTime = 34.2398s; SamplesPerSecond = 747.7 -Finished Epoch[26 of 160]: [Training Set] TrainLossPerSample = 0.28062734; EvalErrPerSample = 0.098979995; AvgLearningRatePerSample = 0.0078125; EpochTime=66.896 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.26' -Starting Epoch 27: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[27 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.26773546; EvalErr[0]PerSample = 0.09253906; TotalTime = 34.2453s; SamplesPerSecond = 747.5 -Finished Epoch[27 of 160]: [Training Set] TrainLossPerSample = 0.27523825; EvalErrPerSample = 0.095259994; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8905 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.27' -Starting Epoch 28: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[28 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.27260826; EvalErr[0]PerSample = 0.09472656; TotalTime = 34.2339s; SamplesPerSecond = 747.8 -Finished Epoch[28 of 160]: [Training Set] TrainLossPerSample = 0.27595448; EvalErrPerSample = 0.095739998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8925 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.28' -Starting Epoch 29: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[29 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25796089; EvalErr[0]PerSample = 0.08808594; TotalTime = 34.2304s; SamplesPerSecond = 747.9 -Finished Epoch[29 of 160]: [Training Set] TrainLossPerSample = 0.26468921; EvalErrPerSample = 0.090640001; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8905 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.29' -Starting Epoch 30: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[30 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25212626; EvalErr[0]PerSample = 0.08828125; TotalTime = 34.2402s; SamplesPerSecond = 747.7 -Finished Epoch[30 of 160]: [Training Set] TrainLossPerSample = 0.25851542; EvalErrPerSample = 0.090559997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.889 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.30' -Starting Epoch 31: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[31 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24511749; EvalErr[0]PerSample = 0.08714844; TotalTime = 34.2452s; SamplesPerSecond = 747.6 -Finished Epoch[31 of 160]: [Training Set] TrainLossPerSample = 0.25035423; EvalErrPerSample = 0.088579997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9067 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.31' -Starting Epoch 32: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[32 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24218447; EvalErr[0]PerSample = 0.08449219; TotalTime = 34.2393s; SamplesPerSecond = 747.7 -Finished Epoch[32 of 160]: [Training Set] TrainLossPerSample = 0.24899355; EvalErrPerSample = 0.085919999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8996 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.32' -Starting Epoch 33: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[33 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23380465; EvalErr[0]PerSample = 0.08230469; TotalTime = 34.2486s; SamplesPerSecond = 747.5 -Finished Epoch[33 of 160]: [Training Set] TrainLossPerSample = 0.24616794; EvalErrPerSample = 0.086580001; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9199 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.33' -Starting Epoch 34: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[34 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24045441; EvalErr[0]PerSample = 0.08265625; TotalTime = 34.2421s; SamplesPerSecond = 747.6 -Finished Epoch[34 of 160]: [Training Set] TrainLossPerSample = 0.24212448; EvalErrPerSample = 0.083119996; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9056 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.34' -Starting Epoch 35: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[35 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.22943111; EvalErr[0]PerSample = 0.08085937; TotalTime = 34.3397s; SamplesPerSecond = 745.5 -Finished Epoch[35 of 160]: [Training Set] TrainLossPerSample = 0.23983407; EvalErrPerSample = 0.083459996; AvgLearningRatePerSample = 0.0078125; EpochTime=67.0061 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.35' -Starting Epoch 36: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[36 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23311565; EvalErr[0]PerSample = 0.08097656; TotalTime = 34.2423s; SamplesPerSecond = 747.6 -Finished Epoch[36 of 160]: [Training Set] TrainLossPerSample = 0.23720597; EvalErrPerSample = 0.081979997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.905 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.36' -Starting Epoch 37: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[37 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.21555502; EvalErr[0]PerSample = 0.07417969; TotalTime = 34.2320s; SamplesPerSecond = 747.8 -Finished Epoch[37 of 160]: [Training Set] TrainLossPerSample = 0.2297499; EvalErrPerSample = 0.07948; AvgLearningRatePerSample = 0.0078125; EpochTime=66.89 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.37' -Starting Epoch 38: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[38 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.22408737; EvalErr[0]PerSample = 0.07808594; TotalTime = 34.2398s; SamplesPerSecond = 747.7 -Finished Epoch[38 of 160]: [Training Set] TrainLossPerSample = 0.22645262; EvalErrPerSample = 0.078979999; AvgLearningRatePerSample = 0.0078125; EpochTime=67.0321 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.38' -Starting Epoch 39: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[39 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.21047318; EvalErr[0]PerSample = 0.07042969; TotalTime = 34.2497s; SamplesPerSecond = 747.5 -Finished Epoch[39 of 160]: [Training Set] TrainLossPerSample = 0.2245833; EvalErrPerSample = 0.076739997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9139 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.39' -Starting Epoch 40: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[40 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.21677456; EvalErr[0]PerSample = 0.07500000; TotalTime = 34.2403s; SamplesPerSecond = 747.7 -Finished Epoch[40 of 160]: [Training Set] TrainLossPerSample = 0.22170429; EvalErrPerSample = 0.076480001; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8962 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.40' -Starting Epoch 41: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[41 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.21649546; EvalErr[0]PerSample = 0.07519531; TotalTime = 34.2476s; SamplesPerSecond = 747.5 -Finished Epoch[41 of 160]: [Training Set] TrainLossPerSample = 0.21857023; EvalErrPerSample = 0.075599998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9011 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.41' -Starting Epoch 42: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[42 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.20455832; EvalErr[0]PerSample = 0.07152344; TotalTime = 34.2415s; SamplesPerSecond = 747.6 -Finished Epoch[42 of 160]: [Training Set] TrainLossPerSample = 0.2160496; EvalErrPerSample = 0.075199999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9069 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.42' -Starting Epoch 43: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[43 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.20672878; EvalErr[0]PerSample = 0.06980469; TotalTime = 34.2485s; SamplesPerSecond = 747.5 -Finished Epoch[43 of 160]: [Training Set] TrainLossPerSample = 0.21430331; EvalErrPerSample = 0.07418; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9167 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.43' -Starting Epoch 44: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[44 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.20699423; EvalErr[0]PerSample = 0.07023438; TotalTime = 34.2524s; SamplesPerSecond = 747.4 -Finished Epoch[44 of 160]: [Training Set] TrainLossPerSample = 0.21219908; EvalErrPerSample = 0.072559997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9169 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.44' -Starting Epoch 45: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[45 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.19827534; EvalErr[0]PerSample = 0.06875000; TotalTime = 34.2522s; SamplesPerSecond = 747.4 -Finished Epoch[45 of 160]: [Training Set] TrainLossPerSample = 0.20897356; EvalErrPerSample = 0.07192; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9303 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.45' -Starting Epoch 46: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[46 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.20024132; EvalErr[0]PerSample = 0.06968750; TotalTime = 34.2502s; SamplesPerSecond = 747.4 -Finished Epoch[46 of 160]: [Training Set] TrainLossPerSample = 0.20776483; EvalErrPerSample = 0.072839998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9176 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.46' -Starting Epoch 47: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[47 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.19332899; EvalErr[0]PerSample = 0.06835938; TotalTime = 34.2464s; SamplesPerSecond = 747.5 -Finished Epoch[47 of 160]: [Training Set] TrainLossPerSample = 0.20251136; EvalErrPerSample = 0.071400002; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9216 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.47' -Starting Epoch 48: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[48 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.20135883; EvalErr[0]PerSample = 0.07085938; TotalTime = 34.2391s; SamplesPerSecond = 747.7 -Finished Epoch[48 of 160]: [Training Set] TrainLossPerSample = 0.20199671; EvalErrPerSample = 0.070560001; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9086 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.48' -Starting Epoch 49: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[49 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.18952045; EvalErr[0]PerSample = 0.06582031; TotalTime = 34.2645s; SamplesPerSecond = 747.1 -Finished Epoch[49 of 160]: [Training Set] TrainLossPerSample = 0.19823113; EvalErrPerSample = 0.068580002; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9231 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.49' -Starting Epoch 50: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[50 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.19133921; EvalErr[0]PerSample = 0.06726562; TotalTime = 34.2493s; SamplesPerSecond = 747.5 -Finished Epoch[50 of 160]: [Training Set] TrainLossPerSample = 0.2006802; EvalErrPerSample = 0.070699997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9319 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.50' -Starting Epoch 51: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[51 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.19296997; EvalErr[0]PerSample = 0.06621094; TotalTime = 34.2297s; SamplesPerSecond = 747.9 -Finished Epoch[51 of 160]: [Training Set] TrainLossPerSample = 0.1992881; EvalErrPerSample = 0.069499999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8847 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.51' -Starting Epoch 52: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[52 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.18573498; EvalErr[0]PerSample = 0.06414063; TotalTime = 34.2456s; SamplesPerSecond = 747.5 -Finished Epoch[52 of 160]: [Training Set] TrainLossPerSample = 0.19471373; EvalErrPerSample = 0.067099996; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9424 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.52' -Starting Epoch 53: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[53 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.18396889; EvalErr[0]PerSample = 0.06542969; TotalTime = 34.2888s; SamplesPerSecond = 746.6 -Finished Epoch[53 of 160]: [Training Set] TrainLossPerSample = 0.1925908; EvalErrPerSample = 0.067219995; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9471 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.53' -Starting Epoch 54: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[54 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.18691126; EvalErr[0]PerSample = 0.06562500; TotalTime = 34.2456s; SamplesPerSecond = 747.5 -Finished Epoch[54 of 160]: [Training Set] TrainLossPerSample = 0.18951587; EvalErrPerSample = 0.065919995; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9116 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.54' -Starting Epoch 55: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[55 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.18601879; EvalErr[0]PerSample = 0.06371094; TotalTime = 34.2466s; SamplesPerSecond = 747.5 -Finished Epoch[55 of 160]: [Training Set] TrainLossPerSample = 0.18988976; EvalErrPerSample = 0.066100001; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9152 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.55' -Starting Epoch 56: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[56 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.18315941; EvalErr[0]PerSample = 0.06406250; TotalTime = 34.2413s; SamplesPerSecond = 747.6 -Finished Epoch[56 of 160]: [Training Set] TrainLossPerSample = 0.18686067; EvalErrPerSample = 0.065739997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9069 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.56' -Starting Epoch 57: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[57 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.18106951; EvalErr[0]PerSample = 0.06246094; TotalTime = 34.2510s; SamplesPerSecond = 747.4 -Finished Epoch[57 of 160]: [Training Set] TrainLossPerSample = 0.19042736; EvalErrPerSample = 0.06622; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9223 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.57' -Starting Epoch 58: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[58 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.18492083; EvalErr[0]PerSample = 0.06527344; TotalTime = 34.2528s; SamplesPerSecond = 747.4 -Finished Epoch[58 of 160]: [Training Set] TrainLossPerSample = 0.18727326; EvalErrPerSample = 0.064939998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9267 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.58' -Starting Epoch 59: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[59 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.17038435; EvalErr[0]PerSample = 0.05917969; TotalTime = 34.2496s; SamplesPerSecond = 747.5 -Finished Epoch[59 of 160]: [Training Set] TrainLossPerSample = 0.18080178; EvalErrPerSample = 0.062299997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9191 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.59' -Starting Epoch 60: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[60 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.17502851; EvalErr[0]PerSample = 0.06183594; TotalTime = 34.2793s; SamplesPerSecond = 746.8 -Finished Epoch[60 of 160]: [Training Set] TrainLossPerSample = 0.17897207; EvalErrPerSample = 0.062819995; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9611 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.60' -Starting Epoch 61: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[61 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.17479221; EvalErr[0]PerSample = 0.06187500; TotalTime = 34.2481s; SamplesPerSecond = 747.5 -Finished Epoch[61 of 160]: [Training Set] TrainLossPerSample = 0.17798932; EvalErrPerSample = 0.062660001; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9219 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.61' -Starting Epoch 62: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[62 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.17981518; EvalErr[0]PerSample = 0.06199219; TotalTime = 34.2561s; SamplesPerSecond = 747.3 -Finished Epoch[62 of 160]: [Training Set] TrainLossPerSample = 0.18243115; EvalErrPerSample = 0.064240001; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9244 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.62' -Starting Epoch 63: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[63 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.17270412; EvalErr[0]PerSample = 0.05917969; TotalTime = 34.2554s; SamplesPerSecond = 747.3 -Finished Epoch[63 of 160]: [Training Set] TrainLossPerSample = 0.17758152; EvalErrPerSample = 0.061719999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9361 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.63' -Starting Epoch 64: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[64 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.16516579; EvalErr[0]PerSample = 0.05792969; TotalTime = 34.2766s; SamplesPerSecond = 746.9 -Finished Epoch[64 of 160]: [Training Set] TrainLossPerSample = 0.17424898; EvalErrPerSample = 0.06044; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9633 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.64' -Starting Epoch 65: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[65 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.17415672; EvalErr[0]PerSample = 0.06164062; TotalTime = 34.3307s; SamplesPerSecond = 745.7 -Finished Epoch[65 of 160]: [Training Set] TrainLossPerSample = 0.17599966; EvalErrPerSample = 0.062039997; AvgLearningRatePerSample = 0.0078125; EpochTime=67.026 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.65' -Starting Epoch 66: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[66 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.16262278; EvalErr[0]PerSample = 0.05886719; TotalTime = 34.2448s; SamplesPerSecond = 747.6 -Finished Epoch[66 of 160]: [Training Set] TrainLossPerSample = 0.16772267; EvalErrPerSample = 0.059799999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9065 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.66' -Starting Epoch 67: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[67 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.16856216; EvalErr[0]PerSample = 0.05906250; TotalTime = 34.2467s; SamplesPerSecond = 747.5 -Finished Epoch[67 of 160]: [Training Set] TrainLossPerSample = 0.17300676; EvalErrPerSample = 0.061139997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9215 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.67' -Starting Epoch 68: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[68 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.16585386; EvalErr[0]PerSample = 0.05734375; TotalTime = 34.2464s; SamplesPerSecond = 747.5 -Finished Epoch[68 of 160]: [Training Set] TrainLossPerSample = 0.17578007; EvalErrPerSample = 0.060519997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9115 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.68' -Starting Epoch 69: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[69 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.15487971; EvalErr[0]PerSample = 0.05441406; TotalTime = 34.2490s; SamplesPerSecond = 747.5 -Finished Epoch[69 of 160]: [Training Set] TrainLossPerSample = 0.16411984; EvalErrPerSample = 0.05844; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9135 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.69' -Starting Epoch 70: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[70 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.15948469; EvalErr[0]PerSample = 0.05597656; TotalTime = 34.2446s; SamplesPerSecond = 747.6 -Finished Epoch[70 of 160]: [Training Set] TrainLossPerSample = 0.16847; EvalErrPerSample = 0.058879998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9103 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.70' -Starting Epoch 71: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[71 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.16197550; EvalErr[0]PerSample = 0.05718750; TotalTime = 34.2458s; SamplesPerSecond = 747.5 -Finished Epoch[71 of 160]: [Training Set] TrainLossPerSample = 0.17195615; EvalErrPerSample = 0.060839999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9166 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.71' -Starting Epoch 72: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[72 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.15629568; EvalErr[0]PerSample = 0.05515625; TotalTime = 34.2503s; SamplesPerSecond = 747.4 -Finished Epoch[72 of 160]: [Training Set] TrainLossPerSample = 0.17160599; EvalErrPerSample = 0.061219998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9158 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.72' -Starting Epoch 73: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[73 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.15722611; EvalErr[0]PerSample = 0.05476562; TotalTime = 34.2420s; SamplesPerSecond = 747.6 -Finished Epoch[73 of 160]: [Training Set] TrainLossPerSample = 0.16512014; EvalErrPerSample = 0.058259998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8986 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.73' -Starting Epoch 74: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[74 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.16009672; EvalErr[0]PerSample = 0.05703125; TotalTime = 34.2495s; SamplesPerSecond = 747.5 -Finished Epoch[74 of 160]: [Training Set] TrainLossPerSample = 0.16898924; EvalErrPerSample = 0.059019998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9233 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.74' -Starting Epoch 75: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[75 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.15460204; EvalErr[0]PerSample = 0.05312500; TotalTime = 34.2539s; SamplesPerSecond = 747.4 -Finished Epoch[75 of 160]: [Training Set] TrainLossPerSample = 0.16324201; EvalErrPerSample = 0.055919997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9233 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.75' -Starting Epoch 76: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[76 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.15667317; EvalErr[0]PerSample = 0.05515625; TotalTime = 34.2399s; SamplesPerSecond = 747.7 -Finished Epoch[76 of 160]: [Training Set] TrainLossPerSample = 0.15858564; EvalErrPerSample = 0.055059999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9518 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.76' -Starting Epoch 77: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[77 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.15659092; EvalErr[0]PerSample = 0.05410156; TotalTime = 34.2332s; SamplesPerSecond = 747.8 -Finished Epoch[77 of 160]: [Training Set] TrainLossPerSample = 0.16720241; EvalErrPerSample = 0.058079999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9014 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.77' -Starting Epoch 78: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[78 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.15273868; EvalErr[0]PerSample = 0.05164063; TotalTime = 34.2404s; SamplesPerSecond = 747.7 -Finished Epoch[78 of 160]: [Training Set] TrainLossPerSample = 0.15992303; EvalErrPerSample = 0.055239998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.906 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.78' -Starting Epoch 79: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[79 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.15322983; EvalErr[0]PerSample = 0.05476562; TotalTime = 34.2420s; SamplesPerSecond = 747.6 -Finished Epoch[79 of 160]: [Training Set] TrainLossPerSample = 0.16380094; EvalErrPerSample = 0.058139998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9021 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.79' -Starting Epoch 80: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[80 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.15410002; EvalErr[0]PerSample = 0.05335938; TotalTime = 34.2510s; SamplesPerSecond = 747.4 -Finished Epoch[80 of 160]: [Training Set] TrainLossPerSample = 0.16132115; EvalErrPerSample = 0.05638; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9122 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.80' -Starting Epoch 81: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[81 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.14658320; EvalErr[0]PerSample = 0.05156250; TotalTime = 34.2506s; SamplesPerSecond = 747.4 -Finished Epoch[81 of 160]: [Training Set] TrainLossPerSample = 0.15670048; EvalErrPerSample = 0.055119999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9019 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.81' -Starting Epoch 82: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[82 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.11055239; EvalErr[0]PerSample = 0.03714844; TotalTime = 34.2453s; SamplesPerSecond = 747.5 -Finished Epoch[82 of 160]: [Training Set] TrainLossPerSample = 0.090582155; EvalErrPerSample = 0.03066; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.8937 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.82' -Starting Epoch 83: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[83 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05391692; EvalErr[0]PerSample = 0.01675781; TotalTime = 34.2464s; SamplesPerSecond = 747.5 -Finished Epoch[83 of 160]: [Training Set] TrainLossPerSample = 0.052728198; EvalErrPerSample = 0.01644; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9025 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.83' -Starting Epoch 84: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[84 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.04134419; EvalErr[0]PerSample = 0.01242188; TotalTime = 34.2487s; SamplesPerSecond = 747.5 -Finished Epoch[84 of 160]: [Training Set] TrainLossPerSample = 0.04261167; EvalErrPerSample = 0.01278; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.922 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.84' -Starting Epoch 85: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[85 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03696221; EvalErr[0]PerSample = 0.01214844; TotalTime = 34.2502s; SamplesPerSecond = 747.4 -Finished Epoch[85 of 160]: [Training Set] TrainLossPerSample = 0.035290603; EvalErrPerSample = 0.01108; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9713 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.85' -Starting Epoch 86: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[86 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03103620; EvalErr[0]PerSample = 0.00906250; TotalTime = 34.2539s; SamplesPerSecond = 747.4 -Finished Epoch[86 of 160]: [Training Set] TrainLossPerSample = 0.031053338; EvalErrPerSample = 0.0093200002; AvgLearningRatePerSample = 0.00078125001; EpochTime=67.0851 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.86' -Starting Epoch 87: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[87 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.02747848; EvalErr[0]PerSample = 0.00800781; TotalTime = 34.9682s; SamplesPerSecond = 732.1 -Finished Epoch[87 of 160]: [Training Set] TrainLossPerSample = 0.028250355; EvalErrPerSample = 0.00832; AvgLearningRatePerSample = 0.00078125001; EpochTime=67.6314 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.87' -Starting Epoch 88: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[88 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.02383066; EvalErr[0]PerSample = 0.00714844; TotalTime = 34.2475s; SamplesPerSecond = 747.5 -Finished Epoch[88 of 160]: [Training Set] TrainLossPerSample = 0.023733234; EvalErrPerSample = 0.0070599997; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9154 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.88' -Starting Epoch 89: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[89 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.02334737; EvalErr[0]PerSample = 0.00632813; TotalTime = 34.2406s; SamplesPerSecond = 747.7 -Finished Epoch[89 of 160]: [Training Set] TrainLossPerSample = 0.022844482; EvalErrPerSample = 0.0063999998; AvgLearningRatePerSample = 0.00078125001; EpochTime=67.0741 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.89' -Starting Epoch 90: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[90 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.02094710; EvalErr[0]PerSample = 0.00589844; TotalTime = 34.2465s; SamplesPerSecond = 747.5 -Finished Epoch[90 of 160]: [Training Set] TrainLossPerSample = 0.020934064; EvalErrPerSample = 0.0059599997; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9229 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.90' -Starting Epoch 91: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[91 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.02006884; EvalErr[0]PerSample = 0.00628906; TotalTime = 34.2548s; SamplesPerSecond = 747.3 -Finished Epoch[91 of 160]: [Training Set] TrainLossPerSample = 0.019843206; EvalErrPerSample = 0.0061399997; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.914 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.91' -Starting Epoch 92: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[92 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01826200; EvalErr[0]PerSample = 0.00542969; TotalTime = 34.2810s; SamplesPerSecond = 746.8 -Finished Epoch[92 of 160]: [Training Set] TrainLossPerSample = 0.018547757; EvalErrPerSample = 0.00538; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9512 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.92' -Starting Epoch 93: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[93 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01654859; EvalErr[0]PerSample = 0.00453125; TotalTime = 34.2943s; SamplesPerSecond = 746.5 -Finished Epoch[93 of 160]: [Training Set] TrainLossPerSample = 0.01722255; EvalErrPerSample = 0.0049399999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9701 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.93' -Starting Epoch 94: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[94 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01585697; EvalErr[0]PerSample = 0.00441406; TotalTime = 34.2504s; SamplesPerSecond = 747.4 -Finished Epoch[94 of 160]: [Training Set] TrainLossPerSample = 0.01515844; EvalErrPerSample = 0.0041799997; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.93 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.94' -Starting Epoch 95: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[95 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01532144; EvalErr[0]PerSample = 0.00441406; TotalTime = 34.2512s; SamplesPerSecond = 747.4 -Finished Epoch[95 of 160]: [Training Set] TrainLossPerSample = 0.015015967; EvalErrPerSample = 0.0044; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9121 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.95' -Starting Epoch 96: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[96 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01399448; EvalErr[0]PerSample = 0.00406250; TotalTime = 34.2433s; SamplesPerSecond = 747.6 -Finished Epoch[96 of 160]: [Training Set] TrainLossPerSample = 0.013210027; EvalErrPerSample = 0.00376; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.8997 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.96' -Starting Epoch 97: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[97 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01209825; EvalErr[0]PerSample = 0.00332031; TotalTime = 34.2567s; SamplesPerSecond = 747.3 -Finished Epoch[97 of 160]: [Training Set] TrainLossPerSample = 0.012226926; EvalErrPerSample = 0.0032599999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9247 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.97' -Starting Epoch 98: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[98 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01230964; EvalErr[0]PerSample = 0.00343750; TotalTime = 34.2486s; SamplesPerSecond = 747.5 -Finished Epoch[98 of 160]: [Training Set] TrainLossPerSample = 0.012122833; EvalErrPerSample = 0.0034599998; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9192 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.98' -Starting Epoch 99: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[99 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00988823; EvalErr[0]PerSample = 0.00230469; TotalTime = 34.2477s; SamplesPerSecond = 747.5 -Finished Epoch[99 of 160]: [Training Set] TrainLossPerSample = 0.011153033; EvalErrPerSample = 0.00288; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9079 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.99' -Starting Epoch 100: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[100 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01078802; EvalErr[0]PerSample = 0.00328125; TotalTime = 34.2446s; SamplesPerSecond = 747.6 -Finished Epoch[100 of 160]: [Training Set] TrainLossPerSample = 0.010805478; EvalErrPerSample = 0.0032199998; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9141 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.100' -Starting Epoch 101: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[101 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01043408; EvalErr[0]PerSample = 0.00285156; TotalTime = 34.2448s; SamplesPerSecond = 747.6 -Finished Epoch[101 of 160]: [Training Set] TrainLossPerSample = 0.0097289206; EvalErrPerSample = 0.00254; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9115 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.101' -Starting Epoch 102: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[102 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01028690; EvalErr[0]PerSample = 0.00269531; TotalTime = 34.2500s; SamplesPerSecond = 747.4 -Finished Epoch[102 of 160]: [Training Set] TrainLossPerSample = 0.010017196; EvalErrPerSample = 0.0026999998; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9075 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.102' -Starting Epoch 103: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[103 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01031995; EvalErr[0]PerSample = 0.00316406; TotalTime = 34.2485s; SamplesPerSecond = 747.5 -Finished Epoch[103 of 160]: [Training Set] TrainLossPerSample = 0.010233736; EvalErrPerSample = 0.0030199999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9094 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.103' -Starting Epoch 104: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[104 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00783067; EvalErr[0]PerSample = 0.00164062; TotalTime = 34.2752s; SamplesPerSecond = 746.9 -Finished Epoch[104 of 160]: [Training Set] TrainLossPerSample = 0.0086551448; EvalErrPerSample = 0.00208; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9965 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.104' -Starting Epoch 105: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[105 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00939923; EvalErr[0]PerSample = 0.00253906; TotalTime = 34.2407s; SamplesPerSecond = 747.6 -Finished Epoch[105 of 160]: [Training Set] TrainLossPerSample = 0.0096224733; EvalErrPerSample = 0.0026199999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.8974 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.105' -Starting Epoch 106: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[106 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00753223; EvalErr[0]PerSample = 0.00179688; TotalTime = 34.2848s; SamplesPerSecond = 746.7 -Finished Epoch[106 of 160]: [Training Set] TrainLossPerSample = 0.0078934198; EvalErrPerSample = 0.00202; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9655 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.106' -Starting Epoch 107: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[107 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00865439; EvalErr[0]PerSample = 0.00238281; TotalTime = 34.2544s; SamplesPerSecond = 747.4 -Finished Epoch[107 of 160]: [Training Set] TrainLossPerSample = 0.008151643; EvalErrPerSample = 0.00214; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9284 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.107' -Starting Epoch 108: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[108 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00694811; EvalErr[0]PerSample = 0.00148438; TotalTime = 34.2490s; SamplesPerSecond = 747.5 -Finished Epoch[108 of 160]: [Training Set] TrainLossPerSample = 0.0073725204; EvalErrPerSample = 0.0016; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9107 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.108' -Starting Epoch 109: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[109 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00807542; EvalErr[0]PerSample = 0.00218750; TotalTime = 34.2420s; SamplesPerSecond = 747.6 -Finished Epoch[109 of 160]: [Training Set] TrainLossPerSample = 0.0075115636; EvalErrPerSample = 0.00194; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9172 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.109' -Starting Epoch 110: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[110 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00747269; EvalErr[0]PerSample = 0.00214844; TotalTime = 34.2519s; SamplesPerSecond = 747.4 -Finished Epoch[110 of 160]: [Training Set] TrainLossPerSample = 0.0070967474; EvalErrPerSample = 0.0017599999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9183 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.110' -Starting Epoch 111: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[111 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00696611; EvalErr[0]PerSample = 0.00175781; TotalTime = 34.2387s; SamplesPerSecond = 747.7 -Finished Epoch[111 of 160]: [Training Set] TrainLossPerSample = 0.0071680127; EvalErrPerSample = 0.0018399999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9065 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.111' -Starting Epoch 112: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[112 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00660637; EvalErr[0]PerSample = 0.00167969; TotalTime = 34.2517s; SamplesPerSecond = 747.4 -Finished Epoch[112 of 160]: [Training Set] TrainLossPerSample = 0.0069257859; EvalErrPerSample = 0.0018399999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9221 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.112' -Starting Epoch 113: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[113 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00683305; EvalErr[0]PerSample = 0.00179688; TotalTime = 34.2447s; SamplesPerSecond = 747.6 -Finished Epoch[113 of 160]: [Training Set] TrainLossPerSample = 0.0071453024; EvalErrPerSample = 0.00182; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9078 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.113' -Starting Epoch 114: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[114 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00659715; EvalErr[0]PerSample = 0.00164062; TotalTime = 34.2397s; SamplesPerSecond = 747.7 -Finished Epoch[114 of 160]: [Training Set] TrainLossPerSample = 0.0066223624; EvalErrPerSample = 0.0017199999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9022 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.114' -Starting Epoch 115: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[115 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00571319; EvalErr[0]PerSample = 0.00140625; TotalTime = 34.2379s; SamplesPerSecond = 747.7 -Finished Epoch[115 of 160]: [Training Set] TrainLossPerSample = 0.0061274339; EvalErrPerSample = 0.0015199999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9117 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.115' -Starting Epoch 116: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[116 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00616163; EvalErr[0]PerSample = 0.00164062; TotalTime = 34.2441s; SamplesPerSecond = 747.6 -Finished Epoch[116 of 160]: [Training Set] TrainLossPerSample = 0.0064637884; EvalErrPerSample = 0.00166; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.92 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.116' -Starting Epoch 117: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[117 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00667505; EvalErr[0]PerSample = 0.00171875; TotalTime = 34.2353s; SamplesPerSecond = 747.8 -Finished Epoch[117 of 160]: [Training Set] TrainLossPerSample = 0.0063761352; EvalErrPerSample = 0.0016; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.8921 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.117' -Starting Epoch 118: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[118 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00584337; EvalErr[0]PerSample = 0.00144531; TotalTime = 34.2344s; SamplesPerSecond = 747.8 -Finished Epoch[118 of 160]: [Training Set] TrainLossPerSample = 0.0061604949; EvalErrPerSample = 0.00162; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9005 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.118' -Starting Epoch 119: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[119 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00587101; EvalErr[0]PerSample = 0.00132813; TotalTime = 34.2448s; SamplesPerSecond = 747.6 -Finished Epoch[119 of 160]: [Training Set] TrainLossPerSample = 0.0058231312; EvalErrPerSample = 0.0013799999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9065 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.119' -Starting Epoch 120: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[120 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00556109; EvalErr[0]PerSample = 0.00152344; TotalTime = 34.2181s; SamplesPerSecond = 748.1 -Finished Epoch[120 of 160]: [Training Set] TrainLossPerSample = 0.0049992148; EvalErrPerSample = 0.0013; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9296 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.120' -Starting Epoch 121: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[121 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00544529; EvalErr[0]PerSample = 0.00148438; TotalTime = 34.2507s; SamplesPerSecond = 747.4 -Finished Epoch[121 of 160]: [Training Set] TrainLossPerSample = 0.0059123267; EvalErrPerSample = 0.0016999999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9099 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.121' -Starting Epoch 122: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[122 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00506212; EvalErr[0]PerSample = 0.00109375; TotalTime = 34.2380s; SamplesPerSecond = 747.7 -Finished Epoch[122 of 160]: [Training Set] TrainLossPerSample = 0.0047056451; EvalErrPerSample = 0.00099999993; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8882 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.122' -Starting Epoch 123: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[123 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00436568; EvalErr[0]PerSample = 0.00093750; TotalTime = 34.2202s; SamplesPerSecond = 748.1 -Finished Epoch[123 of 160]: [Training Set] TrainLossPerSample = 0.0045333277; EvalErrPerSample = 0.00102; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8649 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.123' -Starting Epoch 124: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[124 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00423286; EvalErr[0]PerSample = 0.00089844; TotalTime = 34.2368s; SamplesPerSecond = 747.7 -Finished Epoch[124 of 160]: [Training Set] TrainLossPerSample = 0.0040925727; EvalErrPerSample = 0.00078; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8901 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.124' -Starting Epoch 125: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[125 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00428819; EvalErr[0]PerSample = 0.00089844; TotalTime = 34.2302s; SamplesPerSecond = 747.9 -Finished Epoch[125 of 160]: [Training Set] TrainLossPerSample = 0.0039790319; EvalErrPerSample = 0.00083999999; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8868 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.125' -Starting Epoch 126: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[126 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00386990; EvalErr[0]PerSample = 0.00070312; TotalTime = 34.2288s; SamplesPerSecond = 747.9 -Finished Epoch[126 of 160]: [Training Set] TrainLossPerSample = 0.0041431645; EvalErrPerSample = 0.00102; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8935 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.126' -Starting Epoch 127: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[127 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00415913; EvalErr[0]PerSample = 0.00074219; TotalTime = 34.2434s; SamplesPerSecond = 747.6 -Finished Epoch[127 of 160]: [Training Set] TrainLossPerSample = 0.0038879183; EvalErrPerSample = 0.00072000001; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9178 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.127' -Starting Epoch 128: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[128 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00381589; EvalErr[0]PerSample = 0.00074219; TotalTime = 34.2352s; SamplesPerSecond = 747.8 -Finished Epoch[128 of 160]: [Training Set] TrainLossPerSample = 0.0037014519; EvalErrPerSample = 0.00065999996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8974 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.128' -Starting Epoch 129: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[129 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00390699; EvalErr[0]PerSample = 0.00093750; TotalTime = 34.2443s; SamplesPerSecond = 747.6 -Finished Epoch[129 of 160]: [Training Set] TrainLossPerSample = 0.0036388342; EvalErrPerSample = 0.00073999999; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9066 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.129' -Starting Epoch 130: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[130 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00401969; EvalErr[0]PerSample = 0.00113281; TotalTime = 34.2339s; SamplesPerSecond = 747.8 -Finished Epoch[130 of 160]: [Training Set] TrainLossPerSample = 0.0038497401; EvalErrPerSample = 0.00089999998; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8803 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.130' -Starting Epoch 131: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[131 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00371109; EvalErr[0]PerSample = 0.00050781; TotalTime = 34.2393s; SamplesPerSecond = 747.7 -Finished Epoch[131 of 160]: [Training Set] TrainLossPerSample = 0.0036305008; EvalErrPerSample = 0.00055999996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9068 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.131' -Starting Epoch 132: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[132 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00361982; EvalErr[0]PerSample = 0.00082031; TotalTime = 34.2404s; SamplesPerSecond = 747.7 -Finished Epoch[132 of 160]: [Training Set] TrainLossPerSample = 0.0037875406; EvalErrPerSample = 0.00091999996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9025 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.132' -Starting Epoch 133: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[133 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00379993; EvalErr[0]PerSample = 0.00085938; TotalTime = 34.2434s; SamplesPerSecond = 747.6 -Finished Epoch[133 of 160]: [Training Set] TrainLossPerSample = 0.0037811422; EvalErrPerSample = 0.00072000001; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8997 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.133' -Starting Epoch 134: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[134 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00324624; EvalErr[0]PerSample = 0.00042969; TotalTime = 34.2358s; SamplesPerSecond = 747.8 -Finished Epoch[134 of 160]: [Training Set] TrainLossPerSample = 0.0031919111; EvalErrPerSample = 0.00052; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8704 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.134' -Starting Epoch 135: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[135 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00297883; EvalErr[0]PerSample = 0.00035156; TotalTime = 34.2219s; SamplesPerSecond = 748.1 -Finished Epoch[135 of 160]: [Training Set] TrainLossPerSample = 0.0031994823; EvalErrPerSample = 0.00059999997; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9955 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.135' -Starting Epoch 136: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[136 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00355394; EvalErr[0]PerSample = 0.00066406; TotalTime = 34.9371s; SamplesPerSecond = 732.7 -Finished Epoch[136 of 160]: [Training Set] TrainLossPerSample = 0.0036795642; EvalErrPerSample = 0.00078; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=67.6302 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.136' -Starting Epoch 137: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[137 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00359524; EvalErr[0]PerSample = 0.00066406; TotalTime = 34.2354s; SamplesPerSecond = 747.8 -Finished Epoch[137 of 160]: [Training Set] TrainLossPerSample = 0.0035311766; EvalErrPerSample = 0.00068; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.891 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.137' -Starting Epoch 138: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[138 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00343087; EvalErr[0]PerSample = 0.00066406; TotalTime = 34.2621s; SamplesPerSecond = 747.2 -Finished Epoch[138 of 160]: [Training Set] TrainLossPerSample = 0.0034796586; EvalErrPerSample = 0.00065999996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.916 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.138' -Starting Epoch 139: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[139 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00343002; EvalErr[0]PerSample = 0.00066406; TotalTime = 34.2436s; SamplesPerSecond = 747.6 -Finished Epoch[139 of 160]: [Training Set] TrainLossPerSample = 0.0033328664; EvalErrPerSample = 0.00055999996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.923 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.139' -Starting Epoch 140: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[140 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00337591; EvalErr[0]PerSample = 0.00070312; TotalTime = 34.2353s; SamplesPerSecond = 747.8 -Finished Epoch[140 of 160]: [Training Set] TrainLossPerSample = 0.0031642318; EvalErrPerSample = 0.00055999996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.926 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.140' -Starting Epoch 141: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[141 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00364618; EvalErr[0]PerSample = 0.00078125; TotalTime = 34.2214s; SamplesPerSecond = 748.1 -Finished Epoch[141 of 160]: [Training Set] TrainLossPerSample = 0.0035639035; EvalErrPerSample = 0.00078; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8739 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.141' -Starting Epoch 142: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[142 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00340368; EvalErr[0]PerSample = 0.00046875; TotalTime = 34.2602s; SamplesPerSecond = 747.2 -Finished Epoch[142 of 160]: [Training Set] TrainLossPerSample = 0.0033217999; EvalErrPerSample = 0.00043999997; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9173 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.142' -Starting Epoch 143: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[143 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00338313; EvalErr[0]PerSample = 0.00058594; TotalTime = 34.2287s; SamplesPerSecond = 747.9 -Finished Epoch[143 of 160]: [Training Set] TrainLossPerSample = 0.003285937; EvalErrPerSample = 0.00055999996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8929 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.143' -Starting Epoch 144: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[144 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00350241; EvalErr[0]PerSample = 0.00097656; TotalTime = 34.2369s; SamplesPerSecond = 747.7 -Finished Epoch[144 of 160]: [Training Set] TrainLossPerSample = 0.0033956808; EvalErrPerSample = 0.00087999995; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9109 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.144' -Starting Epoch 145: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[145 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00389780; EvalErr[0]PerSample = 0.00078125; TotalTime = 34.2499s; SamplesPerSecond = 747.4 -Finished Epoch[145 of 160]: [Training Set] TrainLossPerSample = 0.003525309; EvalErrPerSample = 0.00073999999; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9108 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.145' -Starting Epoch 146: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[146 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00273976; EvalErr[0]PerSample = 0.00050781; TotalTime = 34.2481s; SamplesPerSecond = 747.5 -Finished Epoch[146 of 160]: [Training Set] TrainLossPerSample = 0.0029731863; EvalErrPerSample = 0.00049999997; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9057 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.146' -Starting Epoch 147: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[147 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00301678; EvalErr[0]PerSample = 0.00054688; TotalTime = 34.2455s; SamplesPerSecond = 747.5 -Finished Epoch[147 of 160]: [Training Set] TrainLossPerSample = 0.0028605016; EvalErrPerSample = 0.00055999996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9068 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.147' -Starting Epoch 148: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[148 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00318503; EvalErr[0]PerSample = 0.00078125; TotalTime = 34.2349s; SamplesPerSecond = 747.8 -Finished Epoch[148 of 160]: [Training Set] TrainLossPerSample = 0.0029674848; EvalErrPerSample = 0.00063999998; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8889 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.148' -Starting Epoch 149: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[149 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00341538; EvalErr[0]PerSample = 0.00070312; TotalTime = 34.2300s; SamplesPerSecond = 747.9 -Finished Epoch[149 of 160]: [Training Set] TrainLossPerSample = 0.0034138309; EvalErrPerSample = 0.00062000001; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.973 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.149' -Starting Epoch 150: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[150 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00312641; EvalErr[0]PerSample = 0.00050781; TotalTime = 34.2394s; SamplesPerSecond = 747.7 -Finished Epoch[150 of 160]: [Training Set] TrainLossPerSample = 0.0032544835; EvalErrPerSample = 0.00062000001; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8886 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.150' -Starting Epoch 151: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[151 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00294002; EvalErr[0]PerSample = 0.00046875; TotalTime = 34.2440s; SamplesPerSecond = 747.6 -Finished Epoch[151 of 160]: [Training Set] TrainLossPerSample = 0.0029587755; EvalErrPerSample = 0.00049999997; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9165 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.151' -Starting Epoch 152: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[152 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00312315; EvalErr[0]PerSample = 0.00070312; TotalTime = 34.2407s; SamplesPerSecond = 747.6 -Finished Epoch[152 of 160]: [Training Set] TrainLossPerSample = 0.0031671789; EvalErrPerSample = 0.00063999998; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8987 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.152' -Starting Epoch 153: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[153 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00293371; EvalErr[0]PerSample = 0.00042969; TotalTime = 34.2360s; SamplesPerSecond = 747.8 -Finished Epoch[153 of 160]: [Training Set] TrainLossPerSample = 0.0029186283; EvalErrPerSample = 0.00036000001; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8934 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.153' -Starting Epoch 154: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[154 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00270366; EvalErr[0]PerSample = 0.00046875; TotalTime = 34.2303s; SamplesPerSecond = 747.9 -Finished Epoch[154 of 160]: [Training Set] TrainLossPerSample = 0.0027337885; EvalErrPerSample = 0.00029999999; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8932 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.154' -Starting Epoch 155: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[155 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00262628; EvalErr[0]PerSample = 0.00027344; TotalTime = 34.2340s; SamplesPerSecond = 747.8 -Finished Epoch[155 of 160]: [Training Set] TrainLossPerSample = 0.002633905; EvalErrPerSample = 0.00023999999; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8889 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.155' -Starting Epoch 156: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[156 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00307139; EvalErr[0]PerSample = 0.00074219; TotalTime = 34.2388s; SamplesPerSecond = 747.7 -Finished Epoch[156 of 160]: [Training Set] TrainLossPerSample = 0.0029770101; EvalErrPerSample = 0.00065999996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8912 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.156' -Starting Epoch 157: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[157 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00275711; EvalErr[0]PerSample = 0.00031250; TotalTime = 34.2329s; SamplesPerSecond = 747.8 -Finished Epoch[157 of 160]: [Training Set] TrainLossPerSample = 0.0026996653; EvalErrPerSample = 0.00034; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8768 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.157' -Starting Epoch 158: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[158 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00278720; EvalErr[0]PerSample = 0.00042969; TotalTime = 34.2421s; SamplesPerSecond = 747.6 -Finished Epoch[158 of 160]: [Training Set] TrainLossPerSample = 0.0026968825; EvalErrPerSample = 0.00037999998; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9344 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.158' -Starting Epoch 159: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[159 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00272500; EvalErr[0]PerSample = 0.00031250; TotalTime = 34.2259s; SamplesPerSecond = 748.0 -Finished Epoch[159 of 160]: [Training Set] TrainLossPerSample = 0.0027625638; EvalErrPerSample = 0.00037999998; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9162 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56.159' -Starting Epoch 160: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples - -Starting minibatch loop. - Epoch[160 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00257069; EvalErr[0]PerSample = 0.00042969; TotalTime = 34.2364s; SamplesPerSecond = 747.7 -Finished Epoch[160 of 160]: [Training Set] TrainLossPerSample = 0.0029211191; EvalErrPerSample = 0.00063999998; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8957 -SGD: Saving checkpoint model './Output/Models/04_ResNet_56' -CNTKCommandTrainEnd: Train - -Post-processing network... - -3 roots: - CE = CrossEntropyWithSoftmax - Err = ErrorPrediction - OutputNodes.z = Plus -FormNestedNetwork: WARNING: Was called twice for CE CrossEntropyWithSoftmax operation -FormNestedNetwork: WARNING: Was called twice for Err ErrorPrediction operation -FormNestedNetwork: WARNING: Was called twice for OutputNodes.z Plus operation - - -Validating network. 949 nodes to process in pass 1. - -Validating --> labels = InputValue -> [10 x *] -Validating --> OutputNodes.W = LearnableParameter -> [10 x 64] -Validating --> rn3_18.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_18.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_17.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_17.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_16.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_16.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_15.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_15.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_14.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_14.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_13.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_13.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_12.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_12.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_11.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_11.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_10.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_10.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_9.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_9.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_8.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_8.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_7.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_7.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_6.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_6.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_5.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_5.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_4.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_4.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 x 288] -Validating --> rn2_18.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_18.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_17.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_17.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_16.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_16.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_15.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_15.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_14.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_14.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_13.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_13.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_12.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_12.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_11.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_11.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_10.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_10.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_9.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_9.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_8.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_8.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_7.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_7.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_6.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_6.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_5.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_5.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_4.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_4.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 x 144] -Validating --> rn1_18.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_18.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_17.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_17.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_16.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_16.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_15.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_15.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_14.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_14.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_13.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_13.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_12.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_12.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_11.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_11.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_10.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_10.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_9.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_9.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_8.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_8.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_7.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_7.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_6.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_6.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_5.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_5.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_4.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_4.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> conv1.c.W = LearnableParameter -> [16 x 27] -Validating --> features = InputValue -> [32 x 32 x 3 x *] -Validating --> conv1.c.c.c = Convolution(conv1.c.W[16 x 27], features[32 x 32 x 3 x * {W=32, H=3, C=32}]) -> [32 x 32 x 16 x *] -Validating --> conv1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.y = BatchNormalization(conv1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.c.c.sc[16 x 1], conv1.c.c.b[16 x 1], conv1.c.c.m[16 x 1], conv1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> conv1.y = RectifiedLinear(conv1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.c.c.c = Convolution(rn1_1.c1.c.W[16 x 144], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.y = BatchNormalization(rn1_1.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c1.c.c.sc[16 x 1], rn1_1.c1.c.c.b[16 x 1], rn1_1.c1.c.c.m[16 x 1], rn1_1.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c2.c.c = Convolution(rn1_1.c2.W[16 x 144], rn1_1.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.y = BatchNormalization(rn1_1.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c2.c.sc[16 x 1], rn1_1.c2.c.b[16 x 1], rn1_1.c2.c.m[16 x 1], rn1_1.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.p = Plus(rn1_1.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.c.c.c = Convolution(rn1_2.c1.c.W[16 x 144], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.y = BatchNormalization(rn1_2.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c1.c.c.sc[16 x 1], rn1_2.c1.c.c.b[16 x 1], rn1_2.c1.c.c.m[16 x 1], rn1_2.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c2.c.c = Convolution(rn1_2.c2.W[16 x 144], rn1_2.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.y = BatchNormalization(rn1_2.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c2.c.sc[16 x 1], rn1_2.c2.c.b[16 x 1], rn1_2.c2.c.m[16 x 1], rn1_2.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.p = Plus(rn1_2.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.c.c.c = Convolution(rn1_3.c1.c.W[16 x 144], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.y = BatchNormalization(rn1_3.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c1.c.c.sc[16 x 1], rn1_3.c1.c.c.b[16 x 1], rn1_3.c1.c.c.m[16 x 1], rn1_3.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c2.c.c = Convolution(rn1_3.c2.W[16 x 144], rn1_3.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.y = BatchNormalization(rn1_3.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c2.c.sc[16 x 1], rn1_3.c2.c.b[16 x 1], rn1_3.c2.c.m[16 x 1], rn1_3.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.p = Plus(rn1_3.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.c.c.c = Convolution(rn1_4.c1.c.W[16 x 144], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.y = BatchNormalization(rn1_4.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c1.c.c.sc[16 x 1], rn1_4.c1.c.c.b[16 x 1], rn1_4.c1.c.c.m[16 x 1], rn1_4.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.y = RectifiedLinear(rn1_4.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c2.c.c = Convolution(rn1_4.c2.W[16 x 144], rn1_4.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.y = BatchNormalization(rn1_4.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c2.c.sc[16 x 1], rn1_4.c2.c.b[16 x 1], rn1_4.c2.c.m[16 x 1], rn1_4.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.p = Plus(rn1_4.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.y = RectifiedLinear(rn1_4.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.c.c.c = Convolution(rn1_5.c1.c.W[16 x 144], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.y = BatchNormalization(rn1_5.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c1.c.c.sc[16 x 1], rn1_5.c1.c.c.b[16 x 1], rn1_5.c1.c.c.m[16 x 1], rn1_5.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.y = RectifiedLinear(rn1_5.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c2.c.c = Convolution(rn1_5.c2.W[16 x 144], rn1_5.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.y = BatchNormalization(rn1_5.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c2.c.sc[16 x 1], rn1_5.c2.c.b[16 x 1], rn1_5.c2.c.m[16 x 1], rn1_5.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.p = Plus(rn1_5.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.y = RectifiedLinear(rn1_5.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.c.c.c = Convolution(rn1_6.c1.c.W[16 x 144], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.y = BatchNormalization(rn1_6.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c1.c.c.sc[16 x 1], rn1_6.c1.c.c.b[16 x 1], rn1_6.c1.c.c.m[16 x 1], rn1_6.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.y = RectifiedLinear(rn1_6.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c2.c.c = Convolution(rn1_6.c2.W[16 x 144], rn1_6.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.y = BatchNormalization(rn1_6.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c2.c.sc[16 x 1], rn1_6.c2.c.b[16 x 1], rn1_6.c2.c.m[16 x 1], rn1_6.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.p = Plus(rn1_6.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.y = RectifiedLinear(rn1_6.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.c.c.c = Convolution(rn1_7.c1.c.W[16 x 144], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.y = BatchNormalization(rn1_7.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c1.c.c.sc[16 x 1], rn1_7.c1.c.c.b[16 x 1], rn1_7.c1.c.c.m[16 x 1], rn1_7.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.y = RectifiedLinear(rn1_7.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c2.c.c = Convolution(rn1_7.c2.W[16 x 144], rn1_7.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.y = BatchNormalization(rn1_7.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c2.c.sc[16 x 1], rn1_7.c2.c.b[16 x 1], rn1_7.c2.c.m[16 x 1], rn1_7.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.p = Plus(rn1_7.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.y = RectifiedLinear(rn1_7.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.c.c.c = Convolution(rn1_8.c1.c.W[16 x 144], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.y = BatchNormalization(rn1_8.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c1.c.c.sc[16 x 1], rn1_8.c1.c.c.b[16 x 1], rn1_8.c1.c.c.m[16 x 1], rn1_8.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.y = RectifiedLinear(rn1_8.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c2.c.c = Convolution(rn1_8.c2.W[16 x 144], rn1_8.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.y = BatchNormalization(rn1_8.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c2.c.sc[16 x 1], rn1_8.c2.c.b[16 x 1], rn1_8.c2.c.m[16 x 1], rn1_8.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.p = Plus(rn1_8.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.y = RectifiedLinear(rn1_8.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.c.c.c = Convolution(rn1_9.c1.c.W[16 x 144], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.y = BatchNormalization(rn1_9.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c1.c.c.sc[16 x 1], rn1_9.c1.c.c.b[16 x 1], rn1_9.c1.c.c.m[16 x 1], rn1_9.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.y = RectifiedLinear(rn1_9.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c2.c.c = Convolution(rn1_9.c2.W[16 x 144], rn1_9.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.y = BatchNormalization(rn1_9.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c2.c.sc[16 x 1], rn1_9.c2.c.b[16 x 1], rn1_9.c2.c.m[16 x 1], rn1_9.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.p = Plus(rn1_9.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.y = RectifiedLinear(rn1_9.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.c.c.c = Convolution(rn1_10.c1.c.W[16 x 144], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.y = BatchNormalization(rn1_10.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c1.c.c.sc[16 x 1], rn1_10.c1.c.c.b[16 x 1], rn1_10.c1.c.c.m[16 x 1], rn1_10.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.y = RectifiedLinear(rn1_10.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c2.c.c = Convolution(rn1_10.c2.W[16 x 144], rn1_10.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.y = BatchNormalization(rn1_10.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c2.c.sc[16 x 1], rn1_10.c2.c.b[16 x 1], rn1_10.c2.c.m[16 x 1], rn1_10.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.p = Plus(rn1_10.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.y = RectifiedLinear(rn1_10.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.c.c.c = Convolution(rn1_11.c1.c.W[16 x 144], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.y = BatchNormalization(rn1_11.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c1.c.c.sc[16 x 1], rn1_11.c1.c.c.b[16 x 1], rn1_11.c1.c.c.m[16 x 1], rn1_11.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.y = RectifiedLinear(rn1_11.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c2.c.c = Convolution(rn1_11.c2.W[16 x 144], rn1_11.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.y = BatchNormalization(rn1_11.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c2.c.sc[16 x 1], rn1_11.c2.c.b[16 x 1], rn1_11.c2.c.m[16 x 1], rn1_11.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.p = Plus(rn1_11.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.y = RectifiedLinear(rn1_11.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.c.c.c = Convolution(rn1_12.c1.c.W[16 x 144], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.y = BatchNormalization(rn1_12.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c1.c.c.sc[16 x 1], rn1_12.c1.c.c.b[16 x 1], rn1_12.c1.c.c.m[16 x 1], rn1_12.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.y = RectifiedLinear(rn1_12.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c2.c.c = Convolution(rn1_12.c2.W[16 x 144], rn1_12.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.y = BatchNormalization(rn1_12.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c2.c.sc[16 x 1], rn1_12.c2.c.b[16 x 1], rn1_12.c2.c.m[16 x 1], rn1_12.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.p = Plus(rn1_12.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.y = RectifiedLinear(rn1_12.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.c.c.c = Convolution(rn1_13.c1.c.W[16 x 144], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.y = BatchNormalization(rn1_13.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c1.c.c.sc[16 x 1], rn1_13.c1.c.c.b[16 x 1], rn1_13.c1.c.c.m[16 x 1], rn1_13.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.y = RectifiedLinear(rn1_13.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c2.c.c = Convolution(rn1_13.c2.W[16 x 144], rn1_13.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.y = BatchNormalization(rn1_13.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c2.c.sc[16 x 1], rn1_13.c2.c.b[16 x 1], rn1_13.c2.c.m[16 x 1], rn1_13.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.p = Plus(rn1_13.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.y = RectifiedLinear(rn1_13.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.c.c.c = Convolution(rn1_14.c1.c.W[16 x 144], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.y = BatchNormalization(rn1_14.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c1.c.c.sc[16 x 1], rn1_14.c1.c.c.b[16 x 1], rn1_14.c1.c.c.m[16 x 1], rn1_14.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.y = RectifiedLinear(rn1_14.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c2.c.c = Convolution(rn1_14.c2.W[16 x 144], rn1_14.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.y = BatchNormalization(rn1_14.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c2.c.sc[16 x 1], rn1_14.c2.c.b[16 x 1], rn1_14.c2.c.m[16 x 1], rn1_14.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.p = Plus(rn1_14.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.y = RectifiedLinear(rn1_14.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.c.c.c = Convolution(rn1_15.c1.c.W[16 x 144], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.y = BatchNormalization(rn1_15.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c1.c.c.sc[16 x 1], rn1_15.c1.c.c.b[16 x 1], rn1_15.c1.c.c.m[16 x 1], rn1_15.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.y = RectifiedLinear(rn1_15.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c2.c.c = Convolution(rn1_15.c2.W[16 x 144], rn1_15.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.y = BatchNormalization(rn1_15.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c2.c.sc[16 x 1], rn1_15.c2.c.b[16 x 1], rn1_15.c2.c.m[16 x 1], rn1_15.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.p = Plus(rn1_15.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.y = RectifiedLinear(rn1_15.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.c.c.c = Convolution(rn1_16.c1.c.W[16 x 144], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.y = BatchNormalization(rn1_16.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c1.c.c.sc[16 x 1], rn1_16.c1.c.c.b[16 x 1], rn1_16.c1.c.c.m[16 x 1], rn1_16.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.y = RectifiedLinear(rn1_16.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c2.c.c = Convolution(rn1_16.c2.W[16 x 144], rn1_16.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.y = BatchNormalization(rn1_16.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c2.c.sc[16 x 1], rn1_16.c2.c.b[16 x 1], rn1_16.c2.c.m[16 x 1], rn1_16.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.p = Plus(rn1_16.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.y = RectifiedLinear(rn1_16.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.c.c.c = Convolution(rn1_17.c1.c.W[16 x 144], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.y = BatchNormalization(rn1_17.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c1.c.c.sc[16 x 1], rn1_17.c1.c.c.b[16 x 1], rn1_17.c1.c.c.m[16 x 1], rn1_17.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.y = RectifiedLinear(rn1_17.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c2.c.c = Convolution(rn1_17.c2.W[16 x 144], rn1_17.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.y = BatchNormalization(rn1_17.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c2.c.sc[16 x 1], rn1_17.c2.c.b[16 x 1], rn1_17.c2.c.m[16 x 1], rn1_17.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.p = Plus(rn1_17.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.y = RectifiedLinear(rn1_17.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.c.c.c = Convolution(rn1_18.c1.c.W[16 x 144], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.y = BatchNormalization(rn1_18.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c1.c.c.sc[16 x 1], rn1_18.c1.c.c.b[16 x 1], rn1_18.c1.c.c.m[16 x 1], rn1_18.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.y = RectifiedLinear(rn1_18.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c2.c.c = Convolution(rn1_18.c2.W[16 x 144], rn1_18.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.y = BatchNormalization(rn1_18.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c2.c.sc[16 x 1], rn1_18.c2.c.b[16 x 1], rn1_18.c2.c.m[16 x 1], rn1_18.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.p = Plus(rn1_18.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.y = RectifiedLinear(rn1_18.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn2_1.c1.c.c.c = Convolution(rn2_1.c1.c.W[32 x 144], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.y = BatchNormalization(rn2_1.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c1.c.c.sc[32 x 1], rn2_1.c1.c.c.b[32 x 1], rn2_1.c1.c.c.m[32 x 1], rn2_1.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c2.c.c = Convolution(rn2_1.c2.W[32 x 288], rn2_1.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.y = BatchNormalization(rn2_1.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c2.c.sc[32 x 1], rn2_1.c2.c.b[32 x 1], rn2_1.c2.c.m[32 x 1], rn2_1.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1_Wproj = LearnableParameter -> [32 x 16] -Validating --> rn2_1.c_proj.c = Convolution(rn2_1_Wproj[32 x 16], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c_proj.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.y = BatchNormalization(rn2_1.c_proj.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.sc[32 x 1], rn2_1.c_proj.b[32 x 1], rn2_1.c_proj.m[32 x 1], rn2_1.c_proj.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.p = Plus(rn2_1.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.c.c.c = Convolution(rn2_2.c1.c.W[32 x 288], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.y = BatchNormalization(rn2_2.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c1.c.c.sc[32 x 1], rn2_2.c1.c.c.b[32 x 1], rn2_2.c1.c.c.m[32 x 1], rn2_2.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c2.c.c = Convolution(rn2_2.c2.W[32 x 288], rn2_2.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.y = BatchNormalization(rn2_2.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c2.c.sc[32 x 1], rn2_2.c2.c.b[32 x 1], rn2_2.c2.c.m[32 x 1], rn2_2.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.p = Plus(rn2_2.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.c.c.c = Convolution(rn2_3.c1.c.W[32 x 288], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.y = BatchNormalization(rn2_3.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c1.c.c.sc[32 x 1], rn2_3.c1.c.c.b[32 x 1], rn2_3.c1.c.c.m[32 x 1], rn2_3.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c2.c.c = Convolution(rn2_3.c2.W[32 x 288], rn2_3.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.y = BatchNormalization(rn2_3.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c2.c.sc[32 x 1], rn2_3.c2.c.b[32 x 1], rn2_3.c2.c.m[32 x 1], rn2_3.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.p = Plus(rn2_3.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.c.c.c = Convolution(rn2_4.c1.c.W[32 x 288], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.y = BatchNormalization(rn2_4.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c1.c.c.sc[32 x 1], rn2_4.c1.c.c.b[32 x 1], rn2_4.c1.c.c.m[32 x 1], rn2_4.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.y = RectifiedLinear(rn2_4.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c2.c.c = Convolution(rn2_4.c2.W[32 x 288], rn2_4.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.y = BatchNormalization(rn2_4.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c2.c.sc[32 x 1], rn2_4.c2.c.b[32 x 1], rn2_4.c2.c.m[32 x 1], rn2_4.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.p = Plus(rn2_4.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.y = RectifiedLinear(rn2_4.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.c.c.c = Convolution(rn2_5.c1.c.W[32 x 288], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.y = BatchNormalization(rn2_5.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c1.c.c.sc[32 x 1], rn2_5.c1.c.c.b[32 x 1], rn2_5.c1.c.c.m[32 x 1], rn2_5.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.y = RectifiedLinear(rn2_5.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c2.c.c = Convolution(rn2_5.c2.W[32 x 288], rn2_5.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.y = BatchNormalization(rn2_5.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c2.c.sc[32 x 1], rn2_5.c2.c.b[32 x 1], rn2_5.c2.c.m[32 x 1], rn2_5.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.p = Plus(rn2_5.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.y = RectifiedLinear(rn2_5.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.c.c.c = Convolution(rn2_6.c1.c.W[32 x 288], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.y = BatchNormalization(rn2_6.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c1.c.c.sc[32 x 1], rn2_6.c1.c.c.b[32 x 1], rn2_6.c1.c.c.m[32 x 1], rn2_6.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.y = RectifiedLinear(rn2_6.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c2.c.c = Convolution(rn2_6.c2.W[32 x 288], rn2_6.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.y = BatchNormalization(rn2_6.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c2.c.sc[32 x 1], rn2_6.c2.c.b[32 x 1], rn2_6.c2.c.m[32 x 1], rn2_6.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.p = Plus(rn2_6.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.y = RectifiedLinear(rn2_6.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.c.c.c = Convolution(rn2_7.c1.c.W[32 x 288], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.y = BatchNormalization(rn2_7.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c1.c.c.sc[32 x 1], rn2_7.c1.c.c.b[32 x 1], rn2_7.c1.c.c.m[32 x 1], rn2_7.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.y = RectifiedLinear(rn2_7.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c2.c.c = Convolution(rn2_7.c2.W[32 x 288], rn2_7.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.y = BatchNormalization(rn2_7.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c2.c.sc[32 x 1], rn2_7.c2.c.b[32 x 1], rn2_7.c2.c.m[32 x 1], rn2_7.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.p = Plus(rn2_7.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.y = RectifiedLinear(rn2_7.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.c.c.c = Convolution(rn2_8.c1.c.W[32 x 288], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.y = BatchNormalization(rn2_8.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c1.c.c.sc[32 x 1], rn2_8.c1.c.c.b[32 x 1], rn2_8.c1.c.c.m[32 x 1], rn2_8.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.y = RectifiedLinear(rn2_8.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c2.c.c = Convolution(rn2_8.c2.W[32 x 288], rn2_8.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.y = BatchNormalization(rn2_8.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c2.c.sc[32 x 1], rn2_8.c2.c.b[32 x 1], rn2_8.c2.c.m[32 x 1], rn2_8.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.p = Plus(rn2_8.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.y = RectifiedLinear(rn2_8.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.c.c.c = Convolution(rn2_9.c1.c.W[32 x 288], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.y = BatchNormalization(rn2_9.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c1.c.c.sc[32 x 1], rn2_9.c1.c.c.b[32 x 1], rn2_9.c1.c.c.m[32 x 1], rn2_9.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.y = RectifiedLinear(rn2_9.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c2.c.c = Convolution(rn2_9.c2.W[32 x 288], rn2_9.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.y = BatchNormalization(rn2_9.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c2.c.sc[32 x 1], rn2_9.c2.c.b[32 x 1], rn2_9.c2.c.m[32 x 1], rn2_9.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.p = Plus(rn2_9.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.y = RectifiedLinear(rn2_9.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.c.c.c = Convolution(rn2_10.c1.c.W[32 x 288], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.y = BatchNormalization(rn2_10.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c1.c.c.sc[32 x 1], rn2_10.c1.c.c.b[32 x 1], rn2_10.c1.c.c.m[32 x 1], rn2_10.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.y = RectifiedLinear(rn2_10.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c2.c.c = Convolution(rn2_10.c2.W[32 x 288], rn2_10.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.y = BatchNormalization(rn2_10.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c2.c.sc[32 x 1], rn2_10.c2.c.b[32 x 1], rn2_10.c2.c.m[32 x 1], rn2_10.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.p = Plus(rn2_10.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.y = RectifiedLinear(rn2_10.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.c.c.c = Convolution(rn2_11.c1.c.W[32 x 288], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.y = BatchNormalization(rn2_11.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c1.c.c.sc[32 x 1], rn2_11.c1.c.c.b[32 x 1], rn2_11.c1.c.c.m[32 x 1], rn2_11.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.y = RectifiedLinear(rn2_11.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c2.c.c = Convolution(rn2_11.c2.W[32 x 288], rn2_11.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.y = BatchNormalization(rn2_11.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c2.c.sc[32 x 1], rn2_11.c2.c.b[32 x 1], rn2_11.c2.c.m[32 x 1], rn2_11.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.p = Plus(rn2_11.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.y = RectifiedLinear(rn2_11.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.c.c.c = Convolution(rn2_12.c1.c.W[32 x 288], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.y = BatchNormalization(rn2_12.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c1.c.c.sc[32 x 1], rn2_12.c1.c.c.b[32 x 1], rn2_12.c1.c.c.m[32 x 1], rn2_12.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.y = RectifiedLinear(rn2_12.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c2.c.c = Convolution(rn2_12.c2.W[32 x 288], rn2_12.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.y = BatchNormalization(rn2_12.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c2.c.sc[32 x 1], rn2_12.c2.c.b[32 x 1], rn2_12.c2.c.m[32 x 1], rn2_12.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.p = Plus(rn2_12.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.y = RectifiedLinear(rn2_12.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.c.c.c = Convolution(rn2_13.c1.c.W[32 x 288], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.y = BatchNormalization(rn2_13.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c1.c.c.sc[32 x 1], rn2_13.c1.c.c.b[32 x 1], rn2_13.c1.c.c.m[32 x 1], rn2_13.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.y = RectifiedLinear(rn2_13.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c2.c.c = Convolution(rn2_13.c2.W[32 x 288], rn2_13.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.y = BatchNormalization(rn2_13.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c2.c.sc[32 x 1], rn2_13.c2.c.b[32 x 1], rn2_13.c2.c.m[32 x 1], rn2_13.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.p = Plus(rn2_13.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.y = RectifiedLinear(rn2_13.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.c.c.c = Convolution(rn2_14.c1.c.W[32 x 288], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.y = BatchNormalization(rn2_14.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c1.c.c.sc[32 x 1], rn2_14.c1.c.c.b[32 x 1], rn2_14.c1.c.c.m[32 x 1], rn2_14.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.y = RectifiedLinear(rn2_14.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c2.c.c = Convolution(rn2_14.c2.W[32 x 288], rn2_14.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.y = BatchNormalization(rn2_14.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c2.c.sc[32 x 1], rn2_14.c2.c.b[32 x 1], rn2_14.c2.c.m[32 x 1], rn2_14.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.p = Plus(rn2_14.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.y = RectifiedLinear(rn2_14.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.c.c.c = Convolution(rn2_15.c1.c.W[32 x 288], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.y = BatchNormalization(rn2_15.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c1.c.c.sc[32 x 1], rn2_15.c1.c.c.b[32 x 1], rn2_15.c1.c.c.m[32 x 1], rn2_15.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.y = RectifiedLinear(rn2_15.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c2.c.c = Convolution(rn2_15.c2.W[32 x 288], rn2_15.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.y = BatchNormalization(rn2_15.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c2.c.sc[32 x 1], rn2_15.c2.c.b[32 x 1], rn2_15.c2.c.m[32 x 1], rn2_15.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.p = Plus(rn2_15.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.y = RectifiedLinear(rn2_15.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.c.c.c = Convolution(rn2_16.c1.c.W[32 x 288], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.y = BatchNormalization(rn2_16.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c1.c.c.sc[32 x 1], rn2_16.c1.c.c.b[32 x 1], rn2_16.c1.c.c.m[32 x 1], rn2_16.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.y = RectifiedLinear(rn2_16.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c2.c.c = Convolution(rn2_16.c2.W[32 x 288], rn2_16.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.y = BatchNormalization(rn2_16.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c2.c.sc[32 x 1], rn2_16.c2.c.b[32 x 1], rn2_16.c2.c.m[32 x 1], rn2_16.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.p = Plus(rn2_16.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.y = RectifiedLinear(rn2_16.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.c.c.c = Convolution(rn2_17.c1.c.W[32 x 288], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.y = BatchNormalization(rn2_17.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c1.c.c.sc[32 x 1], rn2_17.c1.c.c.b[32 x 1], rn2_17.c1.c.c.m[32 x 1], rn2_17.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.y = RectifiedLinear(rn2_17.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c2.c.c = Convolution(rn2_17.c2.W[32 x 288], rn2_17.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.y = BatchNormalization(rn2_17.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c2.c.sc[32 x 1], rn2_17.c2.c.b[32 x 1], rn2_17.c2.c.m[32 x 1], rn2_17.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.p = Plus(rn2_17.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.y = RectifiedLinear(rn2_17.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.c.c.c = Convolution(rn2_18.c1.c.W[32 x 288], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.y = BatchNormalization(rn2_18.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c1.c.c.sc[32 x 1], rn2_18.c1.c.c.b[32 x 1], rn2_18.c1.c.c.m[32 x 1], rn2_18.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.y = RectifiedLinear(rn2_18.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c2.c.c = Convolution(rn2_18.c2.W[32 x 288], rn2_18.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.y = BatchNormalization(rn2_18.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c2.c.sc[32 x 1], rn2_18.c2.c.b[32 x 1], rn2_18.c2.c.m[32 x 1], rn2_18.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.p = Plus(rn2_18.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.y = RectifiedLinear(rn2_18.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn3_1.c1.c.c.c = Convolution(rn3_1.c1.c.W[64 x 288], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.y = BatchNormalization(rn3_1.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c1.c.c.sc[64 x 1], rn3_1.c1.c.c.b[64 x 1], rn3_1.c1.c.c.m[64 x 1], rn3_1.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c2.c.c = Convolution(rn3_1.c2.W[64 x 576], rn3_1.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.y = BatchNormalization(rn3_1.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c2.c.sc[64 x 1], rn3_1.c2.c.b[64 x 1], rn3_1.c2.c.m[64 x 1], rn3_1.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1_Wproj = LearnableParameter -> [64 x 32] -Validating --> rn3_1.c_proj.c = Convolution(rn3_1_Wproj[64 x 32], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c_proj.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.y = BatchNormalization(rn3_1.c_proj.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.sc[64 x 1], rn3_1.c_proj.b[64 x 1], rn3_1.c_proj.m[64 x 1], rn3_1.c_proj.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.p = Plus(rn3_1.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.c.c.c = Convolution(rn3_2.c1.c.W[64 x 576], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.y = BatchNormalization(rn3_2.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c1.c.c.sc[64 x 1], rn3_2.c1.c.c.b[64 x 1], rn3_2.c1.c.c.m[64 x 1], rn3_2.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c2.c.c = Convolution(rn3_2.c2.W[64 x 576], rn3_2.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.y = BatchNormalization(rn3_2.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c2.c.sc[64 x 1], rn3_2.c2.c.b[64 x 1], rn3_2.c2.c.m[64 x 1], rn3_2.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.p = Plus(rn3_2.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.c.c.c = Convolution(rn3_3.c1.c.W[64 x 576], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.y = BatchNormalization(rn3_3.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c1.c.c.sc[64 x 1], rn3_3.c1.c.c.b[64 x 1], rn3_3.c1.c.c.m[64 x 1], rn3_3.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c2.c.c = Convolution(rn3_3.c2.W[64 x 576], rn3_3.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.y = BatchNormalization(rn3_3.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c2.c.sc[64 x 1], rn3_3.c2.c.b[64 x 1], rn3_3.c2.c.m[64 x 1], rn3_3.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.p = Plus(rn3_3.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.c.c.c = Convolution(rn3_4.c1.c.W[64 x 576], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.y = BatchNormalization(rn3_4.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c1.c.c.sc[64 x 1], rn3_4.c1.c.c.b[64 x 1], rn3_4.c1.c.c.m[64 x 1], rn3_4.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.y = RectifiedLinear(rn3_4.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c2.c.c = Convolution(rn3_4.c2.W[64 x 576], rn3_4.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.y = BatchNormalization(rn3_4.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c2.c.sc[64 x 1], rn3_4.c2.c.b[64 x 1], rn3_4.c2.c.m[64 x 1], rn3_4.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.p = Plus(rn3_4.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.y = RectifiedLinear(rn3_4.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.c.c.c = Convolution(rn3_5.c1.c.W[64 x 576], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.y = BatchNormalization(rn3_5.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c1.c.c.sc[64 x 1], rn3_5.c1.c.c.b[64 x 1], rn3_5.c1.c.c.m[64 x 1], rn3_5.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.y = RectifiedLinear(rn3_5.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c2.c.c = Convolution(rn3_5.c2.W[64 x 576], rn3_5.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.y = BatchNormalization(rn3_5.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c2.c.sc[64 x 1], rn3_5.c2.c.b[64 x 1], rn3_5.c2.c.m[64 x 1], rn3_5.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.p = Plus(rn3_5.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.y = RectifiedLinear(rn3_5.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.c.c.c = Convolution(rn3_6.c1.c.W[64 x 576], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.y = BatchNormalization(rn3_6.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c1.c.c.sc[64 x 1], rn3_6.c1.c.c.b[64 x 1], rn3_6.c1.c.c.m[64 x 1], rn3_6.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.y = RectifiedLinear(rn3_6.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c2.c.c = Convolution(rn3_6.c2.W[64 x 576], rn3_6.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.y = BatchNormalization(rn3_6.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c2.c.sc[64 x 1], rn3_6.c2.c.b[64 x 1], rn3_6.c2.c.m[64 x 1], rn3_6.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.p = Plus(rn3_6.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.y = RectifiedLinear(rn3_6.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.c.c.c = Convolution(rn3_7.c1.c.W[64 x 576], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.y = BatchNormalization(rn3_7.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c1.c.c.sc[64 x 1], rn3_7.c1.c.c.b[64 x 1], rn3_7.c1.c.c.m[64 x 1], rn3_7.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.y = RectifiedLinear(rn3_7.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c2.c.c = Convolution(rn3_7.c2.W[64 x 576], rn3_7.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.y = BatchNormalization(rn3_7.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c2.c.sc[64 x 1], rn3_7.c2.c.b[64 x 1], rn3_7.c2.c.m[64 x 1], rn3_7.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.p = Plus(rn3_7.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.y = RectifiedLinear(rn3_7.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.c.c.c = Convolution(rn3_8.c1.c.W[64 x 576], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.y = BatchNormalization(rn3_8.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c1.c.c.sc[64 x 1], rn3_8.c1.c.c.b[64 x 1], rn3_8.c1.c.c.m[64 x 1], rn3_8.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.y = RectifiedLinear(rn3_8.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c2.c.c = Convolution(rn3_8.c2.W[64 x 576], rn3_8.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.y = BatchNormalization(rn3_8.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c2.c.sc[64 x 1], rn3_8.c2.c.b[64 x 1], rn3_8.c2.c.m[64 x 1], rn3_8.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.p = Plus(rn3_8.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.y = RectifiedLinear(rn3_8.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.c.c.c = Convolution(rn3_9.c1.c.W[64 x 576], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.y = BatchNormalization(rn3_9.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c1.c.c.sc[64 x 1], rn3_9.c1.c.c.b[64 x 1], rn3_9.c1.c.c.m[64 x 1], rn3_9.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.y = RectifiedLinear(rn3_9.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c2.c.c = Convolution(rn3_9.c2.W[64 x 576], rn3_9.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.y = BatchNormalization(rn3_9.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c2.c.sc[64 x 1], rn3_9.c2.c.b[64 x 1], rn3_9.c2.c.m[64 x 1], rn3_9.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.p = Plus(rn3_9.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.y = RectifiedLinear(rn3_9.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.c.c.c = Convolution(rn3_10.c1.c.W[64 x 576], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.y = BatchNormalization(rn3_10.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c1.c.c.sc[64 x 1], rn3_10.c1.c.c.b[64 x 1], rn3_10.c1.c.c.m[64 x 1], rn3_10.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.y = RectifiedLinear(rn3_10.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c2.c.c = Convolution(rn3_10.c2.W[64 x 576], rn3_10.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.y = BatchNormalization(rn3_10.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c2.c.sc[64 x 1], rn3_10.c2.c.b[64 x 1], rn3_10.c2.c.m[64 x 1], rn3_10.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.p = Plus(rn3_10.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.y = RectifiedLinear(rn3_10.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.c.c.c = Convolution(rn3_11.c1.c.W[64 x 576], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.y = BatchNormalization(rn3_11.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c1.c.c.sc[64 x 1], rn3_11.c1.c.c.b[64 x 1], rn3_11.c1.c.c.m[64 x 1], rn3_11.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.y = RectifiedLinear(rn3_11.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c2.c.c = Convolution(rn3_11.c2.W[64 x 576], rn3_11.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.y = BatchNormalization(rn3_11.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c2.c.sc[64 x 1], rn3_11.c2.c.b[64 x 1], rn3_11.c2.c.m[64 x 1], rn3_11.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.p = Plus(rn3_11.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.y = RectifiedLinear(rn3_11.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.c.c.c = Convolution(rn3_12.c1.c.W[64 x 576], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.y = BatchNormalization(rn3_12.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c1.c.c.sc[64 x 1], rn3_12.c1.c.c.b[64 x 1], rn3_12.c1.c.c.m[64 x 1], rn3_12.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.y = RectifiedLinear(rn3_12.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c2.c.c = Convolution(rn3_12.c2.W[64 x 576], rn3_12.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.y = BatchNormalization(rn3_12.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c2.c.sc[64 x 1], rn3_12.c2.c.b[64 x 1], rn3_12.c2.c.m[64 x 1], rn3_12.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.p = Plus(rn3_12.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.y = RectifiedLinear(rn3_12.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.c.c.c = Convolution(rn3_13.c1.c.W[64 x 576], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.y = BatchNormalization(rn3_13.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c1.c.c.sc[64 x 1], rn3_13.c1.c.c.b[64 x 1], rn3_13.c1.c.c.m[64 x 1], rn3_13.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.y = RectifiedLinear(rn3_13.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c2.c.c = Convolution(rn3_13.c2.W[64 x 576], rn3_13.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.y = BatchNormalization(rn3_13.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c2.c.sc[64 x 1], rn3_13.c2.c.b[64 x 1], rn3_13.c2.c.m[64 x 1], rn3_13.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.p = Plus(rn3_13.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.y = RectifiedLinear(rn3_13.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.c.c.c = Convolution(rn3_14.c1.c.W[64 x 576], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.y = BatchNormalization(rn3_14.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c1.c.c.sc[64 x 1], rn3_14.c1.c.c.b[64 x 1], rn3_14.c1.c.c.m[64 x 1], rn3_14.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.y = RectifiedLinear(rn3_14.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c2.c.c = Convolution(rn3_14.c2.W[64 x 576], rn3_14.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.y = BatchNormalization(rn3_14.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c2.c.sc[64 x 1], rn3_14.c2.c.b[64 x 1], rn3_14.c2.c.m[64 x 1], rn3_14.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.p = Plus(rn3_14.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.y = RectifiedLinear(rn3_14.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.c.c.c = Convolution(rn3_15.c1.c.W[64 x 576], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.y = BatchNormalization(rn3_15.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c1.c.c.sc[64 x 1], rn3_15.c1.c.c.b[64 x 1], rn3_15.c1.c.c.m[64 x 1], rn3_15.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.y = RectifiedLinear(rn3_15.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c2.c.c = Convolution(rn3_15.c2.W[64 x 576], rn3_15.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.y = BatchNormalization(rn3_15.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c2.c.sc[64 x 1], rn3_15.c2.c.b[64 x 1], rn3_15.c2.c.m[64 x 1], rn3_15.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.p = Plus(rn3_15.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.y = RectifiedLinear(rn3_15.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.c.c.c = Convolution(rn3_16.c1.c.W[64 x 576], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.y = BatchNormalization(rn3_16.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c1.c.c.sc[64 x 1], rn3_16.c1.c.c.b[64 x 1], rn3_16.c1.c.c.m[64 x 1], rn3_16.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.y = RectifiedLinear(rn3_16.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c2.c.c = Convolution(rn3_16.c2.W[64 x 576], rn3_16.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.y = BatchNormalization(rn3_16.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c2.c.sc[64 x 1], rn3_16.c2.c.b[64 x 1], rn3_16.c2.c.m[64 x 1], rn3_16.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.p = Plus(rn3_16.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.y = RectifiedLinear(rn3_16.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.c.c.c = Convolution(rn3_17.c1.c.W[64 x 576], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.y = BatchNormalization(rn3_17.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c1.c.c.sc[64 x 1], rn3_17.c1.c.c.b[64 x 1], rn3_17.c1.c.c.m[64 x 1], rn3_17.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.y = RectifiedLinear(rn3_17.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c2.c.c = Convolution(rn3_17.c2.W[64 x 576], rn3_17.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.y = BatchNormalization(rn3_17.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c2.c.sc[64 x 1], rn3_17.c2.c.b[64 x 1], rn3_17.c2.c.m[64 x 1], rn3_17.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.p = Plus(rn3_17.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.y = RectifiedLinear(rn3_17.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.c.c.c = Convolution(rn3_18.c1.c.W[64 x 576], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.y = BatchNormalization(rn3_18.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c1.c.c.sc[64 x 1], rn3_18.c1.c.c.b[64 x 1], rn3_18.c1.c.c.m[64 x 1], rn3_18.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.y = RectifiedLinear(rn3_18.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c2.c.c = Convolution(rn3_18.c2.W[64 x 576], rn3_18.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.y = BatchNormalization(rn3_18.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c2.c.sc[64 x 1], rn3_18.c2.c.b[64 x 1], rn3_18.c2.c.m[64 x 1], rn3_18.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.p = Plus(rn3_18.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.y = RectifiedLinear(rn3_18.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> pool = AveragePooling(rn3_18.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [1 x 1 x 64 x *] -Validating --> OutputNodes.t = Times(OutputNodes.W[10 x 64], pool[1 x 1 x 64 x *]) -> [10 x *] -Validating --> OutputNodes.b = LearnableParameter -> [10] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10 x *], OutputNodes.b[10]) -> [10 x *] -Validating --> CE = CrossEntropyWithSoftmax(labels[10 x *], OutputNodes.z[10 x *]) -> [1] -Validating --> Err = ErrorPrediction(labels[10 x *], OutputNodes.z[10 x *]) -> [1] - -Validating network. 390 nodes to process in pass 2. - -Validating --> labels = InputValue -> [10 x *] -Validating --> OutputNodes.W = LearnableParameter -> [10 x 64] -Validating --> rn3_18.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_18.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_17.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_17.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_16.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_16.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_15.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_15.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_14.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_14.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_13.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_13.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_12.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_12.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_11.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_11.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_10.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_10.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_9.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_9.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_8.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_8.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_7.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_7.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_6.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_6.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_5.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_5.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_4.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_4.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 x 288] -Validating --> rn2_18.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_18.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_17.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_17.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_16.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_16.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_15.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_15.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_14.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_14.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_13.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_13.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_12.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_12.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_11.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_11.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_10.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_10.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_9.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_9.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_8.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_8.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_7.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_7.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_6.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_6.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_5.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_5.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_4.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_4.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 x 144] -Validating --> rn1_18.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_18.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_17.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_17.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_16.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_16.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_15.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_15.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_14.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_14.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_13.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_13.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_12.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_12.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_11.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_11.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_10.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_10.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_9.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_9.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_8.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_8.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_7.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_7.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_6.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_6.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_5.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_5.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_4.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_4.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> conv1.c.W = LearnableParameter -> [16 x 27] -Validating --> features = InputValue -> [32 x 32 x 3 x *] -Validating --> conv1.c.c.c = Convolution(conv1.c.W[16 x 27], features[32 x 32 x 3 x * {W=32, H=3, C=32}]) -> [32 x 32 x 16 x *] -Validating --> conv1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.y = BatchNormalization(conv1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.c.c.sc[16 x 1], conv1.c.c.b[16 x 1], conv1.c.c.m[16 x 1], conv1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> conv1.y = RectifiedLinear(conv1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.c.c.c = Convolution(rn1_1.c1.c.W[16 x 144], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.y = BatchNormalization(rn1_1.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c1.c.c.sc[16 x 1], rn1_1.c1.c.c.b[16 x 1], rn1_1.c1.c.c.m[16 x 1], rn1_1.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c2.c.c = Convolution(rn1_1.c2.W[16 x 144], rn1_1.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.y = BatchNormalization(rn1_1.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c2.c.sc[16 x 1], rn1_1.c2.c.b[16 x 1], rn1_1.c2.c.m[16 x 1], rn1_1.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.p = Plus(rn1_1.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.c.c.c = Convolution(rn1_2.c1.c.W[16 x 144], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.y = BatchNormalization(rn1_2.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c1.c.c.sc[16 x 1], rn1_2.c1.c.c.b[16 x 1], rn1_2.c1.c.c.m[16 x 1], rn1_2.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c2.c.c = Convolution(rn1_2.c2.W[16 x 144], rn1_2.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.y = BatchNormalization(rn1_2.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c2.c.sc[16 x 1], rn1_2.c2.c.b[16 x 1], rn1_2.c2.c.m[16 x 1], rn1_2.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.p = Plus(rn1_2.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.c.c.c = Convolution(rn1_3.c1.c.W[16 x 144], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.y = BatchNormalization(rn1_3.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c1.c.c.sc[16 x 1], rn1_3.c1.c.c.b[16 x 1], rn1_3.c1.c.c.m[16 x 1], rn1_3.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c2.c.c = Convolution(rn1_3.c2.W[16 x 144], rn1_3.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.y = BatchNormalization(rn1_3.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c2.c.sc[16 x 1], rn1_3.c2.c.b[16 x 1], rn1_3.c2.c.m[16 x 1], rn1_3.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.p = Plus(rn1_3.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.c.c.c = Convolution(rn1_4.c1.c.W[16 x 144], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.y = BatchNormalization(rn1_4.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c1.c.c.sc[16 x 1], rn1_4.c1.c.c.b[16 x 1], rn1_4.c1.c.c.m[16 x 1], rn1_4.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.y = RectifiedLinear(rn1_4.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c2.c.c = Convolution(rn1_4.c2.W[16 x 144], rn1_4.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.y = BatchNormalization(rn1_4.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c2.c.sc[16 x 1], rn1_4.c2.c.b[16 x 1], rn1_4.c2.c.m[16 x 1], rn1_4.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.p = Plus(rn1_4.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.y = RectifiedLinear(rn1_4.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.c.c.c = Convolution(rn1_5.c1.c.W[16 x 144], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.y = BatchNormalization(rn1_5.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c1.c.c.sc[16 x 1], rn1_5.c1.c.c.b[16 x 1], rn1_5.c1.c.c.m[16 x 1], rn1_5.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.y = RectifiedLinear(rn1_5.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c2.c.c = Convolution(rn1_5.c2.W[16 x 144], rn1_5.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.y = BatchNormalization(rn1_5.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c2.c.sc[16 x 1], rn1_5.c2.c.b[16 x 1], rn1_5.c2.c.m[16 x 1], rn1_5.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.p = Plus(rn1_5.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.y = RectifiedLinear(rn1_5.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.c.c.c = Convolution(rn1_6.c1.c.W[16 x 144], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.y = BatchNormalization(rn1_6.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c1.c.c.sc[16 x 1], rn1_6.c1.c.c.b[16 x 1], rn1_6.c1.c.c.m[16 x 1], rn1_6.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.y = RectifiedLinear(rn1_6.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c2.c.c = Convolution(rn1_6.c2.W[16 x 144], rn1_6.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.y = BatchNormalization(rn1_6.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c2.c.sc[16 x 1], rn1_6.c2.c.b[16 x 1], rn1_6.c2.c.m[16 x 1], rn1_6.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.p = Plus(rn1_6.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.y = RectifiedLinear(rn1_6.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.c.c.c = Convolution(rn1_7.c1.c.W[16 x 144], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.y = BatchNormalization(rn1_7.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c1.c.c.sc[16 x 1], rn1_7.c1.c.c.b[16 x 1], rn1_7.c1.c.c.m[16 x 1], rn1_7.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.y = RectifiedLinear(rn1_7.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c2.c.c = Convolution(rn1_7.c2.W[16 x 144], rn1_7.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.y = BatchNormalization(rn1_7.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c2.c.sc[16 x 1], rn1_7.c2.c.b[16 x 1], rn1_7.c2.c.m[16 x 1], rn1_7.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.p = Plus(rn1_7.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.y = RectifiedLinear(rn1_7.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.c.c.c = Convolution(rn1_8.c1.c.W[16 x 144], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.y = BatchNormalization(rn1_8.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c1.c.c.sc[16 x 1], rn1_8.c1.c.c.b[16 x 1], rn1_8.c1.c.c.m[16 x 1], rn1_8.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.y = RectifiedLinear(rn1_8.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c2.c.c = Convolution(rn1_8.c2.W[16 x 144], rn1_8.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.y = BatchNormalization(rn1_8.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c2.c.sc[16 x 1], rn1_8.c2.c.b[16 x 1], rn1_8.c2.c.m[16 x 1], rn1_8.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.p = Plus(rn1_8.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.y = RectifiedLinear(rn1_8.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.c.c.c = Convolution(rn1_9.c1.c.W[16 x 144], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.y = BatchNormalization(rn1_9.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c1.c.c.sc[16 x 1], rn1_9.c1.c.c.b[16 x 1], rn1_9.c1.c.c.m[16 x 1], rn1_9.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.y = RectifiedLinear(rn1_9.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c2.c.c = Convolution(rn1_9.c2.W[16 x 144], rn1_9.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.y = BatchNormalization(rn1_9.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c2.c.sc[16 x 1], rn1_9.c2.c.b[16 x 1], rn1_9.c2.c.m[16 x 1], rn1_9.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.p = Plus(rn1_9.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.y = RectifiedLinear(rn1_9.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.c.c.c = Convolution(rn1_10.c1.c.W[16 x 144], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.y = BatchNormalization(rn1_10.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c1.c.c.sc[16 x 1], rn1_10.c1.c.c.b[16 x 1], rn1_10.c1.c.c.m[16 x 1], rn1_10.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.y = RectifiedLinear(rn1_10.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c2.c.c = Convolution(rn1_10.c2.W[16 x 144], rn1_10.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.y = BatchNormalization(rn1_10.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c2.c.sc[16 x 1], rn1_10.c2.c.b[16 x 1], rn1_10.c2.c.m[16 x 1], rn1_10.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.p = Plus(rn1_10.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.y = RectifiedLinear(rn1_10.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.c.c.c = Convolution(rn1_11.c1.c.W[16 x 144], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.y = BatchNormalization(rn1_11.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c1.c.c.sc[16 x 1], rn1_11.c1.c.c.b[16 x 1], rn1_11.c1.c.c.m[16 x 1], rn1_11.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.y = RectifiedLinear(rn1_11.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c2.c.c = Convolution(rn1_11.c2.W[16 x 144], rn1_11.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.y = BatchNormalization(rn1_11.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c2.c.sc[16 x 1], rn1_11.c2.c.b[16 x 1], rn1_11.c2.c.m[16 x 1], rn1_11.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.p = Plus(rn1_11.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.y = RectifiedLinear(rn1_11.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.c.c.c = Convolution(rn1_12.c1.c.W[16 x 144], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.y = BatchNormalization(rn1_12.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c1.c.c.sc[16 x 1], rn1_12.c1.c.c.b[16 x 1], rn1_12.c1.c.c.m[16 x 1], rn1_12.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.y = RectifiedLinear(rn1_12.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c2.c.c = Convolution(rn1_12.c2.W[16 x 144], rn1_12.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.y = BatchNormalization(rn1_12.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c2.c.sc[16 x 1], rn1_12.c2.c.b[16 x 1], rn1_12.c2.c.m[16 x 1], rn1_12.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.p = Plus(rn1_12.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.y = RectifiedLinear(rn1_12.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.c.c.c = Convolution(rn1_13.c1.c.W[16 x 144], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.y = BatchNormalization(rn1_13.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c1.c.c.sc[16 x 1], rn1_13.c1.c.c.b[16 x 1], rn1_13.c1.c.c.m[16 x 1], rn1_13.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.y = RectifiedLinear(rn1_13.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c2.c.c = Convolution(rn1_13.c2.W[16 x 144], rn1_13.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.y = BatchNormalization(rn1_13.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c2.c.sc[16 x 1], rn1_13.c2.c.b[16 x 1], rn1_13.c2.c.m[16 x 1], rn1_13.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.p = Plus(rn1_13.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.y = RectifiedLinear(rn1_13.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.c.c.c = Convolution(rn1_14.c1.c.W[16 x 144], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.y = BatchNormalization(rn1_14.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c1.c.c.sc[16 x 1], rn1_14.c1.c.c.b[16 x 1], rn1_14.c1.c.c.m[16 x 1], rn1_14.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.y = RectifiedLinear(rn1_14.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c2.c.c = Convolution(rn1_14.c2.W[16 x 144], rn1_14.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.y = BatchNormalization(rn1_14.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c2.c.sc[16 x 1], rn1_14.c2.c.b[16 x 1], rn1_14.c2.c.m[16 x 1], rn1_14.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.p = Plus(rn1_14.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.y = RectifiedLinear(rn1_14.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.c.c.c = Convolution(rn1_15.c1.c.W[16 x 144], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.y = BatchNormalization(rn1_15.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c1.c.c.sc[16 x 1], rn1_15.c1.c.c.b[16 x 1], rn1_15.c1.c.c.m[16 x 1], rn1_15.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.y = RectifiedLinear(rn1_15.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c2.c.c = Convolution(rn1_15.c2.W[16 x 144], rn1_15.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.y = BatchNormalization(rn1_15.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c2.c.sc[16 x 1], rn1_15.c2.c.b[16 x 1], rn1_15.c2.c.m[16 x 1], rn1_15.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.p = Plus(rn1_15.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.y = RectifiedLinear(rn1_15.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.c.c.c = Convolution(rn1_16.c1.c.W[16 x 144], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.y = BatchNormalization(rn1_16.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c1.c.c.sc[16 x 1], rn1_16.c1.c.c.b[16 x 1], rn1_16.c1.c.c.m[16 x 1], rn1_16.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.y = RectifiedLinear(rn1_16.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c2.c.c = Convolution(rn1_16.c2.W[16 x 144], rn1_16.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.y = BatchNormalization(rn1_16.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c2.c.sc[16 x 1], rn1_16.c2.c.b[16 x 1], rn1_16.c2.c.m[16 x 1], rn1_16.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.p = Plus(rn1_16.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.y = RectifiedLinear(rn1_16.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.c.c.c = Convolution(rn1_17.c1.c.W[16 x 144], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.y = BatchNormalization(rn1_17.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c1.c.c.sc[16 x 1], rn1_17.c1.c.c.b[16 x 1], rn1_17.c1.c.c.m[16 x 1], rn1_17.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.y = RectifiedLinear(rn1_17.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c2.c.c = Convolution(rn1_17.c2.W[16 x 144], rn1_17.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.y = BatchNormalization(rn1_17.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c2.c.sc[16 x 1], rn1_17.c2.c.b[16 x 1], rn1_17.c2.c.m[16 x 1], rn1_17.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.p = Plus(rn1_17.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.y = RectifiedLinear(rn1_17.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.c.c.c = Convolution(rn1_18.c1.c.W[16 x 144], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.y = BatchNormalization(rn1_18.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c1.c.c.sc[16 x 1], rn1_18.c1.c.c.b[16 x 1], rn1_18.c1.c.c.m[16 x 1], rn1_18.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.y = RectifiedLinear(rn1_18.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c2.c.c = Convolution(rn1_18.c2.W[16 x 144], rn1_18.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.y = BatchNormalization(rn1_18.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c2.c.sc[16 x 1], rn1_18.c2.c.b[16 x 1], rn1_18.c2.c.m[16 x 1], rn1_18.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.p = Plus(rn1_18.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.y = RectifiedLinear(rn1_18.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn2_1.c1.c.c.c = Convolution(rn2_1.c1.c.W[32 x 144], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.y = BatchNormalization(rn2_1.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c1.c.c.sc[32 x 1], rn2_1.c1.c.c.b[32 x 1], rn2_1.c1.c.c.m[32 x 1], rn2_1.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c2.c.c = Convolution(rn2_1.c2.W[32 x 288], rn2_1.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.y = BatchNormalization(rn2_1.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c2.c.sc[32 x 1], rn2_1.c2.c.b[32 x 1], rn2_1.c2.c.m[32 x 1], rn2_1.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1_Wproj = LearnableParameter -> [32 x 16] -Validating --> rn2_1.c_proj.c = Convolution(rn2_1_Wproj[32 x 16], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c_proj.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.y = BatchNormalization(rn2_1.c_proj.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.sc[32 x 1], rn2_1.c_proj.b[32 x 1], rn2_1.c_proj.m[32 x 1], rn2_1.c_proj.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.p = Plus(rn2_1.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.c.c.c = Convolution(rn2_2.c1.c.W[32 x 288], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.y = BatchNormalization(rn2_2.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c1.c.c.sc[32 x 1], rn2_2.c1.c.c.b[32 x 1], rn2_2.c1.c.c.m[32 x 1], rn2_2.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c2.c.c = Convolution(rn2_2.c2.W[32 x 288], rn2_2.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.y = BatchNormalization(rn2_2.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c2.c.sc[32 x 1], rn2_2.c2.c.b[32 x 1], rn2_2.c2.c.m[32 x 1], rn2_2.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.p = Plus(rn2_2.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.c.c.c = Convolution(rn2_3.c1.c.W[32 x 288], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.y = BatchNormalization(rn2_3.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c1.c.c.sc[32 x 1], rn2_3.c1.c.c.b[32 x 1], rn2_3.c1.c.c.m[32 x 1], rn2_3.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c2.c.c = Convolution(rn2_3.c2.W[32 x 288], rn2_3.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.y = BatchNormalization(rn2_3.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c2.c.sc[32 x 1], rn2_3.c2.c.b[32 x 1], rn2_3.c2.c.m[32 x 1], rn2_3.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.p = Plus(rn2_3.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.c.c.c = Convolution(rn2_4.c1.c.W[32 x 288], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.y = BatchNormalization(rn2_4.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c1.c.c.sc[32 x 1], rn2_4.c1.c.c.b[32 x 1], rn2_4.c1.c.c.m[32 x 1], rn2_4.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.y = RectifiedLinear(rn2_4.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c2.c.c = Convolution(rn2_4.c2.W[32 x 288], rn2_4.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.y = BatchNormalization(rn2_4.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c2.c.sc[32 x 1], rn2_4.c2.c.b[32 x 1], rn2_4.c2.c.m[32 x 1], rn2_4.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.p = Plus(rn2_4.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.y = RectifiedLinear(rn2_4.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.c.c.c = Convolution(rn2_5.c1.c.W[32 x 288], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.y = BatchNormalization(rn2_5.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c1.c.c.sc[32 x 1], rn2_5.c1.c.c.b[32 x 1], rn2_5.c1.c.c.m[32 x 1], rn2_5.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.y = RectifiedLinear(rn2_5.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c2.c.c = Convolution(rn2_5.c2.W[32 x 288], rn2_5.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.y = BatchNormalization(rn2_5.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c2.c.sc[32 x 1], rn2_5.c2.c.b[32 x 1], rn2_5.c2.c.m[32 x 1], rn2_5.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.p = Plus(rn2_5.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.y = RectifiedLinear(rn2_5.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.c.c.c = Convolution(rn2_6.c1.c.W[32 x 288], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.y = BatchNormalization(rn2_6.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c1.c.c.sc[32 x 1], rn2_6.c1.c.c.b[32 x 1], rn2_6.c1.c.c.m[32 x 1], rn2_6.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.y = RectifiedLinear(rn2_6.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c2.c.c = Convolution(rn2_6.c2.W[32 x 288], rn2_6.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.y = BatchNormalization(rn2_6.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c2.c.sc[32 x 1], rn2_6.c2.c.b[32 x 1], rn2_6.c2.c.m[32 x 1], rn2_6.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.p = Plus(rn2_6.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.y = RectifiedLinear(rn2_6.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.c.c.c = Convolution(rn2_7.c1.c.W[32 x 288], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.y = BatchNormalization(rn2_7.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c1.c.c.sc[32 x 1], rn2_7.c1.c.c.b[32 x 1], rn2_7.c1.c.c.m[32 x 1], rn2_7.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.y = RectifiedLinear(rn2_7.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c2.c.c = Convolution(rn2_7.c2.W[32 x 288], rn2_7.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.y = BatchNormalization(rn2_7.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c2.c.sc[32 x 1], rn2_7.c2.c.b[32 x 1], rn2_7.c2.c.m[32 x 1], rn2_7.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.p = Plus(rn2_7.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.y = RectifiedLinear(rn2_7.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.c.c.c = Convolution(rn2_8.c1.c.W[32 x 288], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.y = BatchNormalization(rn2_8.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c1.c.c.sc[32 x 1], rn2_8.c1.c.c.b[32 x 1], rn2_8.c1.c.c.m[32 x 1], rn2_8.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.y = RectifiedLinear(rn2_8.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c2.c.c = Convolution(rn2_8.c2.W[32 x 288], rn2_8.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.y = BatchNormalization(rn2_8.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c2.c.sc[32 x 1], rn2_8.c2.c.b[32 x 1], rn2_8.c2.c.m[32 x 1], rn2_8.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.p = Plus(rn2_8.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.y = RectifiedLinear(rn2_8.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.c.c.c = Convolution(rn2_9.c1.c.W[32 x 288], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.y = BatchNormalization(rn2_9.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c1.c.c.sc[32 x 1], rn2_9.c1.c.c.b[32 x 1], rn2_9.c1.c.c.m[32 x 1], rn2_9.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.y = RectifiedLinear(rn2_9.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c2.c.c = Convolution(rn2_9.c2.W[32 x 288], rn2_9.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.y = BatchNormalization(rn2_9.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c2.c.sc[32 x 1], rn2_9.c2.c.b[32 x 1], rn2_9.c2.c.m[32 x 1], rn2_9.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.p = Plus(rn2_9.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.y = RectifiedLinear(rn2_9.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.c.c.c = Convolution(rn2_10.c1.c.W[32 x 288], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.y = BatchNormalization(rn2_10.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c1.c.c.sc[32 x 1], rn2_10.c1.c.c.b[32 x 1], rn2_10.c1.c.c.m[32 x 1], rn2_10.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.y = RectifiedLinear(rn2_10.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c2.c.c = Convolution(rn2_10.c2.W[32 x 288], rn2_10.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.y = BatchNormalization(rn2_10.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c2.c.sc[32 x 1], rn2_10.c2.c.b[32 x 1], rn2_10.c2.c.m[32 x 1], rn2_10.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.p = Plus(rn2_10.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.y = RectifiedLinear(rn2_10.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.c.c.c = Convolution(rn2_11.c1.c.W[32 x 288], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.y = BatchNormalization(rn2_11.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c1.c.c.sc[32 x 1], rn2_11.c1.c.c.b[32 x 1], rn2_11.c1.c.c.m[32 x 1], rn2_11.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.y = RectifiedLinear(rn2_11.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c2.c.c = Convolution(rn2_11.c2.W[32 x 288], rn2_11.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.y = BatchNormalization(rn2_11.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c2.c.sc[32 x 1], rn2_11.c2.c.b[32 x 1], rn2_11.c2.c.m[32 x 1], rn2_11.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.p = Plus(rn2_11.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.y = RectifiedLinear(rn2_11.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.c.c.c = Convolution(rn2_12.c1.c.W[32 x 288], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.y = BatchNormalization(rn2_12.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c1.c.c.sc[32 x 1], rn2_12.c1.c.c.b[32 x 1], rn2_12.c1.c.c.m[32 x 1], rn2_12.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.y = RectifiedLinear(rn2_12.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c2.c.c = Convolution(rn2_12.c2.W[32 x 288], rn2_12.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.y = BatchNormalization(rn2_12.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c2.c.sc[32 x 1], rn2_12.c2.c.b[32 x 1], rn2_12.c2.c.m[32 x 1], rn2_12.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.p = Plus(rn2_12.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.y = RectifiedLinear(rn2_12.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.c.c.c = Convolution(rn2_13.c1.c.W[32 x 288], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.y = BatchNormalization(rn2_13.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c1.c.c.sc[32 x 1], rn2_13.c1.c.c.b[32 x 1], rn2_13.c1.c.c.m[32 x 1], rn2_13.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.y = RectifiedLinear(rn2_13.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c2.c.c = Convolution(rn2_13.c2.W[32 x 288], rn2_13.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.y = BatchNormalization(rn2_13.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c2.c.sc[32 x 1], rn2_13.c2.c.b[32 x 1], rn2_13.c2.c.m[32 x 1], rn2_13.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.p = Plus(rn2_13.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.y = RectifiedLinear(rn2_13.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.c.c.c = Convolution(rn2_14.c1.c.W[32 x 288], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.y = BatchNormalization(rn2_14.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c1.c.c.sc[32 x 1], rn2_14.c1.c.c.b[32 x 1], rn2_14.c1.c.c.m[32 x 1], rn2_14.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.y = RectifiedLinear(rn2_14.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c2.c.c = Convolution(rn2_14.c2.W[32 x 288], rn2_14.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.y = BatchNormalization(rn2_14.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c2.c.sc[32 x 1], rn2_14.c2.c.b[32 x 1], rn2_14.c2.c.m[32 x 1], rn2_14.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.p = Plus(rn2_14.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.y = RectifiedLinear(rn2_14.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.c.c.c = Convolution(rn2_15.c1.c.W[32 x 288], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.y = BatchNormalization(rn2_15.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c1.c.c.sc[32 x 1], rn2_15.c1.c.c.b[32 x 1], rn2_15.c1.c.c.m[32 x 1], rn2_15.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.y = RectifiedLinear(rn2_15.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c2.c.c = Convolution(rn2_15.c2.W[32 x 288], rn2_15.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.y = BatchNormalization(rn2_15.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c2.c.sc[32 x 1], rn2_15.c2.c.b[32 x 1], rn2_15.c2.c.m[32 x 1], rn2_15.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.p = Plus(rn2_15.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.y = RectifiedLinear(rn2_15.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.c.c.c = Convolution(rn2_16.c1.c.W[32 x 288], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.y = BatchNormalization(rn2_16.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c1.c.c.sc[32 x 1], rn2_16.c1.c.c.b[32 x 1], rn2_16.c1.c.c.m[32 x 1], rn2_16.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.y = RectifiedLinear(rn2_16.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c2.c.c = Convolution(rn2_16.c2.W[32 x 288], rn2_16.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.y = BatchNormalization(rn2_16.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c2.c.sc[32 x 1], rn2_16.c2.c.b[32 x 1], rn2_16.c2.c.m[32 x 1], rn2_16.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.p = Plus(rn2_16.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.y = RectifiedLinear(rn2_16.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.c.c.c = Convolution(rn2_17.c1.c.W[32 x 288], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.y = BatchNormalization(rn2_17.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c1.c.c.sc[32 x 1], rn2_17.c1.c.c.b[32 x 1], rn2_17.c1.c.c.m[32 x 1], rn2_17.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.y = RectifiedLinear(rn2_17.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c2.c.c = Convolution(rn2_17.c2.W[32 x 288], rn2_17.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.y = BatchNormalization(rn2_17.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c2.c.sc[32 x 1], rn2_17.c2.c.b[32 x 1], rn2_17.c2.c.m[32 x 1], rn2_17.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.p = Plus(rn2_17.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.y = RectifiedLinear(rn2_17.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.c.c.c = Convolution(rn2_18.c1.c.W[32 x 288], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.y = BatchNormalization(rn2_18.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c1.c.c.sc[32 x 1], rn2_18.c1.c.c.b[32 x 1], rn2_18.c1.c.c.m[32 x 1], rn2_18.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.y = RectifiedLinear(rn2_18.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c2.c.c = Convolution(rn2_18.c2.W[32 x 288], rn2_18.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.y = BatchNormalization(rn2_18.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c2.c.sc[32 x 1], rn2_18.c2.c.b[32 x 1], rn2_18.c2.c.m[32 x 1], rn2_18.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.p = Plus(rn2_18.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.y = RectifiedLinear(rn2_18.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn3_1.c1.c.c.c = Convolution(rn3_1.c1.c.W[64 x 288], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.y = BatchNormalization(rn3_1.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c1.c.c.sc[64 x 1], rn3_1.c1.c.c.b[64 x 1], rn3_1.c1.c.c.m[64 x 1], rn3_1.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c2.c.c = Convolution(rn3_1.c2.W[64 x 576], rn3_1.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.y = BatchNormalization(rn3_1.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c2.c.sc[64 x 1], rn3_1.c2.c.b[64 x 1], rn3_1.c2.c.m[64 x 1], rn3_1.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1_Wproj = LearnableParameter -> [64 x 32] -Validating --> rn3_1.c_proj.c = Convolution(rn3_1_Wproj[64 x 32], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c_proj.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.y = BatchNormalization(rn3_1.c_proj.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.sc[64 x 1], rn3_1.c_proj.b[64 x 1], rn3_1.c_proj.m[64 x 1], rn3_1.c_proj.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.p = Plus(rn3_1.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.c.c.c = Convolution(rn3_2.c1.c.W[64 x 576], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.y = BatchNormalization(rn3_2.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c1.c.c.sc[64 x 1], rn3_2.c1.c.c.b[64 x 1], rn3_2.c1.c.c.m[64 x 1], rn3_2.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c2.c.c = Convolution(rn3_2.c2.W[64 x 576], rn3_2.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.y = BatchNormalization(rn3_2.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c2.c.sc[64 x 1], rn3_2.c2.c.b[64 x 1], rn3_2.c2.c.m[64 x 1], rn3_2.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.p = Plus(rn3_2.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.c.c.c = Convolution(rn3_3.c1.c.W[64 x 576], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.y = BatchNormalization(rn3_3.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c1.c.c.sc[64 x 1], rn3_3.c1.c.c.b[64 x 1], rn3_3.c1.c.c.m[64 x 1], rn3_3.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c2.c.c = Convolution(rn3_3.c2.W[64 x 576], rn3_3.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.y = BatchNormalization(rn3_3.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c2.c.sc[64 x 1], rn3_3.c2.c.b[64 x 1], rn3_3.c2.c.m[64 x 1], rn3_3.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.p = Plus(rn3_3.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.c.c.c = Convolution(rn3_4.c1.c.W[64 x 576], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.y = BatchNormalization(rn3_4.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c1.c.c.sc[64 x 1], rn3_4.c1.c.c.b[64 x 1], rn3_4.c1.c.c.m[64 x 1], rn3_4.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.y = RectifiedLinear(rn3_4.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c2.c.c = Convolution(rn3_4.c2.W[64 x 576], rn3_4.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.y = BatchNormalization(rn3_4.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c2.c.sc[64 x 1], rn3_4.c2.c.b[64 x 1], rn3_4.c2.c.m[64 x 1], rn3_4.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.p = Plus(rn3_4.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.y = RectifiedLinear(rn3_4.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.c.c.c = Convolution(rn3_5.c1.c.W[64 x 576], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.y = BatchNormalization(rn3_5.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c1.c.c.sc[64 x 1], rn3_5.c1.c.c.b[64 x 1], rn3_5.c1.c.c.m[64 x 1], rn3_5.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.y = RectifiedLinear(rn3_5.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c2.c.c = Convolution(rn3_5.c2.W[64 x 576], rn3_5.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.y = BatchNormalization(rn3_5.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c2.c.sc[64 x 1], rn3_5.c2.c.b[64 x 1], rn3_5.c2.c.m[64 x 1], rn3_5.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.p = Plus(rn3_5.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.y = RectifiedLinear(rn3_5.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.c.c.c = Convolution(rn3_6.c1.c.W[64 x 576], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.y = BatchNormalization(rn3_6.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c1.c.c.sc[64 x 1], rn3_6.c1.c.c.b[64 x 1], rn3_6.c1.c.c.m[64 x 1], rn3_6.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.y = RectifiedLinear(rn3_6.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c2.c.c = Convolution(rn3_6.c2.W[64 x 576], rn3_6.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.y = BatchNormalization(rn3_6.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c2.c.sc[64 x 1], rn3_6.c2.c.b[64 x 1], rn3_6.c2.c.m[64 x 1], rn3_6.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.p = Plus(rn3_6.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.y = RectifiedLinear(rn3_6.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.c.c.c = Convolution(rn3_7.c1.c.W[64 x 576], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.y = BatchNormalization(rn3_7.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c1.c.c.sc[64 x 1], rn3_7.c1.c.c.b[64 x 1], rn3_7.c1.c.c.m[64 x 1], rn3_7.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.y = RectifiedLinear(rn3_7.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c2.c.c = Convolution(rn3_7.c2.W[64 x 576], rn3_7.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.y = BatchNormalization(rn3_7.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c2.c.sc[64 x 1], rn3_7.c2.c.b[64 x 1], rn3_7.c2.c.m[64 x 1], rn3_7.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.p = Plus(rn3_7.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.y = RectifiedLinear(rn3_7.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.c.c.c = Convolution(rn3_8.c1.c.W[64 x 576], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.y = BatchNormalization(rn3_8.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c1.c.c.sc[64 x 1], rn3_8.c1.c.c.b[64 x 1], rn3_8.c1.c.c.m[64 x 1], rn3_8.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.y = RectifiedLinear(rn3_8.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c2.c.c = Convolution(rn3_8.c2.W[64 x 576], rn3_8.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.y = BatchNormalization(rn3_8.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c2.c.sc[64 x 1], rn3_8.c2.c.b[64 x 1], rn3_8.c2.c.m[64 x 1], rn3_8.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.p = Plus(rn3_8.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.y = RectifiedLinear(rn3_8.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.c.c.c = Convolution(rn3_9.c1.c.W[64 x 576], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.y = BatchNormalization(rn3_9.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c1.c.c.sc[64 x 1], rn3_9.c1.c.c.b[64 x 1], rn3_9.c1.c.c.m[64 x 1], rn3_9.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.y = RectifiedLinear(rn3_9.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c2.c.c = Convolution(rn3_9.c2.W[64 x 576], rn3_9.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.y = BatchNormalization(rn3_9.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c2.c.sc[64 x 1], rn3_9.c2.c.b[64 x 1], rn3_9.c2.c.m[64 x 1], rn3_9.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.p = Plus(rn3_9.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.y = RectifiedLinear(rn3_9.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.c.c.c = Convolution(rn3_10.c1.c.W[64 x 576], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.y = BatchNormalization(rn3_10.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c1.c.c.sc[64 x 1], rn3_10.c1.c.c.b[64 x 1], rn3_10.c1.c.c.m[64 x 1], rn3_10.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.y = RectifiedLinear(rn3_10.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c2.c.c = Convolution(rn3_10.c2.W[64 x 576], rn3_10.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.y = BatchNormalization(rn3_10.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c2.c.sc[64 x 1], rn3_10.c2.c.b[64 x 1], rn3_10.c2.c.m[64 x 1], rn3_10.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.p = Plus(rn3_10.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.y = RectifiedLinear(rn3_10.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.c.c.c = Convolution(rn3_11.c1.c.W[64 x 576], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.y = BatchNormalization(rn3_11.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c1.c.c.sc[64 x 1], rn3_11.c1.c.c.b[64 x 1], rn3_11.c1.c.c.m[64 x 1], rn3_11.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.y = RectifiedLinear(rn3_11.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c2.c.c = Convolution(rn3_11.c2.W[64 x 576], rn3_11.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.y = BatchNormalization(rn3_11.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c2.c.sc[64 x 1], rn3_11.c2.c.b[64 x 1], rn3_11.c2.c.m[64 x 1], rn3_11.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.p = Plus(rn3_11.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.y = RectifiedLinear(rn3_11.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.c.c.c = Convolution(rn3_12.c1.c.W[64 x 576], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.y = BatchNormalization(rn3_12.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c1.c.c.sc[64 x 1], rn3_12.c1.c.c.b[64 x 1], rn3_12.c1.c.c.m[64 x 1], rn3_12.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.y = RectifiedLinear(rn3_12.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c2.c.c = Convolution(rn3_12.c2.W[64 x 576], rn3_12.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.y = BatchNormalization(rn3_12.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c2.c.sc[64 x 1], rn3_12.c2.c.b[64 x 1], rn3_12.c2.c.m[64 x 1], rn3_12.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.p = Plus(rn3_12.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.y = RectifiedLinear(rn3_12.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.c.c.c = Convolution(rn3_13.c1.c.W[64 x 576], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.y = BatchNormalization(rn3_13.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c1.c.c.sc[64 x 1], rn3_13.c1.c.c.b[64 x 1], rn3_13.c1.c.c.m[64 x 1], rn3_13.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.y = RectifiedLinear(rn3_13.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c2.c.c = Convolution(rn3_13.c2.W[64 x 576], rn3_13.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.y = BatchNormalization(rn3_13.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c2.c.sc[64 x 1], rn3_13.c2.c.b[64 x 1], rn3_13.c2.c.m[64 x 1], rn3_13.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.p = Plus(rn3_13.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.y = RectifiedLinear(rn3_13.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.c.c.c = Convolution(rn3_14.c1.c.W[64 x 576], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.y = BatchNormalization(rn3_14.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c1.c.c.sc[64 x 1], rn3_14.c1.c.c.b[64 x 1], rn3_14.c1.c.c.m[64 x 1], rn3_14.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.y = RectifiedLinear(rn3_14.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c2.c.c = Convolution(rn3_14.c2.W[64 x 576], rn3_14.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.y = BatchNormalization(rn3_14.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c2.c.sc[64 x 1], rn3_14.c2.c.b[64 x 1], rn3_14.c2.c.m[64 x 1], rn3_14.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.p = Plus(rn3_14.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.y = RectifiedLinear(rn3_14.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.c.c.c = Convolution(rn3_15.c1.c.W[64 x 576], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.y = BatchNormalization(rn3_15.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c1.c.c.sc[64 x 1], rn3_15.c1.c.c.b[64 x 1], rn3_15.c1.c.c.m[64 x 1], rn3_15.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.y = RectifiedLinear(rn3_15.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c2.c.c = Convolution(rn3_15.c2.W[64 x 576], rn3_15.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.y = BatchNormalization(rn3_15.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c2.c.sc[64 x 1], rn3_15.c2.c.b[64 x 1], rn3_15.c2.c.m[64 x 1], rn3_15.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.p = Plus(rn3_15.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.y = RectifiedLinear(rn3_15.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.c.c.c = Convolution(rn3_16.c1.c.W[64 x 576], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.y = BatchNormalization(rn3_16.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c1.c.c.sc[64 x 1], rn3_16.c1.c.c.b[64 x 1], rn3_16.c1.c.c.m[64 x 1], rn3_16.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.y = RectifiedLinear(rn3_16.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c2.c.c = Convolution(rn3_16.c2.W[64 x 576], rn3_16.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.y = BatchNormalization(rn3_16.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c2.c.sc[64 x 1], rn3_16.c2.c.b[64 x 1], rn3_16.c2.c.m[64 x 1], rn3_16.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.p = Plus(rn3_16.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.y = RectifiedLinear(rn3_16.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.c.c.c = Convolution(rn3_17.c1.c.W[64 x 576], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.y = BatchNormalization(rn3_17.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c1.c.c.sc[64 x 1], rn3_17.c1.c.c.b[64 x 1], rn3_17.c1.c.c.m[64 x 1], rn3_17.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.y = RectifiedLinear(rn3_17.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c2.c.c = Convolution(rn3_17.c2.W[64 x 576], rn3_17.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.y = BatchNormalization(rn3_17.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c2.c.sc[64 x 1], rn3_17.c2.c.b[64 x 1], rn3_17.c2.c.m[64 x 1], rn3_17.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.p = Plus(rn3_17.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.y = RectifiedLinear(rn3_17.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.c.c.c = Convolution(rn3_18.c1.c.W[64 x 576], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.y = BatchNormalization(rn3_18.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c1.c.c.sc[64 x 1], rn3_18.c1.c.c.b[64 x 1], rn3_18.c1.c.c.m[64 x 1], rn3_18.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.y = RectifiedLinear(rn3_18.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c2.c.c = Convolution(rn3_18.c2.W[64 x 576], rn3_18.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.y = BatchNormalization(rn3_18.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c2.c.sc[64 x 1], rn3_18.c2.c.b[64 x 1], rn3_18.c2.c.m[64 x 1], rn3_18.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.p = Plus(rn3_18.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.y = RectifiedLinear(rn3_18.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> pool = AveragePooling(rn3_18.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [1 x 1 x 64 x *] -Validating --> OutputNodes.t = Times(OutputNodes.W[10 x 64], pool[1 x 1 x 64 x *]) -> [10 x *] -Validating --> OutputNodes.b = LearnableParameter -> [10] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10 x *], OutputNodes.b[10]) -> [10 x *] -Validating --> CE = CrossEntropyWithSoftmax(labels[10 x *], OutputNodes.z[10 x *]) -> [1] -Validating --> Err = ErrorPrediction(labels[10 x *], OutputNodes.z[10 x *]) -> [1] - -Validating network, final pass. - -Validating --> labels = InputValue -> [10 x *] -Validating --> OutputNodes.W = LearnableParameter -> [10 x 64] -Validating --> rn3_18.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_18.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_17.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_17.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_16.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_16.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_15.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_15.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_14.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_14.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_13.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_13.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_12.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_12.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_11.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_11.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_10.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_10.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_9.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_9.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_8.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_8.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_7.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_7.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_6.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_6.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_5.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_5.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_4.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_4.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 x 288] -Validating --> rn2_18.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_18.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_17.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_17.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_16.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_16.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_15.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_15.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_14.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_14.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_13.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_13.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_12.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_12.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_11.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_11.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_10.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_10.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_9.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_9.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_8.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_8.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_7.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_7.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_6.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_6.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_5.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_5.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_4.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_4.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 x 144] -Validating --> rn1_18.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_18.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_17.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_17.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_16.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_16.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_15.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_15.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_14.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_14.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_13.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_13.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_12.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_12.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_11.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_11.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_10.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_10.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_9.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_9.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_8.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_8.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_7.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_7.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_6.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_6.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_5.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_5.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_4.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_4.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> conv1.c.W = LearnableParameter -> [16 x 27] -Validating --> features = InputValue -> [32 x 32 x 3 x *] -Validating --> conv1.c.c.c = Convolution(conv1.c.W[16 x 27], features[32 x 32 x 3 x * {W=32, H=3, C=32}]) -> [32 x 32 x 16 x *] -Validating --> conv1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.y = BatchNormalization(conv1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.c.c.sc[16 x 1], conv1.c.c.b[16 x 1], conv1.c.c.m[16 x 1], conv1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> conv1.y = RectifiedLinear(conv1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.c.c.c = Convolution(rn1_1.c1.c.W[16 x 144], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.y = BatchNormalization(rn1_1.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c1.c.c.sc[16 x 1], rn1_1.c1.c.c.b[16 x 1], rn1_1.c1.c.c.m[16 x 1], rn1_1.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c2.c.c = Convolution(rn1_1.c2.W[16 x 144], rn1_1.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.y = BatchNormalization(rn1_1.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c2.c.sc[16 x 1], rn1_1.c2.c.b[16 x 1], rn1_1.c2.c.m[16 x 1], rn1_1.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.p = Plus(rn1_1.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.c.c.c = Convolution(rn1_2.c1.c.W[16 x 144], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.y = BatchNormalization(rn1_2.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c1.c.c.sc[16 x 1], rn1_2.c1.c.c.b[16 x 1], rn1_2.c1.c.c.m[16 x 1], rn1_2.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c2.c.c = Convolution(rn1_2.c2.W[16 x 144], rn1_2.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.y = BatchNormalization(rn1_2.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c2.c.sc[16 x 1], rn1_2.c2.c.b[16 x 1], rn1_2.c2.c.m[16 x 1], rn1_2.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.p = Plus(rn1_2.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.c.c.c = Convolution(rn1_3.c1.c.W[16 x 144], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.y = BatchNormalization(rn1_3.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c1.c.c.sc[16 x 1], rn1_3.c1.c.c.b[16 x 1], rn1_3.c1.c.c.m[16 x 1], rn1_3.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c2.c.c = Convolution(rn1_3.c2.W[16 x 144], rn1_3.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.y = BatchNormalization(rn1_3.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c2.c.sc[16 x 1], rn1_3.c2.c.b[16 x 1], rn1_3.c2.c.m[16 x 1], rn1_3.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.p = Plus(rn1_3.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.c.c.c = Convolution(rn1_4.c1.c.W[16 x 144], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.y = BatchNormalization(rn1_4.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c1.c.c.sc[16 x 1], rn1_4.c1.c.c.b[16 x 1], rn1_4.c1.c.c.m[16 x 1], rn1_4.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.y = RectifiedLinear(rn1_4.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c2.c.c = Convolution(rn1_4.c2.W[16 x 144], rn1_4.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.y = BatchNormalization(rn1_4.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c2.c.sc[16 x 1], rn1_4.c2.c.b[16 x 1], rn1_4.c2.c.m[16 x 1], rn1_4.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.p = Plus(rn1_4.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.y = RectifiedLinear(rn1_4.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.c.c.c = Convolution(rn1_5.c1.c.W[16 x 144], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.y = BatchNormalization(rn1_5.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c1.c.c.sc[16 x 1], rn1_5.c1.c.c.b[16 x 1], rn1_5.c1.c.c.m[16 x 1], rn1_5.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.y = RectifiedLinear(rn1_5.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c2.c.c = Convolution(rn1_5.c2.W[16 x 144], rn1_5.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.y = BatchNormalization(rn1_5.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c2.c.sc[16 x 1], rn1_5.c2.c.b[16 x 1], rn1_5.c2.c.m[16 x 1], rn1_5.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.p = Plus(rn1_5.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.y = RectifiedLinear(rn1_5.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.c.c.c = Convolution(rn1_6.c1.c.W[16 x 144], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.y = BatchNormalization(rn1_6.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c1.c.c.sc[16 x 1], rn1_6.c1.c.c.b[16 x 1], rn1_6.c1.c.c.m[16 x 1], rn1_6.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.y = RectifiedLinear(rn1_6.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c2.c.c = Convolution(rn1_6.c2.W[16 x 144], rn1_6.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.y = BatchNormalization(rn1_6.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c2.c.sc[16 x 1], rn1_6.c2.c.b[16 x 1], rn1_6.c2.c.m[16 x 1], rn1_6.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.p = Plus(rn1_6.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.y = RectifiedLinear(rn1_6.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.c.c.c = Convolution(rn1_7.c1.c.W[16 x 144], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.y = BatchNormalization(rn1_7.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c1.c.c.sc[16 x 1], rn1_7.c1.c.c.b[16 x 1], rn1_7.c1.c.c.m[16 x 1], rn1_7.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.y = RectifiedLinear(rn1_7.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c2.c.c = Convolution(rn1_7.c2.W[16 x 144], rn1_7.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.y = BatchNormalization(rn1_7.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c2.c.sc[16 x 1], rn1_7.c2.c.b[16 x 1], rn1_7.c2.c.m[16 x 1], rn1_7.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.p = Plus(rn1_7.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.y = RectifiedLinear(rn1_7.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.c.c.c = Convolution(rn1_8.c1.c.W[16 x 144], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.y = BatchNormalization(rn1_8.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c1.c.c.sc[16 x 1], rn1_8.c1.c.c.b[16 x 1], rn1_8.c1.c.c.m[16 x 1], rn1_8.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.y = RectifiedLinear(rn1_8.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c2.c.c = Convolution(rn1_8.c2.W[16 x 144], rn1_8.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.y = BatchNormalization(rn1_8.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c2.c.sc[16 x 1], rn1_8.c2.c.b[16 x 1], rn1_8.c2.c.m[16 x 1], rn1_8.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.p = Plus(rn1_8.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.y = RectifiedLinear(rn1_8.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.c.c.c = Convolution(rn1_9.c1.c.W[16 x 144], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.y = BatchNormalization(rn1_9.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c1.c.c.sc[16 x 1], rn1_9.c1.c.c.b[16 x 1], rn1_9.c1.c.c.m[16 x 1], rn1_9.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.y = RectifiedLinear(rn1_9.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c2.c.c = Convolution(rn1_9.c2.W[16 x 144], rn1_9.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.y = BatchNormalization(rn1_9.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c2.c.sc[16 x 1], rn1_9.c2.c.b[16 x 1], rn1_9.c2.c.m[16 x 1], rn1_9.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.p = Plus(rn1_9.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.y = RectifiedLinear(rn1_9.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.c.c.c = Convolution(rn1_10.c1.c.W[16 x 144], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.y = BatchNormalization(rn1_10.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c1.c.c.sc[16 x 1], rn1_10.c1.c.c.b[16 x 1], rn1_10.c1.c.c.m[16 x 1], rn1_10.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.y = RectifiedLinear(rn1_10.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c2.c.c = Convolution(rn1_10.c2.W[16 x 144], rn1_10.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.y = BatchNormalization(rn1_10.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c2.c.sc[16 x 1], rn1_10.c2.c.b[16 x 1], rn1_10.c2.c.m[16 x 1], rn1_10.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.p = Plus(rn1_10.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.y = RectifiedLinear(rn1_10.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.c.c.c = Convolution(rn1_11.c1.c.W[16 x 144], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.y = BatchNormalization(rn1_11.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c1.c.c.sc[16 x 1], rn1_11.c1.c.c.b[16 x 1], rn1_11.c1.c.c.m[16 x 1], rn1_11.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.y = RectifiedLinear(rn1_11.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c2.c.c = Convolution(rn1_11.c2.W[16 x 144], rn1_11.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.y = BatchNormalization(rn1_11.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c2.c.sc[16 x 1], rn1_11.c2.c.b[16 x 1], rn1_11.c2.c.m[16 x 1], rn1_11.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.p = Plus(rn1_11.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.y = RectifiedLinear(rn1_11.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.c.c.c = Convolution(rn1_12.c1.c.W[16 x 144], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.y = BatchNormalization(rn1_12.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c1.c.c.sc[16 x 1], rn1_12.c1.c.c.b[16 x 1], rn1_12.c1.c.c.m[16 x 1], rn1_12.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.y = RectifiedLinear(rn1_12.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c2.c.c = Convolution(rn1_12.c2.W[16 x 144], rn1_12.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.y = BatchNormalization(rn1_12.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c2.c.sc[16 x 1], rn1_12.c2.c.b[16 x 1], rn1_12.c2.c.m[16 x 1], rn1_12.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.p = Plus(rn1_12.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.y = RectifiedLinear(rn1_12.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.c.c.c = Convolution(rn1_13.c1.c.W[16 x 144], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.y = BatchNormalization(rn1_13.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c1.c.c.sc[16 x 1], rn1_13.c1.c.c.b[16 x 1], rn1_13.c1.c.c.m[16 x 1], rn1_13.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.y = RectifiedLinear(rn1_13.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c2.c.c = Convolution(rn1_13.c2.W[16 x 144], rn1_13.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.y = BatchNormalization(rn1_13.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c2.c.sc[16 x 1], rn1_13.c2.c.b[16 x 1], rn1_13.c2.c.m[16 x 1], rn1_13.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.p = Plus(rn1_13.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.y = RectifiedLinear(rn1_13.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.c.c.c = Convolution(rn1_14.c1.c.W[16 x 144], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.y = BatchNormalization(rn1_14.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c1.c.c.sc[16 x 1], rn1_14.c1.c.c.b[16 x 1], rn1_14.c1.c.c.m[16 x 1], rn1_14.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.y = RectifiedLinear(rn1_14.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c2.c.c = Convolution(rn1_14.c2.W[16 x 144], rn1_14.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.y = BatchNormalization(rn1_14.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c2.c.sc[16 x 1], rn1_14.c2.c.b[16 x 1], rn1_14.c2.c.m[16 x 1], rn1_14.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.p = Plus(rn1_14.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.y = RectifiedLinear(rn1_14.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.c.c.c = Convolution(rn1_15.c1.c.W[16 x 144], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.y = BatchNormalization(rn1_15.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c1.c.c.sc[16 x 1], rn1_15.c1.c.c.b[16 x 1], rn1_15.c1.c.c.m[16 x 1], rn1_15.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.y = RectifiedLinear(rn1_15.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c2.c.c = Convolution(rn1_15.c2.W[16 x 144], rn1_15.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.y = BatchNormalization(rn1_15.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c2.c.sc[16 x 1], rn1_15.c2.c.b[16 x 1], rn1_15.c2.c.m[16 x 1], rn1_15.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.p = Plus(rn1_15.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.y = RectifiedLinear(rn1_15.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.c.c.c = Convolution(rn1_16.c1.c.W[16 x 144], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.y = BatchNormalization(rn1_16.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c1.c.c.sc[16 x 1], rn1_16.c1.c.c.b[16 x 1], rn1_16.c1.c.c.m[16 x 1], rn1_16.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.y = RectifiedLinear(rn1_16.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c2.c.c = Convolution(rn1_16.c2.W[16 x 144], rn1_16.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.y = BatchNormalization(rn1_16.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c2.c.sc[16 x 1], rn1_16.c2.c.b[16 x 1], rn1_16.c2.c.m[16 x 1], rn1_16.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.p = Plus(rn1_16.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.y = RectifiedLinear(rn1_16.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.c.c.c = Convolution(rn1_17.c1.c.W[16 x 144], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.y = BatchNormalization(rn1_17.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c1.c.c.sc[16 x 1], rn1_17.c1.c.c.b[16 x 1], rn1_17.c1.c.c.m[16 x 1], rn1_17.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.y = RectifiedLinear(rn1_17.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c2.c.c = Convolution(rn1_17.c2.W[16 x 144], rn1_17.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.y = BatchNormalization(rn1_17.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c2.c.sc[16 x 1], rn1_17.c2.c.b[16 x 1], rn1_17.c2.c.m[16 x 1], rn1_17.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.p = Plus(rn1_17.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.y = RectifiedLinear(rn1_17.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.c.c.c = Convolution(rn1_18.c1.c.W[16 x 144], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.y = BatchNormalization(rn1_18.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c1.c.c.sc[16 x 1], rn1_18.c1.c.c.b[16 x 1], rn1_18.c1.c.c.m[16 x 1], rn1_18.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.y = RectifiedLinear(rn1_18.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c2.c.c = Convolution(rn1_18.c2.W[16 x 144], rn1_18.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.y = BatchNormalization(rn1_18.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c2.c.sc[16 x 1], rn1_18.c2.c.b[16 x 1], rn1_18.c2.c.m[16 x 1], rn1_18.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.p = Plus(rn1_18.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.y = RectifiedLinear(rn1_18.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn2_1.c1.c.c.c = Convolution(rn2_1.c1.c.W[32 x 144], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.y = BatchNormalization(rn2_1.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c1.c.c.sc[32 x 1], rn2_1.c1.c.c.b[32 x 1], rn2_1.c1.c.c.m[32 x 1], rn2_1.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c2.c.c = Convolution(rn2_1.c2.W[32 x 288], rn2_1.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.y = BatchNormalization(rn2_1.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c2.c.sc[32 x 1], rn2_1.c2.c.b[32 x 1], rn2_1.c2.c.m[32 x 1], rn2_1.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1_Wproj = LearnableParameter -> [32 x 16] -Validating --> rn2_1.c_proj.c = Convolution(rn2_1_Wproj[32 x 16], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c_proj.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.y = BatchNormalization(rn2_1.c_proj.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.sc[32 x 1], rn2_1.c_proj.b[32 x 1], rn2_1.c_proj.m[32 x 1], rn2_1.c_proj.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.p = Plus(rn2_1.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.c.c.c = Convolution(rn2_2.c1.c.W[32 x 288], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.y = BatchNormalization(rn2_2.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c1.c.c.sc[32 x 1], rn2_2.c1.c.c.b[32 x 1], rn2_2.c1.c.c.m[32 x 1], rn2_2.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c2.c.c = Convolution(rn2_2.c2.W[32 x 288], rn2_2.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.y = BatchNormalization(rn2_2.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c2.c.sc[32 x 1], rn2_2.c2.c.b[32 x 1], rn2_2.c2.c.m[32 x 1], rn2_2.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.p = Plus(rn2_2.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.c.c.c = Convolution(rn2_3.c1.c.W[32 x 288], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.y = BatchNormalization(rn2_3.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c1.c.c.sc[32 x 1], rn2_3.c1.c.c.b[32 x 1], rn2_3.c1.c.c.m[32 x 1], rn2_3.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c2.c.c = Convolution(rn2_3.c2.W[32 x 288], rn2_3.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.y = BatchNormalization(rn2_3.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c2.c.sc[32 x 1], rn2_3.c2.c.b[32 x 1], rn2_3.c2.c.m[32 x 1], rn2_3.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.p = Plus(rn2_3.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.c.c.c = Convolution(rn2_4.c1.c.W[32 x 288], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.y = BatchNormalization(rn2_4.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c1.c.c.sc[32 x 1], rn2_4.c1.c.c.b[32 x 1], rn2_4.c1.c.c.m[32 x 1], rn2_4.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.y = RectifiedLinear(rn2_4.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c2.c.c = Convolution(rn2_4.c2.W[32 x 288], rn2_4.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.y = BatchNormalization(rn2_4.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c2.c.sc[32 x 1], rn2_4.c2.c.b[32 x 1], rn2_4.c2.c.m[32 x 1], rn2_4.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.p = Plus(rn2_4.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.y = RectifiedLinear(rn2_4.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.c.c.c = Convolution(rn2_5.c1.c.W[32 x 288], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.y = BatchNormalization(rn2_5.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c1.c.c.sc[32 x 1], rn2_5.c1.c.c.b[32 x 1], rn2_5.c1.c.c.m[32 x 1], rn2_5.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.y = RectifiedLinear(rn2_5.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c2.c.c = Convolution(rn2_5.c2.W[32 x 288], rn2_5.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.y = BatchNormalization(rn2_5.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c2.c.sc[32 x 1], rn2_5.c2.c.b[32 x 1], rn2_5.c2.c.m[32 x 1], rn2_5.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.p = Plus(rn2_5.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.y = RectifiedLinear(rn2_5.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.c.c.c = Convolution(rn2_6.c1.c.W[32 x 288], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.y = BatchNormalization(rn2_6.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c1.c.c.sc[32 x 1], rn2_6.c1.c.c.b[32 x 1], rn2_6.c1.c.c.m[32 x 1], rn2_6.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.y = RectifiedLinear(rn2_6.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c2.c.c = Convolution(rn2_6.c2.W[32 x 288], rn2_6.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.y = BatchNormalization(rn2_6.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c2.c.sc[32 x 1], rn2_6.c2.c.b[32 x 1], rn2_6.c2.c.m[32 x 1], rn2_6.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.p = Plus(rn2_6.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.y = RectifiedLinear(rn2_6.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.c.c.c = Convolution(rn2_7.c1.c.W[32 x 288], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.y = BatchNormalization(rn2_7.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c1.c.c.sc[32 x 1], rn2_7.c1.c.c.b[32 x 1], rn2_7.c1.c.c.m[32 x 1], rn2_7.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.y = RectifiedLinear(rn2_7.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c2.c.c = Convolution(rn2_7.c2.W[32 x 288], rn2_7.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.y = BatchNormalization(rn2_7.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c2.c.sc[32 x 1], rn2_7.c2.c.b[32 x 1], rn2_7.c2.c.m[32 x 1], rn2_7.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.p = Plus(rn2_7.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.y = RectifiedLinear(rn2_7.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.c.c.c = Convolution(rn2_8.c1.c.W[32 x 288], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.y = BatchNormalization(rn2_8.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c1.c.c.sc[32 x 1], rn2_8.c1.c.c.b[32 x 1], rn2_8.c1.c.c.m[32 x 1], rn2_8.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.y = RectifiedLinear(rn2_8.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c2.c.c = Convolution(rn2_8.c2.W[32 x 288], rn2_8.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.y = BatchNormalization(rn2_8.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c2.c.sc[32 x 1], rn2_8.c2.c.b[32 x 1], rn2_8.c2.c.m[32 x 1], rn2_8.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.p = Plus(rn2_8.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.y = RectifiedLinear(rn2_8.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.c.c.c = Convolution(rn2_9.c1.c.W[32 x 288], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.y = BatchNormalization(rn2_9.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c1.c.c.sc[32 x 1], rn2_9.c1.c.c.b[32 x 1], rn2_9.c1.c.c.m[32 x 1], rn2_9.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.y = RectifiedLinear(rn2_9.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c2.c.c = Convolution(rn2_9.c2.W[32 x 288], rn2_9.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.y = BatchNormalization(rn2_9.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c2.c.sc[32 x 1], rn2_9.c2.c.b[32 x 1], rn2_9.c2.c.m[32 x 1], rn2_9.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.p = Plus(rn2_9.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.y = RectifiedLinear(rn2_9.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.c.c.c = Convolution(rn2_10.c1.c.W[32 x 288], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.y = BatchNormalization(rn2_10.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c1.c.c.sc[32 x 1], rn2_10.c1.c.c.b[32 x 1], rn2_10.c1.c.c.m[32 x 1], rn2_10.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.y = RectifiedLinear(rn2_10.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c2.c.c = Convolution(rn2_10.c2.W[32 x 288], rn2_10.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.y = BatchNormalization(rn2_10.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c2.c.sc[32 x 1], rn2_10.c2.c.b[32 x 1], rn2_10.c2.c.m[32 x 1], rn2_10.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.p = Plus(rn2_10.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.y = RectifiedLinear(rn2_10.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.c.c.c = Convolution(rn2_11.c1.c.W[32 x 288], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.y = BatchNormalization(rn2_11.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c1.c.c.sc[32 x 1], rn2_11.c1.c.c.b[32 x 1], rn2_11.c1.c.c.m[32 x 1], rn2_11.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.y = RectifiedLinear(rn2_11.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c2.c.c = Convolution(rn2_11.c2.W[32 x 288], rn2_11.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.y = BatchNormalization(rn2_11.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c2.c.sc[32 x 1], rn2_11.c2.c.b[32 x 1], rn2_11.c2.c.m[32 x 1], rn2_11.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.p = Plus(rn2_11.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.y = RectifiedLinear(rn2_11.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.c.c.c = Convolution(rn2_12.c1.c.W[32 x 288], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.y = BatchNormalization(rn2_12.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c1.c.c.sc[32 x 1], rn2_12.c1.c.c.b[32 x 1], rn2_12.c1.c.c.m[32 x 1], rn2_12.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.y = RectifiedLinear(rn2_12.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c2.c.c = Convolution(rn2_12.c2.W[32 x 288], rn2_12.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.y = BatchNormalization(rn2_12.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c2.c.sc[32 x 1], rn2_12.c2.c.b[32 x 1], rn2_12.c2.c.m[32 x 1], rn2_12.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.p = Plus(rn2_12.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.y = RectifiedLinear(rn2_12.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.c.c.c = Convolution(rn2_13.c1.c.W[32 x 288], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.y = BatchNormalization(rn2_13.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c1.c.c.sc[32 x 1], rn2_13.c1.c.c.b[32 x 1], rn2_13.c1.c.c.m[32 x 1], rn2_13.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.y = RectifiedLinear(rn2_13.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c2.c.c = Convolution(rn2_13.c2.W[32 x 288], rn2_13.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.y = BatchNormalization(rn2_13.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c2.c.sc[32 x 1], rn2_13.c2.c.b[32 x 1], rn2_13.c2.c.m[32 x 1], rn2_13.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.p = Plus(rn2_13.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.y = RectifiedLinear(rn2_13.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.c.c.c = Convolution(rn2_14.c1.c.W[32 x 288], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.y = BatchNormalization(rn2_14.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c1.c.c.sc[32 x 1], rn2_14.c1.c.c.b[32 x 1], rn2_14.c1.c.c.m[32 x 1], rn2_14.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.y = RectifiedLinear(rn2_14.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c2.c.c = Convolution(rn2_14.c2.W[32 x 288], rn2_14.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.y = BatchNormalization(rn2_14.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c2.c.sc[32 x 1], rn2_14.c2.c.b[32 x 1], rn2_14.c2.c.m[32 x 1], rn2_14.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.p = Plus(rn2_14.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.y = RectifiedLinear(rn2_14.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.c.c.c = Convolution(rn2_15.c1.c.W[32 x 288], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.y = BatchNormalization(rn2_15.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c1.c.c.sc[32 x 1], rn2_15.c1.c.c.b[32 x 1], rn2_15.c1.c.c.m[32 x 1], rn2_15.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.y = RectifiedLinear(rn2_15.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c2.c.c = Convolution(rn2_15.c2.W[32 x 288], rn2_15.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.y = BatchNormalization(rn2_15.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c2.c.sc[32 x 1], rn2_15.c2.c.b[32 x 1], rn2_15.c2.c.m[32 x 1], rn2_15.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.p = Plus(rn2_15.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.y = RectifiedLinear(rn2_15.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.c.c.c = Convolution(rn2_16.c1.c.W[32 x 288], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.y = BatchNormalization(rn2_16.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c1.c.c.sc[32 x 1], rn2_16.c1.c.c.b[32 x 1], rn2_16.c1.c.c.m[32 x 1], rn2_16.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.y = RectifiedLinear(rn2_16.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c2.c.c = Convolution(rn2_16.c2.W[32 x 288], rn2_16.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.y = BatchNormalization(rn2_16.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c2.c.sc[32 x 1], rn2_16.c2.c.b[32 x 1], rn2_16.c2.c.m[32 x 1], rn2_16.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.p = Plus(rn2_16.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.y = RectifiedLinear(rn2_16.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.c.c.c = Convolution(rn2_17.c1.c.W[32 x 288], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.y = BatchNormalization(rn2_17.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c1.c.c.sc[32 x 1], rn2_17.c1.c.c.b[32 x 1], rn2_17.c1.c.c.m[32 x 1], rn2_17.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.y = RectifiedLinear(rn2_17.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c2.c.c = Convolution(rn2_17.c2.W[32 x 288], rn2_17.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.y = BatchNormalization(rn2_17.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c2.c.sc[32 x 1], rn2_17.c2.c.b[32 x 1], rn2_17.c2.c.m[32 x 1], rn2_17.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.p = Plus(rn2_17.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.y = RectifiedLinear(rn2_17.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.c.c.c = Convolution(rn2_18.c1.c.W[32 x 288], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.y = BatchNormalization(rn2_18.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c1.c.c.sc[32 x 1], rn2_18.c1.c.c.b[32 x 1], rn2_18.c1.c.c.m[32 x 1], rn2_18.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.y = RectifiedLinear(rn2_18.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c2.c.c = Convolution(rn2_18.c2.W[32 x 288], rn2_18.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.y = BatchNormalization(rn2_18.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c2.c.sc[32 x 1], rn2_18.c2.c.b[32 x 1], rn2_18.c2.c.m[32 x 1], rn2_18.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.p = Plus(rn2_18.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.y = RectifiedLinear(rn2_18.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn3_1.c1.c.c.c = Convolution(rn3_1.c1.c.W[64 x 288], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.y = BatchNormalization(rn3_1.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c1.c.c.sc[64 x 1], rn3_1.c1.c.c.b[64 x 1], rn3_1.c1.c.c.m[64 x 1], rn3_1.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c2.c.c = Convolution(rn3_1.c2.W[64 x 576], rn3_1.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.y = BatchNormalization(rn3_1.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c2.c.sc[64 x 1], rn3_1.c2.c.b[64 x 1], rn3_1.c2.c.m[64 x 1], rn3_1.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1_Wproj = LearnableParameter -> [64 x 32] -Validating --> rn3_1.c_proj.c = Convolution(rn3_1_Wproj[64 x 32], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c_proj.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.y = BatchNormalization(rn3_1.c_proj.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.sc[64 x 1], rn3_1.c_proj.b[64 x 1], rn3_1.c_proj.m[64 x 1], rn3_1.c_proj.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.p = Plus(rn3_1.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.c.c.c = Convolution(rn3_2.c1.c.W[64 x 576], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.y = BatchNormalization(rn3_2.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c1.c.c.sc[64 x 1], rn3_2.c1.c.c.b[64 x 1], rn3_2.c1.c.c.m[64 x 1], rn3_2.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c2.c.c = Convolution(rn3_2.c2.W[64 x 576], rn3_2.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.y = BatchNormalization(rn3_2.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c2.c.sc[64 x 1], rn3_2.c2.c.b[64 x 1], rn3_2.c2.c.m[64 x 1], rn3_2.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.p = Plus(rn3_2.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.c.c.c = Convolution(rn3_3.c1.c.W[64 x 576], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.y = BatchNormalization(rn3_3.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c1.c.c.sc[64 x 1], rn3_3.c1.c.c.b[64 x 1], rn3_3.c1.c.c.m[64 x 1], rn3_3.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c2.c.c = Convolution(rn3_3.c2.W[64 x 576], rn3_3.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.y = BatchNormalization(rn3_3.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c2.c.sc[64 x 1], rn3_3.c2.c.b[64 x 1], rn3_3.c2.c.m[64 x 1], rn3_3.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.p = Plus(rn3_3.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.c.c.c = Convolution(rn3_4.c1.c.W[64 x 576], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.y = BatchNormalization(rn3_4.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c1.c.c.sc[64 x 1], rn3_4.c1.c.c.b[64 x 1], rn3_4.c1.c.c.m[64 x 1], rn3_4.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.y = RectifiedLinear(rn3_4.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c2.c.c = Convolution(rn3_4.c2.W[64 x 576], rn3_4.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.y = BatchNormalization(rn3_4.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c2.c.sc[64 x 1], rn3_4.c2.c.b[64 x 1], rn3_4.c2.c.m[64 x 1], rn3_4.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.p = Plus(rn3_4.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.y = RectifiedLinear(rn3_4.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.c.c.c = Convolution(rn3_5.c1.c.W[64 x 576], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.y = BatchNormalization(rn3_5.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c1.c.c.sc[64 x 1], rn3_5.c1.c.c.b[64 x 1], rn3_5.c1.c.c.m[64 x 1], rn3_5.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.y = RectifiedLinear(rn3_5.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c2.c.c = Convolution(rn3_5.c2.W[64 x 576], rn3_5.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.y = BatchNormalization(rn3_5.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c2.c.sc[64 x 1], rn3_5.c2.c.b[64 x 1], rn3_5.c2.c.m[64 x 1], rn3_5.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.p = Plus(rn3_5.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.y = RectifiedLinear(rn3_5.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.c.c.c = Convolution(rn3_6.c1.c.W[64 x 576], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.y = BatchNormalization(rn3_6.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c1.c.c.sc[64 x 1], rn3_6.c1.c.c.b[64 x 1], rn3_6.c1.c.c.m[64 x 1], rn3_6.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.y = RectifiedLinear(rn3_6.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c2.c.c = Convolution(rn3_6.c2.W[64 x 576], rn3_6.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.y = BatchNormalization(rn3_6.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c2.c.sc[64 x 1], rn3_6.c2.c.b[64 x 1], rn3_6.c2.c.m[64 x 1], rn3_6.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.p = Plus(rn3_6.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.y = RectifiedLinear(rn3_6.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.c.c.c = Convolution(rn3_7.c1.c.W[64 x 576], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.y = BatchNormalization(rn3_7.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c1.c.c.sc[64 x 1], rn3_7.c1.c.c.b[64 x 1], rn3_7.c1.c.c.m[64 x 1], rn3_7.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.y = RectifiedLinear(rn3_7.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c2.c.c = Convolution(rn3_7.c2.W[64 x 576], rn3_7.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.y = BatchNormalization(rn3_7.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c2.c.sc[64 x 1], rn3_7.c2.c.b[64 x 1], rn3_7.c2.c.m[64 x 1], rn3_7.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.p = Plus(rn3_7.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.y = RectifiedLinear(rn3_7.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.c.c.c = Convolution(rn3_8.c1.c.W[64 x 576], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.y = BatchNormalization(rn3_8.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c1.c.c.sc[64 x 1], rn3_8.c1.c.c.b[64 x 1], rn3_8.c1.c.c.m[64 x 1], rn3_8.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.y = RectifiedLinear(rn3_8.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c2.c.c = Convolution(rn3_8.c2.W[64 x 576], rn3_8.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.y = BatchNormalization(rn3_8.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c2.c.sc[64 x 1], rn3_8.c2.c.b[64 x 1], rn3_8.c2.c.m[64 x 1], rn3_8.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.p = Plus(rn3_8.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.y = RectifiedLinear(rn3_8.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.c.c.c = Convolution(rn3_9.c1.c.W[64 x 576], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.y = BatchNormalization(rn3_9.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c1.c.c.sc[64 x 1], rn3_9.c1.c.c.b[64 x 1], rn3_9.c1.c.c.m[64 x 1], rn3_9.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.y = RectifiedLinear(rn3_9.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c2.c.c = Convolution(rn3_9.c2.W[64 x 576], rn3_9.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.y = BatchNormalization(rn3_9.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c2.c.sc[64 x 1], rn3_9.c2.c.b[64 x 1], rn3_9.c2.c.m[64 x 1], rn3_9.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.p = Plus(rn3_9.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.y = RectifiedLinear(rn3_9.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.c.c.c = Convolution(rn3_10.c1.c.W[64 x 576], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.y = BatchNormalization(rn3_10.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c1.c.c.sc[64 x 1], rn3_10.c1.c.c.b[64 x 1], rn3_10.c1.c.c.m[64 x 1], rn3_10.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.y = RectifiedLinear(rn3_10.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c2.c.c = Convolution(rn3_10.c2.W[64 x 576], rn3_10.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.y = BatchNormalization(rn3_10.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c2.c.sc[64 x 1], rn3_10.c2.c.b[64 x 1], rn3_10.c2.c.m[64 x 1], rn3_10.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.p = Plus(rn3_10.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.y = RectifiedLinear(rn3_10.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.c.c.c = Convolution(rn3_11.c1.c.W[64 x 576], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.y = BatchNormalization(rn3_11.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c1.c.c.sc[64 x 1], rn3_11.c1.c.c.b[64 x 1], rn3_11.c1.c.c.m[64 x 1], rn3_11.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.y = RectifiedLinear(rn3_11.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c2.c.c = Convolution(rn3_11.c2.W[64 x 576], rn3_11.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.y = BatchNormalization(rn3_11.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c2.c.sc[64 x 1], rn3_11.c2.c.b[64 x 1], rn3_11.c2.c.m[64 x 1], rn3_11.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.p = Plus(rn3_11.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.y = RectifiedLinear(rn3_11.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.c.c.c = Convolution(rn3_12.c1.c.W[64 x 576], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.y = BatchNormalization(rn3_12.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c1.c.c.sc[64 x 1], rn3_12.c1.c.c.b[64 x 1], rn3_12.c1.c.c.m[64 x 1], rn3_12.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.y = RectifiedLinear(rn3_12.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c2.c.c = Convolution(rn3_12.c2.W[64 x 576], rn3_12.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.y = BatchNormalization(rn3_12.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c2.c.sc[64 x 1], rn3_12.c2.c.b[64 x 1], rn3_12.c2.c.m[64 x 1], rn3_12.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.p = Plus(rn3_12.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.y = RectifiedLinear(rn3_12.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.c.c.c = Convolution(rn3_13.c1.c.W[64 x 576], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.y = BatchNormalization(rn3_13.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c1.c.c.sc[64 x 1], rn3_13.c1.c.c.b[64 x 1], rn3_13.c1.c.c.m[64 x 1], rn3_13.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.y = RectifiedLinear(rn3_13.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c2.c.c = Convolution(rn3_13.c2.W[64 x 576], rn3_13.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.y = BatchNormalization(rn3_13.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c2.c.sc[64 x 1], rn3_13.c2.c.b[64 x 1], rn3_13.c2.c.m[64 x 1], rn3_13.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.p = Plus(rn3_13.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.y = RectifiedLinear(rn3_13.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.c.c.c = Convolution(rn3_14.c1.c.W[64 x 576], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.y = BatchNormalization(rn3_14.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c1.c.c.sc[64 x 1], rn3_14.c1.c.c.b[64 x 1], rn3_14.c1.c.c.m[64 x 1], rn3_14.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.y = RectifiedLinear(rn3_14.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c2.c.c = Convolution(rn3_14.c2.W[64 x 576], rn3_14.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.y = BatchNormalization(rn3_14.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c2.c.sc[64 x 1], rn3_14.c2.c.b[64 x 1], rn3_14.c2.c.m[64 x 1], rn3_14.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.p = Plus(rn3_14.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.y = RectifiedLinear(rn3_14.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.c.c.c = Convolution(rn3_15.c1.c.W[64 x 576], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.y = BatchNormalization(rn3_15.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c1.c.c.sc[64 x 1], rn3_15.c1.c.c.b[64 x 1], rn3_15.c1.c.c.m[64 x 1], rn3_15.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.y = RectifiedLinear(rn3_15.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c2.c.c = Convolution(rn3_15.c2.W[64 x 576], rn3_15.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.y = BatchNormalization(rn3_15.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c2.c.sc[64 x 1], rn3_15.c2.c.b[64 x 1], rn3_15.c2.c.m[64 x 1], rn3_15.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.p = Plus(rn3_15.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.y = RectifiedLinear(rn3_15.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.c.c.c = Convolution(rn3_16.c1.c.W[64 x 576], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.y = BatchNormalization(rn3_16.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c1.c.c.sc[64 x 1], rn3_16.c1.c.c.b[64 x 1], rn3_16.c1.c.c.m[64 x 1], rn3_16.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.y = RectifiedLinear(rn3_16.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c2.c.c = Convolution(rn3_16.c2.W[64 x 576], rn3_16.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.y = BatchNormalization(rn3_16.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c2.c.sc[64 x 1], rn3_16.c2.c.b[64 x 1], rn3_16.c2.c.m[64 x 1], rn3_16.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.p = Plus(rn3_16.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.y = RectifiedLinear(rn3_16.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.c.c.c = Convolution(rn3_17.c1.c.W[64 x 576], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.y = BatchNormalization(rn3_17.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c1.c.c.sc[64 x 1], rn3_17.c1.c.c.b[64 x 1], rn3_17.c1.c.c.m[64 x 1], rn3_17.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.y = RectifiedLinear(rn3_17.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c2.c.c = Convolution(rn3_17.c2.W[64 x 576], rn3_17.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.y = BatchNormalization(rn3_17.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c2.c.sc[64 x 1], rn3_17.c2.c.b[64 x 1], rn3_17.c2.c.m[64 x 1], rn3_17.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.p = Plus(rn3_17.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.y = RectifiedLinear(rn3_17.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.c.c.c = Convolution(rn3_18.c1.c.W[64 x 576], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.y = BatchNormalization(rn3_18.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c1.c.c.sc[64 x 1], rn3_18.c1.c.c.b[64 x 1], rn3_18.c1.c.c.m[64 x 1], rn3_18.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.y = RectifiedLinear(rn3_18.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c2.c.c = Convolution(rn3_18.c2.W[64 x 576], rn3_18.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.y = BatchNormalization(rn3_18.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c2.c.sc[64 x 1], rn3_18.c2.c.b[64 x 1], rn3_18.c2.c.m[64 x 1], rn3_18.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.p = Plus(rn3_18.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.y = RectifiedLinear(rn3_18.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> pool = AveragePooling(rn3_18.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [1 x 1 x 64 x *] -Validating --> OutputNodes.t = Times(OutputNodes.W[10 x 64], pool[1 x 1 x 64 x *]) -> [10 x *] -Validating --> OutputNodes.b = LearnableParameter -> [10] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10 x *], OutputNodes.b[10]) -> [10 x *] -Validating --> CE = CrossEntropyWithSoftmax(labels[10 x *], OutputNodes.z[10 x *]) -> [1] -Validating --> Err = ErrorPrediction(labels[10 x *], OutputNodes.z[10 x *]) -> [1] - -559 out of 949 nodes do not share the minibatch layout with the input data. - -Post-processing network complete. - -Post-processing network... - -3 roots: - CE = CrossEntropyWithSoftmax - Err = ErrorPrediction - OutputNodes.z = Plus -FormNestedNetwork: WARNING: Was called twice for CE CrossEntropyWithSoftmax operation -FormNestedNetwork: WARNING: Was called twice for Err ErrorPrediction operation -FormNestedNetwork: WARNING: Was called twice for OutputNodes.z Plus operation - - -Validating network. 949 nodes to process in pass 1. - -Validating --> labels = InputValue -> [10 x *] -Validating --> OutputNodes.W = LearnableParameter -> [10 x 64] -Validating --> rn3_18.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_18.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_17.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_17.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_16.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_16.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_15.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_15.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_14.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_14.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_13.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_13.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_12.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_12.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_11.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_11.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_10.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_10.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_9.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_9.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_8.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_8.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_7.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_7.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_6.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_6.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_5.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_5.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_4.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_4.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 x 288] -Validating --> rn2_18.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_18.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_17.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_17.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_16.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_16.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_15.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_15.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_14.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_14.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_13.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_13.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_12.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_12.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_11.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_11.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_10.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_10.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_9.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_9.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_8.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_8.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_7.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_7.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_6.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_6.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_5.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_5.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_4.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_4.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 x 144] -Validating --> rn1_18.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_18.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_17.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_17.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_16.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_16.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_15.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_15.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_14.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_14.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_13.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_13.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_12.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_12.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_11.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_11.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_10.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_10.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_9.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_9.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_8.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_8.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_7.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_7.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_6.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_6.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_5.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_5.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_4.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_4.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> conv1.c.W = LearnableParameter -> [16 x 27] -Validating --> features = InputValue -> [32 x 32 x 3 x *] -Validating --> conv1.c.c.c = Convolution(conv1.c.W[16 x 27], features[32 x 32 x 3 x * {W=32, H=3, C=32}]) -> [32 x 32 x 16 x *] -Validating --> conv1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.y = BatchNormalization(conv1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.c.c.sc[16 x 1], conv1.c.c.b[16 x 1], conv1.c.c.m[16 x 1], conv1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> conv1.y = RectifiedLinear(conv1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.c.c.c = Convolution(rn1_1.c1.c.W[16 x 144], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.y = BatchNormalization(rn1_1.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c1.c.c.sc[16 x 1], rn1_1.c1.c.c.b[16 x 1], rn1_1.c1.c.c.m[16 x 1], rn1_1.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c2.c.c = Convolution(rn1_1.c2.W[16 x 144], rn1_1.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.y = BatchNormalization(rn1_1.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c2.c.sc[16 x 1], rn1_1.c2.c.b[16 x 1], rn1_1.c2.c.m[16 x 1], rn1_1.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.p = Plus(rn1_1.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.c.c.c = Convolution(rn1_2.c1.c.W[16 x 144], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.y = BatchNormalization(rn1_2.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c1.c.c.sc[16 x 1], rn1_2.c1.c.c.b[16 x 1], rn1_2.c1.c.c.m[16 x 1], rn1_2.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c2.c.c = Convolution(rn1_2.c2.W[16 x 144], rn1_2.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.y = BatchNormalization(rn1_2.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c2.c.sc[16 x 1], rn1_2.c2.c.b[16 x 1], rn1_2.c2.c.m[16 x 1], rn1_2.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.p = Plus(rn1_2.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.c.c.c = Convolution(rn1_3.c1.c.W[16 x 144], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.y = BatchNormalization(rn1_3.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c1.c.c.sc[16 x 1], rn1_3.c1.c.c.b[16 x 1], rn1_3.c1.c.c.m[16 x 1], rn1_3.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c2.c.c = Convolution(rn1_3.c2.W[16 x 144], rn1_3.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.y = BatchNormalization(rn1_3.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c2.c.sc[16 x 1], rn1_3.c2.c.b[16 x 1], rn1_3.c2.c.m[16 x 1], rn1_3.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.p = Plus(rn1_3.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.c.c.c = Convolution(rn1_4.c1.c.W[16 x 144], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.y = BatchNormalization(rn1_4.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c1.c.c.sc[16 x 1], rn1_4.c1.c.c.b[16 x 1], rn1_4.c1.c.c.m[16 x 1], rn1_4.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.y = RectifiedLinear(rn1_4.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c2.c.c = Convolution(rn1_4.c2.W[16 x 144], rn1_4.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.y = BatchNormalization(rn1_4.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c2.c.sc[16 x 1], rn1_4.c2.c.b[16 x 1], rn1_4.c2.c.m[16 x 1], rn1_4.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.p = Plus(rn1_4.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.y = RectifiedLinear(rn1_4.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.c.c.c = Convolution(rn1_5.c1.c.W[16 x 144], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.y = BatchNormalization(rn1_5.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c1.c.c.sc[16 x 1], rn1_5.c1.c.c.b[16 x 1], rn1_5.c1.c.c.m[16 x 1], rn1_5.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.y = RectifiedLinear(rn1_5.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c2.c.c = Convolution(rn1_5.c2.W[16 x 144], rn1_5.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.y = BatchNormalization(rn1_5.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c2.c.sc[16 x 1], rn1_5.c2.c.b[16 x 1], rn1_5.c2.c.m[16 x 1], rn1_5.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.p = Plus(rn1_5.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.y = RectifiedLinear(rn1_5.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.c.c.c = Convolution(rn1_6.c1.c.W[16 x 144], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.y = BatchNormalization(rn1_6.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c1.c.c.sc[16 x 1], rn1_6.c1.c.c.b[16 x 1], rn1_6.c1.c.c.m[16 x 1], rn1_6.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.y = RectifiedLinear(rn1_6.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c2.c.c = Convolution(rn1_6.c2.W[16 x 144], rn1_6.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.y = BatchNormalization(rn1_6.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c2.c.sc[16 x 1], rn1_6.c2.c.b[16 x 1], rn1_6.c2.c.m[16 x 1], rn1_6.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.p = Plus(rn1_6.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.y = RectifiedLinear(rn1_6.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.c.c.c = Convolution(rn1_7.c1.c.W[16 x 144], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.y = BatchNormalization(rn1_7.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c1.c.c.sc[16 x 1], rn1_7.c1.c.c.b[16 x 1], rn1_7.c1.c.c.m[16 x 1], rn1_7.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.y = RectifiedLinear(rn1_7.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c2.c.c = Convolution(rn1_7.c2.W[16 x 144], rn1_7.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.y = BatchNormalization(rn1_7.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c2.c.sc[16 x 1], rn1_7.c2.c.b[16 x 1], rn1_7.c2.c.m[16 x 1], rn1_7.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.p = Plus(rn1_7.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.y = RectifiedLinear(rn1_7.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.c.c.c = Convolution(rn1_8.c1.c.W[16 x 144], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.y = BatchNormalization(rn1_8.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c1.c.c.sc[16 x 1], rn1_8.c1.c.c.b[16 x 1], rn1_8.c1.c.c.m[16 x 1], rn1_8.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.y = RectifiedLinear(rn1_8.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c2.c.c = Convolution(rn1_8.c2.W[16 x 144], rn1_8.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.y = BatchNormalization(rn1_8.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c2.c.sc[16 x 1], rn1_8.c2.c.b[16 x 1], rn1_8.c2.c.m[16 x 1], rn1_8.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.p = Plus(rn1_8.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.y = RectifiedLinear(rn1_8.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.c.c.c = Convolution(rn1_9.c1.c.W[16 x 144], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.y = BatchNormalization(rn1_9.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c1.c.c.sc[16 x 1], rn1_9.c1.c.c.b[16 x 1], rn1_9.c1.c.c.m[16 x 1], rn1_9.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.y = RectifiedLinear(rn1_9.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c2.c.c = Convolution(rn1_9.c2.W[16 x 144], rn1_9.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.y = BatchNormalization(rn1_9.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c2.c.sc[16 x 1], rn1_9.c2.c.b[16 x 1], rn1_9.c2.c.m[16 x 1], rn1_9.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.p = Plus(rn1_9.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.y = RectifiedLinear(rn1_9.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.c.c.c = Convolution(rn1_10.c1.c.W[16 x 144], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.y = BatchNormalization(rn1_10.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c1.c.c.sc[16 x 1], rn1_10.c1.c.c.b[16 x 1], rn1_10.c1.c.c.m[16 x 1], rn1_10.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.y = RectifiedLinear(rn1_10.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c2.c.c = Convolution(rn1_10.c2.W[16 x 144], rn1_10.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.y = BatchNormalization(rn1_10.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c2.c.sc[16 x 1], rn1_10.c2.c.b[16 x 1], rn1_10.c2.c.m[16 x 1], rn1_10.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.p = Plus(rn1_10.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.y = RectifiedLinear(rn1_10.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.c.c.c = Convolution(rn1_11.c1.c.W[16 x 144], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.y = BatchNormalization(rn1_11.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c1.c.c.sc[16 x 1], rn1_11.c1.c.c.b[16 x 1], rn1_11.c1.c.c.m[16 x 1], rn1_11.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.y = RectifiedLinear(rn1_11.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c2.c.c = Convolution(rn1_11.c2.W[16 x 144], rn1_11.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.y = BatchNormalization(rn1_11.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c2.c.sc[16 x 1], rn1_11.c2.c.b[16 x 1], rn1_11.c2.c.m[16 x 1], rn1_11.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.p = Plus(rn1_11.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.y = RectifiedLinear(rn1_11.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.c.c.c = Convolution(rn1_12.c1.c.W[16 x 144], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.y = BatchNormalization(rn1_12.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c1.c.c.sc[16 x 1], rn1_12.c1.c.c.b[16 x 1], rn1_12.c1.c.c.m[16 x 1], rn1_12.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.y = RectifiedLinear(rn1_12.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c2.c.c = Convolution(rn1_12.c2.W[16 x 144], rn1_12.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.y = BatchNormalization(rn1_12.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c2.c.sc[16 x 1], rn1_12.c2.c.b[16 x 1], rn1_12.c2.c.m[16 x 1], rn1_12.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.p = Plus(rn1_12.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.y = RectifiedLinear(rn1_12.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.c.c.c = Convolution(rn1_13.c1.c.W[16 x 144], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.y = BatchNormalization(rn1_13.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c1.c.c.sc[16 x 1], rn1_13.c1.c.c.b[16 x 1], rn1_13.c1.c.c.m[16 x 1], rn1_13.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.y = RectifiedLinear(rn1_13.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c2.c.c = Convolution(rn1_13.c2.W[16 x 144], rn1_13.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.y = BatchNormalization(rn1_13.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c2.c.sc[16 x 1], rn1_13.c2.c.b[16 x 1], rn1_13.c2.c.m[16 x 1], rn1_13.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.p = Plus(rn1_13.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.y = RectifiedLinear(rn1_13.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.c.c.c = Convolution(rn1_14.c1.c.W[16 x 144], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.y = BatchNormalization(rn1_14.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c1.c.c.sc[16 x 1], rn1_14.c1.c.c.b[16 x 1], rn1_14.c1.c.c.m[16 x 1], rn1_14.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.y = RectifiedLinear(rn1_14.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c2.c.c = Convolution(rn1_14.c2.W[16 x 144], rn1_14.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.y = BatchNormalization(rn1_14.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c2.c.sc[16 x 1], rn1_14.c2.c.b[16 x 1], rn1_14.c2.c.m[16 x 1], rn1_14.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.p = Plus(rn1_14.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.y = RectifiedLinear(rn1_14.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.c.c.c = Convolution(rn1_15.c1.c.W[16 x 144], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.y = BatchNormalization(rn1_15.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c1.c.c.sc[16 x 1], rn1_15.c1.c.c.b[16 x 1], rn1_15.c1.c.c.m[16 x 1], rn1_15.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.y = RectifiedLinear(rn1_15.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c2.c.c = Convolution(rn1_15.c2.W[16 x 144], rn1_15.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.y = BatchNormalization(rn1_15.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c2.c.sc[16 x 1], rn1_15.c2.c.b[16 x 1], rn1_15.c2.c.m[16 x 1], rn1_15.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.p = Plus(rn1_15.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.y = RectifiedLinear(rn1_15.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.c.c.c = Convolution(rn1_16.c1.c.W[16 x 144], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.y = BatchNormalization(rn1_16.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c1.c.c.sc[16 x 1], rn1_16.c1.c.c.b[16 x 1], rn1_16.c1.c.c.m[16 x 1], rn1_16.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.y = RectifiedLinear(rn1_16.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c2.c.c = Convolution(rn1_16.c2.W[16 x 144], rn1_16.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.y = BatchNormalization(rn1_16.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c2.c.sc[16 x 1], rn1_16.c2.c.b[16 x 1], rn1_16.c2.c.m[16 x 1], rn1_16.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.p = Plus(rn1_16.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.y = RectifiedLinear(rn1_16.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.c.c.c = Convolution(rn1_17.c1.c.W[16 x 144], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.y = BatchNormalization(rn1_17.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c1.c.c.sc[16 x 1], rn1_17.c1.c.c.b[16 x 1], rn1_17.c1.c.c.m[16 x 1], rn1_17.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.y = RectifiedLinear(rn1_17.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c2.c.c = Convolution(rn1_17.c2.W[16 x 144], rn1_17.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.y = BatchNormalization(rn1_17.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c2.c.sc[16 x 1], rn1_17.c2.c.b[16 x 1], rn1_17.c2.c.m[16 x 1], rn1_17.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.p = Plus(rn1_17.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.y = RectifiedLinear(rn1_17.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.c.c.c = Convolution(rn1_18.c1.c.W[16 x 144], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.y = BatchNormalization(rn1_18.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c1.c.c.sc[16 x 1], rn1_18.c1.c.c.b[16 x 1], rn1_18.c1.c.c.m[16 x 1], rn1_18.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.y = RectifiedLinear(rn1_18.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c2.c.c = Convolution(rn1_18.c2.W[16 x 144], rn1_18.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.y = BatchNormalization(rn1_18.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c2.c.sc[16 x 1], rn1_18.c2.c.b[16 x 1], rn1_18.c2.c.m[16 x 1], rn1_18.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.p = Plus(rn1_18.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.y = RectifiedLinear(rn1_18.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn2_1.c1.c.c.c = Convolution(rn2_1.c1.c.W[32 x 144], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.y = BatchNormalization(rn2_1.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c1.c.c.sc[32 x 1], rn2_1.c1.c.c.b[32 x 1], rn2_1.c1.c.c.m[32 x 1], rn2_1.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c2.c.c = Convolution(rn2_1.c2.W[32 x 288], rn2_1.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.y = BatchNormalization(rn2_1.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c2.c.sc[32 x 1], rn2_1.c2.c.b[32 x 1], rn2_1.c2.c.m[32 x 1], rn2_1.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1_Wproj = LearnableParameter -> [32 x 16] -Validating --> rn2_1.c_proj.c = Convolution(rn2_1_Wproj[32 x 16], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c_proj.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.y = BatchNormalization(rn2_1.c_proj.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.sc[32 x 1], rn2_1.c_proj.b[32 x 1], rn2_1.c_proj.m[32 x 1], rn2_1.c_proj.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.p = Plus(rn2_1.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.c.c.c = Convolution(rn2_2.c1.c.W[32 x 288], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.y = BatchNormalization(rn2_2.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c1.c.c.sc[32 x 1], rn2_2.c1.c.c.b[32 x 1], rn2_2.c1.c.c.m[32 x 1], rn2_2.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c2.c.c = Convolution(rn2_2.c2.W[32 x 288], rn2_2.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.y = BatchNormalization(rn2_2.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c2.c.sc[32 x 1], rn2_2.c2.c.b[32 x 1], rn2_2.c2.c.m[32 x 1], rn2_2.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.p = Plus(rn2_2.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.c.c.c = Convolution(rn2_3.c1.c.W[32 x 288], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.y = BatchNormalization(rn2_3.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c1.c.c.sc[32 x 1], rn2_3.c1.c.c.b[32 x 1], rn2_3.c1.c.c.m[32 x 1], rn2_3.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c2.c.c = Convolution(rn2_3.c2.W[32 x 288], rn2_3.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.y = BatchNormalization(rn2_3.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c2.c.sc[32 x 1], rn2_3.c2.c.b[32 x 1], rn2_3.c2.c.m[32 x 1], rn2_3.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.p = Plus(rn2_3.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.c.c.c = Convolution(rn2_4.c1.c.W[32 x 288], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.y = BatchNormalization(rn2_4.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c1.c.c.sc[32 x 1], rn2_4.c1.c.c.b[32 x 1], rn2_4.c1.c.c.m[32 x 1], rn2_4.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.y = RectifiedLinear(rn2_4.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c2.c.c = Convolution(rn2_4.c2.W[32 x 288], rn2_4.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.y = BatchNormalization(rn2_4.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c2.c.sc[32 x 1], rn2_4.c2.c.b[32 x 1], rn2_4.c2.c.m[32 x 1], rn2_4.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.p = Plus(rn2_4.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.y = RectifiedLinear(rn2_4.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.c.c.c = Convolution(rn2_5.c1.c.W[32 x 288], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.y = BatchNormalization(rn2_5.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c1.c.c.sc[32 x 1], rn2_5.c1.c.c.b[32 x 1], rn2_5.c1.c.c.m[32 x 1], rn2_5.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.y = RectifiedLinear(rn2_5.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c2.c.c = Convolution(rn2_5.c2.W[32 x 288], rn2_5.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.y = BatchNormalization(rn2_5.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c2.c.sc[32 x 1], rn2_5.c2.c.b[32 x 1], rn2_5.c2.c.m[32 x 1], rn2_5.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.p = Plus(rn2_5.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.y = RectifiedLinear(rn2_5.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.c.c.c = Convolution(rn2_6.c1.c.W[32 x 288], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.y = BatchNormalization(rn2_6.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c1.c.c.sc[32 x 1], rn2_6.c1.c.c.b[32 x 1], rn2_6.c1.c.c.m[32 x 1], rn2_6.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.y = RectifiedLinear(rn2_6.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c2.c.c = Convolution(rn2_6.c2.W[32 x 288], rn2_6.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.y = BatchNormalization(rn2_6.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c2.c.sc[32 x 1], rn2_6.c2.c.b[32 x 1], rn2_6.c2.c.m[32 x 1], rn2_6.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.p = Plus(rn2_6.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.y = RectifiedLinear(rn2_6.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.c.c.c = Convolution(rn2_7.c1.c.W[32 x 288], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.y = BatchNormalization(rn2_7.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c1.c.c.sc[32 x 1], rn2_7.c1.c.c.b[32 x 1], rn2_7.c1.c.c.m[32 x 1], rn2_7.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.y = RectifiedLinear(rn2_7.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c2.c.c = Convolution(rn2_7.c2.W[32 x 288], rn2_7.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.y = BatchNormalization(rn2_7.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c2.c.sc[32 x 1], rn2_7.c2.c.b[32 x 1], rn2_7.c2.c.m[32 x 1], rn2_7.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.p = Plus(rn2_7.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.y = RectifiedLinear(rn2_7.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.c.c.c = Convolution(rn2_8.c1.c.W[32 x 288], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.y = BatchNormalization(rn2_8.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c1.c.c.sc[32 x 1], rn2_8.c1.c.c.b[32 x 1], rn2_8.c1.c.c.m[32 x 1], rn2_8.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.y = RectifiedLinear(rn2_8.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c2.c.c = Convolution(rn2_8.c2.W[32 x 288], rn2_8.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.y = BatchNormalization(rn2_8.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c2.c.sc[32 x 1], rn2_8.c2.c.b[32 x 1], rn2_8.c2.c.m[32 x 1], rn2_8.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.p = Plus(rn2_8.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.y = RectifiedLinear(rn2_8.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.c.c.c = Convolution(rn2_9.c1.c.W[32 x 288], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.y = BatchNormalization(rn2_9.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c1.c.c.sc[32 x 1], rn2_9.c1.c.c.b[32 x 1], rn2_9.c1.c.c.m[32 x 1], rn2_9.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.y = RectifiedLinear(rn2_9.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c2.c.c = Convolution(rn2_9.c2.W[32 x 288], rn2_9.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.y = BatchNormalization(rn2_9.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c2.c.sc[32 x 1], rn2_9.c2.c.b[32 x 1], rn2_9.c2.c.m[32 x 1], rn2_9.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.p = Plus(rn2_9.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.y = RectifiedLinear(rn2_9.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.c.c.c = Convolution(rn2_10.c1.c.W[32 x 288], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.y = BatchNormalization(rn2_10.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c1.c.c.sc[32 x 1], rn2_10.c1.c.c.b[32 x 1], rn2_10.c1.c.c.m[32 x 1], rn2_10.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.y = RectifiedLinear(rn2_10.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c2.c.c = Convolution(rn2_10.c2.W[32 x 288], rn2_10.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.y = BatchNormalization(rn2_10.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c2.c.sc[32 x 1], rn2_10.c2.c.b[32 x 1], rn2_10.c2.c.m[32 x 1], rn2_10.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.p = Plus(rn2_10.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.y = RectifiedLinear(rn2_10.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.c.c.c = Convolution(rn2_11.c1.c.W[32 x 288], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.y = BatchNormalization(rn2_11.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c1.c.c.sc[32 x 1], rn2_11.c1.c.c.b[32 x 1], rn2_11.c1.c.c.m[32 x 1], rn2_11.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.y = RectifiedLinear(rn2_11.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c2.c.c = Convolution(rn2_11.c2.W[32 x 288], rn2_11.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.y = BatchNormalization(rn2_11.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c2.c.sc[32 x 1], rn2_11.c2.c.b[32 x 1], rn2_11.c2.c.m[32 x 1], rn2_11.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.p = Plus(rn2_11.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.y = RectifiedLinear(rn2_11.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.c.c.c = Convolution(rn2_12.c1.c.W[32 x 288], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.y = BatchNormalization(rn2_12.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c1.c.c.sc[32 x 1], rn2_12.c1.c.c.b[32 x 1], rn2_12.c1.c.c.m[32 x 1], rn2_12.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.y = RectifiedLinear(rn2_12.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c2.c.c = Convolution(rn2_12.c2.W[32 x 288], rn2_12.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.y = BatchNormalization(rn2_12.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c2.c.sc[32 x 1], rn2_12.c2.c.b[32 x 1], rn2_12.c2.c.m[32 x 1], rn2_12.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.p = Plus(rn2_12.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.y = RectifiedLinear(rn2_12.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.c.c.c = Convolution(rn2_13.c1.c.W[32 x 288], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.y = BatchNormalization(rn2_13.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c1.c.c.sc[32 x 1], rn2_13.c1.c.c.b[32 x 1], rn2_13.c1.c.c.m[32 x 1], rn2_13.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.y = RectifiedLinear(rn2_13.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c2.c.c = Convolution(rn2_13.c2.W[32 x 288], rn2_13.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.y = BatchNormalization(rn2_13.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c2.c.sc[32 x 1], rn2_13.c2.c.b[32 x 1], rn2_13.c2.c.m[32 x 1], rn2_13.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.p = Plus(rn2_13.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.y = RectifiedLinear(rn2_13.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.c.c.c = Convolution(rn2_14.c1.c.W[32 x 288], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.y = BatchNormalization(rn2_14.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c1.c.c.sc[32 x 1], rn2_14.c1.c.c.b[32 x 1], rn2_14.c1.c.c.m[32 x 1], rn2_14.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.y = RectifiedLinear(rn2_14.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c2.c.c = Convolution(rn2_14.c2.W[32 x 288], rn2_14.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.y = BatchNormalization(rn2_14.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c2.c.sc[32 x 1], rn2_14.c2.c.b[32 x 1], rn2_14.c2.c.m[32 x 1], rn2_14.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.p = Plus(rn2_14.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.y = RectifiedLinear(rn2_14.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.c.c.c = Convolution(rn2_15.c1.c.W[32 x 288], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.y = BatchNormalization(rn2_15.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c1.c.c.sc[32 x 1], rn2_15.c1.c.c.b[32 x 1], rn2_15.c1.c.c.m[32 x 1], rn2_15.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.y = RectifiedLinear(rn2_15.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c2.c.c = Convolution(rn2_15.c2.W[32 x 288], rn2_15.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.y = BatchNormalization(rn2_15.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c2.c.sc[32 x 1], rn2_15.c2.c.b[32 x 1], rn2_15.c2.c.m[32 x 1], rn2_15.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.p = Plus(rn2_15.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.y = RectifiedLinear(rn2_15.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.c.c.c = Convolution(rn2_16.c1.c.W[32 x 288], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.y = BatchNormalization(rn2_16.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c1.c.c.sc[32 x 1], rn2_16.c1.c.c.b[32 x 1], rn2_16.c1.c.c.m[32 x 1], rn2_16.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.y = RectifiedLinear(rn2_16.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c2.c.c = Convolution(rn2_16.c2.W[32 x 288], rn2_16.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.y = BatchNormalization(rn2_16.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c2.c.sc[32 x 1], rn2_16.c2.c.b[32 x 1], rn2_16.c2.c.m[32 x 1], rn2_16.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.p = Plus(rn2_16.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.y = RectifiedLinear(rn2_16.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.c.c.c = Convolution(rn2_17.c1.c.W[32 x 288], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.y = BatchNormalization(rn2_17.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c1.c.c.sc[32 x 1], rn2_17.c1.c.c.b[32 x 1], rn2_17.c1.c.c.m[32 x 1], rn2_17.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.y = RectifiedLinear(rn2_17.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c2.c.c = Convolution(rn2_17.c2.W[32 x 288], rn2_17.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.y = BatchNormalization(rn2_17.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c2.c.sc[32 x 1], rn2_17.c2.c.b[32 x 1], rn2_17.c2.c.m[32 x 1], rn2_17.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.p = Plus(rn2_17.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.y = RectifiedLinear(rn2_17.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.c.c.c = Convolution(rn2_18.c1.c.W[32 x 288], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.y = BatchNormalization(rn2_18.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c1.c.c.sc[32 x 1], rn2_18.c1.c.c.b[32 x 1], rn2_18.c1.c.c.m[32 x 1], rn2_18.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.y = RectifiedLinear(rn2_18.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c2.c.c = Convolution(rn2_18.c2.W[32 x 288], rn2_18.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.y = BatchNormalization(rn2_18.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c2.c.sc[32 x 1], rn2_18.c2.c.b[32 x 1], rn2_18.c2.c.m[32 x 1], rn2_18.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.p = Plus(rn2_18.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.y = RectifiedLinear(rn2_18.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn3_1.c1.c.c.c = Convolution(rn3_1.c1.c.W[64 x 288], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.y = BatchNormalization(rn3_1.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c1.c.c.sc[64 x 1], rn3_1.c1.c.c.b[64 x 1], rn3_1.c1.c.c.m[64 x 1], rn3_1.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c2.c.c = Convolution(rn3_1.c2.W[64 x 576], rn3_1.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.y = BatchNormalization(rn3_1.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c2.c.sc[64 x 1], rn3_1.c2.c.b[64 x 1], rn3_1.c2.c.m[64 x 1], rn3_1.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1_Wproj = LearnableParameter -> [64 x 32] -Validating --> rn3_1.c_proj.c = Convolution(rn3_1_Wproj[64 x 32], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c_proj.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.y = BatchNormalization(rn3_1.c_proj.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.sc[64 x 1], rn3_1.c_proj.b[64 x 1], rn3_1.c_proj.m[64 x 1], rn3_1.c_proj.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.p = Plus(rn3_1.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.c.c.c = Convolution(rn3_2.c1.c.W[64 x 576], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.y = BatchNormalization(rn3_2.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c1.c.c.sc[64 x 1], rn3_2.c1.c.c.b[64 x 1], rn3_2.c1.c.c.m[64 x 1], rn3_2.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c2.c.c = Convolution(rn3_2.c2.W[64 x 576], rn3_2.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.y = BatchNormalization(rn3_2.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c2.c.sc[64 x 1], rn3_2.c2.c.b[64 x 1], rn3_2.c2.c.m[64 x 1], rn3_2.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.p = Plus(rn3_2.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.c.c.c = Convolution(rn3_3.c1.c.W[64 x 576], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.y = BatchNormalization(rn3_3.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c1.c.c.sc[64 x 1], rn3_3.c1.c.c.b[64 x 1], rn3_3.c1.c.c.m[64 x 1], rn3_3.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c2.c.c = Convolution(rn3_3.c2.W[64 x 576], rn3_3.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.y = BatchNormalization(rn3_3.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c2.c.sc[64 x 1], rn3_3.c2.c.b[64 x 1], rn3_3.c2.c.m[64 x 1], rn3_3.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.p = Plus(rn3_3.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.c.c.c = Convolution(rn3_4.c1.c.W[64 x 576], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.y = BatchNormalization(rn3_4.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c1.c.c.sc[64 x 1], rn3_4.c1.c.c.b[64 x 1], rn3_4.c1.c.c.m[64 x 1], rn3_4.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.y = RectifiedLinear(rn3_4.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c2.c.c = Convolution(rn3_4.c2.W[64 x 576], rn3_4.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.y = BatchNormalization(rn3_4.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c2.c.sc[64 x 1], rn3_4.c2.c.b[64 x 1], rn3_4.c2.c.m[64 x 1], rn3_4.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.p = Plus(rn3_4.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.y = RectifiedLinear(rn3_4.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.c.c.c = Convolution(rn3_5.c1.c.W[64 x 576], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.y = BatchNormalization(rn3_5.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c1.c.c.sc[64 x 1], rn3_5.c1.c.c.b[64 x 1], rn3_5.c1.c.c.m[64 x 1], rn3_5.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.y = RectifiedLinear(rn3_5.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c2.c.c = Convolution(rn3_5.c2.W[64 x 576], rn3_5.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.y = BatchNormalization(rn3_5.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c2.c.sc[64 x 1], rn3_5.c2.c.b[64 x 1], rn3_5.c2.c.m[64 x 1], rn3_5.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.p = Plus(rn3_5.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.y = RectifiedLinear(rn3_5.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.c.c.c = Convolution(rn3_6.c1.c.W[64 x 576], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.y = BatchNormalization(rn3_6.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c1.c.c.sc[64 x 1], rn3_6.c1.c.c.b[64 x 1], rn3_6.c1.c.c.m[64 x 1], rn3_6.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.y = RectifiedLinear(rn3_6.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c2.c.c = Convolution(rn3_6.c2.W[64 x 576], rn3_6.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.y = BatchNormalization(rn3_6.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c2.c.sc[64 x 1], rn3_6.c2.c.b[64 x 1], rn3_6.c2.c.m[64 x 1], rn3_6.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.p = Plus(rn3_6.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.y = RectifiedLinear(rn3_6.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.c.c.c = Convolution(rn3_7.c1.c.W[64 x 576], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.y = BatchNormalization(rn3_7.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c1.c.c.sc[64 x 1], rn3_7.c1.c.c.b[64 x 1], rn3_7.c1.c.c.m[64 x 1], rn3_7.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.y = RectifiedLinear(rn3_7.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c2.c.c = Convolution(rn3_7.c2.W[64 x 576], rn3_7.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.y = BatchNormalization(rn3_7.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c2.c.sc[64 x 1], rn3_7.c2.c.b[64 x 1], rn3_7.c2.c.m[64 x 1], rn3_7.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.p = Plus(rn3_7.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.y = RectifiedLinear(rn3_7.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.c.c.c = Convolution(rn3_8.c1.c.W[64 x 576], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.y = BatchNormalization(rn3_8.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c1.c.c.sc[64 x 1], rn3_8.c1.c.c.b[64 x 1], rn3_8.c1.c.c.m[64 x 1], rn3_8.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.y = RectifiedLinear(rn3_8.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c2.c.c = Convolution(rn3_8.c2.W[64 x 576], rn3_8.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.y = BatchNormalization(rn3_8.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c2.c.sc[64 x 1], rn3_8.c2.c.b[64 x 1], rn3_8.c2.c.m[64 x 1], rn3_8.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.p = Plus(rn3_8.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.y = RectifiedLinear(rn3_8.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.c.c.c = Convolution(rn3_9.c1.c.W[64 x 576], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.y = BatchNormalization(rn3_9.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c1.c.c.sc[64 x 1], rn3_9.c1.c.c.b[64 x 1], rn3_9.c1.c.c.m[64 x 1], rn3_9.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.y = RectifiedLinear(rn3_9.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c2.c.c = Convolution(rn3_9.c2.W[64 x 576], rn3_9.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.y = BatchNormalization(rn3_9.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c2.c.sc[64 x 1], rn3_9.c2.c.b[64 x 1], rn3_9.c2.c.m[64 x 1], rn3_9.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.p = Plus(rn3_9.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.y = RectifiedLinear(rn3_9.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.c.c.c = Convolution(rn3_10.c1.c.W[64 x 576], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.y = BatchNormalization(rn3_10.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c1.c.c.sc[64 x 1], rn3_10.c1.c.c.b[64 x 1], rn3_10.c1.c.c.m[64 x 1], rn3_10.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.y = RectifiedLinear(rn3_10.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c2.c.c = Convolution(rn3_10.c2.W[64 x 576], rn3_10.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.y = BatchNormalization(rn3_10.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c2.c.sc[64 x 1], rn3_10.c2.c.b[64 x 1], rn3_10.c2.c.m[64 x 1], rn3_10.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.p = Plus(rn3_10.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.y = RectifiedLinear(rn3_10.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.c.c.c = Convolution(rn3_11.c1.c.W[64 x 576], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.y = BatchNormalization(rn3_11.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c1.c.c.sc[64 x 1], rn3_11.c1.c.c.b[64 x 1], rn3_11.c1.c.c.m[64 x 1], rn3_11.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.y = RectifiedLinear(rn3_11.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c2.c.c = Convolution(rn3_11.c2.W[64 x 576], rn3_11.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.y = BatchNormalization(rn3_11.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c2.c.sc[64 x 1], rn3_11.c2.c.b[64 x 1], rn3_11.c2.c.m[64 x 1], rn3_11.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.p = Plus(rn3_11.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.y = RectifiedLinear(rn3_11.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.c.c.c = Convolution(rn3_12.c1.c.W[64 x 576], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.y = BatchNormalization(rn3_12.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c1.c.c.sc[64 x 1], rn3_12.c1.c.c.b[64 x 1], rn3_12.c1.c.c.m[64 x 1], rn3_12.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.y = RectifiedLinear(rn3_12.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c2.c.c = Convolution(rn3_12.c2.W[64 x 576], rn3_12.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.y = BatchNormalization(rn3_12.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c2.c.sc[64 x 1], rn3_12.c2.c.b[64 x 1], rn3_12.c2.c.m[64 x 1], rn3_12.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.p = Plus(rn3_12.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.y = RectifiedLinear(rn3_12.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.c.c.c = Convolution(rn3_13.c1.c.W[64 x 576], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.y = BatchNormalization(rn3_13.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c1.c.c.sc[64 x 1], rn3_13.c1.c.c.b[64 x 1], rn3_13.c1.c.c.m[64 x 1], rn3_13.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.y = RectifiedLinear(rn3_13.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c2.c.c = Convolution(rn3_13.c2.W[64 x 576], rn3_13.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.y = BatchNormalization(rn3_13.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c2.c.sc[64 x 1], rn3_13.c2.c.b[64 x 1], rn3_13.c2.c.m[64 x 1], rn3_13.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.p = Plus(rn3_13.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.y = RectifiedLinear(rn3_13.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.c.c.c = Convolution(rn3_14.c1.c.W[64 x 576], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.y = BatchNormalization(rn3_14.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c1.c.c.sc[64 x 1], rn3_14.c1.c.c.b[64 x 1], rn3_14.c1.c.c.m[64 x 1], rn3_14.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.y = RectifiedLinear(rn3_14.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c2.c.c = Convolution(rn3_14.c2.W[64 x 576], rn3_14.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.y = BatchNormalization(rn3_14.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c2.c.sc[64 x 1], rn3_14.c2.c.b[64 x 1], rn3_14.c2.c.m[64 x 1], rn3_14.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.p = Plus(rn3_14.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.y = RectifiedLinear(rn3_14.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.c.c.c = Convolution(rn3_15.c1.c.W[64 x 576], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.y = BatchNormalization(rn3_15.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c1.c.c.sc[64 x 1], rn3_15.c1.c.c.b[64 x 1], rn3_15.c1.c.c.m[64 x 1], rn3_15.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.y = RectifiedLinear(rn3_15.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c2.c.c = Convolution(rn3_15.c2.W[64 x 576], rn3_15.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.y = BatchNormalization(rn3_15.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c2.c.sc[64 x 1], rn3_15.c2.c.b[64 x 1], rn3_15.c2.c.m[64 x 1], rn3_15.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.p = Plus(rn3_15.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.y = RectifiedLinear(rn3_15.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.c.c.c = Convolution(rn3_16.c1.c.W[64 x 576], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.y = BatchNormalization(rn3_16.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c1.c.c.sc[64 x 1], rn3_16.c1.c.c.b[64 x 1], rn3_16.c1.c.c.m[64 x 1], rn3_16.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.y = RectifiedLinear(rn3_16.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c2.c.c = Convolution(rn3_16.c2.W[64 x 576], rn3_16.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.y = BatchNormalization(rn3_16.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c2.c.sc[64 x 1], rn3_16.c2.c.b[64 x 1], rn3_16.c2.c.m[64 x 1], rn3_16.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.p = Plus(rn3_16.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.y = RectifiedLinear(rn3_16.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.c.c.c = Convolution(rn3_17.c1.c.W[64 x 576], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.y = BatchNormalization(rn3_17.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c1.c.c.sc[64 x 1], rn3_17.c1.c.c.b[64 x 1], rn3_17.c1.c.c.m[64 x 1], rn3_17.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.y = RectifiedLinear(rn3_17.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c2.c.c = Convolution(rn3_17.c2.W[64 x 576], rn3_17.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.y = BatchNormalization(rn3_17.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c2.c.sc[64 x 1], rn3_17.c2.c.b[64 x 1], rn3_17.c2.c.m[64 x 1], rn3_17.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.p = Plus(rn3_17.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.y = RectifiedLinear(rn3_17.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.c.c.c = Convolution(rn3_18.c1.c.W[64 x 576], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.y = BatchNormalization(rn3_18.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c1.c.c.sc[64 x 1], rn3_18.c1.c.c.b[64 x 1], rn3_18.c1.c.c.m[64 x 1], rn3_18.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.y = RectifiedLinear(rn3_18.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c2.c.c = Convolution(rn3_18.c2.W[64 x 576], rn3_18.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.y = BatchNormalization(rn3_18.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c2.c.sc[64 x 1], rn3_18.c2.c.b[64 x 1], rn3_18.c2.c.m[64 x 1], rn3_18.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.p = Plus(rn3_18.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.y = RectifiedLinear(rn3_18.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> pool = AveragePooling(rn3_18.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [1 x 1 x 64 x *] -Validating --> OutputNodes.t = Times(OutputNodes.W[10 x 64], pool[1 x 1 x 64 x *]) -> [10 x *] -Validating --> OutputNodes.b = LearnableParameter -> [10] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10 x *], OutputNodes.b[10]) -> [10 x *] -Validating --> CE = CrossEntropyWithSoftmax(labels[10 x *], OutputNodes.z[10 x *]) -> [1] -Validating --> Err = ErrorPrediction(labels[10 x *], OutputNodes.z[10 x *]) -> [1] - -Validating network. 390 nodes to process in pass 2. - -Validating --> labels = InputValue -> [10 x *] -Validating --> OutputNodes.W = LearnableParameter -> [10 x 64] -Validating --> rn3_18.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_18.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_17.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_17.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_16.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_16.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_15.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_15.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_14.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_14.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_13.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_13.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_12.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_12.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_11.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_11.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_10.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_10.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_9.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_9.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_8.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_8.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_7.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_7.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_6.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_6.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_5.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_5.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_4.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_4.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 x 288] -Validating --> rn2_18.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_18.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_17.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_17.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_16.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_16.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_15.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_15.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_14.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_14.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_13.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_13.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_12.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_12.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_11.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_11.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_10.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_10.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_9.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_9.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_8.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_8.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_7.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_7.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_6.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_6.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_5.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_5.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_4.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_4.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 x 144] -Validating --> rn1_18.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_18.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_17.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_17.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_16.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_16.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_15.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_15.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_14.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_14.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_13.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_13.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_12.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_12.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_11.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_11.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_10.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_10.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_9.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_9.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_8.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_8.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_7.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_7.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_6.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_6.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_5.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_5.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_4.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_4.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> conv1.c.W = LearnableParameter -> [16 x 27] -Validating --> features = InputValue -> [32 x 32 x 3 x *] -Validating --> conv1.c.c.c = Convolution(conv1.c.W[16 x 27], features[32 x 32 x 3 x * {W=32, H=3, C=32}]) -> [32 x 32 x 16 x *] -Validating --> conv1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.y = BatchNormalization(conv1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.c.c.sc[16 x 1], conv1.c.c.b[16 x 1], conv1.c.c.m[16 x 1], conv1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> conv1.y = RectifiedLinear(conv1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.c.c.c = Convolution(rn1_1.c1.c.W[16 x 144], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.y = BatchNormalization(rn1_1.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c1.c.c.sc[16 x 1], rn1_1.c1.c.c.b[16 x 1], rn1_1.c1.c.c.m[16 x 1], rn1_1.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c2.c.c = Convolution(rn1_1.c2.W[16 x 144], rn1_1.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.y = BatchNormalization(rn1_1.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c2.c.sc[16 x 1], rn1_1.c2.c.b[16 x 1], rn1_1.c2.c.m[16 x 1], rn1_1.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.p = Plus(rn1_1.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.c.c.c = Convolution(rn1_2.c1.c.W[16 x 144], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.y = BatchNormalization(rn1_2.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c1.c.c.sc[16 x 1], rn1_2.c1.c.c.b[16 x 1], rn1_2.c1.c.c.m[16 x 1], rn1_2.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c2.c.c = Convolution(rn1_2.c2.W[16 x 144], rn1_2.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.y = BatchNormalization(rn1_2.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c2.c.sc[16 x 1], rn1_2.c2.c.b[16 x 1], rn1_2.c2.c.m[16 x 1], rn1_2.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.p = Plus(rn1_2.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.c.c.c = Convolution(rn1_3.c1.c.W[16 x 144], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.y = BatchNormalization(rn1_3.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c1.c.c.sc[16 x 1], rn1_3.c1.c.c.b[16 x 1], rn1_3.c1.c.c.m[16 x 1], rn1_3.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c2.c.c = Convolution(rn1_3.c2.W[16 x 144], rn1_3.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.y = BatchNormalization(rn1_3.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c2.c.sc[16 x 1], rn1_3.c2.c.b[16 x 1], rn1_3.c2.c.m[16 x 1], rn1_3.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.p = Plus(rn1_3.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.c.c.c = Convolution(rn1_4.c1.c.W[16 x 144], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.y = BatchNormalization(rn1_4.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c1.c.c.sc[16 x 1], rn1_4.c1.c.c.b[16 x 1], rn1_4.c1.c.c.m[16 x 1], rn1_4.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.y = RectifiedLinear(rn1_4.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c2.c.c = Convolution(rn1_4.c2.W[16 x 144], rn1_4.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.y = BatchNormalization(rn1_4.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c2.c.sc[16 x 1], rn1_4.c2.c.b[16 x 1], rn1_4.c2.c.m[16 x 1], rn1_4.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.p = Plus(rn1_4.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.y = RectifiedLinear(rn1_4.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.c.c.c = Convolution(rn1_5.c1.c.W[16 x 144], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.y = BatchNormalization(rn1_5.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c1.c.c.sc[16 x 1], rn1_5.c1.c.c.b[16 x 1], rn1_5.c1.c.c.m[16 x 1], rn1_5.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.y = RectifiedLinear(rn1_5.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c2.c.c = Convolution(rn1_5.c2.W[16 x 144], rn1_5.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.y = BatchNormalization(rn1_5.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c2.c.sc[16 x 1], rn1_5.c2.c.b[16 x 1], rn1_5.c2.c.m[16 x 1], rn1_5.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.p = Plus(rn1_5.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.y = RectifiedLinear(rn1_5.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.c.c.c = Convolution(rn1_6.c1.c.W[16 x 144], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.y = BatchNormalization(rn1_6.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c1.c.c.sc[16 x 1], rn1_6.c1.c.c.b[16 x 1], rn1_6.c1.c.c.m[16 x 1], rn1_6.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.y = RectifiedLinear(rn1_6.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c2.c.c = Convolution(rn1_6.c2.W[16 x 144], rn1_6.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.y = BatchNormalization(rn1_6.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c2.c.sc[16 x 1], rn1_6.c2.c.b[16 x 1], rn1_6.c2.c.m[16 x 1], rn1_6.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.p = Plus(rn1_6.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.y = RectifiedLinear(rn1_6.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.c.c.c = Convolution(rn1_7.c1.c.W[16 x 144], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.y = BatchNormalization(rn1_7.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c1.c.c.sc[16 x 1], rn1_7.c1.c.c.b[16 x 1], rn1_7.c1.c.c.m[16 x 1], rn1_7.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.y = RectifiedLinear(rn1_7.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c2.c.c = Convolution(rn1_7.c2.W[16 x 144], rn1_7.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.y = BatchNormalization(rn1_7.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c2.c.sc[16 x 1], rn1_7.c2.c.b[16 x 1], rn1_7.c2.c.m[16 x 1], rn1_7.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.p = Plus(rn1_7.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.y = RectifiedLinear(rn1_7.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.c.c.c = Convolution(rn1_8.c1.c.W[16 x 144], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.y = BatchNormalization(rn1_8.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c1.c.c.sc[16 x 1], rn1_8.c1.c.c.b[16 x 1], rn1_8.c1.c.c.m[16 x 1], rn1_8.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.y = RectifiedLinear(rn1_8.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c2.c.c = Convolution(rn1_8.c2.W[16 x 144], rn1_8.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.y = BatchNormalization(rn1_8.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c2.c.sc[16 x 1], rn1_8.c2.c.b[16 x 1], rn1_8.c2.c.m[16 x 1], rn1_8.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.p = Plus(rn1_8.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.y = RectifiedLinear(rn1_8.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.c.c.c = Convolution(rn1_9.c1.c.W[16 x 144], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.y = BatchNormalization(rn1_9.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c1.c.c.sc[16 x 1], rn1_9.c1.c.c.b[16 x 1], rn1_9.c1.c.c.m[16 x 1], rn1_9.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.y = RectifiedLinear(rn1_9.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c2.c.c = Convolution(rn1_9.c2.W[16 x 144], rn1_9.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.y = BatchNormalization(rn1_9.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c2.c.sc[16 x 1], rn1_9.c2.c.b[16 x 1], rn1_9.c2.c.m[16 x 1], rn1_9.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.p = Plus(rn1_9.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.y = RectifiedLinear(rn1_9.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.c.c.c = Convolution(rn1_10.c1.c.W[16 x 144], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.y = BatchNormalization(rn1_10.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c1.c.c.sc[16 x 1], rn1_10.c1.c.c.b[16 x 1], rn1_10.c1.c.c.m[16 x 1], rn1_10.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.y = RectifiedLinear(rn1_10.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c2.c.c = Convolution(rn1_10.c2.W[16 x 144], rn1_10.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.y = BatchNormalization(rn1_10.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c2.c.sc[16 x 1], rn1_10.c2.c.b[16 x 1], rn1_10.c2.c.m[16 x 1], rn1_10.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.p = Plus(rn1_10.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.y = RectifiedLinear(rn1_10.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.c.c.c = Convolution(rn1_11.c1.c.W[16 x 144], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.y = BatchNormalization(rn1_11.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c1.c.c.sc[16 x 1], rn1_11.c1.c.c.b[16 x 1], rn1_11.c1.c.c.m[16 x 1], rn1_11.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.y = RectifiedLinear(rn1_11.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c2.c.c = Convolution(rn1_11.c2.W[16 x 144], rn1_11.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.y = BatchNormalization(rn1_11.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c2.c.sc[16 x 1], rn1_11.c2.c.b[16 x 1], rn1_11.c2.c.m[16 x 1], rn1_11.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.p = Plus(rn1_11.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.y = RectifiedLinear(rn1_11.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.c.c.c = Convolution(rn1_12.c1.c.W[16 x 144], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.y = BatchNormalization(rn1_12.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c1.c.c.sc[16 x 1], rn1_12.c1.c.c.b[16 x 1], rn1_12.c1.c.c.m[16 x 1], rn1_12.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.y = RectifiedLinear(rn1_12.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c2.c.c = Convolution(rn1_12.c2.W[16 x 144], rn1_12.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.y = BatchNormalization(rn1_12.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c2.c.sc[16 x 1], rn1_12.c2.c.b[16 x 1], rn1_12.c2.c.m[16 x 1], rn1_12.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.p = Plus(rn1_12.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.y = RectifiedLinear(rn1_12.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.c.c.c = Convolution(rn1_13.c1.c.W[16 x 144], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.y = BatchNormalization(rn1_13.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c1.c.c.sc[16 x 1], rn1_13.c1.c.c.b[16 x 1], rn1_13.c1.c.c.m[16 x 1], rn1_13.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.y = RectifiedLinear(rn1_13.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c2.c.c = Convolution(rn1_13.c2.W[16 x 144], rn1_13.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.y = BatchNormalization(rn1_13.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c2.c.sc[16 x 1], rn1_13.c2.c.b[16 x 1], rn1_13.c2.c.m[16 x 1], rn1_13.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.p = Plus(rn1_13.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.y = RectifiedLinear(rn1_13.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.c.c.c = Convolution(rn1_14.c1.c.W[16 x 144], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.y = BatchNormalization(rn1_14.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c1.c.c.sc[16 x 1], rn1_14.c1.c.c.b[16 x 1], rn1_14.c1.c.c.m[16 x 1], rn1_14.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.y = RectifiedLinear(rn1_14.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c2.c.c = Convolution(rn1_14.c2.W[16 x 144], rn1_14.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.y = BatchNormalization(rn1_14.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c2.c.sc[16 x 1], rn1_14.c2.c.b[16 x 1], rn1_14.c2.c.m[16 x 1], rn1_14.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.p = Plus(rn1_14.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.y = RectifiedLinear(rn1_14.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.c.c.c = Convolution(rn1_15.c1.c.W[16 x 144], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.y = BatchNormalization(rn1_15.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c1.c.c.sc[16 x 1], rn1_15.c1.c.c.b[16 x 1], rn1_15.c1.c.c.m[16 x 1], rn1_15.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.y = RectifiedLinear(rn1_15.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c2.c.c = Convolution(rn1_15.c2.W[16 x 144], rn1_15.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.y = BatchNormalization(rn1_15.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c2.c.sc[16 x 1], rn1_15.c2.c.b[16 x 1], rn1_15.c2.c.m[16 x 1], rn1_15.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.p = Plus(rn1_15.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.y = RectifiedLinear(rn1_15.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.c.c.c = Convolution(rn1_16.c1.c.W[16 x 144], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.y = BatchNormalization(rn1_16.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c1.c.c.sc[16 x 1], rn1_16.c1.c.c.b[16 x 1], rn1_16.c1.c.c.m[16 x 1], rn1_16.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.y = RectifiedLinear(rn1_16.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c2.c.c = Convolution(rn1_16.c2.W[16 x 144], rn1_16.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.y = BatchNormalization(rn1_16.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c2.c.sc[16 x 1], rn1_16.c2.c.b[16 x 1], rn1_16.c2.c.m[16 x 1], rn1_16.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.p = Plus(rn1_16.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.y = RectifiedLinear(rn1_16.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.c.c.c = Convolution(rn1_17.c1.c.W[16 x 144], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.y = BatchNormalization(rn1_17.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c1.c.c.sc[16 x 1], rn1_17.c1.c.c.b[16 x 1], rn1_17.c1.c.c.m[16 x 1], rn1_17.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.y = RectifiedLinear(rn1_17.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c2.c.c = Convolution(rn1_17.c2.W[16 x 144], rn1_17.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.y = BatchNormalization(rn1_17.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c2.c.sc[16 x 1], rn1_17.c2.c.b[16 x 1], rn1_17.c2.c.m[16 x 1], rn1_17.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.p = Plus(rn1_17.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.y = RectifiedLinear(rn1_17.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.c.c.c = Convolution(rn1_18.c1.c.W[16 x 144], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.y = BatchNormalization(rn1_18.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c1.c.c.sc[16 x 1], rn1_18.c1.c.c.b[16 x 1], rn1_18.c1.c.c.m[16 x 1], rn1_18.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.y = RectifiedLinear(rn1_18.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c2.c.c = Convolution(rn1_18.c2.W[16 x 144], rn1_18.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.y = BatchNormalization(rn1_18.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c2.c.sc[16 x 1], rn1_18.c2.c.b[16 x 1], rn1_18.c2.c.m[16 x 1], rn1_18.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.p = Plus(rn1_18.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.y = RectifiedLinear(rn1_18.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn2_1.c1.c.c.c = Convolution(rn2_1.c1.c.W[32 x 144], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.y = BatchNormalization(rn2_1.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c1.c.c.sc[32 x 1], rn2_1.c1.c.c.b[32 x 1], rn2_1.c1.c.c.m[32 x 1], rn2_1.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c2.c.c = Convolution(rn2_1.c2.W[32 x 288], rn2_1.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.y = BatchNormalization(rn2_1.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c2.c.sc[32 x 1], rn2_1.c2.c.b[32 x 1], rn2_1.c2.c.m[32 x 1], rn2_1.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1_Wproj = LearnableParameter -> [32 x 16] -Validating --> rn2_1.c_proj.c = Convolution(rn2_1_Wproj[32 x 16], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c_proj.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.y = BatchNormalization(rn2_1.c_proj.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.sc[32 x 1], rn2_1.c_proj.b[32 x 1], rn2_1.c_proj.m[32 x 1], rn2_1.c_proj.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.p = Plus(rn2_1.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.c.c.c = Convolution(rn2_2.c1.c.W[32 x 288], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.y = BatchNormalization(rn2_2.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c1.c.c.sc[32 x 1], rn2_2.c1.c.c.b[32 x 1], rn2_2.c1.c.c.m[32 x 1], rn2_2.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c2.c.c = Convolution(rn2_2.c2.W[32 x 288], rn2_2.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.y = BatchNormalization(rn2_2.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c2.c.sc[32 x 1], rn2_2.c2.c.b[32 x 1], rn2_2.c2.c.m[32 x 1], rn2_2.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.p = Plus(rn2_2.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.c.c.c = Convolution(rn2_3.c1.c.W[32 x 288], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.y = BatchNormalization(rn2_3.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c1.c.c.sc[32 x 1], rn2_3.c1.c.c.b[32 x 1], rn2_3.c1.c.c.m[32 x 1], rn2_3.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c2.c.c = Convolution(rn2_3.c2.W[32 x 288], rn2_3.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.y = BatchNormalization(rn2_3.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c2.c.sc[32 x 1], rn2_3.c2.c.b[32 x 1], rn2_3.c2.c.m[32 x 1], rn2_3.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.p = Plus(rn2_3.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.c.c.c = Convolution(rn2_4.c1.c.W[32 x 288], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.y = BatchNormalization(rn2_4.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c1.c.c.sc[32 x 1], rn2_4.c1.c.c.b[32 x 1], rn2_4.c1.c.c.m[32 x 1], rn2_4.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.y = RectifiedLinear(rn2_4.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c2.c.c = Convolution(rn2_4.c2.W[32 x 288], rn2_4.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.y = BatchNormalization(rn2_4.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c2.c.sc[32 x 1], rn2_4.c2.c.b[32 x 1], rn2_4.c2.c.m[32 x 1], rn2_4.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.p = Plus(rn2_4.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.y = RectifiedLinear(rn2_4.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.c.c.c = Convolution(rn2_5.c1.c.W[32 x 288], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.y = BatchNormalization(rn2_5.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c1.c.c.sc[32 x 1], rn2_5.c1.c.c.b[32 x 1], rn2_5.c1.c.c.m[32 x 1], rn2_5.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.y = RectifiedLinear(rn2_5.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c2.c.c = Convolution(rn2_5.c2.W[32 x 288], rn2_5.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.y = BatchNormalization(rn2_5.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c2.c.sc[32 x 1], rn2_5.c2.c.b[32 x 1], rn2_5.c2.c.m[32 x 1], rn2_5.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.p = Plus(rn2_5.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.y = RectifiedLinear(rn2_5.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.c.c.c = Convolution(rn2_6.c1.c.W[32 x 288], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.y = BatchNormalization(rn2_6.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c1.c.c.sc[32 x 1], rn2_6.c1.c.c.b[32 x 1], rn2_6.c1.c.c.m[32 x 1], rn2_6.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.y = RectifiedLinear(rn2_6.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c2.c.c = Convolution(rn2_6.c2.W[32 x 288], rn2_6.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.y = BatchNormalization(rn2_6.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c2.c.sc[32 x 1], rn2_6.c2.c.b[32 x 1], rn2_6.c2.c.m[32 x 1], rn2_6.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.p = Plus(rn2_6.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.y = RectifiedLinear(rn2_6.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.c.c.c = Convolution(rn2_7.c1.c.W[32 x 288], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.y = BatchNormalization(rn2_7.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c1.c.c.sc[32 x 1], rn2_7.c1.c.c.b[32 x 1], rn2_7.c1.c.c.m[32 x 1], rn2_7.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.y = RectifiedLinear(rn2_7.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c2.c.c = Convolution(rn2_7.c2.W[32 x 288], rn2_7.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.y = BatchNormalization(rn2_7.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c2.c.sc[32 x 1], rn2_7.c2.c.b[32 x 1], rn2_7.c2.c.m[32 x 1], rn2_7.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.p = Plus(rn2_7.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.y = RectifiedLinear(rn2_7.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.c.c.c = Convolution(rn2_8.c1.c.W[32 x 288], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.y = BatchNormalization(rn2_8.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c1.c.c.sc[32 x 1], rn2_8.c1.c.c.b[32 x 1], rn2_8.c1.c.c.m[32 x 1], rn2_8.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.y = RectifiedLinear(rn2_8.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c2.c.c = Convolution(rn2_8.c2.W[32 x 288], rn2_8.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.y = BatchNormalization(rn2_8.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c2.c.sc[32 x 1], rn2_8.c2.c.b[32 x 1], rn2_8.c2.c.m[32 x 1], rn2_8.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.p = Plus(rn2_8.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.y = RectifiedLinear(rn2_8.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.c.c.c = Convolution(rn2_9.c1.c.W[32 x 288], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.y = BatchNormalization(rn2_9.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c1.c.c.sc[32 x 1], rn2_9.c1.c.c.b[32 x 1], rn2_9.c1.c.c.m[32 x 1], rn2_9.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.y = RectifiedLinear(rn2_9.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c2.c.c = Convolution(rn2_9.c2.W[32 x 288], rn2_9.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.y = BatchNormalization(rn2_9.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c2.c.sc[32 x 1], rn2_9.c2.c.b[32 x 1], rn2_9.c2.c.m[32 x 1], rn2_9.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.p = Plus(rn2_9.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.y = RectifiedLinear(rn2_9.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.c.c.c = Convolution(rn2_10.c1.c.W[32 x 288], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.y = BatchNormalization(rn2_10.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c1.c.c.sc[32 x 1], rn2_10.c1.c.c.b[32 x 1], rn2_10.c1.c.c.m[32 x 1], rn2_10.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.y = RectifiedLinear(rn2_10.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c2.c.c = Convolution(rn2_10.c2.W[32 x 288], rn2_10.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.y = BatchNormalization(rn2_10.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c2.c.sc[32 x 1], rn2_10.c2.c.b[32 x 1], rn2_10.c2.c.m[32 x 1], rn2_10.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.p = Plus(rn2_10.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.y = RectifiedLinear(rn2_10.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.c.c.c = Convolution(rn2_11.c1.c.W[32 x 288], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.y = BatchNormalization(rn2_11.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c1.c.c.sc[32 x 1], rn2_11.c1.c.c.b[32 x 1], rn2_11.c1.c.c.m[32 x 1], rn2_11.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.y = RectifiedLinear(rn2_11.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c2.c.c = Convolution(rn2_11.c2.W[32 x 288], rn2_11.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.y = BatchNormalization(rn2_11.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c2.c.sc[32 x 1], rn2_11.c2.c.b[32 x 1], rn2_11.c2.c.m[32 x 1], rn2_11.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.p = Plus(rn2_11.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.y = RectifiedLinear(rn2_11.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.c.c.c = Convolution(rn2_12.c1.c.W[32 x 288], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.y = BatchNormalization(rn2_12.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c1.c.c.sc[32 x 1], rn2_12.c1.c.c.b[32 x 1], rn2_12.c1.c.c.m[32 x 1], rn2_12.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.y = RectifiedLinear(rn2_12.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c2.c.c = Convolution(rn2_12.c2.W[32 x 288], rn2_12.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.y = BatchNormalization(rn2_12.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c2.c.sc[32 x 1], rn2_12.c2.c.b[32 x 1], rn2_12.c2.c.m[32 x 1], rn2_12.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.p = Plus(rn2_12.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.y = RectifiedLinear(rn2_12.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.c.c.c = Convolution(rn2_13.c1.c.W[32 x 288], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.y = BatchNormalization(rn2_13.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c1.c.c.sc[32 x 1], rn2_13.c1.c.c.b[32 x 1], rn2_13.c1.c.c.m[32 x 1], rn2_13.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.y = RectifiedLinear(rn2_13.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c2.c.c = Convolution(rn2_13.c2.W[32 x 288], rn2_13.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.y = BatchNormalization(rn2_13.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c2.c.sc[32 x 1], rn2_13.c2.c.b[32 x 1], rn2_13.c2.c.m[32 x 1], rn2_13.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.p = Plus(rn2_13.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.y = RectifiedLinear(rn2_13.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.c.c.c = Convolution(rn2_14.c1.c.W[32 x 288], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.y = BatchNormalization(rn2_14.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c1.c.c.sc[32 x 1], rn2_14.c1.c.c.b[32 x 1], rn2_14.c1.c.c.m[32 x 1], rn2_14.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.y = RectifiedLinear(rn2_14.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c2.c.c = Convolution(rn2_14.c2.W[32 x 288], rn2_14.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.y = BatchNormalization(rn2_14.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c2.c.sc[32 x 1], rn2_14.c2.c.b[32 x 1], rn2_14.c2.c.m[32 x 1], rn2_14.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.p = Plus(rn2_14.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.y = RectifiedLinear(rn2_14.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.c.c.c = Convolution(rn2_15.c1.c.W[32 x 288], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.y = BatchNormalization(rn2_15.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c1.c.c.sc[32 x 1], rn2_15.c1.c.c.b[32 x 1], rn2_15.c1.c.c.m[32 x 1], rn2_15.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.y = RectifiedLinear(rn2_15.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c2.c.c = Convolution(rn2_15.c2.W[32 x 288], rn2_15.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.y = BatchNormalization(rn2_15.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c2.c.sc[32 x 1], rn2_15.c2.c.b[32 x 1], rn2_15.c2.c.m[32 x 1], rn2_15.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.p = Plus(rn2_15.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.y = RectifiedLinear(rn2_15.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.c.c.c = Convolution(rn2_16.c1.c.W[32 x 288], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.y = BatchNormalization(rn2_16.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c1.c.c.sc[32 x 1], rn2_16.c1.c.c.b[32 x 1], rn2_16.c1.c.c.m[32 x 1], rn2_16.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.y = RectifiedLinear(rn2_16.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c2.c.c = Convolution(rn2_16.c2.W[32 x 288], rn2_16.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.y = BatchNormalization(rn2_16.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c2.c.sc[32 x 1], rn2_16.c2.c.b[32 x 1], rn2_16.c2.c.m[32 x 1], rn2_16.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.p = Plus(rn2_16.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.y = RectifiedLinear(rn2_16.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.c.c.c = Convolution(rn2_17.c1.c.W[32 x 288], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.y = BatchNormalization(rn2_17.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c1.c.c.sc[32 x 1], rn2_17.c1.c.c.b[32 x 1], rn2_17.c1.c.c.m[32 x 1], rn2_17.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.y = RectifiedLinear(rn2_17.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c2.c.c = Convolution(rn2_17.c2.W[32 x 288], rn2_17.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.y = BatchNormalization(rn2_17.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c2.c.sc[32 x 1], rn2_17.c2.c.b[32 x 1], rn2_17.c2.c.m[32 x 1], rn2_17.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.p = Plus(rn2_17.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.y = RectifiedLinear(rn2_17.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.c.c.c = Convolution(rn2_18.c1.c.W[32 x 288], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.y = BatchNormalization(rn2_18.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c1.c.c.sc[32 x 1], rn2_18.c1.c.c.b[32 x 1], rn2_18.c1.c.c.m[32 x 1], rn2_18.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.y = RectifiedLinear(rn2_18.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c2.c.c = Convolution(rn2_18.c2.W[32 x 288], rn2_18.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.y = BatchNormalization(rn2_18.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c2.c.sc[32 x 1], rn2_18.c2.c.b[32 x 1], rn2_18.c2.c.m[32 x 1], rn2_18.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.p = Plus(rn2_18.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.y = RectifiedLinear(rn2_18.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn3_1.c1.c.c.c = Convolution(rn3_1.c1.c.W[64 x 288], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.y = BatchNormalization(rn3_1.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c1.c.c.sc[64 x 1], rn3_1.c1.c.c.b[64 x 1], rn3_1.c1.c.c.m[64 x 1], rn3_1.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c2.c.c = Convolution(rn3_1.c2.W[64 x 576], rn3_1.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.y = BatchNormalization(rn3_1.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c2.c.sc[64 x 1], rn3_1.c2.c.b[64 x 1], rn3_1.c2.c.m[64 x 1], rn3_1.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1_Wproj = LearnableParameter -> [64 x 32] -Validating --> rn3_1.c_proj.c = Convolution(rn3_1_Wproj[64 x 32], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c_proj.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.y = BatchNormalization(rn3_1.c_proj.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.sc[64 x 1], rn3_1.c_proj.b[64 x 1], rn3_1.c_proj.m[64 x 1], rn3_1.c_proj.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.p = Plus(rn3_1.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.c.c.c = Convolution(rn3_2.c1.c.W[64 x 576], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.y = BatchNormalization(rn3_2.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c1.c.c.sc[64 x 1], rn3_2.c1.c.c.b[64 x 1], rn3_2.c1.c.c.m[64 x 1], rn3_2.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c2.c.c = Convolution(rn3_2.c2.W[64 x 576], rn3_2.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.y = BatchNormalization(rn3_2.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c2.c.sc[64 x 1], rn3_2.c2.c.b[64 x 1], rn3_2.c2.c.m[64 x 1], rn3_2.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.p = Plus(rn3_2.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.c.c.c = Convolution(rn3_3.c1.c.W[64 x 576], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.y = BatchNormalization(rn3_3.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c1.c.c.sc[64 x 1], rn3_3.c1.c.c.b[64 x 1], rn3_3.c1.c.c.m[64 x 1], rn3_3.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c2.c.c = Convolution(rn3_3.c2.W[64 x 576], rn3_3.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.y = BatchNormalization(rn3_3.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c2.c.sc[64 x 1], rn3_3.c2.c.b[64 x 1], rn3_3.c2.c.m[64 x 1], rn3_3.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.p = Plus(rn3_3.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.c.c.c = Convolution(rn3_4.c1.c.W[64 x 576], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.y = BatchNormalization(rn3_4.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c1.c.c.sc[64 x 1], rn3_4.c1.c.c.b[64 x 1], rn3_4.c1.c.c.m[64 x 1], rn3_4.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.y = RectifiedLinear(rn3_4.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c2.c.c = Convolution(rn3_4.c2.W[64 x 576], rn3_4.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.y = BatchNormalization(rn3_4.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c2.c.sc[64 x 1], rn3_4.c2.c.b[64 x 1], rn3_4.c2.c.m[64 x 1], rn3_4.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.p = Plus(rn3_4.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.y = RectifiedLinear(rn3_4.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.c.c.c = Convolution(rn3_5.c1.c.W[64 x 576], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.y = BatchNormalization(rn3_5.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c1.c.c.sc[64 x 1], rn3_5.c1.c.c.b[64 x 1], rn3_5.c1.c.c.m[64 x 1], rn3_5.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.y = RectifiedLinear(rn3_5.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c2.c.c = Convolution(rn3_5.c2.W[64 x 576], rn3_5.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.y = BatchNormalization(rn3_5.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c2.c.sc[64 x 1], rn3_5.c2.c.b[64 x 1], rn3_5.c2.c.m[64 x 1], rn3_5.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.p = Plus(rn3_5.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.y = RectifiedLinear(rn3_5.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.c.c.c = Convolution(rn3_6.c1.c.W[64 x 576], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.y = BatchNormalization(rn3_6.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c1.c.c.sc[64 x 1], rn3_6.c1.c.c.b[64 x 1], rn3_6.c1.c.c.m[64 x 1], rn3_6.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.y = RectifiedLinear(rn3_6.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c2.c.c = Convolution(rn3_6.c2.W[64 x 576], rn3_6.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.y = BatchNormalization(rn3_6.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c2.c.sc[64 x 1], rn3_6.c2.c.b[64 x 1], rn3_6.c2.c.m[64 x 1], rn3_6.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.p = Plus(rn3_6.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.y = RectifiedLinear(rn3_6.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.c.c.c = Convolution(rn3_7.c1.c.W[64 x 576], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.y = BatchNormalization(rn3_7.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c1.c.c.sc[64 x 1], rn3_7.c1.c.c.b[64 x 1], rn3_7.c1.c.c.m[64 x 1], rn3_7.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.y = RectifiedLinear(rn3_7.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c2.c.c = Convolution(rn3_7.c2.W[64 x 576], rn3_7.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.y = BatchNormalization(rn3_7.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c2.c.sc[64 x 1], rn3_7.c2.c.b[64 x 1], rn3_7.c2.c.m[64 x 1], rn3_7.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.p = Plus(rn3_7.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.y = RectifiedLinear(rn3_7.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.c.c.c = Convolution(rn3_8.c1.c.W[64 x 576], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.y = BatchNormalization(rn3_8.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c1.c.c.sc[64 x 1], rn3_8.c1.c.c.b[64 x 1], rn3_8.c1.c.c.m[64 x 1], rn3_8.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.y = RectifiedLinear(rn3_8.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c2.c.c = Convolution(rn3_8.c2.W[64 x 576], rn3_8.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.y = BatchNormalization(rn3_8.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c2.c.sc[64 x 1], rn3_8.c2.c.b[64 x 1], rn3_8.c2.c.m[64 x 1], rn3_8.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.p = Plus(rn3_8.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.y = RectifiedLinear(rn3_8.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.c.c.c = Convolution(rn3_9.c1.c.W[64 x 576], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.y = BatchNormalization(rn3_9.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c1.c.c.sc[64 x 1], rn3_9.c1.c.c.b[64 x 1], rn3_9.c1.c.c.m[64 x 1], rn3_9.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.y = RectifiedLinear(rn3_9.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c2.c.c = Convolution(rn3_9.c2.W[64 x 576], rn3_9.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.y = BatchNormalization(rn3_9.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c2.c.sc[64 x 1], rn3_9.c2.c.b[64 x 1], rn3_9.c2.c.m[64 x 1], rn3_9.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.p = Plus(rn3_9.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.y = RectifiedLinear(rn3_9.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.c.c.c = Convolution(rn3_10.c1.c.W[64 x 576], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.y = BatchNormalization(rn3_10.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c1.c.c.sc[64 x 1], rn3_10.c1.c.c.b[64 x 1], rn3_10.c1.c.c.m[64 x 1], rn3_10.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.y = RectifiedLinear(rn3_10.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c2.c.c = Convolution(rn3_10.c2.W[64 x 576], rn3_10.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.y = BatchNormalization(rn3_10.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c2.c.sc[64 x 1], rn3_10.c2.c.b[64 x 1], rn3_10.c2.c.m[64 x 1], rn3_10.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.p = Plus(rn3_10.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.y = RectifiedLinear(rn3_10.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.c.c.c = Convolution(rn3_11.c1.c.W[64 x 576], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.y = BatchNormalization(rn3_11.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c1.c.c.sc[64 x 1], rn3_11.c1.c.c.b[64 x 1], rn3_11.c1.c.c.m[64 x 1], rn3_11.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.y = RectifiedLinear(rn3_11.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c2.c.c = Convolution(rn3_11.c2.W[64 x 576], rn3_11.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.y = BatchNormalization(rn3_11.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c2.c.sc[64 x 1], rn3_11.c2.c.b[64 x 1], rn3_11.c2.c.m[64 x 1], rn3_11.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.p = Plus(rn3_11.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.y = RectifiedLinear(rn3_11.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.c.c.c = Convolution(rn3_12.c1.c.W[64 x 576], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.y = BatchNormalization(rn3_12.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c1.c.c.sc[64 x 1], rn3_12.c1.c.c.b[64 x 1], rn3_12.c1.c.c.m[64 x 1], rn3_12.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.y = RectifiedLinear(rn3_12.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c2.c.c = Convolution(rn3_12.c2.W[64 x 576], rn3_12.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.y = BatchNormalization(rn3_12.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c2.c.sc[64 x 1], rn3_12.c2.c.b[64 x 1], rn3_12.c2.c.m[64 x 1], rn3_12.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.p = Plus(rn3_12.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.y = RectifiedLinear(rn3_12.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.c.c.c = Convolution(rn3_13.c1.c.W[64 x 576], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.y = BatchNormalization(rn3_13.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c1.c.c.sc[64 x 1], rn3_13.c1.c.c.b[64 x 1], rn3_13.c1.c.c.m[64 x 1], rn3_13.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.y = RectifiedLinear(rn3_13.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c2.c.c = Convolution(rn3_13.c2.W[64 x 576], rn3_13.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.y = BatchNormalization(rn3_13.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c2.c.sc[64 x 1], rn3_13.c2.c.b[64 x 1], rn3_13.c2.c.m[64 x 1], rn3_13.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.p = Plus(rn3_13.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.y = RectifiedLinear(rn3_13.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.c.c.c = Convolution(rn3_14.c1.c.W[64 x 576], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.y = BatchNormalization(rn3_14.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c1.c.c.sc[64 x 1], rn3_14.c1.c.c.b[64 x 1], rn3_14.c1.c.c.m[64 x 1], rn3_14.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.y = RectifiedLinear(rn3_14.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c2.c.c = Convolution(rn3_14.c2.W[64 x 576], rn3_14.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.y = BatchNormalization(rn3_14.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c2.c.sc[64 x 1], rn3_14.c2.c.b[64 x 1], rn3_14.c2.c.m[64 x 1], rn3_14.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.p = Plus(rn3_14.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.y = RectifiedLinear(rn3_14.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.c.c.c = Convolution(rn3_15.c1.c.W[64 x 576], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.y = BatchNormalization(rn3_15.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c1.c.c.sc[64 x 1], rn3_15.c1.c.c.b[64 x 1], rn3_15.c1.c.c.m[64 x 1], rn3_15.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.y = RectifiedLinear(rn3_15.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c2.c.c = Convolution(rn3_15.c2.W[64 x 576], rn3_15.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.y = BatchNormalization(rn3_15.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c2.c.sc[64 x 1], rn3_15.c2.c.b[64 x 1], rn3_15.c2.c.m[64 x 1], rn3_15.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.p = Plus(rn3_15.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.y = RectifiedLinear(rn3_15.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.c.c.c = Convolution(rn3_16.c1.c.W[64 x 576], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.y = BatchNormalization(rn3_16.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c1.c.c.sc[64 x 1], rn3_16.c1.c.c.b[64 x 1], rn3_16.c1.c.c.m[64 x 1], rn3_16.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.y = RectifiedLinear(rn3_16.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c2.c.c = Convolution(rn3_16.c2.W[64 x 576], rn3_16.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.y = BatchNormalization(rn3_16.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c2.c.sc[64 x 1], rn3_16.c2.c.b[64 x 1], rn3_16.c2.c.m[64 x 1], rn3_16.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.p = Plus(rn3_16.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.y = RectifiedLinear(rn3_16.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.c.c.c = Convolution(rn3_17.c1.c.W[64 x 576], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.y = BatchNormalization(rn3_17.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c1.c.c.sc[64 x 1], rn3_17.c1.c.c.b[64 x 1], rn3_17.c1.c.c.m[64 x 1], rn3_17.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.y = RectifiedLinear(rn3_17.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c2.c.c = Convolution(rn3_17.c2.W[64 x 576], rn3_17.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.y = BatchNormalization(rn3_17.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c2.c.sc[64 x 1], rn3_17.c2.c.b[64 x 1], rn3_17.c2.c.m[64 x 1], rn3_17.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.p = Plus(rn3_17.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.y = RectifiedLinear(rn3_17.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.c.c.c = Convolution(rn3_18.c1.c.W[64 x 576], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.y = BatchNormalization(rn3_18.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c1.c.c.sc[64 x 1], rn3_18.c1.c.c.b[64 x 1], rn3_18.c1.c.c.m[64 x 1], rn3_18.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.y = RectifiedLinear(rn3_18.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c2.c.c = Convolution(rn3_18.c2.W[64 x 576], rn3_18.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.y = BatchNormalization(rn3_18.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c2.c.sc[64 x 1], rn3_18.c2.c.b[64 x 1], rn3_18.c2.c.m[64 x 1], rn3_18.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.p = Plus(rn3_18.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.y = RectifiedLinear(rn3_18.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> pool = AveragePooling(rn3_18.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [1 x 1 x 64 x *] -Validating --> OutputNodes.t = Times(OutputNodes.W[10 x 64], pool[1 x 1 x 64 x *]) -> [10 x *] -Validating --> OutputNodes.b = LearnableParameter -> [10] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10 x *], OutputNodes.b[10]) -> [10 x *] -Validating --> CE = CrossEntropyWithSoftmax(labels[10 x *], OutputNodes.z[10 x *]) -> [1] -Validating --> Err = ErrorPrediction(labels[10 x *], OutputNodes.z[10 x *]) -> [1] - -Validating network, final pass. - -Validating --> labels = InputValue -> [10 x *] -Validating --> OutputNodes.W = LearnableParameter -> [10 x 64] -Validating --> rn3_18.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_18.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_17.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_17.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_16.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_16.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_15.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_15.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_14.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_14.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_13.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_13.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_12.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_12.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_11.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_11.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_10.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_10.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_9.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_9.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_8.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_8.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_7.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_7.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_6.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_6.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_5.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_5.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_4.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_4.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_3.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_2.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 x 576] -Validating --> rn3_1.c2.W = LearnableParameter -> [64 x 576] -Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 x 288] -Validating --> rn2_18.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_18.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_17.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_17.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_16.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_16.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_15.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_15.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_14.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_14.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_13.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_13.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_12.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_12.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_11.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_11.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_10.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_10.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_9.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_9.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_8.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_8.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_7.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_7.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_6.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_6.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_5.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_5.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_4.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_4.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_3.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_2.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 x 288] -Validating --> rn2_1.c2.W = LearnableParameter -> [32 x 288] -Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 x 144] -Validating --> rn1_18.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_18.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_17.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_17.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_16.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_16.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_15.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_15.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_14.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_14.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_13.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_13.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_12.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_12.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_11.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_11.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_10.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_10.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_9.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_9.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_8.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_8.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_7.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_7.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_6.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_6.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_5.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_5.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_4.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_4.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_3.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_2.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> rn1_1.c2.W = LearnableParameter -> [16 x 144] -Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 x 144] -Validating --> conv1.c.W = LearnableParameter -> [16 x 27] -Validating --> features = InputValue -> [32 x 32 x 3 x *] -Validating --> conv1.c.c.c = Convolution(conv1.c.W[16 x 27], features[32 x 32 x 3 x * {W=32, H=3, C=32}]) -> [32 x 32 x 16 x *] -Validating --> conv1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> conv1.c.c.y = BatchNormalization(conv1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.c.c.sc[16 x 1], conv1.c.c.b[16 x 1], conv1.c.c.m[16 x 1], conv1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> conv1.y = RectifiedLinear(conv1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.c.c.c = Convolution(rn1_1.c1.c.W[16 x 144], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c1.c.c.y = BatchNormalization(rn1_1.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c1.c.c.sc[16 x 1], rn1_1.c1.c.c.b[16 x 1], rn1_1.c1.c.c.m[16 x 1], rn1_1.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c2.c.c = Convolution(rn1_1.c2.W[16 x 144], rn1_1.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_1.c2.c.y = BatchNormalization(rn1_1.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c2.c.sc[16 x 1], rn1_1.c2.c.b[16 x 1], rn1_1.c2.c.m[16 x 1], rn1_1.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.p = Plus(rn1_1.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.c.c.c = Convolution(rn1_2.c1.c.W[16 x 144], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c1.c.c.y = BatchNormalization(rn1_2.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c1.c.c.sc[16 x 1], rn1_2.c1.c.c.b[16 x 1], rn1_2.c1.c.c.m[16 x 1], rn1_2.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c2.c.c = Convolution(rn1_2.c2.W[16 x 144], rn1_2.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_2.c2.c.y = BatchNormalization(rn1_2.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c2.c.sc[16 x 1], rn1_2.c2.c.b[16 x 1], rn1_2.c2.c.m[16 x 1], rn1_2.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.p = Plus(rn1_2.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.c.c.c = Convolution(rn1_3.c1.c.W[16 x 144], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c1.c.c.y = BatchNormalization(rn1_3.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c1.c.c.sc[16 x 1], rn1_3.c1.c.c.b[16 x 1], rn1_3.c1.c.c.m[16 x 1], rn1_3.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c2.c.c = Convolution(rn1_3.c2.W[16 x 144], rn1_3.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_3.c2.c.y = BatchNormalization(rn1_3.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c2.c.sc[16 x 1], rn1_3.c2.c.b[16 x 1], rn1_3.c2.c.m[16 x 1], rn1_3.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.p = Plus(rn1_3.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.c.c.c = Convolution(rn1_4.c1.c.W[16 x 144], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c1.c.c.y = BatchNormalization(rn1_4.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c1.c.c.sc[16 x 1], rn1_4.c1.c.c.b[16 x 1], rn1_4.c1.c.c.m[16 x 1], rn1_4.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c1.y = RectifiedLinear(rn1_4.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c2.c.c = Convolution(rn1_4.c2.W[16 x 144], rn1_4.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_4.c2.c.y = BatchNormalization(rn1_4.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c2.c.sc[16 x 1], rn1_4.c2.c.b[16 x 1], rn1_4.c2.c.m[16 x 1], rn1_4.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.p = Plus(rn1_4.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_4.y = RectifiedLinear(rn1_4.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.c.c.c = Convolution(rn1_5.c1.c.W[16 x 144], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c1.c.c.y = BatchNormalization(rn1_5.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c1.c.c.sc[16 x 1], rn1_5.c1.c.c.b[16 x 1], rn1_5.c1.c.c.m[16 x 1], rn1_5.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c1.y = RectifiedLinear(rn1_5.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c2.c.c = Convolution(rn1_5.c2.W[16 x 144], rn1_5.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_5.c2.c.y = BatchNormalization(rn1_5.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c2.c.sc[16 x 1], rn1_5.c2.c.b[16 x 1], rn1_5.c2.c.m[16 x 1], rn1_5.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.p = Plus(rn1_5.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_5.y = RectifiedLinear(rn1_5.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.c.c.c = Convolution(rn1_6.c1.c.W[16 x 144], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c1.c.c.y = BatchNormalization(rn1_6.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c1.c.c.sc[16 x 1], rn1_6.c1.c.c.b[16 x 1], rn1_6.c1.c.c.m[16 x 1], rn1_6.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c1.y = RectifiedLinear(rn1_6.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c2.c.c = Convolution(rn1_6.c2.W[16 x 144], rn1_6.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_6.c2.c.y = BatchNormalization(rn1_6.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c2.c.sc[16 x 1], rn1_6.c2.c.b[16 x 1], rn1_6.c2.c.m[16 x 1], rn1_6.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.p = Plus(rn1_6.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_6.y = RectifiedLinear(rn1_6.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.c.c.c = Convolution(rn1_7.c1.c.W[16 x 144], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c1.c.c.y = BatchNormalization(rn1_7.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c1.c.c.sc[16 x 1], rn1_7.c1.c.c.b[16 x 1], rn1_7.c1.c.c.m[16 x 1], rn1_7.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c1.y = RectifiedLinear(rn1_7.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c2.c.c = Convolution(rn1_7.c2.W[16 x 144], rn1_7.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_7.c2.c.y = BatchNormalization(rn1_7.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c2.c.sc[16 x 1], rn1_7.c2.c.b[16 x 1], rn1_7.c2.c.m[16 x 1], rn1_7.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.p = Plus(rn1_7.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_7.y = RectifiedLinear(rn1_7.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.c.c.c = Convolution(rn1_8.c1.c.W[16 x 144], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c1.c.c.y = BatchNormalization(rn1_8.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c1.c.c.sc[16 x 1], rn1_8.c1.c.c.b[16 x 1], rn1_8.c1.c.c.m[16 x 1], rn1_8.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c1.y = RectifiedLinear(rn1_8.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c2.c.c = Convolution(rn1_8.c2.W[16 x 144], rn1_8.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_8.c2.c.y = BatchNormalization(rn1_8.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c2.c.sc[16 x 1], rn1_8.c2.c.b[16 x 1], rn1_8.c2.c.m[16 x 1], rn1_8.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.p = Plus(rn1_8.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_8.y = RectifiedLinear(rn1_8.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.c.c.c = Convolution(rn1_9.c1.c.W[16 x 144], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c1.c.c.y = BatchNormalization(rn1_9.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c1.c.c.sc[16 x 1], rn1_9.c1.c.c.b[16 x 1], rn1_9.c1.c.c.m[16 x 1], rn1_9.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c1.y = RectifiedLinear(rn1_9.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c2.c.c = Convolution(rn1_9.c2.W[16 x 144], rn1_9.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_9.c2.c.y = BatchNormalization(rn1_9.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c2.c.sc[16 x 1], rn1_9.c2.c.b[16 x 1], rn1_9.c2.c.m[16 x 1], rn1_9.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.p = Plus(rn1_9.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_9.y = RectifiedLinear(rn1_9.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.c.c.c = Convolution(rn1_10.c1.c.W[16 x 144], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c1.c.c.y = BatchNormalization(rn1_10.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c1.c.c.sc[16 x 1], rn1_10.c1.c.c.b[16 x 1], rn1_10.c1.c.c.m[16 x 1], rn1_10.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c1.y = RectifiedLinear(rn1_10.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c2.c.c = Convolution(rn1_10.c2.W[16 x 144], rn1_10.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_10.c2.c.y = BatchNormalization(rn1_10.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c2.c.sc[16 x 1], rn1_10.c2.c.b[16 x 1], rn1_10.c2.c.m[16 x 1], rn1_10.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.p = Plus(rn1_10.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_10.y = RectifiedLinear(rn1_10.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.c.c.c = Convolution(rn1_11.c1.c.W[16 x 144], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c1.c.c.y = BatchNormalization(rn1_11.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c1.c.c.sc[16 x 1], rn1_11.c1.c.c.b[16 x 1], rn1_11.c1.c.c.m[16 x 1], rn1_11.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c1.y = RectifiedLinear(rn1_11.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c2.c.c = Convolution(rn1_11.c2.W[16 x 144], rn1_11.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_11.c2.c.y = BatchNormalization(rn1_11.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c2.c.sc[16 x 1], rn1_11.c2.c.b[16 x 1], rn1_11.c2.c.m[16 x 1], rn1_11.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.p = Plus(rn1_11.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_11.y = RectifiedLinear(rn1_11.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.c.c.c = Convolution(rn1_12.c1.c.W[16 x 144], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c1.c.c.y = BatchNormalization(rn1_12.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c1.c.c.sc[16 x 1], rn1_12.c1.c.c.b[16 x 1], rn1_12.c1.c.c.m[16 x 1], rn1_12.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c1.y = RectifiedLinear(rn1_12.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c2.c.c = Convolution(rn1_12.c2.W[16 x 144], rn1_12.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_12.c2.c.y = BatchNormalization(rn1_12.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c2.c.sc[16 x 1], rn1_12.c2.c.b[16 x 1], rn1_12.c2.c.m[16 x 1], rn1_12.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.p = Plus(rn1_12.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_12.y = RectifiedLinear(rn1_12.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.c.c.c = Convolution(rn1_13.c1.c.W[16 x 144], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c1.c.c.y = BatchNormalization(rn1_13.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c1.c.c.sc[16 x 1], rn1_13.c1.c.c.b[16 x 1], rn1_13.c1.c.c.m[16 x 1], rn1_13.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c1.y = RectifiedLinear(rn1_13.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c2.c.c = Convolution(rn1_13.c2.W[16 x 144], rn1_13.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_13.c2.c.y = BatchNormalization(rn1_13.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c2.c.sc[16 x 1], rn1_13.c2.c.b[16 x 1], rn1_13.c2.c.m[16 x 1], rn1_13.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.p = Plus(rn1_13.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_13.y = RectifiedLinear(rn1_13.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.c.c.c = Convolution(rn1_14.c1.c.W[16 x 144], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c1.c.c.y = BatchNormalization(rn1_14.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c1.c.c.sc[16 x 1], rn1_14.c1.c.c.b[16 x 1], rn1_14.c1.c.c.m[16 x 1], rn1_14.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c1.y = RectifiedLinear(rn1_14.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c2.c.c = Convolution(rn1_14.c2.W[16 x 144], rn1_14.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_14.c2.c.y = BatchNormalization(rn1_14.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c2.c.sc[16 x 1], rn1_14.c2.c.b[16 x 1], rn1_14.c2.c.m[16 x 1], rn1_14.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.p = Plus(rn1_14.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_14.y = RectifiedLinear(rn1_14.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.c.c.c = Convolution(rn1_15.c1.c.W[16 x 144], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c1.c.c.y = BatchNormalization(rn1_15.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c1.c.c.sc[16 x 1], rn1_15.c1.c.c.b[16 x 1], rn1_15.c1.c.c.m[16 x 1], rn1_15.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c1.y = RectifiedLinear(rn1_15.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c2.c.c = Convolution(rn1_15.c2.W[16 x 144], rn1_15.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_15.c2.c.y = BatchNormalization(rn1_15.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c2.c.sc[16 x 1], rn1_15.c2.c.b[16 x 1], rn1_15.c2.c.m[16 x 1], rn1_15.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.p = Plus(rn1_15.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_15.y = RectifiedLinear(rn1_15.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.c.c.c = Convolution(rn1_16.c1.c.W[16 x 144], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c1.c.c.y = BatchNormalization(rn1_16.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c1.c.c.sc[16 x 1], rn1_16.c1.c.c.b[16 x 1], rn1_16.c1.c.c.m[16 x 1], rn1_16.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c1.y = RectifiedLinear(rn1_16.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c2.c.c = Convolution(rn1_16.c2.W[16 x 144], rn1_16.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_16.c2.c.y = BatchNormalization(rn1_16.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c2.c.sc[16 x 1], rn1_16.c2.c.b[16 x 1], rn1_16.c2.c.m[16 x 1], rn1_16.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.p = Plus(rn1_16.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_16.y = RectifiedLinear(rn1_16.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.c.c.c = Convolution(rn1_17.c1.c.W[16 x 144], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c1.c.c.y = BatchNormalization(rn1_17.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c1.c.c.sc[16 x 1], rn1_17.c1.c.c.b[16 x 1], rn1_17.c1.c.c.m[16 x 1], rn1_17.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c1.y = RectifiedLinear(rn1_17.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c2.c.c = Convolution(rn1_17.c2.W[16 x 144], rn1_17.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_17.c2.c.y = BatchNormalization(rn1_17.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c2.c.sc[16 x 1], rn1_17.c2.c.b[16 x 1], rn1_17.c2.c.m[16 x 1], rn1_17.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.p = Plus(rn1_17.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_17.y = RectifiedLinear(rn1_17.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.c.c.c = Convolution(rn1_18.c1.c.W[16 x 144], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.c.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c1.c.c.y = BatchNormalization(rn1_18.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c1.c.c.sc[16 x 1], rn1_18.c1.c.c.b[16 x 1], rn1_18.c1.c.c.m[16 x 1], rn1_18.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c1.y = RectifiedLinear(rn1_18.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c2.c.c = Convolution(rn1_18.c2.W[16 x 144], rn1_18.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.c2.c.sc = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.b = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.m = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.isd = LearnableParameter -> [16 x 1] -Validating --> rn1_18.c2.c.y = BatchNormalization(rn1_18.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c2.c.sc[16 x 1], rn1_18.c2.c.b[16 x 1], rn1_18.c2.c.m[16 x 1], rn1_18.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.p = Plus(rn1_18.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn1_18.y = RectifiedLinear(rn1_18.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] -Validating --> rn2_1.c1.c.c.c = Convolution(rn2_1.c1.c.W[32 x 144], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c1.c.c.y = BatchNormalization(rn2_1.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c1.c.c.sc[32 x 1], rn2_1.c1.c.c.b[32 x 1], rn2_1.c1.c.c.m[32 x 1], rn2_1.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c2.c.c = Convolution(rn2_1.c2.W[32 x 288], rn2_1.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c2.c.y = BatchNormalization(rn2_1.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c2.c.sc[32 x 1], rn2_1.c2.c.b[32 x 1], rn2_1.c2.c.m[32 x 1], rn2_1.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1_Wproj = LearnableParameter -> [32 x 16] -Validating --> rn2_1.c_proj.c = Convolution(rn2_1_Wproj[32 x 16], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.c_proj.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.b = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.m = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_1.c_proj.y = BatchNormalization(rn2_1.c_proj.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.sc[32 x 1], rn2_1.c_proj.b[32 x 1], rn2_1.c_proj.m[32 x 1], rn2_1.c_proj.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.p = Plus(rn2_1.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_1.y = RectifiedLinear(rn2_1.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.c.c.c = Convolution(rn2_2.c1.c.W[32 x 288], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c1.c.c.y = BatchNormalization(rn2_2.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c1.c.c.sc[32 x 1], rn2_2.c1.c.c.b[32 x 1], rn2_2.c1.c.c.m[32 x 1], rn2_2.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c2.c.c = Convolution(rn2_2.c2.W[32 x 288], rn2_2.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_2.c2.c.y = BatchNormalization(rn2_2.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c2.c.sc[32 x 1], rn2_2.c2.c.b[32 x 1], rn2_2.c2.c.m[32 x 1], rn2_2.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.p = Plus(rn2_2.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.c.c.c = Convolution(rn2_3.c1.c.W[32 x 288], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c1.c.c.y = BatchNormalization(rn2_3.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c1.c.c.sc[32 x 1], rn2_3.c1.c.c.b[32 x 1], rn2_3.c1.c.c.m[32 x 1], rn2_3.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c2.c.c = Convolution(rn2_3.c2.W[32 x 288], rn2_3.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_3.c2.c.y = BatchNormalization(rn2_3.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c2.c.sc[32 x 1], rn2_3.c2.c.b[32 x 1], rn2_3.c2.c.m[32 x 1], rn2_3.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.p = Plus(rn2_3.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.c.c.c = Convolution(rn2_4.c1.c.W[32 x 288], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c1.c.c.y = BatchNormalization(rn2_4.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c1.c.c.sc[32 x 1], rn2_4.c1.c.c.b[32 x 1], rn2_4.c1.c.c.m[32 x 1], rn2_4.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c1.y = RectifiedLinear(rn2_4.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c2.c.c = Convolution(rn2_4.c2.W[32 x 288], rn2_4.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_4.c2.c.y = BatchNormalization(rn2_4.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c2.c.sc[32 x 1], rn2_4.c2.c.b[32 x 1], rn2_4.c2.c.m[32 x 1], rn2_4.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.p = Plus(rn2_4.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_4.y = RectifiedLinear(rn2_4.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.c.c.c = Convolution(rn2_5.c1.c.W[32 x 288], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c1.c.c.y = BatchNormalization(rn2_5.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c1.c.c.sc[32 x 1], rn2_5.c1.c.c.b[32 x 1], rn2_5.c1.c.c.m[32 x 1], rn2_5.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c1.y = RectifiedLinear(rn2_5.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c2.c.c = Convolution(rn2_5.c2.W[32 x 288], rn2_5.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_5.c2.c.y = BatchNormalization(rn2_5.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c2.c.sc[32 x 1], rn2_5.c2.c.b[32 x 1], rn2_5.c2.c.m[32 x 1], rn2_5.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.p = Plus(rn2_5.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_5.y = RectifiedLinear(rn2_5.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.c.c.c = Convolution(rn2_6.c1.c.W[32 x 288], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c1.c.c.y = BatchNormalization(rn2_6.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c1.c.c.sc[32 x 1], rn2_6.c1.c.c.b[32 x 1], rn2_6.c1.c.c.m[32 x 1], rn2_6.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c1.y = RectifiedLinear(rn2_6.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c2.c.c = Convolution(rn2_6.c2.W[32 x 288], rn2_6.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_6.c2.c.y = BatchNormalization(rn2_6.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c2.c.sc[32 x 1], rn2_6.c2.c.b[32 x 1], rn2_6.c2.c.m[32 x 1], rn2_6.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.p = Plus(rn2_6.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_6.y = RectifiedLinear(rn2_6.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.c.c.c = Convolution(rn2_7.c1.c.W[32 x 288], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c1.c.c.y = BatchNormalization(rn2_7.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c1.c.c.sc[32 x 1], rn2_7.c1.c.c.b[32 x 1], rn2_7.c1.c.c.m[32 x 1], rn2_7.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c1.y = RectifiedLinear(rn2_7.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c2.c.c = Convolution(rn2_7.c2.W[32 x 288], rn2_7.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_7.c2.c.y = BatchNormalization(rn2_7.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c2.c.sc[32 x 1], rn2_7.c2.c.b[32 x 1], rn2_7.c2.c.m[32 x 1], rn2_7.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.p = Plus(rn2_7.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_7.y = RectifiedLinear(rn2_7.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.c.c.c = Convolution(rn2_8.c1.c.W[32 x 288], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c1.c.c.y = BatchNormalization(rn2_8.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c1.c.c.sc[32 x 1], rn2_8.c1.c.c.b[32 x 1], rn2_8.c1.c.c.m[32 x 1], rn2_8.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c1.y = RectifiedLinear(rn2_8.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c2.c.c = Convolution(rn2_8.c2.W[32 x 288], rn2_8.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_8.c2.c.y = BatchNormalization(rn2_8.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c2.c.sc[32 x 1], rn2_8.c2.c.b[32 x 1], rn2_8.c2.c.m[32 x 1], rn2_8.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.p = Plus(rn2_8.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_8.y = RectifiedLinear(rn2_8.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.c.c.c = Convolution(rn2_9.c1.c.W[32 x 288], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c1.c.c.y = BatchNormalization(rn2_9.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c1.c.c.sc[32 x 1], rn2_9.c1.c.c.b[32 x 1], rn2_9.c1.c.c.m[32 x 1], rn2_9.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c1.y = RectifiedLinear(rn2_9.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c2.c.c = Convolution(rn2_9.c2.W[32 x 288], rn2_9.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_9.c2.c.y = BatchNormalization(rn2_9.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c2.c.sc[32 x 1], rn2_9.c2.c.b[32 x 1], rn2_9.c2.c.m[32 x 1], rn2_9.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.p = Plus(rn2_9.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_9.y = RectifiedLinear(rn2_9.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.c.c.c = Convolution(rn2_10.c1.c.W[32 x 288], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c1.c.c.y = BatchNormalization(rn2_10.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c1.c.c.sc[32 x 1], rn2_10.c1.c.c.b[32 x 1], rn2_10.c1.c.c.m[32 x 1], rn2_10.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c1.y = RectifiedLinear(rn2_10.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c2.c.c = Convolution(rn2_10.c2.W[32 x 288], rn2_10.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_10.c2.c.y = BatchNormalization(rn2_10.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c2.c.sc[32 x 1], rn2_10.c2.c.b[32 x 1], rn2_10.c2.c.m[32 x 1], rn2_10.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.p = Plus(rn2_10.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_10.y = RectifiedLinear(rn2_10.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.c.c.c = Convolution(rn2_11.c1.c.W[32 x 288], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c1.c.c.y = BatchNormalization(rn2_11.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c1.c.c.sc[32 x 1], rn2_11.c1.c.c.b[32 x 1], rn2_11.c1.c.c.m[32 x 1], rn2_11.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c1.y = RectifiedLinear(rn2_11.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c2.c.c = Convolution(rn2_11.c2.W[32 x 288], rn2_11.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_11.c2.c.y = BatchNormalization(rn2_11.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c2.c.sc[32 x 1], rn2_11.c2.c.b[32 x 1], rn2_11.c2.c.m[32 x 1], rn2_11.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.p = Plus(rn2_11.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_11.y = RectifiedLinear(rn2_11.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.c.c.c = Convolution(rn2_12.c1.c.W[32 x 288], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c1.c.c.y = BatchNormalization(rn2_12.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c1.c.c.sc[32 x 1], rn2_12.c1.c.c.b[32 x 1], rn2_12.c1.c.c.m[32 x 1], rn2_12.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c1.y = RectifiedLinear(rn2_12.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c2.c.c = Convolution(rn2_12.c2.W[32 x 288], rn2_12.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_12.c2.c.y = BatchNormalization(rn2_12.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c2.c.sc[32 x 1], rn2_12.c2.c.b[32 x 1], rn2_12.c2.c.m[32 x 1], rn2_12.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.p = Plus(rn2_12.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_12.y = RectifiedLinear(rn2_12.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.c.c.c = Convolution(rn2_13.c1.c.W[32 x 288], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c1.c.c.y = BatchNormalization(rn2_13.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c1.c.c.sc[32 x 1], rn2_13.c1.c.c.b[32 x 1], rn2_13.c1.c.c.m[32 x 1], rn2_13.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c1.y = RectifiedLinear(rn2_13.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c2.c.c = Convolution(rn2_13.c2.W[32 x 288], rn2_13.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_13.c2.c.y = BatchNormalization(rn2_13.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c2.c.sc[32 x 1], rn2_13.c2.c.b[32 x 1], rn2_13.c2.c.m[32 x 1], rn2_13.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.p = Plus(rn2_13.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_13.y = RectifiedLinear(rn2_13.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.c.c.c = Convolution(rn2_14.c1.c.W[32 x 288], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c1.c.c.y = BatchNormalization(rn2_14.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c1.c.c.sc[32 x 1], rn2_14.c1.c.c.b[32 x 1], rn2_14.c1.c.c.m[32 x 1], rn2_14.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c1.y = RectifiedLinear(rn2_14.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c2.c.c = Convolution(rn2_14.c2.W[32 x 288], rn2_14.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_14.c2.c.y = BatchNormalization(rn2_14.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c2.c.sc[32 x 1], rn2_14.c2.c.b[32 x 1], rn2_14.c2.c.m[32 x 1], rn2_14.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.p = Plus(rn2_14.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_14.y = RectifiedLinear(rn2_14.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.c.c.c = Convolution(rn2_15.c1.c.W[32 x 288], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c1.c.c.y = BatchNormalization(rn2_15.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c1.c.c.sc[32 x 1], rn2_15.c1.c.c.b[32 x 1], rn2_15.c1.c.c.m[32 x 1], rn2_15.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c1.y = RectifiedLinear(rn2_15.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c2.c.c = Convolution(rn2_15.c2.W[32 x 288], rn2_15.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_15.c2.c.y = BatchNormalization(rn2_15.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c2.c.sc[32 x 1], rn2_15.c2.c.b[32 x 1], rn2_15.c2.c.m[32 x 1], rn2_15.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.p = Plus(rn2_15.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_15.y = RectifiedLinear(rn2_15.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.c.c.c = Convolution(rn2_16.c1.c.W[32 x 288], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c1.c.c.y = BatchNormalization(rn2_16.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c1.c.c.sc[32 x 1], rn2_16.c1.c.c.b[32 x 1], rn2_16.c1.c.c.m[32 x 1], rn2_16.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c1.y = RectifiedLinear(rn2_16.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c2.c.c = Convolution(rn2_16.c2.W[32 x 288], rn2_16.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_16.c2.c.y = BatchNormalization(rn2_16.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c2.c.sc[32 x 1], rn2_16.c2.c.b[32 x 1], rn2_16.c2.c.m[32 x 1], rn2_16.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.p = Plus(rn2_16.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_16.y = RectifiedLinear(rn2_16.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.c.c.c = Convolution(rn2_17.c1.c.W[32 x 288], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c1.c.c.y = BatchNormalization(rn2_17.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c1.c.c.sc[32 x 1], rn2_17.c1.c.c.b[32 x 1], rn2_17.c1.c.c.m[32 x 1], rn2_17.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c1.y = RectifiedLinear(rn2_17.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c2.c.c = Convolution(rn2_17.c2.W[32 x 288], rn2_17.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_17.c2.c.y = BatchNormalization(rn2_17.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c2.c.sc[32 x 1], rn2_17.c2.c.b[32 x 1], rn2_17.c2.c.m[32 x 1], rn2_17.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.p = Plus(rn2_17.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_17.y = RectifiedLinear(rn2_17.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.c.c.c = Convolution(rn2_18.c1.c.W[32 x 288], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.c.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c1.c.c.y = BatchNormalization(rn2_18.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c1.c.c.sc[32 x 1], rn2_18.c1.c.c.b[32 x 1], rn2_18.c1.c.c.m[32 x 1], rn2_18.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c1.y = RectifiedLinear(rn2_18.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c2.c.c = Convolution(rn2_18.c2.W[32 x 288], rn2_18.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.c2.c.sc = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.b = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.m = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.isd = LearnableParameter -> [32 x 1] -Validating --> rn2_18.c2.c.y = BatchNormalization(rn2_18.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c2.c.sc[32 x 1], rn2_18.c2.c.b[32 x 1], rn2_18.c2.c.m[32 x 1], rn2_18.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.p = Plus(rn2_18.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn2_18.y = RectifiedLinear(rn2_18.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] -Validating --> rn3_1.c1.c.c.c = Convolution(rn3_1.c1.c.W[64 x 288], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c1.c.c.y = BatchNormalization(rn3_1.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c1.c.c.sc[64 x 1], rn3_1.c1.c.c.b[64 x 1], rn3_1.c1.c.c.m[64 x 1], rn3_1.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c2.c.c = Convolution(rn3_1.c2.W[64 x 576], rn3_1.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c2.c.y = BatchNormalization(rn3_1.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c2.c.sc[64 x 1], rn3_1.c2.c.b[64 x 1], rn3_1.c2.c.m[64 x 1], rn3_1.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1_Wproj = LearnableParameter -> [64 x 32] -Validating --> rn3_1.c_proj.c = Convolution(rn3_1_Wproj[64 x 32], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.c_proj.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.b = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.m = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_1.c_proj.y = BatchNormalization(rn3_1.c_proj.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.sc[64 x 1], rn3_1.c_proj.b[64 x 1], rn3_1.c_proj.m[64 x 1], rn3_1.c_proj.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.p = Plus(rn3_1.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_1.y = RectifiedLinear(rn3_1.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.c.c.c = Convolution(rn3_2.c1.c.W[64 x 576], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c1.c.c.y = BatchNormalization(rn3_2.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c1.c.c.sc[64 x 1], rn3_2.c1.c.c.b[64 x 1], rn3_2.c1.c.c.m[64 x 1], rn3_2.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c2.c.c = Convolution(rn3_2.c2.W[64 x 576], rn3_2.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_2.c2.c.y = BatchNormalization(rn3_2.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c2.c.sc[64 x 1], rn3_2.c2.c.b[64 x 1], rn3_2.c2.c.m[64 x 1], rn3_2.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.p = Plus(rn3_2.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.c.c.c = Convolution(rn3_3.c1.c.W[64 x 576], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c1.c.c.y = BatchNormalization(rn3_3.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c1.c.c.sc[64 x 1], rn3_3.c1.c.c.b[64 x 1], rn3_3.c1.c.c.m[64 x 1], rn3_3.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c2.c.c = Convolution(rn3_3.c2.W[64 x 576], rn3_3.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_3.c2.c.y = BatchNormalization(rn3_3.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c2.c.sc[64 x 1], rn3_3.c2.c.b[64 x 1], rn3_3.c2.c.m[64 x 1], rn3_3.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.p = Plus(rn3_3.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.c.c.c = Convolution(rn3_4.c1.c.W[64 x 576], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c1.c.c.y = BatchNormalization(rn3_4.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c1.c.c.sc[64 x 1], rn3_4.c1.c.c.b[64 x 1], rn3_4.c1.c.c.m[64 x 1], rn3_4.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c1.y = RectifiedLinear(rn3_4.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c2.c.c = Convolution(rn3_4.c2.W[64 x 576], rn3_4.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_4.c2.c.y = BatchNormalization(rn3_4.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c2.c.sc[64 x 1], rn3_4.c2.c.b[64 x 1], rn3_4.c2.c.m[64 x 1], rn3_4.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.p = Plus(rn3_4.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_4.y = RectifiedLinear(rn3_4.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.c.c.c = Convolution(rn3_5.c1.c.W[64 x 576], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c1.c.c.y = BatchNormalization(rn3_5.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c1.c.c.sc[64 x 1], rn3_5.c1.c.c.b[64 x 1], rn3_5.c1.c.c.m[64 x 1], rn3_5.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c1.y = RectifiedLinear(rn3_5.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c2.c.c = Convolution(rn3_5.c2.W[64 x 576], rn3_5.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_5.c2.c.y = BatchNormalization(rn3_5.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c2.c.sc[64 x 1], rn3_5.c2.c.b[64 x 1], rn3_5.c2.c.m[64 x 1], rn3_5.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.p = Plus(rn3_5.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_5.y = RectifiedLinear(rn3_5.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.c.c.c = Convolution(rn3_6.c1.c.W[64 x 576], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c1.c.c.y = BatchNormalization(rn3_6.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c1.c.c.sc[64 x 1], rn3_6.c1.c.c.b[64 x 1], rn3_6.c1.c.c.m[64 x 1], rn3_6.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c1.y = RectifiedLinear(rn3_6.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c2.c.c = Convolution(rn3_6.c2.W[64 x 576], rn3_6.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_6.c2.c.y = BatchNormalization(rn3_6.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c2.c.sc[64 x 1], rn3_6.c2.c.b[64 x 1], rn3_6.c2.c.m[64 x 1], rn3_6.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.p = Plus(rn3_6.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_6.y = RectifiedLinear(rn3_6.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.c.c.c = Convolution(rn3_7.c1.c.W[64 x 576], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c1.c.c.y = BatchNormalization(rn3_7.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c1.c.c.sc[64 x 1], rn3_7.c1.c.c.b[64 x 1], rn3_7.c1.c.c.m[64 x 1], rn3_7.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c1.y = RectifiedLinear(rn3_7.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c2.c.c = Convolution(rn3_7.c2.W[64 x 576], rn3_7.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_7.c2.c.y = BatchNormalization(rn3_7.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c2.c.sc[64 x 1], rn3_7.c2.c.b[64 x 1], rn3_7.c2.c.m[64 x 1], rn3_7.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.p = Plus(rn3_7.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_7.y = RectifiedLinear(rn3_7.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.c.c.c = Convolution(rn3_8.c1.c.W[64 x 576], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c1.c.c.y = BatchNormalization(rn3_8.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c1.c.c.sc[64 x 1], rn3_8.c1.c.c.b[64 x 1], rn3_8.c1.c.c.m[64 x 1], rn3_8.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c1.y = RectifiedLinear(rn3_8.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c2.c.c = Convolution(rn3_8.c2.W[64 x 576], rn3_8.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_8.c2.c.y = BatchNormalization(rn3_8.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c2.c.sc[64 x 1], rn3_8.c2.c.b[64 x 1], rn3_8.c2.c.m[64 x 1], rn3_8.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.p = Plus(rn3_8.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_8.y = RectifiedLinear(rn3_8.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.c.c.c = Convolution(rn3_9.c1.c.W[64 x 576], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c1.c.c.y = BatchNormalization(rn3_9.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c1.c.c.sc[64 x 1], rn3_9.c1.c.c.b[64 x 1], rn3_9.c1.c.c.m[64 x 1], rn3_9.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c1.y = RectifiedLinear(rn3_9.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c2.c.c = Convolution(rn3_9.c2.W[64 x 576], rn3_9.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_9.c2.c.y = BatchNormalization(rn3_9.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c2.c.sc[64 x 1], rn3_9.c2.c.b[64 x 1], rn3_9.c2.c.m[64 x 1], rn3_9.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.p = Plus(rn3_9.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_9.y = RectifiedLinear(rn3_9.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.c.c.c = Convolution(rn3_10.c1.c.W[64 x 576], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c1.c.c.y = BatchNormalization(rn3_10.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c1.c.c.sc[64 x 1], rn3_10.c1.c.c.b[64 x 1], rn3_10.c1.c.c.m[64 x 1], rn3_10.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c1.y = RectifiedLinear(rn3_10.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c2.c.c = Convolution(rn3_10.c2.W[64 x 576], rn3_10.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_10.c2.c.y = BatchNormalization(rn3_10.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c2.c.sc[64 x 1], rn3_10.c2.c.b[64 x 1], rn3_10.c2.c.m[64 x 1], rn3_10.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.p = Plus(rn3_10.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_10.y = RectifiedLinear(rn3_10.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.c.c.c = Convolution(rn3_11.c1.c.W[64 x 576], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c1.c.c.y = BatchNormalization(rn3_11.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c1.c.c.sc[64 x 1], rn3_11.c1.c.c.b[64 x 1], rn3_11.c1.c.c.m[64 x 1], rn3_11.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c1.y = RectifiedLinear(rn3_11.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c2.c.c = Convolution(rn3_11.c2.W[64 x 576], rn3_11.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_11.c2.c.y = BatchNormalization(rn3_11.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c2.c.sc[64 x 1], rn3_11.c2.c.b[64 x 1], rn3_11.c2.c.m[64 x 1], rn3_11.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.p = Plus(rn3_11.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_11.y = RectifiedLinear(rn3_11.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.c.c.c = Convolution(rn3_12.c1.c.W[64 x 576], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c1.c.c.y = BatchNormalization(rn3_12.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c1.c.c.sc[64 x 1], rn3_12.c1.c.c.b[64 x 1], rn3_12.c1.c.c.m[64 x 1], rn3_12.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c1.y = RectifiedLinear(rn3_12.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c2.c.c = Convolution(rn3_12.c2.W[64 x 576], rn3_12.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_12.c2.c.y = BatchNormalization(rn3_12.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c2.c.sc[64 x 1], rn3_12.c2.c.b[64 x 1], rn3_12.c2.c.m[64 x 1], rn3_12.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.p = Plus(rn3_12.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_12.y = RectifiedLinear(rn3_12.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.c.c.c = Convolution(rn3_13.c1.c.W[64 x 576], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c1.c.c.y = BatchNormalization(rn3_13.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c1.c.c.sc[64 x 1], rn3_13.c1.c.c.b[64 x 1], rn3_13.c1.c.c.m[64 x 1], rn3_13.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c1.y = RectifiedLinear(rn3_13.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c2.c.c = Convolution(rn3_13.c2.W[64 x 576], rn3_13.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_13.c2.c.y = BatchNormalization(rn3_13.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c2.c.sc[64 x 1], rn3_13.c2.c.b[64 x 1], rn3_13.c2.c.m[64 x 1], rn3_13.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.p = Plus(rn3_13.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_13.y = RectifiedLinear(rn3_13.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.c.c.c = Convolution(rn3_14.c1.c.W[64 x 576], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c1.c.c.y = BatchNormalization(rn3_14.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c1.c.c.sc[64 x 1], rn3_14.c1.c.c.b[64 x 1], rn3_14.c1.c.c.m[64 x 1], rn3_14.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c1.y = RectifiedLinear(rn3_14.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c2.c.c = Convolution(rn3_14.c2.W[64 x 576], rn3_14.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_14.c2.c.y = BatchNormalization(rn3_14.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c2.c.sc[64 x 1], rn3_14.c2.c.b[64 x 1], rn3_14.c2.c.m[64 x 1], rn3_14.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.p = Plus(rn3_14.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_14.y = RectifiedLinear(rn3_14.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.c.c.c = Convolution(rn3_15.c1.c.W[64 x 576], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c1.c.c.y = BatchNormalization(rn3_15.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c1.c.c.sc[64 x 1], rn3_15.c1.c.c.b[64 x 1], rn3_15.c1.c.c.m[64 x 1], rn3_15.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c1.y = RectifiedLinear(rn3_15.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c2.c.c = Convolution(rn3_15.c2.W[64 x 576], rn3_15.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_15.c2.c.y = BatchNormalization(rn3_15.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c2.c.sc[64 x 1], rn3_15.c2.c.b[64 x 1], rn3_15.c2.c.m[64 x 1], rn3_15.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.p = Plus(rn3_15.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_15.y = RectifiedLinear(rn3_15.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.c.c.c = Convolution(rn3_16.c1.c.W[64 x 576], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c1.c.c.y = BatchNormalization(rn3_16.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c1.c.c.sc[64 x 1], rn3_16.c1.c.c.b[64 x 1], rn3_16.c1.c.c.m[64 x 1], rn3_16.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c1.y = RectifiedLinear(rn3_16.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c2.c.c = Convolution(rn3_16.c2.W[64 x 576], rn3_16.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_16.c2.c.y = BatchNormalization(rn3_16.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c2.c.sc[64 x 1], rn3_16.c2.c.b[64 x 1], rn3_16.c2.c.m[64 x 1], rn3_16.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.p = Plus(rn3_16.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_16.y = RectifiedLinear(rn3_16.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.c.c.c = Convolution(rn3_17.c1.c.W[64 x 576], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c1.c.c.y = BatchNormalization(rn3_17.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c1.c.c.sc[64 x 1], rn3_17.c1.c.c.b[64 x 1], rn3_17.c1.c.c.m[64 x 1], rn3_17.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c1.y = RectifiedLinear(rn3_17.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c2.c.c = Convolution(rn3_17.c2.W[64 x 576], rn3_17.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_17.c2.c.y = BatchNormalization(rn3_17.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c2.c.sc[64 x 1], rn3_17.c2.c.b[64 x 1], rn3_17.c2.c.m[64 x 1], rn3_17.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.p = Plus(rn3_17.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_17.y = RectifiedLinear(rn3_17.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.c.c.c = Convolution(rn3_18.c1.c.W[64 x 576], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.c.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c1.c.c.y = BatchNormalization(rn3_18.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c1.c.c.sc[64 x 1], rn3_18.c1.c.c.b[64 x 1], rn3_18.c1.c.c.m[64 x 1], rn3_18.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c1.y = RectifiedLinear(rn3_18.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c2.c.c = Convolution(rn3_18.c2.W[64 x 576], rn3_18.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.c2.c.sc = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.b = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.m = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.isd = LearnableParameter -> [64 x 1] -Validating --> rn3_18.c2.c.y = BatchNormalization(rn3_18.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c2.c.sc[64 x 1], rn3_18.c2.c.b[64 x 1], rn3_18.c2.c.m[64 x 1], rn3_18.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.p = Plus(rn3_18.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> rn3_18.y = RectifiedLinear(rn3_18.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] -Validating --> pool = AveragePooling(rn3_18.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [1 x 1 x 64 x *] -Validating --> OutputNodes.t = Times(OutputNodes.W[10 x 64], pool[1 x 1 x 64 x *]) -> [10 x *] -Validating --> OutputNodes.b = LearnableParameter -> [10] -Validating --> OutputNodes.z = Plus(OutputNodes.t[10 x *], OutputNodes.b[10]) -> [10 x *] -Validating --> CE = CrossEntropyWithSoftmax(labels[10 x *], OutputNodes.z[10 x *]) -> [1] -Validating --> Err = ErrorPrediction(labels[10 x *], OutputNodes.z[10 x *]) -> [1] - -559 out of 949 nodes do not share the minibatch layout with the input data. - -Post-processing network complete. -evalNodeNames are not specified, using all the default evalnodes and training criterion nodes. - - -Allocating matrices for forward and/or backward propagation. -Minibatch[1-20]: Samples Seen = 10000 Err: ErrorPrediction/Sample = 0.0644 CE: CrossEntropyWithSoftmax/Sample = 0.3034767 -Final Results: Minibatch[1-20]: Samples Seen = 10000 Err: ErrorPrediction/Sample = 0.0644 CE: CrossEntropyWithSoftmax/Sample = 0.3034767 Perplexity = 1.35456 -COMPLETED +------------------------------------------------------------------- +Build info: + + Built time: Feb 26 2016 16:36:12 + Last modified date: Thu Feb 25 12:56:12 2016 + Build type: Release + Build target: GPU + With 1bit-SGD: no + CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5 + CUB_PATH: C:\src\cub + CUDNN_PATH: C:\NVIDIA\cudnn-4.0\cuda + Build Branch: + Build SHA1: (modified) + Built by alexeyk on z840-01 + Build Path: C:\src\cntk\Source\CNTK\ +------------------------------------------------------------------- +running on z840-01 at 2016/02/26 17:43:42 +command line: +C:\src\cntk\x64\Release\CNTK.exe configFile=04_ResNet_56.cntk + +>>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>> +RootDir = "." +ConfigDir = "$RootDir$" +DataDir = "$RootDir$" +OutputDir = "$RootDir$/Output" +ModelDir = "$OutputDir$/Models" +ndlMacros="$ConfigDir$/Macros.ndl" +precision="float" +deviceId="Auto" +prefetch="true" +parallelTrain="false" +command=Train:AddBNEval:Test +stderr="$OutputDir$/04_ResNet_56" +traceLevel=1 +numMBsToShowResult=200 +Proj16to32Filename = "$ConfigDir$/16to32.txt" +Proj32to64Filename = "$ConfigDir$/32to64.txt" +Train=[ + action="train" + modelPath="$ModelDir$/04_ResNet_56" + NDLNetworkBuilder=[ + networkDescription="$ConfigDir$/04_ResNet_56.ndl" + ] + SGD=[ + epochSize=0 + minibatchSize=128 + learningRatesPerMB=0.1*1:1.0*80:0.1*40:0.01 + momentumPerMB=0.9 + maxEpochs=160 + L2RegWeight=0.0001 + dropoutRate=0 + ParallelTrain=[ + parallelizationMethod="DataParallelSGD" + distributedMBReading="true" + parallelizationStartEpoch=1 + DataParallelSGD=[ + gradientBits=32 + ] + ] + ] + reader=[ + readerType="ImageReader" + file="$DataDir$/train_map.txt" + randomize="Auto" + features=[ + width=32 + height=32 + channels=3 + cropType="Random" + cropRatio=0.8 + jitterType="UniRatio" + interpolations="Linear" + meanFile="$ConfigDir$/CIFAR-10_mean.xml" + ] + labels=[ + labelDim=10 + ] + ] +] +AddBNEval=[ + action="edit" + CurModel="$ModelDir$/04_ResNet_56" + NewModel="$ModelDir$/04_ResNet_56.Eval" + editPath="$ConfigDir$/03_ResNet.mel" +] +Test=[ + action="test" + modelPath="$ModelDir$/04_ResNet_56.Eval" + minibatchSize=512 + reader=[ + readerType="ImageReader" + file="$DataDir$/test_map.txt" + randomize="None" + features=[ + width=32 + height=32 + channels=3 + cropType="Center" + cropRatio=1 + jitterType="UniRatio" + interpolations="Linear" + meanFile="$ConfigDir$/CIFAR-10_mean.xml" + ] + labels=[ + labelDim=10 + ] + ] +] + +<<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<< + +>>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>> +RootDir = "." +ConfigDir = "." +DataDir = "." +OutputDir = "./Output" +ModelDir = "./Output/Models" +ndlMacros="./Macros.ndl" +precision="float" +deviceId="Auto" +prefetch="true" +parallelTrain="false" +command=Train:AddBNEval:Test +stderr="./Output/04_ResNet_56" +traceLevel=1 +numMBsToShowResult=200 +Proj16to32Filename = "./16to32.txt" +Proj32to64Filename = "./32to64.txt" +Train=[ + action="train" + modelPath="./Output/Models/04_ResNet_56" + NDLNetworkBuilder=[ + networkDescription="./04_ResNet_56.ndl" + ] + SGD=[ + epochSize=0 + minibatchSize=128 + learningRatesPerMB=0.1*1:1.0*80:0.1*40:0.01 + momentumPerMB=0.9 + maxEpochs=160 + L2RegWeight=0.0001 + dropoutRate=0 + ParallelTrain=[ + parallelizationMethod="DataParallelSGD" + distributedMBReading="true" + parallelizationStartEpoch=1 + DataParallelSGD=[ + gradientBits=32 + ] + ] + ] + reader=[ + readerType="ImageReader" + file="./train_map.txt" + randomize="Auto" + features=[ + width=32 + height=32 + channels=3 + cropType="Random" + cropRatio=0.8 + jitterType="UniRatio" + interpolations="Linear" + meanFile="./CIFAR-10_mean.xml" + ] + labels=[ + labelDim=10 + ] + ] +] +AddBNEval=[ + action="edit" + CurModel="./Output/Models/04_ResNet_56" + NewModel="./Output/Models/04_ResNet_56.Eval" + editPath="./03_ResNet.mel" +] +Test=[ + action="test" + modelPath="./Output/Models/04_ResNet_56.Eval" + minibatchSize=512 + reader=[ + readerType="ImageReader" + file="./test_map.txt" + randomize="None" + features=[ + width=32 + height=32 + channels=3 + cropType="Center" + cropRatio=1 + jitterType="UniRatio" + interpolations="Linear" + meanFile="./CIFAR-10_mean.xml" + ] + labels=[ + labelDim=10 + ] + ] +] + +<<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<< + +>>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>> +configparameters: 04_ResNet_56.cntk:AddBNEval=[ + action="edit" + CurModel="./Output/Models/04_ResNet_56" + NewModel="./Output/Models/04_ResNet_56.Eval" + editPath="./03_ResNet.mel" +] + +configparameters: 04_ResNet_56.cntk:command=Train:AddBNEval:Test +configparameters: 04_ResNet_56.cntk:ConfigDir=. +configparameters: 04_ResNet_56.cntk:DataDir=. +configparameters: 04_ResNet_56.cntk:deviceId=Auto +configparameters: 04_ResNet_56.cntk:ModelDir=./Output/Models +configparameters: 04_ResNet_56.cntk:ndlMacros=./Macros.ndl +configparameters: 04_ResNet_56.cntk:numMBsToShowResult=200 +configparameters: 04_ResNet_56.cntk:OutputDir=./Output +configparameters: 04_ResNet_56.cntk:parallelTrain=false +configparameters: 04_ResNet_56.cntk:precision=float +configparameters: 04_ResNet_56.cntk:prefetch=true +configparameters: 04_ResNet_56.cntk:Proj16to32Filename=./16to32.txt +configparameters: 04_ResNet_56.cntk:Proj32to64Filename=./32to64.txt +configparameters: 04_ResNet_56.cntk:RootDir=. +configparameters: 04_ResNet_56.cntk:stderr=./Output/04_ResNet_56 +configparameters: 04_ResNet_56.cntk:Test=[ + action="test" + modelPath="./Output/Models/04_ResNet_56.Eval" + minibatchSize=512 + reader=[ + readerType="ImageReader" + file="./test_map.txt" + randomize="None" + features=[ + width=32 + height=32 + channels=3 + cropType="Center" + cropRatio=1 + jitterType="UniRatio" + interpolations="Linear" + meanFile="./CIFAR-10_mean.xml" + ] + labels=[ + labelDim=10 + ] + ] +] + +configparameters: 04_ResNet_56.cntk:traceLevel=1 +configparameters: 04_ResNet_56.cntk:Train=[ + action="train" + modelPath="./Output/Models/04_ResNet_56" + NDLNetworkBuilder=[ + networkDescription="./04_ResNet_56.ndl" + ] + SGD=[ + epochSize=0 + minibatchSize=128 + learningRatesPerMB=0.1*1:1.0*80:0.1*40:0.01 + momentumPerMB=0.9 + maxEpochs=160 + L2RegWeight=0.0001 + dropoutRate=0 + ParallelTrain=[ + parallelizationMethod="DataParallelSGD" + distributedMBReading="true" + parallelizationStartEpoch=1 + DataParallelSGD=[ + gradientBits=32 + ] + ] + ] + reader=[ + readerType="ImageReader" + file="./train_map.txt" + randomize="Auto" + features=[ + width=32 + height=32 + channels=3 + cropType="Random" + cropRatio=0.8 + jitterType="UniRatio" + interpolations="Linear" + meanFile="./CIFAR-10_mean.xml" + ] + labels=[ + labelDim=10 + ] + ] +] + +<<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<< +command: Train AddBNEval Test +precision = float +CNTKModelPath: ./Output/Models/04_ResNet_56 +CNTKCommandTrainInfo: Train : 160 +CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 160 +CNTKCommandTrainBegin: Train +LockDevice: Locked GPU 0 to test availability. +LockDevice: Unlocked GPU 0 after testing. +LockDevice: Locked GPU 1 to test availability. +LockDevice: Unlocked GPU 1 after testing. +LockDevice: Locked GPU 2 to test availability. +LockDevice: Unlocked GPU 2 after testing. +LockDevice: Locked GPU 0 for exclusive use. +NDLBuilder Using GPU 0 +Microsoft::MSR::CNTK::GPUMatrix::SetGaussianRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4 + +Post-processing network... + +3 roots: + CE = CrossEntropyWithSoftmax + Err = ErrorPrediction + OutputNodes.z = Plus +FormNestedNetwork: WARNING: Was called twice for CE CrossEntropyWithSoftmax operation +FormNestedNetwork: WARNING: Was called twice for Err ErrorPrediction operation +FormNestedNetwork: WARNING: Was called twice for OutputNodes.z Plus operation + + +Validating network. 949 nodes to process in pass 1. + +Validating --> labels = InputValue -> [10 x *] +Validating --> OutputNodes.W = LearnableParameter -> [10 x 64] +Validating --> rn3_18.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_18.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_17.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_17.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_16.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_16.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_15.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_15.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_14.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_14.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_13.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_13.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_12.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_12.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_11.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_11.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_10.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_10.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_9.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_9.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_8.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_8.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_7.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_7.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_6.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_6.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_5.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_5.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_4.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_4.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 x 288] +Validating --> rn2_18.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_18.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_17.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_17.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_16.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_16.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_15.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_15.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_14.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_14.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_13.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_13.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_12.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_12.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_11.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_11.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_10.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_10.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_9.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_9.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_8.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_8.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_7.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_7.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_6.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_6.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_5.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_5.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_4.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_4.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 x 144] +Validating --> rn1_18.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_18.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_17.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_17.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_16.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_16.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_15.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_15.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_14.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_14.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_13.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_13.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_12.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_12.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_11.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_11.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_10.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_10.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_9.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_9.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_8.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_8.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_7.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_7.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_6.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_6.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_5.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_5.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_4.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_4.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> conv1.c.W = LearnableParameter -> [16 x 27] +Validating --> features = InputValue -> [32 x 32 x 3 x *] +Validating --> conv1.c.c.c = Convolution(conv1.c.W[16 x 27], features[32 x 32 x 3 x * {W=32, H=3, C=32}]) -> [32 x 32 x 16 x *] +Validating --> conv1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.y = BatchNormalization(conv1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.c.c.sc[16 x 1], conv1.c.c.b[16 x 1], conv1.c.c.m[16 x 1], conv1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> conv1.y = RectifiedLinear(conv1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.c.c.c = Convolution(rn1_1.c1.c.W[16 x 144], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.y = BatchNormalization(rn1_1.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c1.c.c.sc[16 x 1], rn1_1.c1.c.c.b[16 x 1], rn1_1.c1.c.c.m[16 x 1], rn1_1.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c2.c.c = Convolution(rn1_1.c2.W[16 x 144], rn1_1.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.y = BatchNormalization(rn1_1.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c2.c.sc[16 x 1], rn1_1.c2.c.b[16 x 1], rn1_1.c2.c.m[16 x 1], rn1_1.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.p = Plus(rn1_1.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.c.c.c = Convolution(rn1_2.c1.c.W[16 x 144], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.y = BatchNormalization(rn1_2.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c1.c.c.sc[16 x 1], rn1_2.c1.c.c.b[16 x 1], rn1_2.c1.c.c.m[16 x 1], rn1_2.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c2.c.c = Convolution(rn1_2.c2.W[16 x 144], rn1_2.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.y = BatchNormalization(rn1_2.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c2.c.sc[16 x 1], rn1_2.c2.c.b[16 x 1], rn1_2.c2.c.m[16 x 1], rn1_2.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.p = Plus(rn1_2.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.c.c.c = Convolution(rn1_3.c1.c.W[16 x 144], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.y = BatchNormalization(rn1_3.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c1.c.c.sc[16 x 1], rn1_3.c1.c.c.b[16 x 1], rn1_3.c1.c.c.m[16 x 1], rn1_3.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c2.c.c = Convolution(rn1_3.c2.W[16 x 144], rn1_3.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.y = BatchNormalization(rn1_3.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c2.c.sc[16 x 1], rn1_3.c2.c.b[16 x 1], rn1_3.c2.c.m[16 x 1], rn1_3.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.p = Plus(rn1_3.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.c.c.c = Convolution(rn1_4.c1.c.W[16 x 144], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.y = BatchNormalization(rn1_4.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c1.c.c.sc[16 x 1], rn1_4.c1.c.c.b[16 x 1], rn1_4.c1.c.c.m[16 x 1], rn1_4.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.y = RectifiedLinear(rn1_4.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c2.c.c = Convolution(rn1_4.c2.W[16 x 144], rn1_4.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.y = BatchNormalization(rn1_4.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c2.c.sc[16 x 1], rn1_4.c2.c.b[16 x 1], rn1_4.c2.c.m[16 x 1], rn1_4.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.p = Plus(rn1_4.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.y = RectifiedLinear(rn1_4.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.c.c.c = Convolution(rn1_5.c1.c.W[16 x 144], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.y = BatchNormalization(rn1_5.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c1.c.c.sc[16 x 1], rn1_5.c1.c.c.b[16 x 1], rn1_5.c1.c.c.m[16 x 1], rn1_5.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.y = RectifiedLinear(rn1_5.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c2.c.c = Convolution(rn1_5.c2.W[16 x 144], rn1_5.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.y = BatchNormalization(rn1_5.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c2.c.sc[16 x 1], rn1_5.c2.c.b[16 x 1], rn1_5.c2.c.m[16 x 1], rn1_5.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.p = Plus(rn1_5.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.y = RectifiedLinear(rn1_5.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.c.c.c = Convolution(rn1_6.c1.c.W[16 x 144], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.y = BatchNormalization(rn1_6.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c1.c.c.sc[16 x 1], rn1_6.c1.c.c.b[16 x 1], rn1_6.c1.c.c.m[16 x 1], rn1_6.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.y = RectifiedLinear(rn1_6.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c2.c.c = Convolution(rn1_6.c2.W[16 x 144], rn1_6.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.y = BatchNormalization(rn1_6.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c2.c.sc[16 x 1], rn1_6.c2.c.b[16 x 1], rn1_6.c2.c.m[16 x 1], rn1_6.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.p = Plus(rn1_6.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.y = RectifiedLinear(rn1_6.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.c.c.c = Convolution(rn1_7.c1.c.W[16 x 144], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.y = BatchNormalization(rn1_7.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c1.c.c.sc[16 x 1], rn1_7.c1.c.c.b[16 x 1], rn1_7.c1.c.c.m[16 x 1], rn1_7.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.y = RectifiedLinear(rn1_7.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c2.c.c = Convolution(rn1_7.c2.W[16 x 144], rn1_7.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.y = BatchNormalization(rn1_7.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c2.c.sc[16 x 1], rn1_7.c2.c.b[16 x 1], rn1_7.c2.c.m[16 x 1], rn1_7.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.p = Plus(rn1_7.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.y = RectifiedLinear(rn1_7.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.c.c.c = Convolution(rn1_8.c1.c.W[16 x 144], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.y = BatchNormalization(rn1_8.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c1.c.c.sc[16 x 1], rn1_8.c1.c.c.b[16 x 1], rn1_8.c1.c.c.m[16 x 1], rn1_8.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.y = RectifiedLinear(rn1_8.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c2.c.c = Convolution(rn1_8.c2.W[16 x 144], rn1_8.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.y = BatchNormalization(rn1_8.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c2.c.sc[16 x 1], rn1_8.c2.c.b[16 x 1], rn1_8.c2.c.m[16 x 1], rn1_8.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.p = Plus(rn1_8.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.y = RectifiedLinear(rn1_8.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.c.c.c = Convolution(rn1_9.c1.c.W[16 x 144], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.y = BatchNormalization(rn1_9.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c1.c.c.sc[16 x 1], rn1_9.c1.c.c.b[16 x 1], rn1_9.c1.c.c.m[16 x 1], rn1_9.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.y = RectifiedLinear(rn1_9.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c2.c.c = Convolution(rn1_9.c2.W[16 x 144], rn1_9.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.y = BatchNormalization(rn1_9.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c2.c.sc[16 x 1], rn1_9.c2.c.b[16 x 1], rn1_9.c2.c.m[16 x 1], rn1_9.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.p = Plus(rn1_9.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.y = RectifiedLinear(rn1_9.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.c.c.c = Convolution(rn1_10.c1.c.W[16 x 144], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.y = BatchNormalization(rn1_10.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c1.c.c.sc[16 x 1], rn1_10.c1.c.c.b[16 x 1], rn1_10.c1.c.c.m[16 x 1], rn1_10.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.y = RectifiedLinear(rn1_10.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c2.c.c = Convolution(rn1_10.c2.W[16 x 144], rn1_10.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.y = BatchNormalization(rn1_10.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c2.c.sc[16 x 1], rn1_10.c2.c.b[16 x 1], rn1_10.c2.c.m[16 x 1], rn1_10.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.p = Plus(rn1_10.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.y = RectifiedLinear(rn1_10.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.c.c.c = Convolution(rn1_11.c1.c.W[16 x 144], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.y = BatchNormalization(rn1_11.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c1.c.c.sc[16 x 1], rn1_11.c1.c.c.b[16 x 1], rn1_11.c1.c.c.m[16 x 1], rn1_11.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.y = RectifiedLinear(rn1_11.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c2.c.c = Convolution(rn1_11.c2.W[16 x 144], rn1_11.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.y = BatchNormalization(rn1_11.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c2.c.sc[16 x 1], rn1_11.c2.c.b[16 x 1], rn1_11.c2.c.m[16 x 1], rn1_11.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.p = Plus(rn1_11.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.y = RectifiedLinear(rn1_11.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.c.c.c = Convolution(rn1_12.c1.c.W[16 x 144], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.y = BatchNormalization(rn1_12.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c1.c.c.sc[16 x 1], rn1_12.c1.c.c.b[16 x 1], rn1_12.c1.c.c.m[16 x 1], rn1_12.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.y = RectifiedLinear(rn1_12.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c2.c.c = Convolution(rn1_12.c2.W[16 x 144], rn1_12.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.y = BatchNormalization(rn1_12.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c2.c.sc[16 x 1], rn1_12.c2.c.b[16 x 1], rn1_12.c2.c.m[16 x 1], rn1_12.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.p = Plus(rn1_12.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.y = RectifiedLinear(rn1_12.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.c.c.c = Convolution(rn1_13.c1.c.W[16 x 144], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.y = BatchNormalization(rn1_13.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c1.c.c.sc[16 x 1], rn1_13.c1.c.c.b[16 x 1], rn1_13.c1.c.c.m[16 x 1], rn1_13.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.y = RectifiedLinear(rn1_13.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c2.c.c = Convolution(rn1_13.c2.W[16 x 144], rn1_13.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.y = BatchNormalization(rn1_13.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c2.c.sc[16 x 1], rn1_13.c2.c.b[16 x 1], rn1_13.c2.c.m[16 x 1], rn1_13.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.p = Plus(rn1_13.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.y = RectifiedLinear(rn1_13.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.c.c.c = Convolution(rn1_14.c1.c.W[16 x 144], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.y = BatchNormalization(rn1_14.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c1.c.c.sc[16 x 1], rn1_14.c1.c.c.b[16 x 1], rn1_14.c1.c.c.m[16 x 1], rn1_14.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.y = RectifiedLinear(rn1_14.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c2.c.c = Convolution(rn1_14.c2.W[16 x 144], rn1_14.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.y = BatchNormalization(rn1_14.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c2.c.sc[16 x 1], rn1_14.c2.c.b[16 x 1], rn1_14.c2.c.m[16 x 1], rn1_14.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.p = Plus(rn1_14.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.y = RectifiedLinear(rn1_14.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.c.c.c = Convolution(rn1_15.c1.c.W[16 x 144], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.y = BatchNormalization(rn1_15.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c1.c.c.sc[16 x 1], rn1_15.c1.c.c.b[16 x 1], rn1_15.c1.c.c.m[16 x 1], rn1_15.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.y = RectifiedLinear(rn1_15.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c2.c.c = Convolution(rn1_15.c2.W[16 x 144], rn1_15.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.y = BatchNormalization(rn1_15.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c2.c.sc[16 x 1], rn1_15.c2.c.b[16 x 1], rn1_15.c2.c.m[16 x 1], rn1_15.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.p = Plus(rn1_15.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.y = RectifiedLinear(rn1_15.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.c.c.c = Convolution(rn1_16.c1.c.W[16 x 144], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.y = BatchNormalization(rn1_16.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c1.c.c.sc[16 x 1], rn1_16.c1.c.c.b[16 x 1], rn1_16.c1.c.c.m[16 x 1], rn1_16.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.y = RectifiedLinear(rn1_16.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c2.c.c = Convolution(rn1_16.c2.W[16 x 144], rn1_16.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.y = BatchNormalization(rn1_16.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c2.c.sc[16 x 1], rn1_16.c2.c.b[16 x 1], rn1_16.c2.c.m[16 x 1], rn1_16.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.p = Plus(rn1_16.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.y = RectifiedLinear(rn1_16.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.c.c.c = Convolution(rn1_17.c1.c.W[16 x 144], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.y = BatchNormalization(rn1_17.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c1.c.c.sc[16 x 1], rn1_17.c1.c.c.b[16 x 1], rn1_17.c1.c.c.m[16 x 1], rn1_17.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.y = RectifiedLinear(rn1_17.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c2.c.c = Convolution(rn1_17.c2.W[16 x 144], rn1_17.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.y = BatchNormalization(rn1_17.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c2.c.sc[16 x 1], rn1_17.c2.c.b[16 x 1], rn1_17.c2.c.m[16 x 1], rn1_17.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.p = Plus(rn1_17.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.y = RectifiedLinear(rn1_17.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.c.c.c = Convolution(rn1_18.c1.c.W[16 x 144], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.y = BatchNormalization(rn1_18.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c1.c.c.sc[16 x 1], rn1_18.c1.c.c.b[16 x 1], rn1_18.c1.c.c.m[16 x 1], rn1_18.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.y = RectifiedLinear(rn1_18.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c2.c.c = Convolution(rn1_18.c2.W[16 x 144], rn1_18.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.y = BatchNormalization(rn1_18.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c2.c.sc[16 x 1], rn1_18.c2.c.b[16 x 1], rn1_18.c2.c.m[16 x 1], rn1_18.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.p = Plus(rn1_18.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.y = RectifiedLinear(rn1_18.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn2_1.c1.c.c.c = Convolution(rn2_1.c1.c.W[32 x 144], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.y = BatchNormalization(rn2_1.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c1.c.c.sc[32 x 1], rn2_1.c1.c.c.b[32 x 1], rn2_1.c1.c.c.m[32 x 1], rn2_1.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c2.c.c = Convolution(rn2_1.c2.W[32 x 288], rn2_1.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.y = BatchNormalization(rn2_1.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c2.c.sc[32 x 1], rn2_1.c2.c.b[32 x 1], rn2_1.c2.c.m[32 x 1], rn2_1.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1_Wproj = LearnableParameter -> [32 x 16] +Validating --> rn2_1.c_proj.c = Convolution(rn2_1_Wproj[32 x 16], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c_proj.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.y = BatchNormalization(rn2_1.c_proj.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.sc[32 x 1], rn2_1.c_proj.b[32 x 1], rn2_1.c_proj.m[32 x 1], rn2_1.c_proj.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.p = Plus(rn2_1.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.c.c.c = Convolution(rn2_2.c1.c.W[32 x 288], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.y = BatchNormalization(rn2_2.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c1.c.c.sc[32 x 1], rn2_2.c1.c.c.b[32 x 1], rn2_2.c1.c.c.m[32 x 1], rn2_2.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c2.c.c = Convolution(rn2_2.c2.W[32 x 288], rn2_2.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.y = BatchNormalization(rn2_2.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c2.c.sc[32 x 1], rn2_2.c2.c.b[32 x 1], rn2_2.c2.c.m[32 x 1], rn2_2.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.p = Plus(rn2_2.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.c.c.c = Convolution(rn2_3.c1.c.W[32 x 288], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.y = BatchNormalization(rn2_3.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c1.c.c.sc[32 x 1], rn2_3.c1.c.c.b[32 x 1], rn2_3.c1.c.c.m[32 x 1], rn2_3.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c2.c.c = Convolution(rn2_3.c2.W[32 x 288], rn2_3.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.y = BatchNormalization(rn2_3.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c2.c.sc[32 x 1], rn2_3.c2.c.b[32 x 1], rn2_3.c2.c.m[32 x 1], rn2_3.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.p = Plus(rn2_3.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.c.c.c = Convolution(rn2_4.c1.c.W[32 x 288], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.y = BatchNormalization(rn2_4.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c1.c.c.sc[32 x 1], rn2_4.c1.c.c.b[32 x 1], rn2_4.c1.c.c.m[32 x 1], rn2_4.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.y = RectifiedLinear(rn2_4.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c2.c.c = Convolution(rn2_4.c2.W[32 x 288], rn2_4.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.y = BatchNormalization(rn2_4.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c2.c.sc[32 x 1], rn2_4.c2.c.b[32 x 1], rn2_4.c2.c.m[32 x 1], rn2_4.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.p = Plus(rn2_4.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.y = RectifiedLinear(rn2_4.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.c.c.c = Convolution(rn2_5.c1.c.W[32 x 288], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.y = BatchNormalization(rn2_5.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c1.c.c.sc[32 x 1], rn2_5.c1.c.c.b[32 x 1], rn2_5.c1.c.c.m[32 x 1], rn2_5.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.y = RectifiedLinear(rn2_5.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c2.c.c = Convolution(rn2_5.c2.W[32 x 288], rn2_5.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.y = BatchNormalization(rn2_5.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c2.c.sc[32 x 1], rn2_5.c2.c.b[32 x 1], rn2_5.c2.c.m[32 x 1], rn2_5.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.p = Plus(rn2_5.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.y = RectifiedLinear(rn2_5.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.c.c.c = Convolution(rn2_6.c1.c.W[32 x 288], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.y = BatchNormalization(rn2_6.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c1.c.c.sc[32 x 1], rn2_6.c1.c.c.b[32 x 1], rn2_6.c1.c.c.m[32 x 1], rn2_6.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.y = RectifiedLinear(rn2_6.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c2.c.c = Convolution(rn2_6.c2.W[32 x 288], rn2_6.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.y = BatchNormalization(rn2_6.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c2.c.sc[32 x 1], rn2_6.c2.c.b[32 x 1], rn2_6.c2.c.m[32 x 1], rn2_6.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.p = Plus(rn2_6.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.y = RectifiedLinear(rn2_6.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.c.c.c = Convolution(rn2_7.c1.c.W[32 x 288], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.y = BatchNormalization(rn2_7.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c1.c.c.sc[32 x 1], rn2_7.c1.c.c.b[32 x 1], rn2_7.c1.c.c.m[32 x 1], rn2_7.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.y = RectifiedLinear(rn2_7.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c2.c.c = Convolution(rn2_7.c2.W[32 x 288], rn2_7.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.y = BatchNormalization(rn2_7.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c2.c.sc[32 x 1], rn2_7.c2.c.b[32 x 1], rn2_7.c2.c.m[32 x 1], rn2_7.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.p = Plus(rn2_7.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.y = RectifiedLinear(rn2_7.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.c.c.c = Convolution(rn2_8.c1.c.W[32 x 288], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.y = BatchNormalization(rn2_8.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c1.c.c.sc[32 x 1], rn2_8.c1.c.c.b[32 x 1], rn2_8.c1.c.c.m[32 x 1], rn2_8.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.y = RectifiedLinear(rn2_8.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c2.c.c = Convolution(rn2_8.c2.W[32 x 288], rn2_8.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.y = BatchNormalization(rn2_8.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c2.c.sc[32 x 1], rn2_8.c2.c.b[32 x 1], rn2_8.c2.c.m[32 x 1], rn2_8.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.p = Plus(rn2_8.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.y = RectifiedLinear(rn2_8.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.c.c.c = Convolution(rn2_9.c1.c.W[32 x 288], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.y = BatchNormalization(rn2_9.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c1.c.c.sc[32 x 1], rn2_9.c1.c.c.b[32 x 1], rn2_9.c1.c.c.m[32 x 1], rn2_9.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.y = RectifiedLinear(rn2_9.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c2.c.c = Convolution(rn2_9.c2.W[32 x 288], rn2_9.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.y = BatchNormalization(rn2_9.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c2.c.sc[32 x 1], rn2_9.c2.c.b[32 x 1], rn2_9.c2.c.m[32 x 1], rn2_9.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.p = Plus(rn2_9.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.y = RectifiedLinear(rn2_9.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.c.c.c = Convolution(rn2_10.c1.c.W[32 x 288], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.y = BatchNormalization(rn2_10.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c1.c.c.sc[32 x 1], rn2_10.c1.c.c.b[32 x 1], rn2_10.c1.c.c.m[32 x 1], rn2_10.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.y = RectifiedLinear(rn2_10.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c2.c.c = Convolution(rn2_10.c2.W[32 x 288], rn2_10.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.y = BatchNormalization(rn2_10.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c2.c.sc[32 x 1], rn2_10.c2.c.b[32 x 1], rn2_10.c2.c.m[32 x 1], rn2_10.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.p = Plus(rn2_10.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.y = RectifiedLinear(rn2_10.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.c.c.c = Convolution(rn2_11.c1.c.W[32 x 288], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.y = BatchNormalization(rn2_11.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c1.c.c.sc[32 x 1], rn2_11.c1.c.c.b[32 x 1], rn2_11.c1.c.c.m[32 x 1], rn2_11.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.y = RectifiedLinear(rn2_11.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c2.c.c = Convolution(rn2_11.c2.W[32 x 288], rn2_11.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.y = BatchNormalization(rn2_11.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c2.c.sc[32 x 1], rn2_11.c2.c.b[32 x 1], rn2_11.c2.c.m[32 x 1], rn2_11.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.p = Plus(rn2_11.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.y = RectifiedLinear(rn2_11.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.c.c.c = Convolution(rn2_12.c1.c.W[32 x 288], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.y = BatchNormalization(rn2_12.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c1.c.c.sc[32 x 1], rn2_12.c1.c.c.b[32 x 1], rn2_12.c1.c.c.m[32 x 1], rn2_12.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.y = RectifiedLinear(rn2_12.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c2.c.c = Convolution(rn2_12.c2.W[32 x 288], rn2_12.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.y = BatchNormalization(rn2_12.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c2.c.sc[32 x 1], rn2_12.c2.c.b[32 x 1], rn2_12.c2.c.m[32 x 1], rn2_12.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.p = Plus(rn2_12.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.y = RectifiedLinear(rn2_12.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.c.c.c = Convolution(rn2_13.c1.c.W[32 x 288], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.y = BatchNormalization(rn2_13.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c1.c.c.sc[32 x 1], rn2_13.c1.c.c.b[32 x 1], rn2_13.c1.c.c.m[32 x 1], rn2_13.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.y = RectifiedLinear(rn2_13.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c2.c.c = Convolution(rn2_13.c2.W[32 x 288], rn2_13.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.y = BatchNormalization(rn2_13.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c2.c.sc[32 x 1], rn2_13.c2.c.b[32 x 1], rn2_13.c2.c.m[32 x 1], rn2_13.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.p = Plus(rn2_13.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.y = RectifiedLinear(rn2_13.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.c.c.c = Convolution(rn2_14.c1.c.W[32 x 288], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.y = BatchNormalization(rn2_14.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c1.c.c.sc[32 x 1], rn2_14.c1.c.c.b[32 x 1], rn2_14.c1.c.c.m[32 x 1], rn2_14.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.y = RectifiedLinear(rn2_14.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c2.c.c = Convolution(rn2_14.c2.W[32 x 288], rn2_14.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.y = BatchNormalization(rn2_14.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c2.c.sc[32 x 1], rn2_14.c2.c.b[32 x 1], rn2_14.c2.c.m[32 x 1], rn2_14.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.p = Plus(rn2_14.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.y = RectifiedLinear(rn2_14.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.c.c.c = Convolution(rn2_15.c1.c.W[32 x 288], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.y = BatchNormalization(rn2_15.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c1.c.c.sc[32 x 1], rn2_15.c1.c.c.b[32 x 1], rn2_15.c1.c.c.m[32 x 1], rn2_15.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.y = RectifiedLinear(rn2_15.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c2.c.c = Convolution(rn2_15.c2.W[32 x 288], rn2_15.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.y = BatchNormalization(rn2_15.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c2.c.sc[32 x 1], rn2_15.c2.c.b[32 x 1], rn2_15.c2.c.m[32 x 1], rn2_15.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.p = Plus(rn2_15.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.y = RectifiedLinear(rn2_15.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.c.c.c = Convolution(rn2_16.c1.c.W[32 x 288], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.y = BatchNormalization(rn2_16.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c1.c.c.sc[32 x 1], rn2_16.c1.c.c.b[32 x 1], rn2_16.c1.c.c.m[32 x 1], rn2_16.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.y = RectifiedLinear(rn2_16.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c2.c.c = Convolution(rn2_16.c2.W[32 x 288], rn2_16.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.y = BatchNormalization(rn2_16.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c2.c.sc[32 x 1], rn2_16.c2.c.b[32 x 1], rn2_16.c2.c.m[32 x 1], rn2_16.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.p = Plus(rn2_16.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.y = RectifiedLinear(rn2_16.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.c.c.c = Convolution(rn2_17.c1.c.W[32 x 288], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.y = BatchNormalization(rn2_17.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c1.c.c.sc[32 x 1], rn2_17.c1.c.c.b[32 x 1], rn2_17.c1.c.c.m[32 x 1], rn2_17.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.y = RectifiedLinear(rn2_17.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c2.c.c = Convolution(rn2_17.c2.W[32 x 288], rn2_17.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.y = BatchNormalization(rn2_17.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c2.c.sc[32 x 1], rn2_17.c2.c.b[32 x 1], rn2_17.c2.c.m[32 x 1], rn2_17.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.p = Plus(rn2_17.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.y = RectifiedLinear(rn2_17.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.c.c.c = Convolution(rn2_18.c1.c.W[32 x 288], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.y = BatchNormalization(rn2_18.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c1.c.c.sc[32 x 1], rn2_18.c1.c.c.b[32 x 1], rn2_18.c1.c.c.m[32 x 1], rn2_18.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.y = RectifiedLinear(rn2_18.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c2.c.c = Convolution(rn2_18.c2.W[32 x 288], rn2_18.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.y = BatchNormalization(rn2_18.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c2.c.sc[32 x 1], rn2_18.c2.c.b[32 x 1], rn2_18.c2.c.m[32 x 1], rn2_18.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.p = Plus(rn2_18.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.y = RectifiedLinear(rn2_18.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn3_1.c1.c.c.c = Convolution(rn3_1.c1.c.W[64 x 288], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.y = BatchNormalization(rn3_1.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c1.c.c.sc[64 x 1], rn3_1.c1.c.c.b[64 x 1], rn3_1.c1.c.c.m[64 x 1], rn3_1.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c2.c.c = Convolution(rn3_1.c2.W[64 x 576], rn3_1.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.y = BatchNormalization(rn3_1.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c2.c.sc[64 x 1], rn3_1.c2.c.b[64 x 1], rn3_1.c2.c.m[64 x 1], rn3_1.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1_Wproj = LearnableParameter -> [64 x 32] +Validating --> rn3_1.c_proj.c = Convolution(rn3_1_Wproj[64 x 32], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c_proj.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.y = BatchNormalization(rn3_1.c_proj.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.sc[64 x 1], rn3_1.c_proj.b[64 x 1], rn3_1.c_proj.m[64 x 1], rn3_1.c_proj.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.p = Plus(rn3_1.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.c.c.c = Convolution(rn3_2.c1.c.W[64 x 576], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.y = BatchNormalization(rn3_2.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c1.c.c.sc[64 x 1], rn3_2.c1.c.c.b[64 x 1], rn3_2.c1.c.c.m[64 x 1], rn3_2.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c2.c.c = Convolution(rn3_2.c2.W[64 x 576], rn3_2.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.y = BatchNormalization(rn3_2.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c2.c.sc[64 x 1], rn3_2.c2.c.b[64 x 1], rn3_2.c2.c.m[64 x 1], rn3_2.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.p = Plus(rn3_2.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.c.c.c = Convolution(rn3_3.c1.c.W[64 x 576], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.y = BatchNormalization(rn3_3.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c1.c.c.sc[64 x 1], rn3_3.c1.c.c.b[64 x 1], rn3_3.c1.c.c.m[64 x 1], rn3_3.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c2.c.c = Convolution(rn3_3.c2.W[64 x 576], rn3_3.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.y = BatchNormalization(rn3_3.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c2.c.sc[64 x 1], rn3_3.c2.c.b[64 x 1], rn3_3.c2.c.m[64 x 1], rn3_3.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.p = Plus(rn3_3.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.c.c.c = Convolution(rn3_4.c1.c.W[64 x 576], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.y = BatchNormalization(rn3_4.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c1.c.c.sc[64 x 1], rn3_4.c1.c.c.b[64 x 1], rn3_4.c1.c.c.m[64 x 1], rn3_4.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.y = RectifiedLinear(rn3_4.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c2.c.c = Convolution(rn3_4.c2.W[64 x 576], rn3_4.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.y = BatchNormalization(rn3_4.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c2.c.sc[64 x 1], rn3_4.c2.c.b[64 x 1], rn3_4.c2.c.m[64 x 1], rn3_4.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.p = Plus(rn3_4.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.y = RectifiedLinear(rn3_4.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.c.c.c = Convolution(rn3_5.c1.c.W[64 x 576], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.y = BatchNormalization(rn3_5.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c1.c.c.sc[64 x 1], rn3_5.c1.c.c.b[64 x 1], rn3_5.c1.c.c.m[64 x 1], rn3_5.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.y = RectifiedLinear(rn3_5.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c2.c.c = Convolution(rn3_5.c2.W[64 x 576], rn3_5.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.y = BatchNormalization(rn3_5.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c2.c.sc[64 x 1], rn3_5.c2.c.b[64 x 1], rn3_5.c2.c.m[64 x 1], rn3_5.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.p = Plus(rn3_5.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.y = RectifiedLinear(rn3_5.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.c.c.c = Convolution(rn3_6.c1.c.W[64 x 576], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.y = BatchNormalization(rn3_6.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c1.c.c.sc[64 x 1], rn3_6.c1.c.c.b[64 x 1], rn3_6.c1.c.c.m[64 x 1], rn3_6.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.y = RectifiedLinear(rn3_6.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c2.c.c = Convolution(rn3_6.c2.W[64 x 576], rn3_6.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.y = BatchNormalization(rn3_6.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c2.c.sc[64 x 1], rn3_6.c2.c.b[64 x 1], rn3_6.c2.c.m[64 x 1], rn3_6.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.p = Plus(rn3_6.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.y = RectifiedLinear(rn3_6.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.c.c.c = Convolution(rn3_7.c1.c.W[64 x 576], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.y = BatchNormalization(rn3_7.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c1.c.c.sc[64 x 1], rn3_7.c1.c.c.b[64 x 1], rn3_7.c1.c.c.m[64 x 1], rn3_7.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.y = RectifiedLinear(rn3_7.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c2.c.c = Convolution(rn3_7.c2.W[64 x 576], rn3_7.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.y = BatchNormalization(rn3_7.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c2.c.sc[64 x 1], rn3_7.c2.c.b[64 x 1], rn3_7.c2.c.m[64 x 1], rn3_7.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.p = Plus(rn3_7.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.y = RectifiedLinear(rn3_7.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.c.c.c = Convolution(rn3_8.c1.c.W[64 x 576], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.y = BatchNormalization(rn3_8.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c1.c.c.sc[64 x 1], rn3_8.c1.c.c.b[64 x 1], rn3_8.c1.c.c.m[64 x 1], rn3_8.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.y = RectifiedLinear(rn3_8.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c2.c.c = Convolution(rn3_8.c2.W[64 x 576], rn3_8.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.y = BatchNormalization(rn3_8.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c2.c.sc[64 x 1], rn3_8.c2.c.b[64 x 1], rn3_8.c2.c.m[64 x 1], rn3_8.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.p = Plus(rn3_8.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.y = RectifiedLinear(rn3_8.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.c.c.c = Convolution(rn3_9.c1.c.W[64 x 576], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.y = BatchNormalization(rn3_9.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c1.c.c.sc[64 x 1], rn3_9.c1.c.c.b[64 x 1], rn3_9.c1.c.c.m[64 x 1], rn3_9.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.y = RectifiedLinear(rn3_9.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c2.c.c = Convolution(rn3_9.c2.W[64 x 576], rn3_9.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.y = BatchNormalization(rn3_9.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c2.c.sc[64 x 1], rn3_9.c2.c.b[64 x 1], rn3_9.c2.c.m[64 x 1], rn3_9.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.p = Plus(rn3_9.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.y = RectifiedLinear(rn3_9.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.c.c.c = Convolution(rn3_10.c1.c.W[64 x 576], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.y = BatchNormalization(rn3_10.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c1.c.c.sc[64 x 1], rn3_10.c1.c.c.b[64 x 1], rn3_10.c1.c.c.m[64 x 1], rn3_10.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.y = RectifiedLinear(rn3_10.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c2.c.c = Convolution(rn3_10.c2.W[64 x 576], rn3_10.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.y = BatchNormalization(rn3_10.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c2.c.sc[64 x 1], rn3_10.c2.c.b[64 x 1], rn3_10.c2.c.m[64 x 1], rn3_10.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.p = Plus(rn3_10.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.y = RectifiedLinear(rn3_10.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.c.c.c = Convolution(rn3_11.c1.c.W[64 x 576], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.y = BatchNormalization(rn3_11.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c1.c.c.sc[64 x 1], rn3_11.c1.c.c.b[64 x 1], rn3_11.c1.c.c.m[64 x 1], rn3_11.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.y = RectifiedLinear(rn3_11.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c2.c.c = Convolution(rn3_11.c2.W[64 x 576], rn3_11.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.y = BatchNormalization(rn3_11.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c2.c.sc[64 x 1], rn3_11.c2.c.b[64 x 1], rn3_11.c2.c.m[64 x 1], rn3_11.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.p = Plus(rn3_11.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.y = RectifiedLinear(rn3_11.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.c.c.c = Convolution(rn3_12.c1.c.W[64 x 576], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.y = BatchNormalization(rn3_12.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c1.c.c.sc[64 x 1], rn3_12.c1.c.c.b[64 x 1], rn3_12.c1.c.c.m[64 x 1], rn3_12.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.y = RectifiedLinear(rn3_12.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c2.c.c = Convolution(rn3_12.c2.W[64 x 576], rn3_12.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.y = BatchNormalization(rn3_12.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c2.c.sc[64 x 1], rn3_12.c2.c.b[64 x 1], rn3_12.c2.c.m[64 x 1], rn3_12.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.p = Plus(rn3_12.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.y = RectifiedLinear(rn3_12.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.c.c.c = Convolution(rn3_13.c1.c.W[64 x 576], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.y = BatchNormalization(rn3_13.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c1.c.c.sc[64 x 1], rn3_13.c1.c.c.b[64 x 1], rn3_13.c1.c.c.m[64 x 1], rn3_13.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.y = RectifiedLinear(rn3_13.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c2.c.c = Convolution(rn3_13.c2.W[64 x 576], rn3_13.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.y = BatchNormalization(rn3_13.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c2.c.sc[64 x 1], rn3_13.c2.c.b[64 x 1], rn3_13.c2.c.m[64 x 1], rn3_13.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.p = Plus(rn3_13.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.y = RectifiedLinear(rn3_13.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.c.c.c = Convolution(rn3_14.c1.c.W[64 x 576], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.y = BatchNormalization(rn3_14.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c1.c.c.sc[64 x 1], rn3_14.c1.c.c.b[64 x 1], rn3_14.c1.c.c.m[64 x 1], rn3_14.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.y = RectifiedLinear(rn3_14.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c2.c.c = Convolution(rn3_14.c2.W[64 x 576], rn3_14.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.y = BatchNormalization(rn3_14.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c2.c.sc[64 x 1], rn3_14.c2.c.b[64 x 1], rn3_14.c2.c.m[64 x 1], rn3_14.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.p = Plus(rn3_14.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.y = RectifiedLinear(rn3_14.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.c.c.c = Convolution(rn3_15.c1.c.W[64 x 576], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.y = BatchNormalization(rn3_15.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c1.c.c.sc[64 x 1], rn3_15.c1.c.c.b[64 x 1], rn3_15.c1.c.c.m[64 x 1], rn3_15.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.y = RectifiedLinear(rn3_15.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c2.c.c = Convolution(rn3_15.c2.W[64 x 576], rn3_15.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.y = BatchNormalization(rn3_15.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c2.c.sc[64 x 1], rn3_15.c2.c.b[64 x 1], rn3_15.c2.c.m[64 x 1], rn3_15.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.p = Plus(rn3_15.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.y = RectifiedLinear(rn3_15.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.c.c.c = Convolution(rn3_16.c1.c.W[64 x 576], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.y = BatchNormalization(rn3_16.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c1.c.c.sc[64 x 1], rn3_16.c1.c.c.b[64 x 1], rn3_16.c1.c.c.m[64 x 1], rn3_16.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.y = RectifiedLinear(rn3_16.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c2.c.c = Convolution(rn3_16.c2.W[64 x 576], rn3_16.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.y = BatchNormalization(rn3_16.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c2.c.sc[64 x 1], rn3_16.c2.c.b[64 x 1], rn3_16.c2.c.m[64 x 1], rn3_16.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.p = Plus(rn3_16.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.y = RectifiedLinear(rn3_16.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.c.c.c = Convolution(rn3_17.c1.c.W[64 x 576], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.y = BatchNormalization(rn3_17.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c1.c.c.sc[64 x 1], rn3_17.c1.c.c.b[64 x 1], rn3_17.c1.c.c.m[64 x 1], rn3_17.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.y = RectifiedLinear(rn3_17.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c2.c.c = Convolution(rn3_17.c2.W[64 x 576], rn3_17.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.y = BatchNormalization(rn3_17.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c2.c.sc[64 x 1], rn3_17.c2.c.b[64 x 1], rn3_17.c2.c.m[64 x 1], rn3_17.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.p = Plus(rn3_17.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.y = RectifiedLinear(rn3_17.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.c.c.c = Convolution(rn3_18.c1.c.W[64 x 576], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.y = BatchNormalization(rn3_18.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c1.c.c.sc[64 x 1], rn3_18.c1.c.c.b[64 x 1], rn3_18.c1.c.c.m[64 x 1], rn3_18.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.y = RectifiedLinear(rn3_18.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c2.c.c = Convolution(rn3_18.c2.W[64 x 576], rn3_18.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.y = BatchNormalization(rn3_18.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c2.c.sc[64 x 1], rn3_18.c2.c.b[64 x 1], rn3_18.c2.c.m[64 x 1], rn3_18.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.p = Plus(rn3_18.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.y = RectifiedLinear(rn3_18.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> pool = AveragePooling(rn3_18.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [1 x 1 x 64 x *] +Validating --> OutputNodes.t = Times(OutputNodes.W[10 x 64], pool[1 x 1 x 64 x *]) -> [10 x *] +Validating --> OutputNodes.b = LearnableParameter -> [10] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10 x *], OutputNodes.b[10]) -> [10 x *] +Validating --> CE = CrossEntropyWithSoftmax(labels[10 x *], OutputNodes.z[10 x *]) -> [1] +Validating --> Err = ErrorPrediction(labels[10 x *], OutputNodes.z[10 x *]) -> [1] + +Validating network. 390 nodes to process in pass 2. + +Validating --> labels = InputValue -> [10 x *] +Validating --> OutputNodes.W = LearnableParameter -> [10 x 64] +Validating --> rn3_18.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_18.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_17.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_17.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_16.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_16.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_15.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_15.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_14.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_14.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_13.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_13.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_12.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_12.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_11.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_11.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_10.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_10.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_9.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_9.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_8.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_8.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_7.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_7.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_6.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_6.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_5.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_5.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_4.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_4.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 x 288] +Validating --> rn2_18.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_18.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_17.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_17.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_16.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_16.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_15.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_15.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_14.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_14.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_13.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_13.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_12.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_12.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_11.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_11.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_10.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_10.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_9.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_9.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_8.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_8.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_7.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_7.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_6.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_6.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_5.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_5.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_4.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_4.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 x 144] +Validating --> rn1_18.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_18.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_17.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_17.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_16.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_16.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_15.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_15.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_14.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_14.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_13.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_13.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_12.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_12.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_11.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_11.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_10.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_10.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_9.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_9.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_8.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_8.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_7.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_7.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_6.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_6.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_5.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_5.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_4.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_4.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> conv1.c.W = LearnableParameter -> [16 x 27] +Validating --> features = InputValue -> [32 x 32 x 3 x *] +Validating --> conv1.c.c.c = Convolution(conv1.c.W[16 x 27], features[32 x 32 x 3 x * {W=32, H=3, C=32}]) -> [32 x 32 x 16 x *] +Validating --> conv1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.y = BatchNormalization(conv1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.c.c.sc[16 x 1], conv1.c.c.b[16 x 1], conv1.c.c.m[16 x 1], conv1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> conv1.y = RectifiedLinear(conv1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.c.c.c = Convolution(rn1_1.c1.c.W[16 x 144], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.y = BatchNormalization(rn1_1.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c1.c.c.sc[16 x 1], rn1_1.c1.c.c.b[16 x 1], rn1_1.c1.c.c.m[16 x 1], rn1_1.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c2.c.c = Convolution(rn1_1.c2.W[16 x 144], rn1_1.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.y = BatchNormalization(rn1_1.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c2.c.sc[16 x 1], rn1_1.c2.c.b[16 x 1], rn1_1.c2.c.m[16 x 1], rn1_1.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.p = Plus(rn1_1.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.c.c.c = Convolution(rn1_2.c1.c.W[16 x 144], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.y = BatchNormalization(rn1_2.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c1.c.c.sc[16 x 1], rn1_2.c1.c.c.b[16 x 1], rn1_2.c1.c.c.m[16 x 1], rn1_2.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c2.c.c = Convolution(rn1_2.c2.W[16 x 144], rn1_2.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.y = BatchNormalization(rn1_2.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c2.c.sc[16 x 1], rn1_2.c2.c.b[16 x 1], rn1_2.c2.c.m[16 x 1], rn1_2.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.p = Plus(rn1_2.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.c.c.c = Convolution(rn1_3.c1.c.W[16 x 144], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.y = BatchNormalization(rn1_3.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c1.c.c.sc[16 x 1], rn1_3.c1.c.c.b[16 x 1], rn1_3.c1.c.c.m[16 x 1], rn1_3.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c2.c.c = Convolution(rn1_3.c2.W[16 x 144], rn1_3.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.y = BatchNormalization(rn1_3.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c2.c.sc[16 x 1], rn1_3.c2.c.b[16 x 1], rn1_3.c2.c.m[16 x 1], rn1_3.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.p = Plus(rn1_3.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.c.c.c = Convolution(rn1_4.c1.c.W[16 x 144], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.y = BatchNormalization(rn1_4.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c1.c.c.sc[16 x 1], rn1_4.c1.c.c.b[16 x 1], rn1_4.c1.c.c.m[16 x 1], rn1_4.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.y = RectifiedLinear(rn1_4.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c2.c.c = Convolution(rn1_4.c2.W[16 x 144], rn1_4.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.y = BatchNormalization(rn1_4.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c2.c.sc[16 x 1], rn1_4.c2.c.b[16 x 1], rn1_4.c2.c.m[16 x 1], rn1_4.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.p = Plus(rn1_4.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.y = RectifiedLinear(rn1_4.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.c.c.c = Convolution(rn1_5.c1.c.W[16 x 144], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.y = BatchNormalization(rn1_5.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c1.c.c.sc[16 x 1], rn1_5.c1.c.c.b[16 x 1], rn1_5.c1.c.c.m[16 x 1], rn1_5.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.y = RectifiedLinear(rn1_5.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c2.c.c = Convolution(rn1_5.c2.W[16 x 144], rn1_5.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.y = BatchNormalization(rn1_5.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c2.c.sc[16 x 1], rn1_5.c2.c.b[16 x 1], rn1_5.c2.c.m[16 x 1], rn1_5.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.p = Plus(rn1_5.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.y = RectifiedLinear(rn1_5.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.c.c.c = Convolution(rn1_6.c1.c.W[16 x 144], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.y = BatchNormalization(rn1_6.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c1.c.c.sc[16 x 1], rn1_6.c1.c.c.b[16 x 1], rn1_6.c1.c.c.m[16 x 1], rn1_6.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.y = RectifiedLinear(rn1_6.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c2.c.c = Convolution(rn1_6.c2.W[16 x 144], rn1_6.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.y = BatchNormalization(rn1_6.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c2.c.sc[16 x 1], rn1_6.c2.c.b[16 x 1], rn1_6.c2.c.m[16 x 1], rn1_6.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.p = Plus(rn1_6.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.y = RectifiedLinear(rn1_6.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.c.c.c = Convolution(rn1_7.c1.c.W[16 x 144], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.y = BatchNormalization(rn1_7.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c1.c.c.sc[16 x 1], rn1_7.c1.c.c.b[16 x 1], rn1_7.c1.c.c.m[16 x 1], rn1_7.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.y = RectifiedLinear(rn1_7.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c2.c.c = Convolution(rn1_7.c2.W[16 x 144], rn1_7.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.y = BatchNormalization(rn1_7.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c2.c.sc[16 x 1], rn1_7.c2.c.b[16 x 1], rn1_7.c2.c.m[16 x 1], rn1_7.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.p = Plus(rn1_7.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.y = RectifiedLinear(rn1_7.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.c.c.c = Convolution(rn1_8.c1.c.W[16 x 144], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.y = BatchNormalization(rn1_8.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c1.c.c.sc[16 x 1], rn1_8.c1.c.c.b[16 x 1], rn1_8.c1.c.c.m[16 x 1], rn1_8.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.y = RectifiedLinear(rn1_8.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c2.c.c = Convolution(rn1_8.c2.W[16 x 144], rn1_8.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.y = BatchNormalization(rn1_8.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c2.c.sc[16 x 1], rn1_8.c2.c.b[16 x 1], rn1_8.c2.c.m[16 x 1], rn1_8.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.p = Plus(rn1_8.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.y = RectifiedLinear(rn1_8.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.c.c.c = Convolution(rn1_9.c1.c.W[16 x 144], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.y = BatchNormalization(rn1_9.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c1.c.c.sc[16 x 1], rn1_9.c1.c.c.b[16 x 1], rn1_9.c1.c.c.m[16 x 1], rn1_9.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.y = RectifiedLinear(rn1_9.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c2.c.c = Convolution(rn1_9.c2.W[16 x 144], rn1_9.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.y = BatchNormalization(rn1_9.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c2.c.sc[16 x 1], rn1_9.c2.c.b[16 x 1], rn1_9.c2.c.m[16 x 1], rn1_9.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.p = Plus(rn1_9.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.y = RectifiedLinear(rn1_9.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.c.c.c = Convolution(rn1_10.c1.c.W[16 x 144], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.y = BatchNormalization(rn1_10.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c1.c.c.sc[16 x 1], rn1_10.c1.c.c.b[16 x 1], rn1_10.c1.c.c.m[16 x 1], rn1_10.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.y = RectifiedLinear(rn1_10.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c2.c.c = Convolution(rn1_10.c2.W[16 x 144], rn1_10.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.y = BatchNormalization(rn1_10.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c2.c.sc[16 x 1], rn1_10.c2.c.b[16 x 1], rn1_10.c2.c.m[16 x 1], rn1_10.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.p = Plus(rn1_10.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.y = RectifiedLinear(rn1_10.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.c.c.c = Convolution(rn1_11.c1.c.W[16 x 144], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.y = BatchNormalization(rn1_11.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c1.c.c.sc[16 x 1], rn1_11.c1.c.c.b[16 x 1], rn1_11.c1.c.c.m[16 x 1], rn1_11.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.y = RectifiedLinear(rn1_11.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c2.c.c = Convolution(rn1_11.c2.W[16 x 144], rn1_11.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.y = BatchNormalization(rn1_11.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c2.c.sc[16 x 1], rn1_11.c2.c.b[16 x 1], rn1_11.c2.c.m[16 x 1], rn1_11.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.p = Plus(rn1_11.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.y = RectifiedLinear(rn1_11.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.c.c.c = Convolution(rn1_12.c1.c.W[16 x 144], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.y = BatchNormalization(rn1_12.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c1.c.c.sc[16 x 1], rn1_12.c1.c.c.b[16 x 1], rn1_12.c1.c.c.m[16 x 1], rn1_12.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.y = RectifiedLinear(rn1_12.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c2.c.c = Convolution(rn1_12.c2.W[16 x 144], rn1_12.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.y = BatchNormalization(rn1_12.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c2.c.sc[16 x 1], rn1_12.c2.c.b[16 x 1], rn1_12.c2.c.m[16 x 1], rn1_12.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.p = Plus(rn1_12.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.y = RectifiedLinear(rn1_12.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.c.c.c = Convolution(rn1_13.c1.c.W[16 x 144], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.y = BatchNormalization(rn1_13.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c1.c.c.sc[16 x 1], rn1_13.c1.c.c.b[16 x 1], rn1_13.c1.c.c.m[16 x 1], rn1_13.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.y = RectifiedLinear(rn1_13.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c2.c.c = Convolution(rn1_13.c2.W[16 x 144], rn1_13.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.y = BatchNormalization(rn1_13.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c2.c.sc[16 x 1], rn1_13.c2.c.b[16 x 1], rn1_13.c2.c.m[16 x 1], rn1_13.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.p = Plus(rn1_13.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.y = RectifiedLinear(rn1_13.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.c.c.c = Convolution(rn1_14.c1.c.W[16 x 144], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.y = BatchNormalization(rn1_14.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c1.c.c.sc[16 x 1], rn1_14.c1.c.c.b[16 x 1], rn1_14.c1.c.c.m[16 x 1], rn1_14.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.y = RectifiedLinear(rn1_14.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c2.c.c = Convolution(rn1_14.c2.W[16 x 144], rn1_14.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.y = BatchNormalization(rn1_14.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c2.c.sc[16 x 1], rn1_14.c2.c.b[16 x 1], rn1_14.c2.c.m[16 x 1], rn1_14.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.p = Plus(rn1_14.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.y = RectifiedLinear(rn1_14.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.c.c.c = Convolution(rn1_15.c1.c.W[16 x 144], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.y = BatchNormalization(rn1_15.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c1.c.c.sc[16 x 1], rn1_15.c1.c.c.b[16 x 1], rn1_15.c1.c.c.m[16 x 1], rn1_15.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.y = RectifiedLinear(rn1_15.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c2.c.c = Convolution(rn1_15.c2.W[16 x 144], rn1_15.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.y = BatchNormalization(rn1_15.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c2.c.sc[16 x 1], rn1_15.c2.c.b[16 x 1], rn1_15.c2.c.m[16 x 1], rn1_15.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.p = Plus(rn1_15.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.y = RectifiedLinear(rn1_15.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.c.c.c = Convolution(rn1_16.c1.c.W[16 x 144], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.y = BatchNormalization(rn1_16.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c1.c.c.sc[16 x 1], rn1_16.c1.c.c.b[16 x 1], rn1_16.c1.c.c.m[16 x 1], rn1_16.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.y = RectifiedLinear(rn1_16.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c2.c.c = Convolution(rn1_16.c2.W[16 x 144], rn1_16.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.y = BatchNormalization(rn1_16.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c2.c.sc[16 x 1], rn1_16.c2.c.b[16 x 1], rn1_16.c2.c.m[16 x 1], rn1_16.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.p = Plus(rn1_16.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.y = RectifiedLinear(rn1_16.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.c.c.c = Convolution(rn1_17.c1.c.W[16 x 144], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.y = BatchNormalization(rn1_17.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c1.c.c.sc[16 x 1], rn1_17.c1.c.c.b[16 x 1], rn1_17.c1.c.c.m[16 x 1], rn1_17.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.y = RectifiedLinear(rn1_17.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c2.c.c = Convolution(rn1_17.c2.W[16 x 144], rn1_17.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.y = BatchNormalization(rn1_17.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c2.c.sc[16 x 1], rn1_17.c2.c.b[16 x 1], rn1_17.c2.c.m[16 x 1], rn1_17.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.p = Plus(rn1_17.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.y = RectifiedLinear(rn1_17.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.c.c.c = Convolution(rn1_18.c1.c.W[16 x 144], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.y = BatchNormalization(rn1_18.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c1.c.c.sc[16 x 1], rn1_18.c1.c.c.b[16 x 1], rn1_18.c1.c.c.m[16 x 1], rn1_18.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.y = RectifiedLinear(rn1_18.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c2.c.c = Convolution(rn1_18.c2.W[16 x 144], rn1_18.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.y = BatchNormalization(rn1_18.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c2.c.sc[16 x 1], rn1_18.c2.c.b[16 x 1], rn1_18.c2.c.m[16 x 1], rn1_18.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.p = Plus(rn1_18.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.y = RectifiedLinear(rn1_18.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn2_1.c1.c.c.c = Convolution(rn2_1.c1.c.W[32 x 144], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.y = BatchNormalization(rn2_1.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c1.c.c.sc[32 x 1], rn2_1.c1.c.c.b[32 x 1], rn2_1.c1.c.c.m[32 x 1], rn2_1.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c2.c.c = Convolution(rn2_1.c2.W[32 x 288], rn2_1.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.y = BatchNormalization(rn2_1.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c2.c.sc[32 x 1], rn2_1.c2.c.b[32 x 1], rn2_1.c2.c.m[32 x 1], rn2_1.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1_Wproj = LearnableParameter -> [32 x 16] +Validating --> rn2_1.c_proj.c = Convolution(rn2_1_Wproj[32 x 16], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c_proj.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.y = BatchNormalization(rn2_1.c_proj.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.sc[32 x 1], rn2_1.c_proj.b[32 x 1], rn2_1.c_proj.m[32 x 1], rn2_1.c_proj.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.p = Plus(rn2_1.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.c.c.c = Convolution(rn2_2.c1.c.W[32 x 288], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.y = BatchNormalization(rn2_2.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c1.c.c.sc[32 x 1], rn2_2.c1.c.c.b[32 x 1], rn2_2.c1.c.c.m[32 x 1], rn2_2.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c2.c.c = Convolution(rn2_2.c2.W[32 x 288], rn2_2.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.y = BatchNormalization(rn2_2.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c2.c.sc[32 x 1], rn2_2.c2.c.b[32 x 1], rn2_2.c2.c.m[32 x 1], rn2_2.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.p = Plus(rn2_2.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.c.c.c = Convolution(rn2_3.c1.c.W[32 x 288], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.y = BatchNormalization(rn2_3.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c1.c.c.sc[32 x 1], rn2_3.c1.c.c.b[32 x 1], rn2_3.c1.c.c.m[32 x 1], rn2_3.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c2.c.c = Convolution(rn2_3.c2.W[32 x 288], rn2_3.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.y = BatchNormalization(rn2_3.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c2.c.sc[32 x 1], rn2_3.c2.c.b[32 x 1], rn2_3.c2.c.m[32 x 1], rn2_3.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.p = Plus(rn2_3.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.c.c.c = Convolution(rn2_4.c1.c.W[32 x 288], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.y = BatchNormalization(rn2_4.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c1.c.c.sc[32 x 1], rn2_4.c1.c.c.b[32 x 1], rn2_4.c1.c.c.m[32 x 1], rn2_4.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.y = RectifiedLinear(rn2_4.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c2.c.c = Convolution(rn2_4.c2.W[32 x 288], rn2_4.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.y = BatchNormalization(rn2_4.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c2.c.sc[32 x 1], rn2_4.c2.c.b[32 x 1], rn2_4.c2.c.m[32 x 1], rn2_4.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.p = Plus(rn2_4.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.y = RectifiedLinear(rn2_4.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.c.c.c = Convolution(rn2_5.c1.c.W[32 x 288], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.y = BatchNormalization(rn2_5.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c1.c.c.sc[32 x 1], rn2_5.c1.c.c.b[32 x 1], rn2_5.c1.c.c.m[32 x 1], rn2_5.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.y = RectifiedLinear(rn2_5.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c2.c.c = Convolution(rn2_5.c2.W[32 x 288], rn2_5.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.y = BatchNormalization(rn2_5.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c2.c.sc[32 x 1], rn2_5.c2.c.b[32 x 1], rn2_5.c2.c.m[32 x 1], rn2_5.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.p = Plus(rn2_5.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.y = RectifiedLinear(rn2_5.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.c.c.c = Convolution(rn2_6.c1.c.W[32 x 288], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.y = BatchNormalization(rn2_6.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c1.c.c.sc[32 x 1], rn2_6.c1.c.c.b[32 x 1], rn2_6.c1.c.c.m[32 x 1], rn2_6.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.y = RectifiedLinear(rn2_6.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c2.c.c = Convolution(rn2_6.c2.W[32 x 288], rn2_6.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.y = BatchNormalization(rn2_6.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c2.c.sc[32 x 1], rn2_6.c2.c.b[32 x 1], rn2_6.c2.c.m[32 x 1], rn2_6.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.p = Plus(rn2_6.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.y = RectifiedLinear(rn2_6.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.c.c.c = Convolution(rn2_7.c1.c.W[32 x 288], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.y = BatchNormalization(rn2_7.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c1.c.c.sc[32 x 1], rn2_7.c1.c.c.b[32 x 1], rn2_7.c1.c.c.m[32 x 1], rn2_7.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.y = RectifiedLinear(rn2_7.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c2.c.c = Convolution(rn2_7.c2.W[32 x 288], rn2_7.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.y = BatchNormalization(rn2_7.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c2.c.sc[32 x 1], rn2_7.c2.c.b[32 x 1], rn2_7.c2.c.m[32 x 1], rn2_7.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.p = Plus(rn2_7.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.y = RectifiedLinear(rn2_7.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.c.c.c = Convolution(rn2_8.c1.c.W[32 x 288], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.y = BatchNormalization(rn2_8.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c1.c.c.sc[32 x 1], rn2_8.c1.c.c.b[32 x 1], rn2_8.c1.c.c.m[32 x 1], rn2_8.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.y = RectifiedLinear(rn2_8.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c2.c.c = Convolution(rn2_8.c2.W[32 x 288], rn2_8.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.y = BatchNormalization(rn2_8.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c2.c.sc[32 x 1], rn2_8.c2.c.b[32 x 1], rn2_8.c2.c.m[32 x 1], rn2_8.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.p = Plus(rn2_8.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.y = RectifiedLinear(rn2_8.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.c.c.c = Convolution(rn2_9.c1.c.W[32 x 288], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.y = BatchNormalization(rn2_9.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c1.c.c.sc[32 x 1], rn2_9.c1.c.c.b[32 x 1], rn2_9.c1.c.c.m[32 x 1], rn2_9.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.y = RectifiedLinear(rn2_9.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c2.c.c = Convolution(rn2_9.c2.W[32 x 288], rn2_9.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.y = BatchNormalization(rn2_9.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c2.c.sc[32 x 1], rn2_9.c2.c.b[32 x 1], rn2_9.c2.c.m[32 x 1], rn2_9.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.p = Plus(rn2_9.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.y = RectifiedLinear(rn2_9.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.c.c.c = Convolution(rn2_10.c1.c.W[32 x 288], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.y = BatchNormalization(rn2_10.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c1.c.c.sc[32 x 1], rn2_10.c1.c.c.b[32 x 1], rn2_10.c1.c.c.m[32 x 1], rn2_10.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.y = RectifiedLinear(rn2_10.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c2.c.c = Convolution(rn2_10.c2.W[32 x 288], rn2_10.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.y = BatchNormalization(rn2_10.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c2.c.sc[32 x 1], rn2_10.c2.c.b[32 x 1], rn2_10.c2.c.m[32 x 1], rn2_10.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.p = Plus(rn2_10.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.y = RectifiedLinear(rn2_10.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.c.c.c = Convolution(rn2_11.c1.c.W[32 x 288], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.y = BatchNormalization(rn2_11.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c1.c.c.sc[32 x 1], rn2_11.c1.c.c.b[32 x 1], rn2_11.c1.c.c.m[32 x 1], rn2_11.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.y = RectifiedLinear(rn2_11.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c2.c.c = Convolution(rn2_11.c2.W[32 x 288], rn2_11.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.y = BatchNormalization(rn2_11.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c2.c.sc[32 x 1], rn2_11.c2.c.b[32 x 1], rn2_11.c2.c.m[32 x 1], rn2_11.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.p = Plus(rn2_11.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.y = RectifiedLinear(rn2_11.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.c.c.c = Convolution(rn2_12.c1.c.W[32 x 288], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.y = BatchNormalization(rn2_12.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c1.c.c.sc[32 x 1], rn2_12.c1.c.c.b[32 x 1], rn2_12.c1.c.c.m[32 x 1], rn2_12.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.y = RectifiedLinear(rn2_12.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c2.c.c = Convolution(rn2_12.c2.W[32 x 288], rn2_12.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.y = BatchNormalization(rn2_12.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c2.c.sc[32 x 1], rn2_12.c2.c.b[32 x 1], rn2_12.c2.c.m[32 x 1], rn2_12.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.p = Plus(rn2_12.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.y = RectifiedLinear(rn2_12.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.c.c.c = Convolution(rn2_13.c1.c.W[32 x 288], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.y = BatchNormalization(rn2_13.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c1.c.c.sc[32 x 1], rn2_13.c1.c.c.b[32 x 1], rn2_13.c1.c.c.m[32 x 1], rn2_13.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.y = RectifiedLinear(rn2_13.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c2.c.c = Convolution(rn2_13.c2.W[32 x 288], rn2_13.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.y = BatchNormalization(rn2_13.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c2.c.sc[32 x 1], rn2_13.c2.c.b[32 x 1], rn2_13.c2.c.m[32 x 1], rn2_13.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.p = Plus(rn2_13.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.y = RectifiedLinear(rn2_13.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.c.c.c = Convolution(rn2_14.c1.c.W[32 x 288], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.y = BatchNormalization(rn2_14.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c1.c.c.sc[32 x 1], rn2_14.c1.c.c.b[32 x 1], rn2_14.c1.c.c.m[32 x 1], rn2_14.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.y = RectifiedLinear(rn2_14.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c2.c.c = Convolution(rn2_14.c2.W[32 x 288], rn2_14.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.y = BatchNormalization(rn2_14.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c2.c.sc[32 x 1], rn2_14.c2.c.b[32 x 1], rn2_14.c2.c.m[32 x 1], rn2_14.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.p = Plus(rn2_14.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.y = RectifiedLinear(rn2_14.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.c.c.c = Convolution(rn2_15.c1.c.W[32 x 288], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.y = BatchNormalization(rn2_15.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c1.c.c.sc[32 x 1], rn2_15.c1.c.c.b[32 x 1], rn2_15.c1.c.c.m[32 x 1], rn2_15.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.y = RectifiedLinear(rn2_15.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c2.c.c = Convolution(rn2_15.c2.W[32 x 288], rn2_15.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.y = BatchNormalization(rn2_15.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c2.c.sc[32 x 1], rn2_15.c2.c.b[32 x 1], rn2_15.c2.c.m[32 x 1], rn2_15.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.p = Plus(rn2_15.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.y = RectifiedLinear(rn2_15.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.c.c.c = Convolution(rn2_16.c1.c.W[32 x 288], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.y = BatchNormalization(rn2_16.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c1.c.c.sc[32 x 1], rn2_16.c1.c.c.b[32 x 1], rn2_16.c1.c.c.m[32 x 1], rn2_16.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.y = RectifiedLinear(rn2_16.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c2.c.c = Convolution(rn2_16.c2.W[32 x 288], rn2_16.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.y = BatchNormalization(rn2_16.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c2.c.sc[32 x 1], rn2_16.c2.c.b[32 x 1], rn2_16.c2.c.m[32 x 1], rn2_16.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.p = Plus(rn2_16.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.y = RectifiedLinear(rn2_16.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.c.c.c = Convolution(rn2_17.c1.c.W[32 x 288], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.y = BatchNormalization(rn2_17.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c1.c.c.sc[32 x 1], rn2_17.c1.c.c.b[32 x 1], rn2_17.c1.c.c.m[32 x 1], rn2_17.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.y = RectifiedLinear(rn2_17.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c2.c.c = Convolution(rn2_17.c2.W[32 x 288], rn2_17.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.y = BatchNormalization(rn2_17.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c2.c.sc[32 x 1], rn2_17.c2.c.b[32 x 1], rn2_17.c2.c.m[32 x 1], rn2_17.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.p = Plus(rn2_17.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.y = RectifiedLinear(rn2_17.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.c.c.c = Convolution(rn2_18.c1.c.W[32 x 288], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.y = BatchNormalization(rn2_18.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c1.c.c.sc[32 x 1], rn2_18.c1.c.c.b[32 x 1], rn2_18.c1.c.c.m[32 x 1], rn2_18.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.y = RectifiedLinear(rn2_18.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c2.c.c = Convolution(rn2_18.c2.W[32 x 288], rn2_18.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.y = BatchNormalization(rn2_18.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c2.c.sc[32 x 1], rn2_18.c2.c.b[32 x 1], rn2_18.c2.c.m[32 x 1], rn2_18.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.p = Plus(rn2_18.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.y = RectifiedLinear(rn2_18.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn3_1.c1.c.c.c = Convolution(rn3_1.c1.c.W[64 x 288], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.y = BatchNormalization(rn3_1.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c1.c.c.sc[64 x 1], rn3_1.c1.c.c.b[64 x 1], rn3_1.c1.c.c.m[64 x 1], rn3_1.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c2.c.c = Convolution(rn3_1.c2.W[64 x 576], rn3_1.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.y = BatchNormalization(rn3_1.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c2.c.sc[64 x 1], rn3_1.c2.c.b[64 x 1], rn3_1.c2.c.m[64 x 1], rn3_1.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1_Wproj = LearnableParameter -> [64 x 32] +Validating --> rn3_1.c_proj.c = Convolution(rn3_1_Wproj[64 x 32], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c_proj.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.y = BatchNormalization(rn3_1.c_proj.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.sc[64 x 1], rn3_1.c_proj.b[64 x 1], rn3_1.c_proj.m[64 x 1], rn3_1.c_proj.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.p = Plus(rn3_1.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.c.c.c = Convolution(rn3_2.c1.c.W[64 x 576], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.y = BatchNormalization(rn3_2.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c1.c.c.sc[64 x 1], rn3_2.c1.c.c.b[64 x 1], rn3_2.c1.c.c.m[64 x 1], rn3_2.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c2.c.c = Convolution(rn3_2.c2.W[64 x 576], rn3_2.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.y = BatchNormalization(rn3_2.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c2.c.sc[64 x 1], rn3_2.c2.c.b[64 x 1], rn3_2.c2.c.m[64 x 1], rn3_2.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.p = Plus(rn3_2.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.c.c.c = Convolution(rn3_3.c1.c.W[64 x 576], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.y = BatchNormalization(rn3_3.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c1.c.c.sc[64 x 1], rn3_3.c1.c.c.b[64 x 1], rn3_3.c1.c.c.m[64 x 1], rn3_3.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c2.c.c = Convolution(rn3_3.c2.W[64 x 576], rn3_3.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.y = BatchNormalization(rn3_3.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c2.c.sc[64 x 1], rn3_3.c2.c.b[64 x 1], rn3_3.c2.c.m[64 x 1], rn3_3.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.p = Plus(rn3_3.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.c.c.c = Convolution(rn3_4.c1.c.W[64 x 576], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.y = BatchNormalization(rn3_4.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c1.c.c.sc[64 x 1], rn3_4.c1.c.c.b[64 x 1], rn3_4.c1.c.c.m[64 x 1], rn3_4.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.y = RectifiedLinear(rn3_4.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c2.c.c = Convolution(rn3_4.c2.W[64 x 576], rn3_4.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.y = BatchNormalization(rn3_4.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c2.c.sc[64 x 1], rn3_4.c2.c.b[64 x 1], rn3_4.c2.c.m[64 x 1], rn3_4.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.p = Plus(rn3_4.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.y = RectifiedLinear(rn3_4.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.c.c.c = Convolution(rn3_5.c1.c.W[64 x 576], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.y = BatchNormalization(rn3_5.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c1.c.c.sc[64 x 1], rn3_5.c1.c.c.b[64 x 1], rn3_5.c1.c.c.m[64 x 1], rn3_5.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.y = RectifiedLinear(rn3_5.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c2.c.c = Convolution(rn3_5.c2.W[64 x 576], rn3_5.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.y = BatchNormalization(rn3_5.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c2.c.sc[64 x 1], rn3_5.c2.c.b[64 x 1], rn3_5.c2.c.m[64 x 1], rn3_5.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.p = Plus(rn3_5.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.y = RectifiedLinear(rn3_5.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.c.c.c = Convolution(rn3_6.c1.c.W[64 x 576], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.y = BatchNormalization(rn3_6.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c1.c.c.sc[64 x 1], rn3_6.c1.c.c.b[64 x 1], rn3_6.c1.c.c.m[64 x 1], rn3_6.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.y = RectifiedLinear(rn3_6.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c2.c.c = Convolution(rn3_6.c2.W[64 x 576], rn3_6.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.y = BatchNormalization(rn3_6.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c2.c.sc[64 x 1], rn3_6.c2.c.b[64 x 1], rn3_6.c2.c.m[64 x 1], rn3_6.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.p = Plus(rn3_6.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.y = RectifiedLinear(rn3_6.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.c.c.c = Convolution(rn3_7.c1.c.W[64 x 576], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.y = BatchNormalization(rn3_7.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c1.c.c.sc[64 x 1], rn3_7.c1.c.c.b[64 x 1], rn3_7.c1.c.c.m[64 x 1], rn3_7.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.y = RectifiedLinear(rn3_7.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c2.c.c = Convolution(rn3_7.c2.W[64 x 576], rn3_7.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.y = BatchNormalization(rn3_7.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c2.c.sc[64 x 1], rn3_7.c2.c.b[64 x 1], rn3_7.c2.c.m[64 x 1], rn3_7.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.p = Plus(rn3_7.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.y = RectifiedLinear(rn3_7.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.c.c.c = Convolution(rn3_8.c1.c.W[64 x 576], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.y = BatchNormalization(rn3_8.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c1.c.c.sc[64 x 1], rn3_8.c1.c.c.b[64 x 1], rn3_8.c1.c.c.m[64 x 1], rn3_8.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.y = RectifiedLinear(rn3_8.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c2.c.c = Convolution(rn3_8.c2.W[64 x 576], rn3_8.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.y = BatchNormalization(rn3_8.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c2.c.sc[64 x 1], rn3_8.c2.c.b[64 x 1], rn3_8.c2.c.m[64 x 1], rn3_8.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.p = Plus(rn3_8.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.y = RectifiedLinear(rn3_8.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.c.c.c = Convolution(rn3_9.c1.c.W[64 x 576], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.y = BatchNormalization(rn3_9.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c1.c.c.sc[64 x 1], rn3_9.c1.c.c.b[64 x 1], rn3_9.c1.c.c.m[64 x 1], rn3_9.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.y = RectifiedLinear(rn3_9.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c2.c.c = Convolution(rn3_9.c2.W[64 x 576], rn3_9.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.y = BatchNormalization(rn3_9.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c2.c.sc[64 x 1], rn3_9.c2.c.b[64 x 1], rn3_9.c2.c.m[64 x 1], rn3_9.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.p = Plus(rn3_9.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.y = RectifiedLinear(rn3_9.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.c.c.c = Convolution(rn3_10.c1.c.W[64 x 576], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.y = BatchNormalization(rn3_10.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c1.c.c.sc[64 x 1], rn3_10.c1.c.c.b[64 x 1], rn3_10.c1.c.c.m[64 x 1], rn3_10.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.y = RectifiedLinear(rn3_10.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c2.c.c = Convolution(rn3_10.c2.W[64 x 576], rn3_10.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.y = BatchNormalization(rn3_10.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c2.c.sc[64 x 1], rn3_10.c2.c.b[64 x 1], rn3_10.c2.c.m[64 x 1], rn3_10.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.p = Plus(rn3_10.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.y = RectifiedLinear(rn3_10.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.c.c.c = Convolution(rn3_11.c1.c.W[64 x 576], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.y = BatchNormalization(rn3_11.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c1.c.c.sc[64 x 1], rn3_11.c1.c.c.b[64 x 1], rn3_11.c1.c.c.m[64 x 1], rn3_11.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.y = RectifiedLinear(rn3_11.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c2.c.c = Convolution(rn3_11.c2.W[64 x 576], rn3_11.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.y = BatchNormalization(rn3_11.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c2.c.sc[64 x 1], rn3_11.c2.c.b[64 x 1], rn3_11.c2.c.m[64 x 1], rn3_11.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.p = Plus(rn3_11.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.y = RectifiedLinear(rn3_11.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.c.c.c = Convolution(rn3_12.c1.c.W[64 x 576], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.y = BatchNormalization(rn3_12.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c1.c.c.sc[64 x 1], rn3_12.c1.c.c.b[64 x 1], rn3_12.c1.c.c.m[64 x 1], rn3_12.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.y = RectifiedLinear(rn3_12.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c2.c.c = Convolution(rn3_12.c2.W[64 x 576], rn3_12.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.y = BatchNormalization(rn3_12.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c2.c.sc[64 x 1], rn3_12.c2.c.b[64 x 1], rn3_12.c2.c.m[64 x 1], rn3_12.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.p = Plus(rn3_12.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.y = RectifiedLinear(rn3_12.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.c.c.c = Convolution(rn3_13.c1.c.W[64 x 576], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.y = BatchNormalization(rn3_13.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c1.c.c.sc[64 x 1], rn3_13.c1.c.c.b[64 x 1], rn3_13.c1.c.c.m[64 x 1], rn3_13.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.y = RectifiedLinear(rn3_13.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c2.c.c = Convolution(rn3_13.c2.W[64 x 576], rn3_13.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.y = BatchNormalization(rn3_13.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c2.c.sc[64 x 1], rn3_13.c2.c.b[64 x 1], rn3_13.c2.c.m[64 x 1], rn3_13.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.p = Plus(rn3_13.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.y = RectifiedLinear(rn3_13.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.c.c.c = Convolution(rn3_14.c1.c.W[64 x 576], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.y = BatchNormalization(rn3_14.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c1.c.c.sc[64 x 1], rn3_14.c1.c.c.b[64 x 1], rn3_14.c1.c.c.m[64 x 1], rn3_14.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.y = RectifiedLinear(rn3_14.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c2.c.c = Convolution(rn3_14.c2.W[64 x 576], rn3_14.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.y = BatchNormalization(rn3_14.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c2.c.sc[64 x 1], rn3_14.c2.c.b[64 x 1], rn3_14.c2.c.m[64 x 1], rn3_14.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.p = Plus(rn3_14.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.y = RectifiedLinear(rn3_14.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.c.c.c = Convolution(rn3_15.c1.c.W[64 x 576], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.y = BatchNormalization(rn3_15.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c1.c.c.sc[64 x 1], rn3_15.c1.c.c.b[64 x 1], rn3_15.c1.c.c.m[64 x 1], rn3_15.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.y = RectifiedLinear(rn3_15.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c2.c.c = Convolution(rn3_15.c2.W[64 x 576], rn3_15.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.y = BatchNormalization(rn3_15.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c2.c.sc[64 x 1], rn3_15.c2.c.b[64 x 1], rn3_15.c2.c.m[64 x 1], rn3_15.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.p = Plus(rn3_15.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.y = RectifiedLinear(rn3_15.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.c.c.c = Convolution(rn3_16.c1.c.W[64 x 576], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.y = BatchNormalization(rn3_16.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c1.c.c.sc[64 x 1], rn3_16.c1.c.c.b[64 x 1], rn3_16.c1.c.c.m[64 x 1], rn3_16.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.y = RectifiedLinear(rn3_16.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c2.c.c = Convolution(rn3_16.c2.W[64 x 576], rn3_16.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.y = BatchNormalization(rn3_16.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c2.c.sc[64 x 1], rn3_16.c2.c.b[64 x 1], rn3_16.c2.c.m[64 x 1], rn3_16.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.p = Plus(rn3_16.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.y = RectifiedLinear(rn3_16.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.c.c.c = Convolution(rn3_17.c1.c.W[64 x 576], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.y = BatchNormalization(rn3_17.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c1.c.c.sc[64 x 1], rn3_17.c1.c.c.b[64 x 1], rn3_17.c1.c.c.m[64 x 1], rn3_17.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.y = RectifiedLinear(rn3_17.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c2.c.c = Convolution(rn3_17.c2.W[64 x 576], rn3_17.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.y = BatchNormalization(rn3_17.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c2.c.sc[64 x 1], rn3_17.c2.c.b[64 x 1], rn3_17.c2.c.m[64 x 1], rn3_17.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.p = Plus(rn3_17.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.y = RectifiedLinear(rn3_17.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.c.c.c = Convolution(rn3_18.c1.c.W[64 x 576], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.y = BatchNormalization(rn3_18.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c1.c.c.sc[64 x 1], rn3_18.c1.c.c.b[64 x 1], rn3_18.c1.c.c.m[64 x 1], rn3_18.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.y = RectifiedLinear(rn3_18.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c2.c.c = Convolution(rn3_18.c2.W[64 x 576], rn3_18.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.y = BatchNormalization(rn3_18.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c2.c.sc[64 x 1], rn3_18.c2.c.b[64 x 1], rn3_18.c2.c.m[64 x 1], rn3_18.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.p = Plus(rn3_18.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.y = RectifiedLinear(rn3_18.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> pool = AveragePooling(rn3_18.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [1 x 1 x 64 x *] +Validating --> OutputNodes.t = Times(OutputNodes.W[10 x 64], pool[1 x 1 x 64 x *]) -> [10 x *] +Validating --> OutputNodes.b = LearnableParameter -> [10] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10 x *], OutputNodes.b[10]) -> [10 x *] +Validating --> CE = CrossEntropyWithSoftmax(labels[10 x *], OutputNodes.z[10 x *]) -> [1] +Validating --> Err = ErrorPrediction(labels[10 x *], OutputNodes.z[10 x *]) -> [1] + +Validating network, final pass. + +Validating --> labels = InputValue -> [10 x *] +Validating --> OutputNodes.W = LearnableParameter -> [10 x 64] +Validating --> rn3_18.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_18.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_17.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_17.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_16.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_16.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_15.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_15.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_14.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_14.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_13.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_13.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_12.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_12.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_11.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_11.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_10.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_10.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_9.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_9.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_8.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_8.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_7.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_7.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_6.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_6.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_5.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_5.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_4.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_4.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 x 288] +Validating --> rn2_18.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_18.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_17.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_17.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_16.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_16.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_15.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_15.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_14.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_14.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_13.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_13.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_12.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_12.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_11.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_11.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_10.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_10.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_9.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_9.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_8.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_8.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_7.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_7.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_6.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_6.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_5.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_5.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_4.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_4.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 x 144] +Validating --> rn1_18.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_18.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_17.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_17.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_16.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_16.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_15.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_15.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_14.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_14.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_13.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_13.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_12.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_12.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_11.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_11.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_10.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_10.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_9.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_9.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_8.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_8.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_7.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_7.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_6.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_6.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_5.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_5.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_4.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_4.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> conv1.c.W = LearnableParameter -> [16 x 27] +Validating --> features = InputValue -> [32 x 32 x 3 x *] +Validating --> conv1.c.c.c = Convolution(conv1.c.W[16 x 27], features[32 x 32 x 3 x * {W=32, H=3, C=32}]) -> [32 x 32 x 16 x *] +Validating --> conv1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.y = BatchNormalization(conv1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.c.c.sc[16 x 1], conv1.c.c.b[16 x 1], conv1.c.c.m[16 x 1], conv1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> conv1.y = RectifiedLinear(conv1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.c.c.c = Convolution(rn1_1.c1.c.W[16 x 144], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.y = BatchNormalization(rn1_1.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c1.c.c.sc[16 x 1], rn1_1.c1.c.c.b[16 x 1], rn1_1.c1.c.c.m[16 x 1], rn1_1.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c2.c.c = Convolution(rn1_1.c2.W[16 x 144], rn1_1.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.y = BatchNormalization(rn1_1.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c2.c.sc[16 x 1], rn1_1.c2.c.b[16 x 1], rn1_1.c2.c.m[16 x 1], rn1_1.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.p = Plus(rn1_1.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.c.c.c = Convolution(rn1_2.c1.c.W[16 x 144], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.y = BatchNormalization(rn1_2.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c1.c.c.sc[16 x 1], rn1_2.c1.c.c.b[16 x 1], rn1_2.c1.c.c.m[16 x 1], rn1_2.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c2.c.c = Convolution(rn1_2.c2.W[16 x 144], rn1_2.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.y = BatchNormalization(rn1_2.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c2.c.sc[16 x 1], rn1_2.c2.c.b[16 x 1], rn1_2.c2.c.m[16 x 1], rn1_2.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.p = Plus(rn1_2.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.c.c.c = Convolution(rn1_3.c1.c.W[16 x 144], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.y = BatchNormalization(rn1_3.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c1.c.c.sc[16 x 1], rn1_3.c1.c.c.b[16 x 1], rn1_3.c1.c.c.m[16 x 1], rn1_3.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c2.c.c = Convolution(rn1_3.c2.W[16 x 144], rn1_3.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.y = BatchNormalization(rn1_3.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c2.c.sc[16 x 1], rn1_3.c2.c.b[16 x 1], rn1_3.c2.c.m[16 x 1], rn1_3.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.p = Plus(rn1_3.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.c.c.c = Convolution(rn1_4.c1.c.W[16 x 144], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.y = BatchNormalization(rn1_4.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c1.c.c.sc[16 x 1], rn1_4.c1.c.c.b[16 x 1], rn1_4.c1.c.c.m[16 x 1], rn1_4.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.y = RectifiedLinear(rn1_4.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c2.c.c = Convolution(rn1_4.c2.W[16 x 144], rn1_4.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.y = BatchNormalization(rn1_4.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c2.c.sc[16 x 1], rn1_4.c2.c.b[16 x 1], rn1_4.c2.c.m[16 x 1], rn1_4.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.p = Plus(rn1_4.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.y = RectifiedLinear(rn1_4.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.c.c.c = Convolution(rn1_5.c1.c.W[16 x 144], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.y = BatchNormalization(rn1_5.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c1.c.c.sc[16 x 1], rn1_5.c1.c.c.b[16 x 1], rn1_5.c1.c.c.m[16 x 1], rn1_5.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.y = RectifiedLinear(rn1_5.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c2.c.c = Convolution(rn1_5.c2.W[16 x 144], rn1_5.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.y = BatchNormalization(rn1_5.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c2.c.sc[16 x 1], rn1_5.c2.c.b[16 x 1], rn1_5.c2.c.m[16 x 1], rn1_5.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.p = Plus(rn1_5.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.y = RectifiedLinear(rn1_5.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.c.c.c = Convolution(rn1_6.c1.c.W[16 x 144], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.y = BatchNormalization(rn1_6.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c1.c.c.sc[16 x 1], rn1_6.c1.c.c.b[16 x 1], rn1_6.c1.c.c.m[16 x 1], rn1_6.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.y = RectifiedLinear(rn1_6.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c2.c.c = Convolution(rn1_6.c2.W[16 x 144], rn1_6.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.y = BatchNormalization(rn1_6.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c2.c.sc[16 x 1], rn1_6.c2.c.b[16 x 1], rn1_6.c2.c.m[16 x 1], rn1_6.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.p = Plus(rn1_6.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.y = RectifiedLinear(rn1_6.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.c.c.c = Convolution(rn1_7.c1.c.W[16 x 144], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.y = BatchNormalization(rn1_7.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c1.c.c.sc[16 x 1], rn1_7.c1.c.c.b[16 x 1], rn1_7.c1.c.c.m[16 x 1], rn1_7.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.y = RectifiedLinear(rn1_7.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c2.c.c = Convolution(rn1_7.c2.W[16 x 144], rn1_7.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.y = BatchNormalization(rn1_7.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c2.c.sc[16 x 1], rn1_7.c2.c.b[16 x 1], rn1_7.c2.c.m[16 x 1], rn1_7.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.p = Plus(rn1_7.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.y = RectifiedLinear(rn1_7.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.c.c.c = Convolution(rn1_8.c1.c.W[16 x 144], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.y = BatchNormalization(rn1_8.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c1.c.c.sc[16 x 1], rn1_8.c1.c.c.b[16 x 1], rn1_8.c1.c.c.m[16 x 1], rn1_8.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.y = RectifiedLinear(rn1_8.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c2.c.c = Convolution(rn1_8.c2.W[16 x 144], rn1_8.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.y = BatchNormalization(rn1_8.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c2.c.sc[16 x 1], rn1_8.c2.c.b[16 x 1], rn1_8.c2.c.m[16 x 1], rn1_8.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.p = Plus(rn1_8.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.y = RectifiedLinear(rn1_8.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.c.c.c = Convolution(rn1_9.c1.c.W[16 x 144], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.y = BatchNormalization(rn1_9.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c1.c.c.sc[16 x 1], rn1_9.c1.c.c.b[16 x 1], rn1_9.c1.c.c.m[16 x 1], rn1_9.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.y = RectifiedLinear(rn1_9.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c2.c.c = Convolution(rn1_9.c2.W[16 x 144], rn1_9.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.y = BatchNormalization(rn1_9.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c2.c.sc[16 x 1], rn1_9.c2.c.b[16 x 1], rn1_9.c2.c.m[16 x 1], rn1_9.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.p = Plus(rn1_9.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.y = RectifiedLinear(rn1_9.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.c.c.c = Convolution(rn1_10.c1.c.W[16 x 144], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.y = BatchNormalization(rn1_10.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c1.c.c.sc[16 x 1], rn1_10.c1.c.c.b[16 x 1], rn1_10.c1.c.c.m[16 x 1], rn1_10.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.y = RectifiedLinear(rn1_10.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c2.c.c = Convolution(rn1_10.c2.W[16 x 144], rn1_10.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.y = BatchNormalization(rn1_10.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c2.c.sc[16 x 1], rn1_10.c2.c.b[16 x 1], rn1_10.c2.c.m[16 x 1], rn1_10.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.p = Plus(rn1_10.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.y = RectifiedLinear(rn1_10.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.c.c.c = Convolution(rn1_11.c1.c.W[16 x 144], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.y = BatchNormalization(rn1_11.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c1.c.c.sc[16 x 1], rn1_11.c1.c.c.b[16 x 1], rn1_11.c1.c.c.m[16 x 1], rn1_11.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.y = RectifiedLinear(rn1_11.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c2.c.c = Convolution(rn1_11.c2.W[16 x 144], rn1_11.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.y = BatchNormalization(rn1_11.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c2.c.sc[16 x 1], rn1_11.c2.c.b[16 x 1], rn1_11.c2.c.m[16 x 1], rn1_11.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.p = Plus(rn1_11.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.y = RectifiedLinear(rn1_11.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.c.c.c = Convolution(rn1_12.c1.c.W[16 x 144], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.y = BatchNormalization(rn1_12.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c1.c.c.sc[16 x 1], rn1_12.c1.c.c.b[16 x 1], rn1_12.c1.c.c.m[16 x 1], rn1_12.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.y = RectifiedLinear(rn1_12.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c2.c.c = Convolution(rn1_12.c2.W[16 x 144], rn1_12.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.y = BatchNormalization(rn1_12.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c2.c.sc[16 x 1], rn1_12.c2.c.b[16 x 1], rn1_12.c2.c.m[16 x 1], rn1_12.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.p = Plus(rn1_12.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.y = RectifiedLinear(rn1_12.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.c.c.c = Convolution(rn1_13.c1.c.W[16 x 144], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.y = BatchNormalization(rn1_13.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c1.c.c.sc[16 x 1], rn1_13.c1.c.c.b[16 x 1], rn1_13.c1.c.c.m[16 x 1], rn1_13.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.y = RectifiedLinear(rn1_13.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c2.c.c = Convolution(rn1_13.c2.W[16 x 144], rn1_13.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.y = BatchNormalization(rn1_13.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c2.c.sc[16 x 1], rn1_13.c2.c.b[16 x 1], rn1_13.c2.c.m[16 x 1], rn1_13.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.p = Plus(rn1_13.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.y = RectifiedLinear(rn1_13.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.c.c.c = Convolution(rn1_14.c1.c.W[16 x 144], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.y = BatchNormalization(rn1_14.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c1.c.c.sc[16 x 1], rn1_14.c1.c.c.b[16 x 1], rn1_14.c1.c.c.m[16 x 1], rn1_14.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.y = RectifiedLinear(rn1_14.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c2.c.c = Convolution(rn1_14.c2.W[16 x 144], rn1_14.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.y = BatchNormalization(rn1_14.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c2.c.sc[16 x 1], rn1_14.c2.c.b[16 x 1], rn1_14.c2.c.m[16 x 1], rn1_14.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.p = Plus(rn1_14.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.y = RectifiedLinear(rn1_14.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.c.c.c = Convolution(rn1_15.c1.c.W[16 x 144], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.y = BatchNormalization(rn1_15.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c1.c.c.sc[16 x 1], rn1_15.c1.c.c.b[16 x 1], rn1_15.c1.c.c.m[16 x 1], rn1_15.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.y = RectifiedLinear(rn1_15.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c2.c.c = Convolution(rn1_15.c2.W[16 x 144], rn1_15.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.y = BatchNormalization(rn1_15.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c2.c.sc[16 x 1], rn1_15.c2.c.b[16 x 1], rn1_15.c2.c.m[16 x 1], rn1_15.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.p = Plus(rn1_15.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.y = RectifiedLinear(rn1_15.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.c.c.c = Convolution(rn1_16.c1.c.W[16 x 144], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.y = BatchNormalization(rn1_16.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c1.c.c.sc[16 x 1], rn1_16.c1.c.c.b[16 x 1], rn1_16.c1.c.c.m[16 x 1], rn1_16.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.y = RectifiedLinear(rn1_16.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c2.c.c = Convolution(rn1_16.c2.W[16 x 144], rn1_16.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.y = BatchNormalization(rn1_16.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c2.c.sc[16 x 1], rn1_16.c2.c.b[16 x 1], rn1_16.c2.c.m[16 x 1], rn1_16.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.p = Plus(rn1_16.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.y = RectifiedLinear(rn1_16.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.c.c.c = Convolution(rn1_17.c1.c.W[16 x 144], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.y = BatchNormalization(rn1_17.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c1.c.c.sc[16 x 1], rn1_17.c1.c.c.b[16 x 1], rn1_17.c1.c.c.m[16 x 1], rn1_17.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.y = RectifiedLinear(rn1_17.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c2.c.c = Convolution(rn1_17.c2.W[16 x 144], rn1_17.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.y = BatchNormalization(rn1_17.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c2.c.sc[16 x 1], rn1_17.c2.c.b[16 x 1], rn1_17.c2.c.m[16 x 1], rn1_17.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.p = Plus(rn1_17.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.y = RectifiedLinear(rn1_17.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.c.c.c = Convolution(rn1_18.c1.c.W[16 x 144], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.y = BatchNormalization(rn1_18.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c1.c.c.sc[16 x 1], rn1_18.c1.c.c.b[16 x 1], rn1_18.c1.c.c.m[16 x 1], rn1_18.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.y = RectifiedLinear(rn1_18.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c2.c.c = Convolution(rn1_18.c2.W[16 x 144], rn1_18.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.y = BatchNormalization(rn1_18.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c2.c.sc[16 x 1], rn1_18.c2.c.b[16 x 1], rn1_18.c2.c.m[16 x 1], rn1_18.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.p = Plus(rn1_18.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.y = RectifiedLinear(rn1_18.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn2_1.c1.c.c.c = Convolution(rn2_1.c1.c.W[32 x 144], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.y = BatchNormalization(rn2_1.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c1.c.c.sc[32 x 1], rn2_1.c1.c.c.b[32 x 1], rn2_1.c1.c.c.m[32 x 1], rn2_1.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c2.c.c = Convolution(rn2_1.c2.W[32 x 288], rn2_1.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.y = BatchNormalization(rn2_1.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c2.c.sc[32 x 1], rn2_1.c2.c.b[32 x 1], rn2_1.c2.c.m[32 x 1], rn2_1.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1_Wproj = LearnableParameter -> [32 x 16] +Validating --> rn2_1.c_proj.c = Convolution(rn2_1_Wproj[32 x 16], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c_proj.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.y = BatchNormalization(rn2_1.c_proj.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.sc[32 x 1], rn2_1.c_proj.b[32 x 1], rn2_1.c_proj.m[32 x 1], rn2_1.c_proj.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.p = Plus(rn2_1.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.c.c.c = Convolution(rn2_2.c1.c.W[32 x 288], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.y = BatchNormalization(rn2_2.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c1.c.c.sc[32 x 1], rn2_2.c1.c.c.b[32 x 1], rn2_2.c1.c.c.m[32 x 1], rn2_2.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c2.c.c = Convolution(rn2_2.c2.W[32 x 288], rn2_2.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.y = BatchNormalization(rn2_2.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c2.c.sc[32 x 1], rn2_2.c2.c.b[32 x 1], rn2_2.c2.c.m[32 x 1], rn2_2.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.p = Plus(rn2_2.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.c.c.c = Convolution(rn2_3.c1.c.W[32 x 288], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.y = BatchNormalization(rn2_3.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c1.c.c.sc[32 x 1], rn2_3.c1.c.c.b[32 x 1], rn2_3.c1.c.c.m[32 x 1], rn2_3.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c2.c.c = Convolution(rn2_3.c2.W[32 x 288], rn2_3.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.y = BatchNormalization(rn2_3.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c2.c.sc[32 x 1], rn2_3.c2.c.b[32 x 1], rn2_3.c2.c.m[32 x 1], rn2_3.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.p = Plus(rn2_3.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.c.c.c = Convolution(rn2_4.c1.c.W[32 x 288], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.y = BatchNormalization(rn2_4.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c1.c.c.sc[32 x 1], rn2_4.c1.c.c.b[32 x 1], rn2_4.c1.c.c.m[32 x 1], rn2_4.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.y = RectifiedLinear(rn2_4.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c2.c.c = Convolution(rn2_4.c2.W[32 x 288], rn2_4.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.y = BatchNormalization(rn2_4.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c2.c.sc[32 x 1], rn2_4.c2.c.b[32 x 1], rn2_4.c2.c.m[32 x 1], rn2_4.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.p = Plus(rn2_4.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.y = RectifiedLinear(rn2_4.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.c.c.c = Convolution(rn2_5.c1.c.W[32 x 288], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.y = BatchNormalization(rn2_5.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c1.c.c.sc[32 x 1], rn2_5.c1.c.c.b[32 x 1], rn2_5.c1.c.c.m[32 x 1], rn2_5.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.y = RectifiedLinear(rn2_5.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c2.c.c = Convolution(rn2_5.c2.W[32 x 288], rn2_5.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.y = BatchNormalization(rn2_5.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c2.c.sc[32 x 1], rn2_5.c2.c.b[32 x 1], rn2_5.c2.c.m[32 x 1], rn2_5.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.p = Plus(rn2_5.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.y = RectifiedLinear(rn2_5.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.c.c.c = Convolution(rn2_6.c1.c.W[32 x 288], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.y = BatchNormalization(rn2_6.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c1.c.c.sc[32 x 1], rn2_6.c1.c.c.b[32 x 1], rn2_6.c1.c.c.m[32 x 1], rn2_6.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.y = RectifiedLinear(rn2_6.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c2.c.c = Convolution(rn2_6.c2.W[32 x 288], rn2_6.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.y = BatchNormalization(rn2_6.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c2.c.sc[32 x 1], rn2_6.c2.c.b[32 x 1], rn2_6.c2.c.m[32 x 1], rn2_6.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.p = Plus(rn2_6.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.y = RectifiedLinear(rn2_6.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.c.c.c = Convolution(rn2_7.c1.c.W[32 x 288], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.y = BatchNormalization(rn2_7.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c1.c.c.sc[32 x 1], rn2_7.c1.c.c.b[32 x 1], rn2_7.c1.c.c.m[32 x 1], rn2_7.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.y = RectifiedLinear(rn2_7.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c2.c.c = Convolution(rn2_7.c2.W[32 x 288], rn2_7.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.y = BatchNormalization(rn2_7.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c2.c.sc[32 x 1], rn2_7.c2.c.b[32 x 1], rn2_7.c2.c.m[32 x 1], rn2_7.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.p = Plus(rn2_7.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.y = RectifiedLinear(rn2_7.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.c.c.c = Convolution(rn2_8.c1.c.W[32 x 288], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.y = BatchNormalization(rn2_8.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c1.c.c.sc[32 x 1], rn2_8.c1.c.c.b[32 x 1], rn2_8.c1.c.c.m[32 x 1], rn2_8.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.y = RectifiedLinear(rn2_8.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c2.c.c = Convolution(rn2_8.c2.W[32 x 288], rn2_8.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.y = BatchNormalization(rn2_8.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c2.c.sc[32 x 1], rn2_8.c2.c.b[32 x 1], rn2_8.c2.c.m[32 x 1], rn2_8.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.p = Plus(rn2_8.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.y = RectifiedLinear(rn2_8.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.c.c.c = Convolution(rn2_9.c1.c.W[32 x 288], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.y = BatchNormalization(rn2_9.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c1.c.c.sc[32 x 1], rn2_9.c1.c.c.b[32 x 1], rn2_9.c1.c.c.m[32 x 1], rn2_9.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.y = RectifiedLinear(rn2_9.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c2.c.c = Convolution(rn2_9.c2.W[32 x 288], rn2_9.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.y = BatchNormalization(rn2_9.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c2.c.sc[32 x 1], rn2_9.c2.c.b[32 x 1], rn2_9.c2.c.m[32 x 1], rn2_9.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.p = Plus(rn2_9.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.y = RectifiedLinear(rn2_9.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.c.c.c = Convolution(rn2_10.c1.c.W[32 x 288], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.y = BatchNormalization(rn2_10.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c1.c.c.sc[32 x 1], rn2_10.c1.c.c.b[32 x 1], rn2_10.c1.c.c.m[32 x 1], rn2_10.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.y = RectifiedLinear(rn2_10.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c2.c.c = Convolution(rn2_10.c2.W[32 x 288], rn2_10.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.y = BatchNormalization(rn2_10.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c2.c.sc[32 x 1], rn2_10.c2.c.b[32 x 1], rn2_10.c2.c.m[32 x 1], rn2_10.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.p = Plus(rn2_10.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.y = RectifiedLinear(rn2_10.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.c.c.c = Convolution(rn2_11.c1.c.W[32 x 288], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.y = BatchNormalization(rn2_11.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c1.c.c.sc[32 x 1], rn2_11.c1.c.c.b[32 x 1], rn2_11.c1.c.c.m[32 x 1], rn2_11.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.y = RectifiedLinear(rn2_11.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c2.c.c = Convolution(rn2_11.c2.W[32 x 288], rn2_11.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.y = BatchNormalization(rn2_11.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c2.c.sc[32 x 1], rn2_11.c2.c.b[32 x 1], rn2_11.c2.c.m[32 x 1], rn2_11.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.p = Plus(rn2_11.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.y = RectifiedLinear(rn2_11.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.c.c.c = Convolution(rn2_12.c1.c.W[32 x 288], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.y = BatchNormalization(rn2_12.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c1.c.c.sc[32 x 1], rn2_12.c1.c.c.b[32 x 1], rn2_12.c1.c.c.m[32 x 1], rn2_12.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.y = RectifiedLinear(rn2_12.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c2.c.c = Convolution(rn2_12.c2.W[32 x 288], rn2_12.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.y = BatchNormalization(rn2_12.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c2.c.sc[32 x 1], rn2_12.c2.c.b[32 x 1], rn2_12.c2.c.m[32 x 1], rn2_12.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.p = Plus(rn2_12.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.y = RectifiedLinear(rn2_12.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.c.c.c = Convolution(rn2_13.c1.c.W[32 x 288], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.y = BatchNormalization(rn2_13.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c1.c.c.sc[32 x 1], rn2_13.c1.c.c.b[32 x 1], rn2_13.c1.c.c.m[32 x 1], rn2_13.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.y = RectifiedLinear(rn2_13.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c2.c.c = Convolution(rn2_13.c2.W[32 x 288], rn2_13.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.y = BatchNormalization(rn2_13.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c2.c.sc[32 x 1], rn2_13.c2.c.b[32 x 1], rn2_13.c2.c.m[32 x 1], rn2_13.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.p = Plus(rn2_13.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.y = RectifiedLinear(rn2_13.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.c.c.c = Convolution(rn2_14.c1.c.W[32 x 288], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.y = BatchNormalization(rn2_14.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c1.c.c.sc[32 x 1], rn2_14.c1.c.c.b[32 x 1], rn2_14.c1.c.c.m[32 x 1], rn2_14.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.y = RectifiedLinear(rn2_14.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c2.c.c = Convolution(rn2_14.c2.W[32 x 288], rn2_14.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.y = BatchNormalization(rn2_14.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c2.c.sc[32 x 1], rn2_14.c2.c.b[32 x 1], rn2_14.c2.c.m[32 x 1], rn2_14.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.p = Plus(rn2_14.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.y = RectifiedLinear(rn2_14.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.c.c.c = Convolution(rn2_15.c1.c.W[32 x 288], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.y = BatchNormalization(rn2_15.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c1.c.c.sc[32 x 1], rn2_15.c1.c.c.b[32 x 1], rn2_15.c1.c.c.m[32 x 1], rn2_15.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.y = RectifiedLinear(rn2_15.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c2.c.c = Convolution(rn2_15.c2.W[32 x 288], rn2_15.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.y = BatchNormalization(rn2_15.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c2.c.sc[32 x 1], rn2_15.c2.c.b[32 x 1], rn2_15.c2.c.m[32 x 1], rn2_15.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.p = Plus(rn2_15.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.y = RectifiedLinear(rn2_15.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.c.c.c = Convolution(rn2_16.c1.c.W[32 x 288], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.y = BatchNormalization(rn2_16.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c1.c.c.sc[32 x 1], rn2_16.c1.c.c.b[32 x 1], rn2_16.c1.c.c.m[32 x 1], rn2_16.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.y = RectifiedLinear(rn2_16.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c2.c.c = Convolution(rn2_16.c2.W[32 x 288], rn2_16.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.y = BatchNormalization(rn2_16.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c2.c.sc[32 x 1], rn2_16.c2.c.b[32 x 1], rn2_16.c2.c.m[32 x 1], rn2_16.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.p = Plus(rn2_16.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.y = RectifiedLinear(rn2_16.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.c.c.c = Convolution(rn2_17.c1.c.W[32 x 288], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.y = BatchNormalization(rn2_17.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c1.c.c.sc[32 x 1], rn2_17.c1.c.c.b[32 x 1], rn2_17.c1.c.c.m[32 x 1], rn2_17.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.y = RectifiedLinear(rn2_17.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c2.c.c = Convolution(rn2_17.c2.W[32 x 288], rn2_17.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.y = BatchNormalization(rn2_17.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c2.c.sc[32 x 1], rn2_17.c2.c.b[32 x 1], rn2_17.c2.c.m[32 x 1], rn2_17.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.p = Plus(rn2_17.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.y = RectifiedLinear(rn2_17.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.c.c.c = Convolution(rn2_18.c1.c.W[32 x 288], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.y = BatchNormalization(rn2_18.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c1.c.c.sc[32 x 1], rn2_18.c1.c.c.b[32 x 1], rn2_18.c1.c.c.m[32 x 1], rn2_18.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.y = RectifiedLinear(rn2_18.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c2.c.c = Convolution(rn2_18.c2.W[32 x 288], rn2_18.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.y = BatchNormalization(rn2_18.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c2.c.sc[32 x 1], rn2_18.c2.c.b[32 x 1], rn2_18.c2.c.m[32 x 1], rn2_18.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.p = Plus(rn2_18.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.y = RectifiedLinear(rn2_18.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn3_1.c1.c.c.c = Convolution(rn3_1.c1.c.W[64 x 288], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.y = BatchNormalization(rn3_1.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c1.c.c.sc[64 x 1], rn3_1.c1.c.c.b[64 x 1], rn3_1.c1.c.c.m[64 x 1], rn3_1.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c2.c.c = Convolution(rn3_1.c2.W[64 x 576], rn3_1.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.y = BatchNormalization(rn3_1.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c2.c.sc[64 x 1], rn3_1.c2.c.b[64 x 1], rn3_1.c2.c.m[64 x 1], rn3_1.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1_Wproj = LearnableParameter -> [64 x 32] +Validating --> rn3_1.c_proj.c = Convolution(rn3_1_Wproj[64 x 32], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c_proj.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.y = BatchNormalization(rn3_1.c_proj.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.sc[64 x 1], rn3_1.c_proj.b[64 x 1], rn3_1.c_proj.m[64 x 1], rn3_1.c_proj.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.p = Plus(rn3_1.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.c.c.c = Convolution(rn3_2.c1.c.W[64 x 576], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.y = BatchNormalization(rn3_2.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c1.c.c.sc[64 x 1], rn3_2.c1.c.c.b[64 x 1], rn3_2.c1.c.c.m[64 x 1], rn3_2.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c2.c.c = Convolution(rn3_2.c2.W[64 x 576], rn3_2.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.y = BatchNormalization(rn3_2.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c2.c.sc[64 x 1], rn3_2.c2.c.b[64 x 1], rn3_2.c2.c.m[64 x 1], rn3_2.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.p = Plus(rn3_2.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.c.c.c = Convolution(rn3_3.c1.c.W[64 x 576], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.y = BatchNormalization(rn3_3.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c1.c.c.sc[64 x 1], rn3_3.c1.c.c.b[64 x 1], rn3_3.c1.c.c.m[64 x 1], rn3_3.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c2.c.c = Convolution(rn3_3.c2.W[64 x 576], rn3_3.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.y = BatchNormalization(rn3_3.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c2.c.sc[64 x 1], rn3_3.c2.c.b[64 x 1], rn3_3.c2.c.m[64 x 1], rn3_3.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.p = Plus(rn3_3.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.c.c.c = Convolution(rn3_4.c1.c.W[64 x 576], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.y = BatchNormalization(rn3_4.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c1.c.c.sc[64 x 1], rn3_4.c1.c.c.b[64 x 1], rn3_4.c1.c.c.m[64 x 1], rn3_4.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.y = RectifiedLinear(rn3_4.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c2.c.c = Convolution(rn3_4.c2.W[64 x 576], rn3_4.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.y = BatchNormalization(rn3_4.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c2.c.sc[64 x 1], rn3_4.c2.c.b[64 x 1], rn3_4.c2.c.m[64 x 1], rn3_4.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.p = Plus(rn3_4.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.y = RectifiedLinear(rn3_4.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.c.c.c = Convolution(rn3_5.c1.c.W[64 x 576], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.y = BatchNormalization(rn3_5.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c1.c.c.sc[64 x 1], rn3_5.c1.c.c.b[64 x 1], rn3_5.c1.c.c.m[64 x 1], rn3_5.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.y = RectifiedLinear(rn3_5.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c2.c.c = Convolution(rn3_5.c2.W[64 x 576], rn3_5.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.y = BatchNormalization(rn3_5.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c2.c.sc[64 x 1], rn3_5.c2.c.b[64 x 1], rn3_5.c2.c.m[64 x 1], rn3_5.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.p = Plus(rn3_5.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.y = RectifiedLinear(rn3_5.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.c.c.c = Convolution(rn3_6.c1.c.W[64 x 576], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.y = BatchNormalization(rn3_6.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c1.c.c.sc[64 x 1], rn3_6.c1.c.c.b[64 x 1], rn3_6.c1.c.c.m[64 x 1], rn3_6.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.y = RectifiedLinear(rn3_6.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c2.c.c = Convolution(rn3_6.c2.W[64 x 576], rn3_6.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.y = BatchNormalization(rn3_6.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c2.c.sc[64 x 1], rn3_6.c2.c.b[64 x 1], rn3_6.c2.c.m[64 x 1], rn3_6.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.p = Plus(rn3_6.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.y = RectifiedLinear(rn3_6.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.c.c.c = Convolution(rn3_7.c1.c.W[64 x 576], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.y = BatchNormalization(rn3_7.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c1.c.c.sc[64 x 1], rn3_7.c1.c.c.b[64 x 1], rn3_7.c1.c.c.m[64 x 1], rn3_7.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.y = RectifiedLinear(rn3_7.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c2.c.c = Convolution(rn3_7.c2.W[64 x 576], rn3_7.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.y = BatchNormalization(rn3_7.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c2.c.sc[64 x 1], rn3_7.c2.c.b[64 x 1], rn3_7.c2.c.m[64 x 1], rn3_7.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.p = Plus(rn3_7.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.y = RectifiedLinear(rn3_7.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.c.c.c = Convolution(rn3_8.c1.c.W[64 x 576], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.y = BatchNormalization(rn3_8.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c1.c.c.sc[64 x 1], rn3_8.c1.c.c.b[64 x 1], rn3_8.c1.c.c.m[64 x 1], rn3_8.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.y = RectifiedLinear(rn3_8.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c2.c.c = Convolution(rn3_8.c2.W[64 x 576], rn3_8.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.y = BatchNormalization(rn3_8.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c2.c.sc[64 x 1], rn3_8.c2.c.b[64 x 1], rn3_8.c2.c.m[64 x 1], rn3_8.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.p = Plus(rn3_8.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.y = RectifiedLinear(rn3_8.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.c.c.c = Convolution(rn3_9.c1.c.W[64 x 576], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.y = BatchNormalization(rn3_9.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c1.c.c.sc[64 x 1], rn3_9.c1.c.c.b[64 x 1], rn3_9.c1.c.c.m[64 x 1], rn3_9.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.y = RectifiedLinear(rn3_9.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c2.c.c = Convolution(rn3_9.c2.W[64 x 576], rn3_9.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.y = BatchNormalization(rn3_9.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c2.c.sc[64 x 1], rn3_9.c2.c.b[64 x 1], rn3_9.c2.c.m[64 x 1], rn3_9.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.p = Plus(rn3_9.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.y = RectifiedLinear(rn3_9.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.c.c.c = Convolution(rn3_10.c1.c.W[64 x 576], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.y = BatchNormalization(rn3_10.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c1.c.c.sc[64 x 1], rn3_10.c1.c.c.b[64 x 1], rn3_10.c1.c.c.m[64 x 1], rn3_10.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.y = RectifiedLinear(rn3_10.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c2.c.c = Convolution(rn3_10.c2.W[64 x 576], rn3_10.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.y = BatchNormalization(rn3_10.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c2.c.sc[64 x 1], rn3_10.c2.c.b[64 x 1], rn3_10.c2.c.m[64 x 1], rn3_10.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.p = Plus(rn3_10.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.y = RectifiedLinear(rn3_10.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.c.c.c = Convolution(rn3_11.c1.c.W[64 x 576], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.y = BatchNormalization(rn3_11.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c1.c.c.sc[64 x 1], rn3_11.c1.c.c.b[64 x 1], rn3_11.c1.c.c.m[64 x 1], rn3_11.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.y = RectifiedLinear(rn3_11.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c2.c.c = Convolution(rn3_11.c2.W[64 x 576], rn3_11.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.y = BatchNormalization(rn3_11.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c2.c.sc[64 x 1], rn3_11.c2.c.b[64 x 1], rn3_11.c2.c.m[64 x 1], rn3_11.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.p = Plus(rn3_11.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.y = RectifiedLinear(rn3_11.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.c.c.c = Convolution(rn3_12.c1.c.W[64 x 576], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.y = BatchNormalization(rn3_12.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c1.c.c.sc[64 x 1], rn3_12.c1.c.c.b[64 x 1], rn3_12.c1.c.c.m[64 x 1], rn3_12.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.y = RectifiedLinear(rn3_12.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c2.c.c = Convolution(rn3_12.c2.W[64 x 576], rn3_12.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.y = BatchNormalization(rn3_12.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c2.c.sc[64 x 1], rn3_12.c2.c.b[64 x 1], rn3_12.c2.c.m[64 x 1], rn3_12.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.p = Plus(rn3_12.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.y = RectifiedLinear(rn3_12.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.c.c.c = Convolution(rn3_13.c1.c.W[64 x 576], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.y = BatchNormalization(rn3_13.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c1.c.c.sc[64 x 1], rn3_13.c1.c.c.b[64 x 1], rn3_13.c1.c.c.m[64 x 1], rn3_13.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.y = RectifiedLinear(rn3_13.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c2.c.c = Convolution(rn3_13.c2.W[64 x 576], rn3_13.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.y = BatchNormalization(rn3_13.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c2.c.sc[64 x 1], rn3_13.c2.c.b[64 x 1], rn3_13.c2.c.m[64 x 1], rn3_13.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.p = Plus(rn3_13.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.y = RectifiedLinear(rn3_13.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.c.c.c = Convolution(rn3_14.c1.c.W[64 x 576], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.y = BatchNormalization(rn3_14.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c1.c.c.sc[64 x 1], rn3_14.c1.c.c.b[64 x 1], rn3_14.c1.c.c.m[64 x 1], rn3_14.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.y = RectifiedLinear(rn3_14.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c2.c.c = Convolution(rn3_14.c2.W[64 x 576], rn3_14.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.y = BatchNormalization(rn3_14.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c2.c.sc[64 x 1], rn3_14.c2.c.b[64 x 1], rn3_14.c2.c.m[64 x 1], rn3_14.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.p = Plus(rn3_14.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.y = RectifiedLinear(rn3_14.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.c.c.c = Convolution(rn3_15.c1.c.W[64 x 576], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.y = BatchNormalization(rn3_15.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c1.c.c.sc[64 x 1], rn3_15.c1.c.c.b[64 x 1], rn3_15.c1.c.c.m[64 x 1], rn3_15.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.y = RectifiedLinear(rn3_15.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c2.c.c = Convolution(rn3_15.c2.W[64 x 576], rn3_15.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.y = BatchNormalization(rn3_15.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c2.c.sc[64 x 1], rn3_15.c2.c.b[64 x 1], rn3_15.c2.c.m[64 x 1], rn3_15.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.p = Plus(rn3_15.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.y = RectifiedLinear(rn3_15.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.c.c.c = Convolution(rn3_16.c1.c.W[64 x 576], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.y = BatchNormalization(rn3_16.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c1.c.c.sc[64 x 1], rn3_16.c1.c.c.b[64 x 1], rn3_16.c1.c.c.m[64 x 1], rn3_16.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.y = RectifiedLinear(rn3_16.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c2.c.c = Convolution(rn3_16.c2.W[64 x 576], rn3_16.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.y = BatchNormalization(rn3_16.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c2.c.sc[64 x 1], rn3_16.c2.c.b[64 x 1], rn3_16.c2.c.m[64 x 1], rn3_16.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.p = Plus(rn3_16.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.y = RectifiedLinear(rn3_16.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.c.c.c = Convolution(rn3_17.c1.c.W[64 x 576], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.y = BatchNormalization(rn3_17.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c1.c.c.sc[64 x 1], rn3_17.c1.c.c.b[64 x 1], rn3_17.c1.c.c.m[64 x 1], rn3_17.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.y = RectifiedLinear(rn3_17.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c2.c.c = Convolution(rn3_17.c2.W[64 x 576], rn3_17.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.y = BatchNormalization(rn3_17.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c2.c.sc[64 x 1], rn3_17.c2.c.b[64 x 1], rn3_17.c2.c.m[64 x 1], rn3_17.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.p = Plus(rn3_17.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.y = RectifiedLinear(rn3_17.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.c.c.c = Convolution(rn3_18.c1.c.W[64 x 576], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.y = BatchNormalization(rn3_18.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c1.c.c.sc[64 x 1], rn3_18.c1.c.c.b[64 x 1], rn3_18.c1.c.c.m[64 x 1], rn3_18.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.y = RectifiedLinear(rn3_18.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c2.c.c = Convolution(rn3_18.c2.W[64 x 576], rn3_18.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.y = BatchNormalization(rn3_18.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c2.c.sc[64 x 1], rn3_18.c2.c.b[64 x 1], rn3_18.c2.c.m[64 x 1], rn3_18.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.p = Plus(rn3_18.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.y = RectifiedLinear(rn3_18.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> pool = AveragePooling(rn3_18.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [1 x 1 x 64 x *] +Validating --> OutputNodes.t = Times(OutputNodes.W[10 x 64], pool[1 x 1 x 64 x *]) -> [10 x *] +Validating --> OutputNodes.b = LearnableParameter -> [10] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10 x *], OutputNodes.b[10]) -> [10 x *] +Validating --> CE = CrossEntropyWithSoftmax(labels[10 x *], OutputNodes.z[10 x *]) -> [1] +Validating --> Err = ErrorPrediction(labels[10 x *], OutputNodes.z[10 x *]) -> [1] + +559 out of 949 nodes do not share the minibatch layout with the input data. + +Post-processing network complete. + +SGD using GPU 0. + +Training criterion node(s): + CE = CrossEntropyWithSoftmax + +Evaluation criterion node(s): + Err = ErrorPrediction + + +Allocating matrices for forward and/or backward propagation. +No PreCompute nodes found, skipping PreCompute step +Starting Epoch 1: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[ 1 of 160]-Minibatch[ 1- 200]: SamplesSeen = 25600; TrainLossPerSample = 2.08201447; EvalErr[0]PerSample = 0.79109375; TotalTime = 37.3101s; SamplesPerSecond = 686.1 +Finished Epoch[ 1 of 160]: [Training Set] TrainLossPerSample = 1.9284772; EvalErrPerSample = 0.73097998; AvgLearningRatePerSample = 0.00078125001; EpochTime=69.7251 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.1' +Starting Epoch 2: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[ 2 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 1.80199310; EvalErr[0]PerSample = 0.68078125; TotalTime = 34.7295s; SamplesPerSecond = 737.1 +Finished Epoch[ 2 of 160]: [Training Set] TrainLossPerSample = 1.6386911; EvalErrPerSample = 0.61193997; AvgLearningRatePerSample = 0.0078125; EpochTime=67.9925 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.2' +Starting Epoch 3: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[ 3 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 1.25481010; EvalErr[0]PerSample = 0.45394531; TotalTime = 34.5533s; SamplesPerSecond = 740.9 +Finished Epoch[ 3 of 160]: [Training Set] TrainLossPerSample = 1.1870104; EvalErrPerSample = 0.42773998; AvgLearningRatePerSample = 0.0078125; EpochTime=67.6327 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.3' +Starting Epoch 4: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[ 4 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 1.00952705; EvalErr[0]PerSample = 0.36304687; TotalTime = 34.5927s; SamplesPerSecond = 740.0 +Finished Epoch[ 4 of 160]: [Training Set] TrainLossPerSample = 0.97715324; EvalErrPerSample = 0.34739998; AvgLearningRatePerSample = 0.0078125; EpochTime=67.5202 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.4' +Starting Epoch 5: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[ 5 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.84818413; EvalErr[0]PerSample = 0.29589844; TotalTime = 34.3363s; SamplesPerSecond = 745.6 +Finished Epoch[ 5 of 160]: [Training Set] TrainLossPerSample = 0.83634055; EvalErrPerSample = 0.29328001; AvgLearningRatePerSample = 0.0078125; EpochTime=67.0961 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.5' +Starting Epoch 6: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[ 6 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.74924049; EvalErr[0]PerSample = 0.26066406; TotalTime = 34.2546s; SamplesPerSecond = 747.3 +Finished Epoch[ 6 of 160]: [Training Set] TrainLossPerSample = 0.73574179; EvalErrPerSample = 0.25577998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9549 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.6' +Starting Epoch 7: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[ 7 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.66103149; EvalErr[0]PerSample = 0.22968750; TotalTime = 34.2366s; SamplesPerSecond = 747.7 +Finished Epoch[ 7 of 160]: [Training Set] TrainLossPerSample = 0.65649849; EvalErrPerSample = 0.22679999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8964 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.7' +Starting Epoch 8: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[ 8 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.59962826; EvalErr[0]PerSample = 0.20585938; TotalTime = 34.2398s; SamplesPerSecond = 747.7 +Finished Epoch[ 8 of 160]: [Training Set] TrainLossPerSample = 0.59828544; EvalErrPerSample = 0.20622; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8987 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.8' +Starting Epoch 9: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[ 9 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.56160091; EvalErr[0]PerSample = 0.19425781; TotalTime = 34.2457s; SamplesPerSecond = 747.5 +Finished Epoch[ 9 of 160]: [Training Set] TrainLossPerSample = 0.56435287; EvalErrPerSample = 0.19484; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9167 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.9' +Starting Epoch 10: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[10 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.52267384; EvalErr[0]PerSample = 0.18140625; TotalTime = 34.2539s; SamplesPerSecond = 747.4 +Finished Epoch[10 of 160]: [Training Set] TrainLossPerSample = 0.517959; EvalErrPerSample = 0.17936; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9219 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.10' +Starting Epoch 11: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[11 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.49345413; EvalErr[0]PerSample = 0.17046875; TotalTime = 34.2380s; SamplesPerSecond = 747.7 +Finished Epoch[11 of 160]: [Training Set] TrainLossPerSample = 0.48473847; EvalErrPerSample = 0.16725999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9081 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.11' +Starting Epoch 12: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[12 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.46631210; EvalErr[0]PerSample = 0.16121094; TotalTime = 34.2568s; SamplesPerSecond = 747.3 +Finished Epoch[12 of 160]: [Training Set] TrainLossPerSample = 0.46427867; EvalErrPerSample = 0.16023999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.989 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.12' +Starting Epoch 13: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[13 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.44940582; EvalErr[0]PerSample = 0.15414063; TotalTime = 34.2965s; SamplesPerSecond = 746.4 +Finished Epoch[13 of 160]: [Training Set] TrainLossPerSample = 0.44242746; EvalErrPerSample = 0.15223999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9538 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.13' +Starting Epoch 14: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[14 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.41690651; EvalErr[0]PerSample = 0.14292969; TotalTime = 34.2325s; SamplesPerSecond = 747.8 +Finished Epoch[14 of 160]: [Training Set] TrainLossPerSample = 0.41924006; EvalErrPerSample = 0.1444; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8936 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.14' +Starting Epoch 15: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[15 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.39440144; EvalErr[0]PerSample = 0.13656250; TotalTime = 34.2478s; SamplesPerSecond = 747.5 +Finished Epoch[15 of 160]: [Training Set] TrainLossPerSample = 0.39710063; EvalErrPerSample = 0.13676; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9095 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.15' +Starting Epoch 16: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[16 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.38027695; EvalErr[0]PerSample = 0.13261719; TotalTime = 34.2563s; SamplesPerSecond = 747.3 +Finished Epoch[16 of 160]: [Training Set] TrainLossPerSample = 0.38623425; EvalErrPerSample = 0.13339999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9354 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.16' +Starting Epoch 17: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[17 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.36578236; EvalErr[0]PerSample = 0.12671875; TotalTime = 34.2493s; SamplesPerSecond = 747.5 +Finished Epoch[17 of 160]: [Training Set] TrainLossPerSample = 0.37244275; EvalErrPerSample = 0.12964; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9117 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.17' +Starting Epoch 18: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[18 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.35585205; EvalErr[0]PerSample = 0.12257813; TotalTime = 34.2442s; SamplesPerSecond = 747.6 +Finished Epoch[18 of 160]: [Training Set] TrainLossPerSample = 0.3557232; EvalErrPerSample = 0.12323999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9115 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.18' +Starting Epoch 19: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[19 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.34668755; EvalErr[0]PerSample = 0.11957031; TotalTime = 34.2499s; SamplesPerSecond = 747.4 +Finished Epoch[19 of 160]: [Training Set] TrainLossPerSample = 0.34480327; EvalErrPerSample = 0.11832; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9097 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.19' +Starting Epoch 20: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[20 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.32466316; EvalErr[0]PerSample = 0.11343750; TotalTime = 34.2563s; SamplesPerSecond = 747.3 +Finished Epoch[20 of 160]: [Training Set] TrainLossPerSample = 0.33182383; EvalErrPerSample = 0.11554; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9279 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.20' +Starting Epoch 21: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[21 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.32254467; EvalErr[0]PerSample = 0.11250000; TotalTime = 34.3100s; SamplesPerSecond = 746.1 +Finished Epoch[21 of 160]: [Training Set] TrainLossPerSample = 0.32774779; EvalErrPerSample = 0.11279999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.964 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.21' +Starting Epoch 22: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[22 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.31498192; EvalErr[0]PerSample = 0.10781250; TotalTime = 34.2773s; SamplesPerSecond = 746.8 +Finished Epoch[22 of 160]: [Training Set] TrainLossPerSample = 0.31775412; EvalErrPerSample = 0.11024; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9334 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.22' +Starting Epoch 23: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[23 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.30091822; EvalErr[0]PerSample = 0.10332031; TotalTime = 34.2440s; SamplesPerSecond = 747.6 +Finished Epoch[23 of 160]: [Training Set] TrainLossPerSample = 0.30627075; EvalErrPerSample = 0.10588; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8985 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.23' +Starting Epoch 24: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[24 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.29784729; EvalErr[0]PerSample = 0.10226563; TotalTime = 34.2371s; SamplesPerSecond = 747.7 +Finished Epoch[24 of 160]: [Training Set] TrainLossPerSample = 0.30072364; EvalErrPerSample = 0.10337999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8912 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.24' +Starting Epoch 25: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[25 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.28111343; EvalErr[0]PerSample = 0.09546875; TotalTime = 34.2373s; SamplesPerSecond = 747.7 +Finished Epoch[25 of 160]: [Training Set] TrainLossPerSample = 0.29015899; EvalErrPerSample = 0.09956; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8986 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.25' +Starting Epoch 26: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[26 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.28119558; EvalErr[0]PerSample = 0.09894531; TotalTime = 34.2398s; SamplesPerSecond = 747.7 +Finished Epoch[26 of 160]: [Training Set] TrainLossPerSample = 0.28062734; EvalErrPerSample = 0.098979995; AvgLearningRatePerSample = 0.0078125; EpochTime=66.896 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.26' +Starting Epoch 27: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[27 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.26773546; EvalErr[0]PerSample = 0.09253906; TotalTime = 34.2453s; SamplesPerSecond = 747.5 +Finished Epoch[27 of 160]: [Training Set] TrainLossPerSample = 0.27523825; EvalErrPerSample = 0.095259994; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8905 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.27' +Starting Epoch 28: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[28 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.27260826; EvalErr[0]PerSample = 0.09472656; TotalTime = 34.2339s; SamplesPerSecond = 747.8 +Finished Epoch[28 of 160]: [Training Set] TrainLossPerSample = 0.27595448; EvalErrPerSample = 0.095739998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8925 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.28' +Starting Epoch 29: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[29 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25796089; EvalErr[0]PerSample = 0.08808594; TotalTime = 34.2304s; SamplesPerSecond = 747.9 +Finished Epoch[29 of 160]: [Training Set] TrainLossPerSample = 0.26468921; EvalErrPerSample = 0.090640001; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8905 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.29' +Starting Epoch 30: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[30 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.25212626; EvalErr[0]PerSample = 0.08828125; TotalTime = 34.2402s; SamplesPerSecond = 747.7 +Finished Epoch[30 of 160]: [Training Set] TrainLossPerSample = 0.25851542; EvalErrPerSample = 0.090559997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.889 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.30' +Starting Epoch 31: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[31 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24511749; EvalErr[0]PerSample = 0.08714844; TotalTime = 34.2452s; SamplesPerSecond = 747.6 +Finished Epoch[31 of 160]: [Training Set] TrainLossPerSample = 0.25035423; EvalErrPerSample = 0.088579997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9067 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.31' +Starting Epoch 32: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[32 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24218447; EvalErr[0]PerSample = 0.08449219; TotalTime = 34.2393s; SamplesPerSecond = 747.7 +Finished Epoch[32 of 160]: [Training Set] TrainLossPerSample = 0.24899355; EvalErrPerSample = 0.085919999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8996 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.32' +Starting Epoch 33: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[33 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23380465; EvalErr[0]PerSample = 0.08230469; TotalTime = 34.2486s; SamplesPerSecond = 747.5 +Finished Epoch[33 of 160]: [Training Set] TrainLossPerSample = 0.24616794; EvalErrPerSample = 0.086580001; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9199 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.33' +Starting Epoch 34: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[34 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.24045441; EvalErr[0]PerSample = 0.08265625; TotalTime = 34.2421s; SamplesPerSecond = 747.6 +Finished Epoch[34 of 160]: [Training Set] TrainLossPerSample = 0.24212448; EvalErrPerSample = 0.083119996; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9056 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.34' +Starting Epoch 35: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[35 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.22943111; EvalErr[0]PerSample = 0.08085937; TotalTime = 34.3397s; SamplesPerSecond = 745.5 +Finished Epoch[35 of 160]: [Training Set] TrainLossPerSample = 0.23983407; EvalErrPerSample = 0.083459996; AvgLearningRatePerSample = 0.0078125; EpochTime=67.0061 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.35' +Starting Epoch 36: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[36 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.23311565; EvalErr[0]PerSample = 0.08097656; TotalTime = 34.2423s; SamplesPerSecond = 747.6 +Finished Epoch[36 of 160]: [Training Set] TrainLossPerSample = 0.23720597; EvalErrPerSample = 0.081979997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.905 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.36' +Starting Epoch 37: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[37 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.21555502; EvalErr[0]PerSample = 0.07417969; TotalTime = 34.2320s; SamplesPerSecond = 747.8 +Finished Epoch[37 of 160]: [Training Set] TrainLossPerSample = 0.2297499; EvalErrPerSample = 0.07948; AvgLearningRatePerSample = 0.0078125; EpochTime=66.89 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.37' +Starting Epoch 38: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[38 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.22408737; EvalErr[0]PerSample = 0.07808594; TotalTime = 34.2398s; SamplesPerSecond = 747.7 +Finished Epoch[38 of 160]: [Training Set] TrainLossPerSample = 0.22645262; EvalErrPerSample = 0.078979999; AvgLearningRatePerSample = 0.0078125; EpochTime=67.0321 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.38' +Starting Epoch 39: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[39 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.21047318; EvalErr[0]PerSample = 0.07042969; TotalTime = 34.2497s; SamplesPerSecond = 747.5 +Finished Epoch[39 of 160]: [Training Set] TrainLossPerSample = 0.2245833; EvalErrPerSample = 0.076739997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9139 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.39' +Starting Epoch 40: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[40 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.21677456; EvalErr[0]PerSample = 0.07500000; TotalTime = 34.2403s; SamplesPerSecond = 747.7 +Finished Epoch[40 of 160]: [Training Set] TrainLossPerSample = 0.22170429; EvalErrPerSample = 0.076480001; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8962 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.40' +Starting Epoch 41: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[41 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.21649546; EvalErr[0]PerSample = 0.07519531; TotalTime = 34.2476s; SamplesPerSecond = 747.5 +Finished Epoch[41 of 160]: [Training Set] TrainLossPerSample = 0.21857023; EvalErrPerSample = 0.075599998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9011 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.41' +Starting Epoch 42: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[42 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.20455832; EvalErr[0]PerSample = 0.07152344; TotalTime = 34.2415s; SamplesPerSecond = 747.6 +Finished Epoch[42 of 160]: [Training Set] TrainLossPerSample = 0.2160496; EvalErrPerSample = 0.075199999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9069 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.42' +Starting Epoch 43: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[43 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.20672878; EvalErr[0]PerSample = 0.06980469; TotalTime = 34.2485s; SamplesPerSecond = 747.5 +Finished Epoch[43 of 160]: [Training Set] TrainLossPerSample = 0.21430331; EvalErrPerSample = 0.07418; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9167 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.43' +Starting Epoch 44: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[44 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.20699423; EvalErr[0]PerSample = 0.07023438; TotalTime = 34.2524s; SamplesPerSecond = 747.4 +Finished Epoch[44 of 160]: [Training Set] TrainLossPerSample = 0.21219908; EvalErrPerSample = 0.072559997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9169 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.44' +Starting Epoch 45: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[45 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.19827534; EvalErr[0]PerSample = 0.06875000; TotalTime = 34.2522s; SamplesPerSecond = 747.4 +Finished Epoch[45 of 160]: [Training Set] TrainLossPerSample = 0.20897356; EvalErrPerSample = 0.07192; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9303 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.45' +Starting Epoch 46: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[46 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.20024132; EvalErr[0]PerSample = 0.06968750; TotalTime = 34.2502s; SamplesPerSecond = 747.4 +Finished Epoch[46 of 160]: [Training Set] TrainLossPerSample = 0.20776483; EvalErrPerSample = 0.072839998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9176 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.46' +Starting Epoch 47: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[47 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.19332899; EvalErr[0]PerSample = 0.06835938; TotalTime = 34.2464s; SamplesPerSecond = 747.5 +Finished Epoch[47 of 160]: [Training Set] TrainLossPerSample = 0.20251136; EvalErrPerSample = 0.071400002; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9216 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.47' +Starting Epoch 48: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[48 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.20135883; EvalErr[0]PerSample = 0.07085938; TotalTime = 34.2391s; SamplesPerSecond = 747.7 +Finished Epoch[48 of 160]: [Training Set] TrainLossPerSample = 0.20199671; EvalErrPerSample = 0.070560001; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9086 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.48' +Starting Epoch 49: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[49 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.18952045; EvalErr[0]PerSample = 0.06582031; TotalTime = 34.2645s; SamplesPerSecond = 747.1 +Finished Epoch[49 of 160]: [Training Set] TrainLossPerSample = 0.19823113; EvalErrPerSample = 0.068580002; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9231 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.49' +Starting Epoch 50: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[50 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.19133921; EvalErr[0]PerSample = 0.06726562; TotalTime = 34.2493s; SamplesPerSecond = 747.5 +Finished Epoch[50 of 160]: [Training Set] TrainLossPerSample = 0.2006802; EvalErrPerSample = 0.070699997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9319 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.50' +Starting Epoch 51: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[51 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.19296997; EvalErr[0]PerSample = 0.06621094; TotalTime = 34.2297s; SamplesPerSecond = 747.9 +Finished Epoch[51 of 160]: [Training Set] TrainLossPerSample = 0.1992881; EvalErrPerSample = 0.069499999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8847 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.51' +Starting Epoch 52: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[52 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.18573498; EvalErr[0]PerSample = 0.06414063; TotalTime = 34.2456s; SamplesPerSecond = 747.5 +Finished Epoch[52 of 160]: [Training Set] TrainLossPerSample = 0.19471373; EvalErrPerSample = 0.067099996; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9424 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.52' +Starting Epoch 53: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[53 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.18396889; EvalErr[0]PerSample = 0.06542969; TotalTime = 34.2888s; SamplesPerSecond = 746.6 +Finished Epoch[53 of 160]: [Training Set] TrainLossPerSample = 0.1925908; EvalErrPerSample = 0.067219995; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9471 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.53' +Starting Epoch 54: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[54 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.18691126; EvalErr[0]PerSample = 0.06562500; TotalTime = 34.2456s; SamplesPerSecond = 747.5 +Finished Epoch[54 of 160]: [Training Set] TrainLossPerSample = 0.18951587; EvalErrPerSample = 0.065919995; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9116 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.54' +Starting Epoch 55: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[55 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.18601879; EvalErr[0]PerSample = 0.06371094; TotalTime = 34.2466s; SamplesPerSecond = 747.5 +Finished Epoch[55 of 160]: [Training Set] TrainLossPerSample = 0.18988976; EvalErrPerSample = 0.066100001; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9152 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.55' +Starting Epoch 56: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[56 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.18315941; EvalErr[0]PerSample = 0.06406250; TotalTime = 34.2413s; SamplesPerSecond = 747.6 +Finished Epoch[56 of 160]: [Training Set] TrainLossPerSample = 0.18686067; EvalErrPerSample = 0.065739997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9069 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.56' +Starting Epoch 57: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[57 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.18106951; EvalErr[0]PerSample = 0.06246094; TotalTime = 34.2510s; SamplesPerSecond = 747.4 +Finished Epoch[57 of 160]: [Training Set] TrainLossPerSample = 0.19042736; EvalErrPerSample = 0.06622; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9223 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.57' +Starting Epoch 58: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[58 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.18492083; EvalErr[0]PerSample = 0.06527344; TotalTime = 34.2528s; SamplesPerSecond = 747.4 +Finished Epoch[58 of 160]: [Training Set] TrainLossPerSample = 0.18727326; EvalErrPerSample = 0.064939998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9267 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.58' +Starting Epoch 59: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[59 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.17038435; EvalErr[0]PerSample = 0.05917969; TotalTime = 34.2496s; SamplesPerSecond = 747.5 +Finished Epoch[59 of 160]: [Training Set] TrainLossPerSample = 0.18080178; EvalErrPerSample = 0.062299997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9191 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.59' +Starting Epoch 60: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[60 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.17502851; EvalErr[0]PerSample = 0.06183594; TotalTime = 34.2793s; SamplesPerSecond = 746.8 +Finished Epoch[60 of 160]: [Training Set] TrainLossPerSample = 0.17897207; EvalErrPerSample = 0.062819995; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9611 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.60' +Starting Epoch 61: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[61 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.17479221; EvalErr[0]PerSample = 0.06187500; TotalTime = 34.2481s; SamplesPerSecond = 747.5 +Finished Epoch[61 of 160]: [Training Set] TrainLossPerSample = 0.17798932; EvalErrPerSample = 0.062660001; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9219 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.61' +Starting Epoch 62: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[62 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.17981518; EvalErr[0]PerSample = 0.06199219; TotalTime = 34.2561s; SamplesPerSecond = 747.3 +Finished Epoch[62 of 160]: [Training Set] TrainLossPerSample = 0.18243115; EvalErrPerSample = 0.064240001; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9244 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.62' +Starting Epoch 63: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[63 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.17270412; EvalErr[0]PerSample = 0.05917969; TotalTime = 34.2554s; SamplesPerSecond = 747.3 +Finished Epoch[63 of 160]: [Training Set] TrainLossPerSample = 0.17758152; EvalErrPerSample = 0.061719999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9361 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.63' +Starting Epoch 64: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[64 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.16516579; EvalErr[0]PerSample = 0.05792969; TotalTime = 34.2766s; SamplesPerSecond = 746.9 +Finished Epoch[64 of 160]: [Training Set] TrainLossPerSample = 0.17424898; EvalErrPerSample = 0.06044; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9633 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.64' +Starting Epoch 65: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[65 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.17415672; EvalErr[0]PerSample = 0.06164062; TotalTime = 34.3307s; SamplesPerSecond = 745.7 +Finished Epoch[65 of 160]: [Training Set] TrainLossPerSample = 0.17599966; EvalErrPerSample = 0.062039997; AvgLearningRatePerSample = 0.0078125; EpochTime=67.026 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.65' +Starting Epoch 66: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[66 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.16262278; EvalErr[0]PerSample = 0.05886719; TotalTime = 34.2448s; SamplesPerSecond = 747.6 +Finished Epoch[66 of 160]: [Training Set] TrainLossPerSample = 0.16772267; EvalErrPerSample = 0.059799999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9065 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.66' +Starting Epoch 67: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[67 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.16856216; EvalErr[0]PerSample = 0.05906250; TotalTime = 34.2467s; SamplesPerSecond = 747.5 +Finished Epoch[67 of 160]: [Training Set] TrainLossPerSample = 0.17300676; EvalErrPerSample = 0.061139997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9215 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.67' +Starting Epoch 68: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[68 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.16585386; EvalErr[0]PerSample = 0.05734375; TotalTime = 34.2464s; SamplesPerSecond = 747.5 +Finished Epoch[68 of 160]: [Training Set] TrainLossPerSample = 0.17578007; EvalErrPerSample = 0.060519997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9115 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.68' +Starting Epoch 69: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[69 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.15487971; EvalErr[0]PerSample = 0.05441406; TotalTime = 34.2490s; SamplesPerSecond = 747.5 +Finished Epoch[69 of 160]: [Training Set] TrainLossPerSample = 0.16411984; EvalErrPerSample = 0.05844; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9135 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.69' +Starting Epoch 70: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[70 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.15948469; EvalErr[0]PerSample = 0.05597656; TotalTime = 34.2446s; SamplesPerSecond = 747.6 +Finished Epoch[70 of 160]: [Training Set] TrainLossPerSample = 0.16847; EvalErrPerSample = 0.058879998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9103 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.70' +Starting Epoch 71: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[71 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.16197550; EvalErr[0]PerSample = 0.05718750; TotalTime = 34.2458s; SamplesPerSecond = 747.5 +Finished Epoch[71 of 160]: [Training Set] TrainLossPerSample = 0.17195615; EvalErrPerSample = 0.060839999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9166 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.71' +Starting Epoch 72: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[72 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.15629568; EvalErr[0]PerSample = 0.05515625; TotalTime = 34.2503s; SamplesPerSecond = 747.4 +Finished Epoch[72 of 160]: [Training Set] TrainLossPerSample = 0.17160599; EvalErrPerSample = 0.061219998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9158 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.72' +Starting Epoch 73: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[73 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.15722611; EvalErr[0]PerSample = 0.05476562; TotalTime = 34.2420s; SamplesPerSecond = 747.6 +Finished Epoch[73 of 160]: [Training Set] TrainLossPerSample = 0.16512014; EvalErrPerSample = 0.058259998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.8986 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.73' +Starting Epoch 74: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[74 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.16009672; EvalErr[0]PerSample = 0.05703125; TotalTime = 34.2495s; SamplesPerSecond = 747.5 +Finished Epoch[74 of 160]: [Training Set] TrainLossPerSample = 0.16898924; EvalErrPerSample = 0.059019998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9233 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.74' +Starting Epoch 75: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[75 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.15460204; EvalErr[0]PerSample = 0.05312500; TotalTime = 34.2539s; SamplesPerSecond = 747.4 +Finished Epoch[75 of 160]: [Training Set] TrainLossPerSample = 0.16324201; EvalErrPerSample = 0.055919997; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9233 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.75' +Starting Epoch 76: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[76 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.15667317; EvalErr[0]PerSample = 0.05515625; TotalTime = 34.2399s; SamplesPerSecond = 747.7 +Finished Epoch[76 of 160]: [Training Set] TrainLossPerSample = 0.15858564; EvalErrPerSample = 0.055059999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9518 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.76' +Starting Epoch 77: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[77 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.15659092; EvalErr[0]PerSample = 0.05410156; TotalTime = 34.2332s; SamplesPerSecond = 747.8 +Finished Epoch[77 of 160]: [Training Set] TrainLossPerSample = 0.16720241; EvalErrPerSample = 0.058079999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9014 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.77' +Starting Epoch 78: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[78 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.15273868; EvalErr[0]PerSample = 0.05164063; TotalTime = 34.2404s; SamplesPerSecond = 747.7 +Finished Epoch[78 of 160]: [Training Set] TrainLossPerSample = 0.15992303; EvalErrPerSample = 0.055239998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.906 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.78' +Starting Epoch 79: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[79 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.15322983; EvalErr[0]PerSample = 0.05476562; TotalTime = 34.2420s; SamplesPerSecond = 747.6 +Finished Epoch[79 of 160]: [Training Set] TrainLossPerSample = 0.16380094; EvalErrPerSample = 0.058139998; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9021 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.79' +Starting Epoch 80: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[80 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.15410002; EvalErr[0]PerSample = 0.05335938; TotalTime = 34.2510s; SamplesPerSecond = 747.4 +Finished Epoch[80 of 160]: [Training Set] TrainLossPerSample = 0.16132115; EvalErrPerSample = 0.05638; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9122 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.80' +Starting Epoch 81: learning rate per sample = 0.007813 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[81 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.14658320; EvalErr[0]PerSample = 0.05156250; TotalTime = 34.2506s; SamplesPerSecond = 747.4 +Finished Epoch[81 of 160]: [Training Set] TrainLossPerSample = 0.15670048; EvalErrPerSample = 0.055119999; AvgLearningRatePerSample = 0.0078125; EpochTime=66.9019 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.81' +Starting Epoch 82: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[82 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.11055239; EvalErr[0]PerSample = 0.03714844; TotalTime = 34.2453s; SamplesPerSecond = 747.5 +Finished Epoch[82 of 160]: [Training Set] TrainLossPerSample = 0.090582155; EvalErrPerSample = 0.03066; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.8937 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.82' +Starting Epoch 83: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[83 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.05391692; EvalErr[0]PerSample = 0.01675781; TotalTime = 34.2464s; SamplesPerSecond = 747.5 +Finished Epoch[83 of 160]: [Training Set] TrainLossPerSample = 0.052728198; EvalErrPerSample = 0.01644; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9025 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.83' +Starting Epoch 84: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[84 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.04134419; EvalErr[0]PerSample = 0.01242188; TotalTime = 34.2487s; SamplesPerSecond = 747.5 +Finished Epoch[84 of 160]: [Training Set] TrainLossPerSample = 0.04261167; EvalErrPerSample = 0.01278; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.922 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.84' +Starting Epoch 85: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[85 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03696221; EvalErr[0]PerSample = 0.01214844; TotalTime = 34.2502s; SamplesPerSecond = 747.4 +Finished Epoch[85 of 160]: [Training Set] TrainLossPerSample = 0.035290603; EvalErrPerSample = 0.01108; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9713 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.85' +Starting Epoch 86: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[86 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.03103620; EvalErr[0]PerSample = 0.00906250; TotalTime = 34.2539s; SamplesPerSecond = 747.4 +Finished Epoch[86 of 160]: [Training Set] TrainLossPerSample = 0.031053338; EvalErrPerSample = 0.0093200002; AvgLearningRatePerSample = 0.00078125001; EpochTime=67.0851 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.86' +Starting Epoch 87: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[87 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.02747848; EvalErr[0]PerSample = 0.00800781; TotalTime = 34.9682s; SamplesPerSecond = 732.1 +Finished Epoch[87 of 160]: [Training Set] TrainLossPerSample = 0.028250355; EvalErrPerSample = 0.00832; AvgLearningRatePerSample = 0.00078125001; EpochTime=67.6314 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.87' +Starting Epoch 88: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[88 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.02383066; EvalErr[0]PerSample = 0.00714844; TotalTime = 34.2475s; SamplesPerSecond = 747.5 +Finished Epoch[88 of 160]: [Training Set] TrainLossPerSample = 0.023733234; EvalErrPerSample = 0.0070599997; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9154 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.88' +Starting Epoch 89: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[89 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.02334737; EvalErr[0]PerSample = 0.00632813; TotalTime = 34.2406s; SamplesPerSecond = 747.7 +Finished Epoch[89 of 160]: [Training Set] TrainLossPerSample = 0.022844482; EvalErrPerSample = 0.0063999998; AvgLearningRatePerSample = 0.00078125001; EpochTime=67.0741 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.89' +Starting Epoch 90: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[90 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.02094710; EvalErr[0]PerSample = 0.00589844; TotalTime = 34.2465s; SamplesPerSecond = 747.5 +Finished Epoch[90 of 160]: [Training Set] TrainLossPerSample = 0.020934064; EvalErrPerSample = 0.0059599997; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9229 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.90' +Starting Epoch 91: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[91 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.02006884; EvalErr[0]PerSample = 0.00628906; TotalTime = 34.2548s; SamplesPerSecond = 747.3 +Finished Epoch[91 of 160]: [Training Set] TrainLossPerSample = 0.019843206; EvalErrPerSample = 0.0061399997; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.914 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.91' +Starting Epoch 92: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[92 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01826200; EvalErr[0]PerSample = 0.00542969; TotalTime = 34.2810s; SamplesPerSecond = 746.8 +Finished Epoch[92 of 160]: [Training Set] TrainLossPerSample = 0.018547757; EvalErrPerSample = 0.00538; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9512 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.92' +Starting Epoch 93: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[93 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01654859; EvalErr[0]PerSample = 0.00453125; TotalTime = 34.2943s; SamplesPerSecond = 746.5 +Finished Epoch[93 of 160]: [Training Set] TrainLossPerSample = 0.01722255; EvalErrPerSample = 0.0049399999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9701 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.93' +Starting Epoch 94: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[94 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01585697; EvalErr[0]PerSample = 0.00441406; TotalTime = 34.2504s; SamplesPerSecond = 747.4 +Finished Epoch[94 of 160]: [Training Set] TrainLossPerSample = 0.01515844; EvalErrPerSample = 0.0041799997; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.93 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.94' +Starting Epoch 95: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[95 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01532144; EvalErr[0]PerSample = 0.00441406; TotalTime = 34.2512s; SamplesPerSecond = 747.4 +Finished Epoch[95 of 160]: [Training Set] TrainLossPerSample = 0.015015967; EvalErrPerSample = 0.0044; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9121 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.95' +Starting Epoch 96: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[96 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01399448; EvalErr[0]PerSample = 0.00406250; TotalTime = 34.2433s; SamplesPerSecond = 747.6 +Finished Epoch[96 of 160]: [Training Set] TrainLossPerSample = 0.013210027; EvalErrPerSample = 0.00376; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.8997 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.96' +Starting Epoch 97: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[97 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01209825; EvalErr[0]PerSample = 0.00332031; TotalTime = 34.2567s; SamplesPerSecond = 747.3 +Finished Epoch[97 of 160]: [Training Set] TrainLossPerSample = 0.012226926; EvalErrPerSample = 0.0032599999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9247 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.97' +Starting Epoch 98: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[98 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01230964; EvalErr[0]PerSample = 0.00343750; TotalTime = 34.2486s; SamplesPerSecond = 747.5 +Finished Epoch[98 of 160]: [Training Set] TrainLossPerSample = 0.012122833; EvalErrPerSample = 0.0034599998; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9192 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.98' +Starting Epoch 99: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[99 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00988823; EvalErr[0]PerSample = 0.00230469; TotalTime = 34.2477s; SamplesPerSecond = 747.5 +Finished Epoch[99 of 160]: [Training Set] TrainLossPerSample = 0.011153033; EvalErrPerSample = 0.00288; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9079 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.99' +Starting Epoch 100: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[100 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01078802; EvalErr[0]PerSample = 0.00328125; TotalTime = 34.2446s; SamplesPerSecond = 747.6 +Finished Epoch[100 of 160]: [Training Set] TrainLossPerSample = 0.010805478; EvalErrPerSample = 0.0032199998; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9141 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.100' +Starting Epoch 101: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[101 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01043408; EvalErr[0]PerSample = 0.00285156; TotalTime = 34.2448s; SamplesPerSecond = 747.6 +Finished Epoch[101 of 160]: [Training Set] TrainLossPerSample = 0.0097289206; EvalErrPerSample = 0.00254; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9115 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.101' +Starting Epoch 102: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[102 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01028690; EvalErr[0]PerSample = 0.00269531; TotalTime = 34.2500s; SamplesPerSecond = 747.4 +Finished Epoch[102 of 160]: [Training Set] TrainLossPerSample = 0.010017196; EvalErrPerSample = 0.0026999998; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9075 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.102' +Starting Epoch 103: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[103 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.01031995; EvalErr[0]PerSample = 0.00316406; TotalTime = 34.2485s; SamplesPerSecond = 747.5 +Finished Epoch[103 of 160]: [Training Set] TrainLossPerSample = 0.010233736; EvalErrPerSample = 0.0030199999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9094 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.103' +Starting Epoch 104: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[104 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00783067; EvalErr[0]PerSample = 0.00164062; TotalTime = 34.2752s; SamplesPerSecond = 746.9 +Finished Epoch[104 of 160]: [Training Set] TrainLossPerSample = 0.0086551448; EvalErrPerSample = 0.00208; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9965 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.104' +Starting Epoch 105: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[105 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00939923; EvalErr[0]PerSample = 0.00253906; TotalTime = 34.2407s; SamplesPerSecond = 747.6 +Finished Epoch[105 of 160]: [Training Set] TrainLossPerSample = 0.0096224733; EvalErrPerSample = 0.0026199999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.8974 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.105' +Starting Epoch 106: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[106 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00753223; EvalErr[0]PerSample = 0.00179688; TotalTime = 34.2848s; SamplesPerSecond = 746.7 +Finished Epoch[106 of 160]: [Training Set] TrainLossPerSample = 0.0078934198; EvalErrPerSample = 0.00202; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9655 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.106' +Starting Epoch 107: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[107 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00865439; EvalErr[0]PerSample = 0.00238281; TotalTime = 34.2544s; SamplesPerSecond = 747.4 +Finished Epoch[107 of 160]: [Training Set] TrainLossPerSample = 0.008151643; EvalErrPerSample = 0.00214; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9284 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.107' +Starting Epoch 108: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[108 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00694811; EvalErr[0]PerSample = 0.00148438; TotalTime = 34.2490s; SamplesPerSecond = 747.5 +Finished Epoch[108 of 160]: [Training Set] TrainLossPerSample = 0.0073725204; EvalErrPerSample = 0.0016; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9107 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.108' +Starting Epoch 109: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[109 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00807542; EvalErr[0]PerSample = 0.00218750; TotalTime = 34.2420s; SamplesPerSecond = 747.6 +Finished Epoch[109 of 160]: [Training Set] TrainLossPerSample = 0.0075115636; EvalErrPerSample = 0.00194; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9172 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.109' +Starting Epoch 110: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[110 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00747269; EvalErr[0]PerSample = 0.00214844; TotalTime = 34.2519s; SamplesPerSecond = 747.4 +Finished Epoch[110 of 160]: [Training Set] TrainLossPerSample = 0.0070967474; EvalErrPerSample = 0.0017599999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9183 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.110' +Starting Epoch 111: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[111 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00696611; EvalErr[0]PerSample = 0.00175781; TotalTime = 34.2387s; SamplesPerSecond = 747.7 +Finished Epoch[111 of 160]: [Training Set] TrainLossPerSample = 0.0071680127; EvalErrPerSample = 0.0018399999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9065 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.111' +Starting Epoch 112: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[112 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00660637; EvalErr[0]PerSample = 0.00167969; TotalTime = 34.2517s; SamplesPerSecond = 747.4 +Finished Epoch[112 of 160]: [Training Set] TrainLossPerSample = 0.0069257859; EvalErrPerSample = 0.0018399999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9221 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.112' +Starting Epoch 113: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[113 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00683305; EvalErr[0]PerSample = 0.00179688; TotalTime = 34.2447s; SamplesPerSecond = 747.6 +Finished Epoch[113 of 160]: [Training Set] TrainLossPerSample = 0.0071453024; EvalErrPerSample = 0.00182; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9078 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.113' +Starting Epoch 114: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[114 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00659715; EvalErr[0]PerSample = 0.00164062; TotalTime = 34.2397s; SamplesPerSecond = 747.7 +Finished Epoch[114 of 160]: [Training Set] TrainLossPerSample = 0.0066223624; EvalErrPerSample = 0.0017199999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9022 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.114' +Starting Epoch 115: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[115 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00571319; EvalErr[0]PerSample = 0.00140625; TotalTime = 34.2379s; SamplesPerSecond = 747.7 +Finished Epoch[115 of 160]: [Training Set] TrainLossPerSample = 0.0061274339; EvalErrPerSample = 0.0015199999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9117 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.115' +Starting Epoch 116: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[116 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00616163; EvalErr[0]PerSample = 0.00164062; TotalTime = 34.2441s; SamplesPerSecond = 747.6 +Finished Epoch[116 of 160]: [Training Set] TrainLossPerSample = 0.0064637884; EvalErrPerSample = 0.00166; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.92 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.116' +Starting Epoch 117: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[117 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00667505; EvalErr[0]PerSample = 0.00171875; TotalTime = 34.2353s; SamplesPerSecond = 747.8 +Finished Epoch[117 of 160]: [Training Set] TrainLossPerSample = 0.0063761352; EvalErrPerSample = 0.0016; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.8921 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.117' +Starting Epoch 118: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[118 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00584337; EvalErr[0]PerSample = 0.00144531; TotalTime = 34.2344s; SamplesPerSecond = 747.8 +Finished Epoch[118 of 160]: [Training Set] TrainLossPerSample = 0.0061604949; EvalErrPerSample = 0.00162; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9005 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.118' +Starting Epoch 119: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[119 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00587101; EvalErr[0]PerSample = 0.00132813; TotalTime = 34.2448s; SamplesPerSecond = 747.6 +Finished Epoch[119 of 160]: [Training Set] TrainLossPerSample = 0.0058231312; EvalErrPerSample = 0.0013799999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9065 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.119' +Starting Epoch 120: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[120 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00556109; EvalErr[0]PerSample = 0.00152344; TotalTime = 34.2181s; SamplesPerSecond = 748.1 +Finished Epoch[120 of 160]: [Training Set] TrainLossPerSample = 0.0049992148; EvalErrPerSample = 0.0013; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9296 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.120' +Starting Epoch 121: learning rate per sample = 0.000781 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[121 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00544529; EvalErr[0]PerSample = 0.00148438; TotalTime = 34.2507s; SamplesPerSecond = 747.4 +Finished Epoch[121 of 160]: [Training Set] TrainLossPerSample = 0.0059123267; EvalErrPerSample = 0.0016999999; AvgLearningRatePerSample = 0.00078125001; EpochTime=66.9099 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.121' +Starting Epoch 122: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[122 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00506212; EvalErr[0]PerSample = 0.00109375; TotalTime = 34.2380s; SamplesPerSecond = 747.7 +Finished Epoch[122 of 160]: [Training Set] TrainLossPerSample = 0.0047056451; EvalErrPerSample = 0.00099999993; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8882 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.122' +Starting Epoch 123: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[123 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00436568; EvalErr[0]PerSample = 0.00093750; TotalTime = 34.2202s; SamplesPerSecond = 748.1 +Finished Epoch[123 of 160]: [Training Set] TrainLossPerSample = 0.0045333277; EvalErrPerSample = 0.00102; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8649 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.123' +Starting Epoch 124: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[124 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00423286; EvalErr[0]PerSample = 0.00089844; TotalTime = 34.2368s; SamplesPerSecond = 747.7 +Finished Epoch[124 of 160]: [Training Set] TrainLossPerSample = 0.0040925727; EvalErrPerSample = 0.00078; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8901 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.124' +Starting Epoch 125: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[125 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00428819; EvalErr[0]PerSample = 0.00089844; TotalTime = 34.2302s; SamplesPerSecond = 747.9 +Finished Epoch[125 of 160]: [Training Set] TrainLossPerSample = 0.0039790319; EvalErrPerSample = 0.00083999999; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8868 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.125' +Starting Epoch 126: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[126 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00386990; EvalErr[0]PerSample = 0.00070312; TotalTime = 34.2288s; SamplesPerSecond = 747.9 +Finished Epoch[126 of 160]: [Training Set] TrainLossPerSample = 0.0041431645; EvalErrPerSample = 0.00102; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8935 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.126' +Starting Epoch 127: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[127 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00415913; EvalErr[0]PerSample = 0.00074219; TotalTime = 34.2434s; SamplesPerSecond = 747.6 +Finished Epoch[127 of 160]: [Training Set] TrainLossPerSample = 0.0038879183; EvalErrPerSample = 0.00072000001; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9178 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.127' +Starting Epoch 128: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[128 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00381589; EvalErr[0]PerSample = 0.00074219; TotalTime = 34.2352s; SamplesPerSecond = 747.8 +Finished Epoch[128 of 160]: [Training Set] TrainLossPerSample = 0.0037014519; EvalErrPerSample = 0.00065999996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8974 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.128' +Starting Epoch 129: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[129 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00390699; EvalErr[0]PerSample = 0.00093750; TotalTime = 34.2443s; SamplesPerSecond = 747.6 +Finished Epoch[129 of 160]: [Training Set] TrainLossPerSample = 0.0036388342; EvalErrPerSample = 0.00073999999; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9066 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.129' +Starting Epoch 130: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[130 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00401969; EvalErr[0]PerSample = 0.00113281; TotalTime = 34.2339s; SamplesPerSecond = 747.8 +Finished Epoch[130 of 160]: [Training Set] TrainLossPerSample = 0.0038497401; EvalErrPerSample = 0.00089999998; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8803 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.130' +Starting Epoch 131: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[131 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00371109; EvalErr[0]PerSample = 0.00050781; TotalTime = 34.2393s; SamplesPerSecond = 747.7 +Finished Epoch[131 of 160]: [Training Set] TrainLossPerSample = 0.0036305008; EvalErrPerSample = 0.00055999996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9068 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.131' +Starting Epoch 132: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[132 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00361982; EvalErr[0]PerSample = 0.00082031; TotalTime = 34.2404s; SamplesPerSecond = 747.7 +Finished Epoch[132 of 160]: [Training Set] TrainLossPerSample = 0.0037875406; EvalErrPerSample = 0.00091999996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9025 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.132' +Starting Epoch 133: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[133 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00379993; EvalErr[0]PerSample = 0.00085938; TotalTime = 34.2434s; SamplesPerSecond = 747.6 +Finished Epoch[133 of 160]: [Training Set] TrainLossPerSample = 0.0037811422; EvalErrPerSample = 0.00072000001; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8997 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.133' +Starting Epoch 134: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[134 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00324624; EvalErr[0]PerSample = 0.00042969; TotalTime = 34.2358s; SamplesPerSecond = 747.8 +Finished Epoch[134 of 160]: [Training Set] TrainLossPerSample = 0.0031919111; EvalErrPerSample = 0.00052; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8704 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.134' +Starting Epoch 135: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[135 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00297883; EvalErr[0]PerSample = 0.00035156; TotalTime = 34.2219s; SamplesPerSecond = 748.1 +Finished Epoch[135 of 160]: [Training Set] TrainLossPerSample = 0.0031994823; EvalErrPerSample = 0.00059999997; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9955 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.135' +Starting Epoch 136: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[136 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00355394; EvalErr[0]PerSample = 0.00066406; TotalTime = 34.9371s; SamplesPerSecond = 732.7 +Finished Epoch[136 of 160]: [Training Set] TrainLossPerSample = 0.0036795642; EvalErrPerSample = 0.00078; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=67.6302 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.136' +Starting Epoch 137: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[137 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00359524; EvalErr[0]PerSample = 0.00066406; TotalTime = 34.2354s; SamplesPerSecond = 747.8 +Finished Epoch[137 of 160]: [Training Set] TrainLossPerSample = 0.0035311766; EvalErrPerSample = 0.00068; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.891 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.137' +Starting Epoch 138: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[138 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00343087; EvalErr[0]PerSample = 0.00066406; TotalTime = 34.2621s; SamplesPerSecond = 747.2 +Finished Epoch[138 of 160]: [Training Set] TrainLossPerSample = 0.0034796586; EvalErrPerSample = 0.00065999996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.916 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.138' +Starting Epoch 139: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[139 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00343002; EvalErr[0]PerSample = 0.00066406; TotalTime = 34.2436s; SamplesPerSecond = 747.6 +Finished Epoch[139 of 160]: [Training Set] TrainLossPerSample = 0.0033328664; EvalErrPerSample = 0.00055999996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.923 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.139' +Starting Epoch 140: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[140 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00337591; EvalErr[0]PerSample = 0.00070312; TotalTime = 34.2353s; SamplesPerSecond = 747.8 +Finished Epoch[140 of 160]: [Training Set] TrainLossPerSample = 0.0031642318; EvalErrPerSample = 0.00055999996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.926 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.140' +Starting Epoch 141: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[141 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00364618; EvalErr[0]PerSample = 0.00078125; TotalTime = 34.2214s; SamplesPerSecond = 748.1 +Finished Epoch[141 of 160]: [Training Set] TrainLossPerSample = 0.0035639035; EvalErrPerSample = 0.00078; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8739 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.141' +Starting Epoch 142: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[142 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00340368; EvalErr[0]PerSample = 0.00046875; TotalTime = 34.2602s; SamplesPerSecond = 747.2 +Finished Epoch[142 of 160]: [Training Set] TrainLossPerSample = 0.0033217999; EvalErrPerSample = 0.00043999997; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9173 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.142' +Starting Epoch 143: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[143 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00338313; EvalErr[0]PerSample = 0.00058594; TotalTime = 34.2287s; SamplesPerSecond = 747.9 +Finished Epoch[143 of 160]: [Training Set] TrainLossPerSample = 0.003285937; EvalErrPerSample = 0.00055999996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8929 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.143' +Starting Epoch 144: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[144 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00350241; EvalErr[0]PerSample = 0.00097656; TotalTime = 34.2369s; SamplesPerSecond = 747.7 +Finished Epoch[144 of 160]: [Training Set] TrainLossPerSample = 0.0033956808; EvalErrPerSample = 0.00087999995; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9109 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.144' +Starting Epoch 145: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[145 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00389780; EvalErr[0]PerSample = 0.00078125; TotalTime = 34.2499s; SamplesPerSecond = 747.4 +Finished Epoch[145 of 160]: [Training Set] TrainLossPerSample = 0.003525309; EvalErrPerSample = 0.00073999999; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9108 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.145' +Starting Epoch 146: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[146 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00273976; EvalErr[0]PerSample = 0.00050781; TotalTime = 34.2481s; SamplesPerSecond = 747.5 +Finished Epoch[146 of 160]: [Training Set] TrainLossPerSample = 0.0029731863; EvalErrPerSample = 0.00049999997; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9057 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.146' +Starting Epoch 147: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[147 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00301678; EvalErr[0]PerSample = 0.00054688; TotalTime = 34.2455s; SamplesPerSecond = 747.5 +Finished Epoch[147 of 160]: [Training Set] TrainLossPerSample = 0.0028605016; EvalErrPerSample = 0.00055999996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9068 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.147' +Starting Epoch 148: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[148 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00318503; EvalErr[0]PerSample = 0.00078125; TotalTime = 34.2349s; SamplesPerSecond = 747.8 +Finished Epoch[148 of 160]: [Training Set] TrainLossPerSample = 0.0029674848; EvalErrPerSample = 0.00063999998; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8889 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.148' +Starting Epoch 149: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[149 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00341538; EvalErr[0]PerSample = 0.00070312; TotalTime = 34.2300s; SamplesPerSecond = 747.9 +Finished Epoch[149 of 160]: [Training Set] TrainLossPerSample = 0.0034138309; EvalErrPerSample = 0.00062000001; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.973 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.149' +Starting Epoch 150: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[150 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00312641; EvalErr[0]PerSample = 0.00050781; TotalTime = 34.2394s; SamplesPerSecond = 747.7 +Finished Epoch[150 of 160]: [Training Set] TrainLossPerSample = 0.0032544835; EvalErrPerSample = 0.00062000001; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8886 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.150' +Starting Epoch 151: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[151 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00294002; EvalErr[0]PerSample = 0.00046875; TotalTime = 34.2440s; SamplesPerSecond = 747.6 +Finished Epoch[151 of 160]: [Training Set] TrainLossPerSample = 0.0029587755; EvalErrPerSample = 0.00049999997; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9165 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.151' +Starting Epoch 152: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[152 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00312315; EvalErr[0]PerSample = 0.00070312; TotalTime = 34.2407s; SamplesPerSecond = 747.6 +Finished Epoch[152 of 160]: [Training Set] TrainLossPerSample = 0.0031671789; EvalErrPerSample = 0.00063999998; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8987 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.152' +Starting Epoch 153: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[153 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00293371; EvalErr[0]PerSample = 0.00042969; TotalTime = 34.2360s; SamplesPerSecond = 747.8 +Finished Epoch[153 of 160]: [Training Set] TrainLossPerSample = 0.0029186283; EvalErrPerSample = 0.00036000001; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8934 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.153' +Starting Epoch 154: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[154 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00270366; EvalErr[0]PerSample = 0.00046875; TotalTime = 34.2303s; SamplesPerSecond = 747.9 +Finished Epoch[154 of 160]: [Training Set] TrainLossPerSample = 0.0027337885; EvalErrPerSample = 0.00029999999; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8932 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.154' +Starting Epoch 155: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[155 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00262628; EvalErr[0]PerSample = 0.00027344; TotalTime = 34.2340s; SamplesPerSecond = 747.8 +Finished Epoch[155 of 160]: [Training Set] TrainLossPerSample = 0.002633905; EvalErrPerSample = 0.00023999999; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8889 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.155' +Starting Epoch 156: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[156 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00307139; EvalErr[0]PerSample = 0.00074219; TotalTime = 34.2388s; SamplesPerSecond = 747.7 +Finished Epoch[156 of 160]: [Training Set] TrainLossPerSample = 0.0029770101; EvalErrPerSample = 0.00065999996; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8912 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.156' +Starting Epoch 157: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[157 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00275711; EvalErr[0]PerSample = 0.00031250; TotalTime = 34.2329s; SamplesPerSecond = 747.8 +Finished Epoch[157 of 160]: [Training Set] TrainLossPerSample = 0.0026996653; EvalErrPerSample = 0.00034; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8768 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.157' +Starting Epoch 158: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[158 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00278720; EvalErr[0]PerSample = 0.00042969; TotalTime = 34.2421s; SamplesPerSecond = 747.6 +Finished Epoch[158 of 160]: [Training Set] TrainLossPerSample = 0.0026968825; EvalErrPerSample = 0.00037999998; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9344 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.158' +Starting Epoch 159: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[159 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00272500; EvalErr[0]PerSample = 0.00031250; TotalTime = 34.2259s; SamplesPerSecond = 748.0 +Finished Epoch[159 of 160]: [Training Set] TrainLossPerSample = 0.0027625638; EvalErrPerSample = 0.00037999998; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.9162 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56.159' +Starting Epoch 160: learning rate per sample = 0.000078 effective momentum = 0.900000 momentum as time constant = 1214.9 samples + +Starting minibatch loop. + Epoch[160 of 160]-Minibatch[ 1- 200, 100.00%]: SamplesSeen = 25600; TrainLossPerSample = 0.00257069; EvalErr[0]PerSample = 0.00042969; TotalTime = 34.2364s; SamplesPerSecond = 747.7 +Finished Epoch[160 of 160]: [Training Set] TrainLossPerSample = 0.0029211191; EvalErrPerSample = 0.00063999998; AvgLearningRatePerSample = 7.8124998e-005; EpochTime=66.8957 +SGD: Saving checkpoint model './Output/Models/04_ResNet_56' +CNTKCommandTrainEnd: Train + +Post-processing network... + +3 roots: + CE = CrossEntropyWithSoftmax + Err = ErrorPrediction + OutputNodes.z = Plus +FormNestedNetwork: WARNING: Was called twice for CE CrossEntropyWithSoftmax operation +FormNestedNetwork: WARNING: Was called twice for Err ErrorPrediction operation +FormNestedNetwork: WARNING: Was called twice for OutputNodes.z Plus operation + + +Validating network. 949 nodes to process in pass 1. + +Validating --> labels = InputValue -> [10 x *] +Validating --> OutputNodes.W = LearnableParameter -> [10 x 64] +Validating --> rn3_18.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_18.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_17.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_17.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_16.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_16.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_15.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_15.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_14.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_14.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_13.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_13.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_12.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_12.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_11.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_11.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_10.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_10.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_9.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_9.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_8.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_8.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_7.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_7.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_6.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_6.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_5.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_5.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_4.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_4.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 x 288] +Validating --> rn2_18.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_18.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_17.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_17.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_16.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_16.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_15.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_15.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_14.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_14.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_13.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_13.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_12.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_12.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_11.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_11.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_10.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_10.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_9.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_9.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_8.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_8.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_7.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_7.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_6.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_6.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_5.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_5.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_4.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_4.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 x 144] +Validating --> rn1_18.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_18.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_17.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_17.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_16.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_16.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_15.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_15.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_14.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_14.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_13.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_13.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_12.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_12.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_11.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_11.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_10.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_10.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_9.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_9.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_8.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_8.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_7.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_7.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_6.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_6.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_5.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_5.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_4.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_4.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> conv1.c.W = LearnableParameter -> [16 x 27] +Validating --> features = InputValue -> [32 x 32 x 3 x *] +Validating --> conv1.c.c.c = Convolution(conv1.c.W[16 x 27], features[32 x 32 x 3 x * {W=32, H=3, C=32}]) -> [32 x 32 x 16 x *] +Validating --> conv1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.y = BatchNormalization(conv1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.c.c.sc[16 x 1], conv1.c.c.b[16 x 1], conv1.c.c.m[16 x 1], conv1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> conv1.y = RectifiedLinear(conv1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.c.c.c = Convolution(rn1_1.c1.c.W[16 x 144], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.y = BatchNormalization(rn1_1.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c1.c.c.sc[16 x 1], rn1_1.c1.c.c.b[16 x 1], rn1_1.c1.c.c.m[16 x 1], rn1_1.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c2.c.c = Convolution(rn1_1.c2.W[16 x 144], rn1_1.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.y = BatchNormalization(rn1_1.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c2.c.sc[16 x 1], rn1_1.c2.c.b[16 x 1], rn1_1.c2.c.m[16 x 1], rn1_1.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.p = Plus(rn1_1.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.c.c.c = Convolution(rn1_2.c1.c.W[16 x 144], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.y = BatchNormalization(rn1_2.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c1.c.c.sc[16 x 1], rn1_2.c1.c.c.b[16 x 1], rn1_2.c1.c.c.m[16 x 1], rn1_2.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c2.c.c = Convolution(rn1_2.c2.W[16 x 144], rn1_2.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.y = BatchNormalization(rn1_2.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c2.c.sc[16 x 1], rn1_2.c2.c.b[16 x 1], rn1_2.c2.c.m[16 x 1], rn1_2.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.p = Plus(rn1_2.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.c.c.c = Convolution(rn1_3.c1.c.W[16 x 144], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.y = BatchNormalization(rn1_3.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c1.c.c.sc[16 x 1], rn1_3.c1.c.c.b[16 x 1], rn1_3.c1.c.c.m[16 x 1], rn1_3.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c2.c.c = Convolution(rn1_3.c2.W[16 x 144], rn1_3.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.y = BatchNormalization(rn1_3.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c2.c.sc[16 x 1], rn1_3.c2.c.b[16 x 1], rn1_3.c2.c.m[16 x 1], rn1_3.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.p = Plus(rn1_3.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.c.c.c = Convolution(rn1_4.c1.c.W[16 x 144], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.y = BatchNormalization(rn1_4.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c1.c.c.sc[16 x 1], rn1_4.c1.c.c.b[16 x 1], rn1_4.c1.c.c.m[16 x 1], rn1_4.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.y = RectifiedLinear(rn1_4.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c2.c.c = Convolution(rn1_4.c2.W[16 x 144], rn1_4.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.y = BatchNormalization(rn1_4.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c2.c.sc[16 x 1], rn1_4.c2.c.b[16 x 1], rn1_4.c2.c.m[16 x 1], rn1_4.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.p = Plus(rn1_4.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.y = RectifiedLinear(rn1_4.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.c.c.c = Convolution(rn1_5.c1.c.W[16 x 144], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.y = BatchNormalization(rn1_5.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c1.c.c.sc[16 x 1], rn1_5.c1.c.c.b[16 x 1], rn1_5.c1.c.c.m[16 x 1], rn1_5.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.y = RectifiedLinear(rn1_5.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c2.c.c = Convolution(rn1_5.c2.W[16 x 144], rn1_5.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.y = BatchNormalization(rn1_5.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c2.c.sc[16 x 1], rn1_5.c2.c.b[16 x 1], rn1_5.c2.c.m[16 x 1], rn1_5.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.p = Plus(rn1_5.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.y = RectifiedLinear(rn1_5.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.c.c.c = Convolution(rn1_6.c1.c.W[16 x 144], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.y = BatchNormalization(rn1_6.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c1.c.c.sc[16 x 1], rn1_6.c1.c.c.b[16 x 1], rn1_6.c1.c.c.m[16 x 1], rn1_6.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.y = RectifiedLinear(rn1_6.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c2.c.c = Convolution(rn1_6.c2.W[16 x 144], rn1_6.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.y = BatchNormalization(rn1_6.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c2.c.sc[16 x 1], rn1_6.c2.c.b[16 x 1], rn1_6.c2.c.m[16 x 1], rn1_6.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.p = Plus(rn1_6.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.y = RectifiedLinear(rn1_6.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.c.c.c = Convolution(rn1_7.c1.c.W[16 x 144], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.y = BatchNormalization(rn1_7.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c1.c.c.sc[16 x 1], rn1_7.c1.c.c.b[16 x 1], rn1_7.c1.c.c.m[16 x 1], rn1_7.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.y = RectifiedLinear(rn1_7.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c2.c.c = Convolution(rn1_7.c2.W[16 x 144], rn1_7.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.y = BatchNormalization(rn1_7.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c2.c.sc[16 x 1], rn1_7.c2.c.b[16 x 1], rn1_7.c2.c.m[16 x 1], rn1_7.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.p = Plus(rn1_7.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.y = RectifiedLinear(rn1_7.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.c.c.c = Convolution(rn1_8.c1.c.W[16 x 144], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.y = BatchNormalization(rn1_8.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c1.c.c.sc[16 x 1], rn1_8.c1.c.c.b[16 x 1], rn1_8.c1.c.c.m[16 x 1], rn1_8.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.y = RectifiedLinear(rn1_8.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c2.c.c = Convolution(rn1_8.c2.W[16 x 144], rn1_8.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.y = BatchNormalization(rn1_8.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c2.c.sc[16 x 1], rn1_8.c2.c.b[16 x 1], rn1_8.c2.c.m[16 x 1], rn1_8.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.p = Plus(rn1_8.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.y = RectifiedLinear(rn1_8.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.c.c.c = Convolution(rn1_9.c1.c.W[16 x 144], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.y = BatchNormalization(rn1_9.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c1.c.c.sc[16 x 1], rn1_9.c1.c.c.b[16 x 1], rn1_9.c1.c.c.m[16 x 1], rn1_9.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.y = RectifiedLinear(rn1_9.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c2.c.c = Convolution(rn1_9.c2.W[16 x 144], rn1_9.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.y = BatchNormalization(rn1_9.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c2.c.sc[16 x 1], rn1_9.c2.c.b[16 x 1], rn1_9.c2.c.m[16 x 1], rn1_9.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.p = Plus(rn1_9.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.y = RectifiedLinear(rn1_9.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.c.c.c = Convolution(rn1_10.c1.c.W[16 x 144], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.y = BatchNormalization(rn1_10.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c1.c.c.sc[16 x 1], rn1_10.c1.c.c.b[16 x 1], rn1_10.c1.c.c.m[16 x 1], rn1_10.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.y = RectifiedLinear(rn1_10.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c2.c.c = Convolution(rn1_10.c2.W[16 x 144], rn1_10.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.y = BatchNormalization(rn1_10.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c2.c.sc[16 x 1], rn1_10.c2.c.b[16 x 1], rn1_10.c2.c.m[16 x 1], rn1_10.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.p = Plus(rn1_10.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.y = RectifiedLinear(rn1_10.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.c.c.c = Convolution(rn1_11.c1.c.W[16 x 144], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.y = BatchNormalization(rn1_11.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c1.c.c.sc[16 x 1], rn1_11.c1.c.c.b[16 x 1], rn1_11.c1.c.c.m[16 x 1], rn1_11.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.y = RectifiedLinear(rn1_11.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c2.c.c = Convolution(rn1_11.c2.W[16 x 144], rn1_11.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.y = BatchNormalization(rn1_11.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c2.c.sc[16 x 1], rn1_11.c2.c.b[16 x 1], rn1_11.c2.c.m[16 x 1], rn1_11.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.p = Plus(rn1_11.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.y = RectifiedLinear(rn1_11.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.c.c.c = Convolution(rn1_12.c1.c.W[16 x 144], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.y = BatchNormalization(rn1_12.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c1.c.c.sc[16 x 1], rn1_12.c1.c.c.b[16 x 1], rn1_12.c1.c.c.m[16 x 1], rn1_12.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.y = RectifiedLinear(rn1_12.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c2.c.c = Convolution(rn1_12.c2.W[16 x 144], rn1_12.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.y = BatchNormalization(rn1_12.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c2.c.sc[16 x 1], rn1_12.c2.c.b[16 x 1], rn1_12.c2.c.m[16 x 1], rn1_12.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.p = Plus(rn1_12.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.y = RectifiedLinear(rn1_12.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.c.c.c = Convolution(rn1_13.c1.c.W[16 x 144], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.y = BatchNormalization(rn1_13.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c1.c.c.sc[16 x 1], rn1_13.c1.c.c.b[16 x 1], rn1_13.c1.c.c.m[16 x 1], rn1_13.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.y = RectifiedLinear(rn1_13.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c2.c.c = Convolution(rn1_13.c2.W[16 x 144], rn1_13.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.y = BatchNormalization(rn1_13.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c2.c.sc[16 x 1], rn1_13.c2.c.b[16 x 1], rn1_13.c2.c.m[16 x 1], rn1_13.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.p = Plus(rn1_13.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.y = RectifiedLinear(rn1_13.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.c.c.c = Convolution(rn1_14.c1.c.W[16 x 144], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.y = BatchNormalization(rn1_14.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c1.c.c.sc[16 x 1], rn1_14.c1.c.c.b[16 x 1], rn1_14.c1.c.c.m[16 x 1], rn1_14.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.y = RectifiedLinear(rn1_14.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c2.c.c = Convolution(rn1_14.c2.W[16 x 144], rn1_14.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.y = BatchNormalization(rn1_14.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c2.c.sc[16 x 1], rn1_14.c2.c.b[16 x 1], rn1_14.c2.c.m[16 x 1], rn1_14.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.p = Plus(rn1_14.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.y = RectifiedLinear(rn1_14.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.c.c.c = Convolution(rn1_15.c1.c.W[16 x 144], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.y = BatchNormalization(rn1_15.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c1.c.c.sc[16 x 1], rn1_15.c1.c.c.b[16 x 1], rn1_15.c1.c.c.m[16 x 1], rn1_15.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.y = RectifiedLinear(rn1_15.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c2.c.c = Convolution(rn1_15.c2.W[16 x 144], rn1_15.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.y = BatchNormalization(rn1_15.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c2.c.sc[16 x 1], rn1_15.c2.c.b[16 x 1], rn1_15.c2.c.m[16 x 1], rn1_15.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.p = Plus(rn1_15.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.y = RectifiedLinear(rn1_15.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.c.c.c = Convolution(rn1_16.c1.c.W[16 x 144], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.y = BatchNormalization(rn1_16.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c1.c.c.sc[16 x 1], rn1_16.c1.c.c.b[16 x 1], rn1_16.c1.c.c.m[16 x 1], rn1_16.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.y = RectifiedLinear(rn1_16.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c2.c.c = Convolution(rn1_16.c2.W[16 x 144], rn1_16.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.y = BatchNormalization(rn1_16.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c2.c.sc[16 x 1], rn1_16.c2.c.b[16 x 1], rn1_16.c2.c.m[16 x 1], rn1_16.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.p = Plus(rn1_16.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.y = RectifiedLinear(rn1_16.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.c.c.c = Convolution(rn1_17.c1.c.W[16 x 144], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.y = BatchNormalization(rn1_17.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c1.c.c.sc[16 x 1], rn1_17.c1.c.c.b[16 x 1], rn1_17.c1.c.c.m[16 x 1], rn1_17.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.y = RectifiedLinear(rn1_17.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c2.c.c = Convolution(rn1_17.c2.W[16 x 144], rn1_17.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.y = BatchNormalization(rn1_17.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c2.c.sc[16 x 1], rn1_17.c2.c.b[16 x 1], rn1_17.c2.c.m[16 x 1], rn1_17.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.p = Plus(rn1_17.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.y = RectifiedLinear(rn1_17.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.c.c.c = Convolution(rn1_18.c1.c.W[16 x 144], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.y = BatchNormalization(rn1_18.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c1.c.c.sc[16 x 1], rn1_18.c1.c.c.b[16 x 1], rn1_18.c1.c.c.m[16 x 1], rn1_18.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.y = RectifiedLinear(rn1_18.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c2.c.c = Convolution(rn1_18.c2.W[16 x 144], rn1_18.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.y = BatchNormalization(rn1_18.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c2.c.sc[16 x 1], rn1_18.c2.c.b[16 x 1], rn1_18.c2.c.m[16 x 1], rn1_18.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.p = Plus(rn1_18.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.y = RectifiedLinear(rn1_18.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn2_1.c1.c.c.c = Convolution(rn2_1.c1.c.W[32 x 144], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.y = BatchNormalization(rn2_1.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c1.c.c.sc[32 x 1], rn2_1.c1.c.c.b[32 x 1], rn2_1.c1.c.c.m[32 x 1], rn2_1.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c2.c.c = Convolution(rn2_1.c2.W[32 x 288], rn2_1.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.y = BatchNormalization(rn2_1.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c2.c.sc[32 x 1], rn2_1.c2.c.b[32 x 1], rn2_1.c2.c.m[32 x 1], rn2_1.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1_Wproj = LearnableParameter -> [32 x 16] +Validating --> rn2_1.c_proj.c = Convolution(rn2_1_Wproj[32 x 16], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c_proj.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.y = BatchNormalization(rn2_1.c_proj.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.sc[32 x 1], rn2_1.c_proj.b[32 x 1], rn2_1.c_proj.m[32 x 1], rn2_1.c_proj.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.p = Plus(rn2_1.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.c.c.c = Convolution(rn2_2.c1.c.W[32 x 288], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.y = BatchNormalization(rn2_2.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c1.c.c.sc[32 x 1], rn2_2.c1.c.c.b[32 x 1], rn2_2.c1.c.c.m[32 x 1], rn2_2.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c2.c.c = Convolution(rn2_2.c2.W[32 x 288], rn2_2.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.y = BatchNormalization(rn2_2.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c2.c.sc[32 x 1], rn2_2.c2.c.b[32 x 1], rn2_2.c2.c.m[32 x 1], rn2_2.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.p = Plus(rn2_2.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.c.c.c = Convolution(rn2_3.c1.c.W[32 x 288], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.y = BatchNormalization(rn2_3.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c1.c.c.sc[32 x 1], rn2_3.c1.c.c.b[32 x 1], rn2_3.c1.c.c.m[32 x 1], rn2_3.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c2.c.c = Convolution(rn2_3.c2.W[32 x 288], rn2_3.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.y = BatchNormalization(rn2_3.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c2.c.sc[32 x 1], rn2_3.c2.c.b[32 x 1], rn2_3.c2.c.m[32 x 1], rn2_3.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.p = Plus(rn2_3.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.c.c.c = Convolution(rn2_4.c1.c.W[32 x 288], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.y = BatchNormalization(rn2_4.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c1.c.c.sc[32 x 1], rn2_4.c1.c.c.b[32 x 1], rn2_4.c1.c.c.m[32 x 1], rn2_4.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.y = RectifiedLinear(rn2_4.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c2.c.c = Convolution(rn2_4.c2.W[32 x 288], rn2_4.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.y = BatchNormalization(rn2_4.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c2.c.sc[32 x 1], rn2_4.c2.c.b[32 x 1], rn2_4.c2.c.m[32 x 1], rn2_4.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.p = Plus(rn2_4.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.y = RectifiedLinear(rn2_4.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.c.c.c = Convolution(rn2_5.c1.c.W[32 x 288], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.y = BatchNormalization(rn2_5.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c1.c.c.sc[32 x 1], rn2_5.c1.c.c.b[32 x 1], rn2_5.c1.c.c.m[32 x 1], rn2_5.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.y = RectifiedLinear(rn2_5.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c2.c.c = Convolution(rn2_5.c2.W[32 x 288], rn2_5.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.y = BatchNormalization(rn2_5.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c2.c.sc[32 x 1], rn2_5.c2.c.b[32 x 1], rn2_5.c2.c.m[32 x 1], rn2_5.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.p = Plus(rn2_5.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.y = RectifiedLinear(rn2_5.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.c.c.c = Convolution(rn2_6.c1.c.W[32 x 288], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.y = BatchNormalization(rn2_6.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c1.c.c.sc[32 x 1], rn2_6.c1.c.c.b[32 x 1], rn2_6.c1.c.c.m[32 x 1], rn2_6.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.y = RectifiedLinear(rn2_6.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c2.c.c = Convolution(rn2_6.c2.W[32 x 288], rn2_6.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.y = BatchNormalization(rn2_6.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c2.c.sc[32 x 1], rn2_6.c2.c.b[32 x 1], rn2_6.c2.c.m[32 x 1], rn2_6.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.p = Plus(rn2_6.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.y = RectifiedLinear(rn2_6.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.c.c.c = Convolution(rn2_7.c1.c.W[32 x 288], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.y = BatchNormalization(rn2_7.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c1.c.c.sc[32 x 1], rn2_7.c1.c.c.b[32 x 1], rn2_7.c1.c.c.m[32 x 1], rn2_7.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.y = RectifiedLinear(rn2_7.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c2.c.c = Convolution(rn2_7.c2.W[32 x 288], rn2_7.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.y = BatchNormalization(rn2_7.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c2.c.sc[32 x 1], rn2_7.c2.c.b[32 x 1], rn2_7.c2.c.m[32 x 1], rn2_7.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.p = Plus(rn2_7.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.y = RectifiedLinear(rn2_7.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.c.c.c = Convolution(rn2_8.c1.c.W[32 x 288], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.y = BatchNormalization(rn2_8.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c1.c.c.sc[32 x 1], rn2_8.c1.c.c.b[32 x 1], rn2_8.c1.c.c.m[32 x 1], rn2_8.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.y = RectifiedLinear(rn2_8.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c2.c.c = Convolution(rn2_8.c2.W[32 x 288], rn2_8.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.y = BatchNormalization(rn2_8.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c2.c.sc[32 x 1], rn2_8.c2.c.b[32 x 1], rn2_8.c2.c.m[32 x 1], rn2_8.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.p = Plus(rn2_8.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.y = RectifiedLinear(rn2_8.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.c.c.c = Convolution(rn2_9.c1.c.W[32 x 288], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.y = BatchNormalization(rn2_9.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c1.c.c.sc[32 x 1], rn2_9.c1.c.c.b[32 x 1], rn2_9.c1.c.c.m[32 x 1], rn2_9.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.y = RectifiedLinear(rn2_9.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c2.c.c = Convolution(rn2_9.c2.W[32 x 288], rn2_9.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.y = BatchNormalization(rn2_9.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c2.c.sc[32 x 1], rn2_9.c2.c.b[32 x 1], rn2_9.c2.c.m[32 x 1], rn2_9.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.p = Plus(rn2_9.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.y = RectifiedLinear(rn2_9.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.c.c.c = Convolution(rn2_10.c1.c.W[32 x 288], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.y = BatchNormalization(rn2_10.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c1.c.c.sc[32 x 1], rn2_10.c1.c.c.b[32 x 1], rn2_10.c1.c.c.m[32 x 1], rn2_10.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.y = RectifiedLinear(rn2_10.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c2.c.c = Convolution(rn2_10.c2.W[32 x 288], rn2_10.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.y = BatchNormalization(rn2_10.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c2.c.sc[32 x 1], rn2_10.c2.c.b[32 x 1], rn2_10.c2.c.m[32 x 1], rn2_10.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.p = Plus(rn2_10.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.y = RectifiedLinear(rn2_10.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.c.c.c = Convolution(rn2_11.c1.c.W[32 x 288], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.y = BatchNormalization(rn2_11.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c1.c.c.sc[32 x 1], rn2_11.c1.c.c.b[32 x 1], rn2_11.c1.c.c.m[32 x 1], rn2_11.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.y = RectifiedLinear(rn2_11.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c2.c.c = Convolution(rn2_11.c2.W[32 x 288], rn2_11.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.y = BatchNormalization(rn2_11.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c2.c.sc[32 x 1], rn2_11.c2.c.b[32 x 1], rn2_11.c2.c.m[32 x 1], rn2_11.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.p = Plus(rn2_11.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.y = RectifiedLinear(rn2_11.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.c.c.c = Convolution(rn2_12.c1.c.W[32 x 288], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.y = BatchNormalization(rn2_12.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c1.c.c.sc[32 x 1], rn2_12.c1.c.c.b[32 x 1], rn2_12.c1.c.c.m[32 x 1], rn2_12.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.y = RectifiedLinear(rn2_12.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c2.c.c = Convolution(rn2_12.c2.W[32 x 288], rn2_12.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.y = BatchNormalization(rn2_12.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c2.c.sc[32 x 1], rn2_12.c2.c.b[32 x 1], rn2_12.c2.c.m[32 x 1], rn2_12.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.p = Plus(rn2_12.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.y = RectifiedLinear(rn2_12.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.c.c.c = Convolution(rn2_13.c1.c.W[32 x 288], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.y = BatchNormalization(rn2_13.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c1.c.c.sc[32 x 1], rn2_13.c1.c.c.b[32 x 1], rn2_13.c1.c.c.m[32 x 1], rn2_13.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.y = RectifiedLinear(rn2_13.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c2.c.c = Convolution(rn2_13.c2.W[32 x 288], rn2_13.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.y = BatchNormalization(rn2_13.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c2.c.sc[32 x 1], rn2_13.c2.c.b[32 x 1], rn2_13.c2.c.m[32 x 1], rn2_13.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.p = Plus(rn2_13.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.y = RectifiedLinear(rn2_13.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.c.c.c = Convolution(rn2_14.c1.c.W[32 x 288], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.y = BatchNormalization(rn2_14.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c1.c.c.sc[32 x 1], rn2_14.c1.c.c.b[32 x 1], rn2_14.c1.c.c.m[32 x 1], rn2_14.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.y = RectifiedLinear(rn2_14.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c2.c.c = Convolution(rn2_14.c2.W[32 x 288], rn2_14.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.y = BatchNormalization(rn2_14.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c2.c.sc[32 x 1], rn2_14.c2.c.b[32 x 1], rn2_14.c2.c.m[32 x 1], rn2_14.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.p = Plus(rn2_14.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.y = RectifiedLinear(rn2_14.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.c.c.c = Convolution(rn2_15.c1.c.W[32 x 288], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.y = BatchNormalization(rn2_15.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c1.c.c.sc[32 x 1], rn2_15.c1.c.c.b[32 x 1], rn2_15.c1.c.c.m[32 x 1], rn2_15.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.y = RectifiedLinear(rn2_15.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c2.c.c = Convolution(rn2_15.c2.W[32 x 288], rn2_15.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.y = BatchNormalization(rn2_15.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c2.c.sc[32 x 1], rn2_15.c2.c.b[32 x 1], rn2_15.c2.c.m[32 x 1], rn2_15.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.p = Plus(rn2_15.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.y = RectifiedLinear(rn2_15.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.c.c.c = Convolution(rn2_16.c1.c.W[32 x 288], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.y = BatchNormalization(rn2_16.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c1.c.c.sc[32 x 1], rn2_16.c1.c.c.b[32 x 1], rn2_16.c1.c.c.m[32 x 1], rn2_16.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.y = RectifiedLinear(rn2_16.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c2.c.c = Convolution(rn2_16.c2.W[32 x 288], rn2_16.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.y = BatchNormalization(rn2_16.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c2.c.sc[32 x 1], rn2_16.c2.c.b[32 x 1], rn2_16.c2.c.m[32 x 1], rn2_16.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.p = Plus(rn2_16.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.y = RectifiedLinear(rn2_16.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.c.c.c = Convolution(rn2_17.c1.c.W[32 x 288], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.y = BatchNormalization(rn2_17.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c1.c.c.sc[32 x 1], rn2_17.c1.c.c.b[32 x 1], rn2_17.c1.c.c.m[32 x 1], rn2_17.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.y = RectifiedLinear(rn2_17.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c2.c.c = Convolution(rn2_17.c2.W[32 x 288], rn2_17.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.y = BatchNormalization(rn2_17.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c2.c.sc[32 x 1], rn2_17.c2.c.b[32 x 1], rn2_17.c2.c.m[32 x 1], rn2_17.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.p = Plus(rn2_17.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.y = RectifiedLinear(rn2_17.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.c.c.c = Convolution(rn2_18.c1.c.W[32 x 288], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.y = BatchNormalization(rn2_18.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c1.c.c.sc[32 x 1], rn2_18.c1.c.c.b[32 x 1], rn2_18.c1.c.c.m[32 x 1], rn2_18.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.y = RectifiedLinear(rn2_18.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c2.c.c = Convolution(rn2_18.c2.W[32 x 288], rn2_18.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.y = BatchNormalization(rn2_18.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c2.c.sc[32 x 1], rn2_18.c2.c.b[32 x 1], rn2_18.c2.c.m[32 x 1], rn2_18.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.p = Plus(rn2_18.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.y = RectifiedLinear(rn2_18.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn3_1.c1.c.c.c = Convolution(rn3_1.c1.c.W[64 x 288], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.y = BatchNormalization(rn3_1.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c1.c.c.sc[64 x 1], rn3_1.c1.c.c.b[64 x 1], rn3_1.c1.c.c.m[64 x 1], rn3_1.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c2.c.c = Convolution(rn3_1.c2.W[64 x 576], rn3_1.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.y = BatchNormalization(rn3_1.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c2.c.sc[64 x 1], rn3_1.c2.c.b[64 x 1], rn3_1.c2.c.m[64 x 1], rn3_1.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1_Wproj = LearnableParameter -> [64 x 32] +Validating --> rn3_1.c_proj.c = Convolution(rn3_1_Wproj[64 x 32], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c_proj.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.y = BatchNormalization(rn3_1.c_proj.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.sc[64 x 1], rn3_1.c_proj.b[64 x 1], rn3_1.c_proj.m[64 x 1], rn3_1.c_proj.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.p = Plus(rn3_1.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.c.c.c = Convolution(rn3_2.c1.c.W[64 x 576], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.y = BatchNormalization(rn3_2.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c1.c.c.sc[64 x 1], rn3_2.c1.c.c.b[64 x 1], rn3_2.c1.c.c.m[64 x 1], rn3_2.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c2.c.c = Convolution(rn3_2.c2.W[64 x 576], rn3_2.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.y = BatchNormalization(rn3_2.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c2.c.sc[64 x 1], rn3_2.c2.c.b[64 x 1], rn3_2.c2.c.m[64 x 1], rn3_2.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.p = Plus(rn3_2.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.c.c.c = Convolution(rn3_3.c1.c.W[64 x 576], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.y = BatchNormalization(rn3_3.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c1.c.c.sc[64 x 1], rn3_3.c1.c.c.b[64 x 1], rn3_3.c1.c.c.m[64 x 1], rn3_3.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c2.c.c = Convolution(rn3_3.c2.W[64 x 576], rn3_3.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.y = BatchNormalization(rn3_3.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c2.c.sc[64 x 1], rn3_3.c2.c.b[64 x 1], rn3_3.c2.c.m[64 x 1], rn3_3.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.p = Plus(rn3_3.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.c.c.c = Convolution(rn3_4.c1.c.W[64 x 576], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.y = BatchNormalization(rn3_4.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c1.c.c.sc[64 x 1], rn3_4.c1.c.c.b[64 x 1], rn3_4.c1.c.c.m[64 x 1], rn3_4.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.y = RectifiedLinear(rn3_4.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c2.c.c = Convolution(rn3_4.c2.W[64 x 576], rn3_4.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.y = BatchNormalization(rn3_4.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c2.c.sc[64 x 1], rn3_4.c2.c.b[64 x 1], rn3_4.c2.c.m[64 x 1], rn3_4.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.p = Plus(rn3_4.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.y = RectifiedLinear(rn3_4.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.c.c.c = Convolution(rn3_5.c1.c.W[64 x 576], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.y = BatchNormalization(rn3_5.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c1.c.c.sc[64 x 1], rn3_5.c1.c.c.b[64 x 1], rn3_5.c1.c.c.m[64 x 1], rn3_5.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.y = RectifiedLinear(rn3_5.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c2.c.c = Convolution(rn3_5.c2.W[64 x 576], rn3_5.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.y = BatchNormalization(rn3_5.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c2.c.sc[64 x 1], rn3_5.c2.c.b[64 x 1], rn3_5.c2.c.m[64 x 1], rn3_5.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.p = Plus(rn3_5.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.y = RectifiedLinear(rn3_5.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.c.c.c = Convolution(rn3_6.c1.c.W[64 x 576], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.y = BatchNormalization(rn3_6.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c1.c.c.sc[64 x 1], rn3_6.c1.c.c.b[64 x 1], rn3_6.c1.c.c.m[64 x 1], rn3_6.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.y = RectifiedLinear(rn3_6.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c2.c.c = Convolution(rn3_6.c2.W[64 x 576], rn3_6.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.y = BatchNormalization(rn3_6.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c2.c.sc[64 x 1], rn3_6.c2.c.b[64 x 1], rn3_6.c2.c.m[64 x 1], rn3_6.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.p = Plus(rn3_6.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.y = RectifiedLinear(rn3_6.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.c.c.c = Convolution(rn3_7.c1.c.W[64 x 576], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.y = BatchNormalization(rn3_7.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c1.c.c.sc[64 x 1], rn3_7.c1.c.c.b[64 x 1], rn3_7.c1.c.c.m[64 x 1], rn3_7.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.y = RectifiedLinear(rn3_7.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c2.c.c = Convolution(rn3_7.c2.W[64 x 576], rn3_7.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.y = BatchNormalization(rn3_7.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c2.c.sc[64 x 1], rn3_7.c2.c.b[64 x 1], rn3_7.c2.c.m[64 x 1], rn3_7.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.p = Plus(rn3_7.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.y = RectifiedLinear(rn3_7.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.c.c.c = Convolution(rn3_8.c1.c.W[64 x 576], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.y = BatchNormalization(rn3_8.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c1.c.c.sc[64 x 1], rn3_8.c1.c.c.b[64 x 1], rn3_8.c1.c.c.m[64 x 1], rn3_8.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.y = RectifiedLinear(rn3_8.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c2.c.c = Convolution(rn3_8.c2.W[64 x 576], rn3_8.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.y = BatchNormalization(rn3_8.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c2.c.sc[64 x 1], rn3_8.c2.c.b[64 x 1], rn3_8.c2.c.m[64 x 1], rn3_8.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.p = Plus(rn3_8.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.y = RectifiedLinear(rn3_8.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.c.c.c = Convolution(rn3_9.c1.c.W[64 x 576], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.y = BatchNormalization(rn3_9.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c1.c.c.sc[64 x 1], rn3_9.c1.c.c.b[64 x 1], rn3_9.c1.c.c.m[64 x 1], rn3_9.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.y = RectifiedLinear(rn3_9.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c2.c.c = Convolution(rn3_9.c2.W[64 x 576], rn3_9.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.y = BatchNormalization(rn3_9.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c2.c.sc[64 x 1], rn3_9.c2.c.b[64 x 1], rn3_9.c2.c.m[64 x 1], rn3_9.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.p = Plus(rn3_9.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.y = RectifiedLinear(rn3_9.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.c.c.c = Convolution(rn3_10.c1.c.W[64 x 576], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.y = BatchNormalization(rn3_10.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c1.c.c.sc[64 x 1], rn3_10.c1.c.c.b[64 x 1], rn3_10.c1.c.c.m[64 x 1], rn3_10.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.y = RectifiedLinear(rn3_10.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c2.c.c = Convolution(rn3_10.c2.W[64 x 576], rn3_10.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.y = BatchNormalization(rn3_10.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c2.c.sc[64 x 1], rn3_10.c2.c.b[64 x 1], rn3_10.c2.c.m[64 x 1], rn3_10.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.p = Plus(rn3_10.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.y = RectifiedLinear(rn3_10.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.c.c.c = Convolution(rn3_11.c1.c.W[64 x 576], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.y = BatchNormalization(rn3_11.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c1.c.c.sc[64 x 1], rn3_11.c1.c.c.b[64 x 1], rn3_11.c1.c.c.m[64 x 1], rn3_11.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.y = RectifiedLinear(rn3_11.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c2.c.c = Convolution(rn3_11.c2.W[64 x 576], rn3_11.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.y = BatchNormalization(rn3_11.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c2.c.sc[64 x 1], rn3_11.c2.c.b[64 x 1], rn3_11.c2.c.m[64 x 1], rn3_11.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.p = Plus(rn3_11.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.y = RectifiedLinear(rn3_11.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.c.c.c = Convolution(rn3_12.c1.c.W[64 x 576], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.y = BatchNormalization(rn3_12.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c1.c.c.sc[64 x 1], rn3_12.c1.c.c.b[64 x 1], rn3_12.c1.c.c.m[64 x 1], rn3_12.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.y = RectifiedLinear(rn3_12.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c2.c.c = Convolution(rn3_12.c2.W[64 x 576], rn3_12.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.y = BatchNormalization(rn3_12.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c2.c.sc[64 x 1], rn3_12.c2.c.b[64 x 1], rn3_12.c2.c.m[64 x 1], rn3_12.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.p = Plus(rn3_12.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.y = RectifiedLinear(rn3_12.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.c.c.c = Convolution(rn3_13.c1.c.W[64 x 576], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.y = BatchNormalization(rn3_13.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c1.c.c.sc[64 x 1], rn3_13.c1.c.c.b[64 x 1], rn3_13.c1.c.c.m[64 x 1], rn3_13.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.y = RectifiedLinear(rn3_13.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c2.c.c = Convolution(rn3_13.c2.W[64 x 576], rn3_13.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.y = BatchNormalization(rn3_13.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c2.c.sc[64 x 1], rn3_13.c2.c.b[64 x 1], rn3_13.c2.c.m[64 x 1], rn3_13.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.p = Plus(rn3_13.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.y = RectifiedLinear(rn3_13.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.c.c.c = Convolution(rn3_14.c1.c.W[64 x 576], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.y = BatchNormalization(rn3_14.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c1.c.c.sc[64 x 1], rn3_14.c1.c.c.b[64 x 1], rn3_14.c1.c.c.m[64 x 1], rn3_14.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.y = RectifiedLinear(rn3_14.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c2.c.c = Convolution(rn3_14.c2.W[64 x 576], rn3_14.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.y = BatchNormalization(rn3_14.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c2.c.sc[64 x 1], rn3_14.c2.c.b[64 x 1], rn3_14.c2.c.m[64 x 1], rn3_14.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.p = Plus(rn3_14.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.y = RectifiedLinear(rn3_14.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.c.c.c = Convolution(rn3_15.c1.c.W[64 x 576], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.y = BatchNormalization(rn3_15.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c1.c.c.sc[64 x 1], rn3_15.c1.c.c.b[64 x 1], rn3_15.c1.c.c.m[64 x 1], rn3_15.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.y = RectifiedLinear(rn3_15.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c2.c.c = Convolution(rn3_15.c2.W[64 x 576], rn3_15.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.y = BatchNormalization(rn3_15.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c2.c.sc[64 x 1], rn3_15.c2.c.b[64 x 1], rn3_15.c2.c.m[64 x 1], rn3_15.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.p = Plus(rn3_15.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.y = RectifiedLinear(rn3_15.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.c.c.c = Convolution(rn3_16.c1.c.W[64 x 576], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.y = BatchNormalization(rn3_16.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c1.c.c.sc[64 x 1], rn3_16.c1.c.c.b[64 x 1], rn3_16.c1.c.c.m[64 x 1], rn3_16.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.y = RectifiedLinear(rn3_16.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c2.c.c = Convolution(rn3_16.c2.W[64 x 576], rn3_16.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.y = BatchNormalization(rn3_16.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c2.c.sc[64 x 1], rn3_16.c2.c.b[64 x 1], rn3_16.c2.c.m[64 x 1], rn3_16.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.p = Plus(rn3_16.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.y = RectifiedLinear(rn3_16.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.c.c.c = Convolution(rn3_17.c1.c.W[64 x 576], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.y = BatchNormalization(rn3_17.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c1.c.c.sc[64 x 1], rn3_17.c1.c.c.b[64 x 1], rn3_17.c1.c.c.m[64 x 1], rn3_17.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.y = RectifiedLinear(rn3_17.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c2.c.c = Convolution(rn3_17.c2.W[64 x 576], rn3_17.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.y = BatchNormalization(rn3_17.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c2.c.sc[64 x 1], rn3_17.c2.c.b[64 x 1], rn3_17.c2.c.m[64 x 1], rn3_17.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.p = Plus(rn3_17.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.y = RectifiedLinear(rn3_17.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.c.c.c = Convolution(rn3_18.c1.c.W[64 x 576], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.y = BatchNormalization(rn3_18.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c1.c.c.sc[64 x 1], rn3_18.c1.c.c.b[64 x 1], rn3_18.c1.c.c.m[64 x 1], rn3_18.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.y = RectifiedLinear(rn3_18.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c2.c.c = Convolution(rn3_18.c2.W[64 x 576], rn3_18.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.y = BatchNormalization(rn3_18.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c2.c.sc[64 x 1], rn3_18.c2.c.b[64 x 1], rn3_18.c2.c.m[64 x 1], rn3_18.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.p = Plus(rn3_18.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.y = RectifiedLinear(rn3_18.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> pool = AveragePooling(rn3_18.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [1 x 1 x 64 x *] +Validating --> OutputNodes.t = Times(OutputNodes.W[10 x 64], pool[1 x 1 x 64 x *]) -> [10 x *] +Validating --> OutputNodes.b = LearnableParameter -> [10] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10 x *], OutputNodes.b[10]) -> [10 x *] +Validating --> CE = CrossEntropyWithSoftmax(labels[10 x *], OutputNodes.z[10 x *]) -> [1] +Validating --> Err = ErrorPrediction(labels[10 x *], OutputNodes.z[10 x *]) -> [1] + +Validating network. 390 nodes to process in pass 2. + +Validating --> labels = InputValue -> [10 x *] +Validating --> OutputNodes.W = LearnableParameter -> [10 x 64] +Validating --> rn3_18.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_18.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_17.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_17.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_16.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_16.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_15.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_15.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_14.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_14.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_13.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_13.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_12.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_12.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_11.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_11.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_10.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_10.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_9.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_9.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_8.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_8.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_7.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_7.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_6.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_6.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_5.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_5.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_4.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_4.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 x 288] +Validating --> rn2_18.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_18.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_17.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_17.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_16.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_16.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_15.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_15.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_14.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_14.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_13.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_13.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_12.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_12.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_11.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_11.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_10.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_10.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_9.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_9.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_8.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_8.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_7.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_7.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_6.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_6.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_5.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_5.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_4.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_4.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 x 144] +Validating --> rn1_18.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_18.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_17.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_17.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_16.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_16.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_15.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_15.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_14.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_14.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_13.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_13.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_12.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_12.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_11.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_11.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_10.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_10.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_9.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_9.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_8.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_8.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_7.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_7.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_6.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_6.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_5.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_5.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_4.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_4.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> conv1.c.W = LearnableParameter -> [16 x 27] +Validating --> features = InputValue -> [32 x 32 x 3 x *] +Validating --> conv1.c.c.c = Convolution(conv1.c.W[16 x 27], features[32 x 32 x 3 x * {W=32, H=3, C=32}]) -> [32 x 32 x 16 x *] +Validating --> conv1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.y = BatchNormalization(conv1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.c.c.sc[16 x 1], conv1.c.c.b[16 x 1], conv1.c.c.m[16 x 1], conv1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> conv1.y = RectifiedLinear(conv1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.c.c.c = Convolution(rn1_1.c1.c.W[16 x 144], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.y = BatchNormalization(rn1_1.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c1.c.c.sc[16 x 1], rn1_1.c1.c.c.b[16 x 1], rn1_1.c1.c.c.m[16 x 1], rn1_1.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c2.c.c = Convolution(rn1_1.c2.W[16 x 144], rn1_1.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.y = BatchNormalization(rn1_1.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c2.c.sc[16 x 1], rn1_1.c2.c.b[16 x 1], rn1_1.c2.c.m[16 x 1], rn1_1.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.p = Plus(rn1_1.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.c.c.c = Convolution(rn1_2.c1.c.W[16 x 144], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.y = BatchNormalization(rn1_2.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c1.c.c.sc[16 x 1], rn1_2.c1.c.c.b[16 x 1], rn1_2.c1.c.c.m[16 x 1], rn1_2.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c2.c.c = Convolution(rn1_2.c2.W[16 x 144], rn1_2.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.y = BatchNormalization(rn1_2.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c2.c.sc[16 x 1], rn1_2.c2.c.b[16 x 1], rn1_2.c2.c.m[16 x 1], rn1_2.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.p = Plus(rn1_2.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.c.c.c = Convolution(rn1_3.c1.c.W[16 x 144], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.y = BatchNormalization(rn1_3.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c1.c.c.sc[16 x 1], rn1_3.c1.c.c.b[16 x 1], rn1_3.c1.c.c.m[16 x 1], rn1_3.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c2.c.c = Convolution(rn1_3.c2.W[16 x 144], rn1_3.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.y = BatchNormalization(rn1_3.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c2.c.sc[16 x 1], rn1_3.c2.c.b[16 x 1], rn1_3.c2.c.m[16 x 1], rn1_3.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.p = Plus(rn1_3.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.c.c.c = Convolution(rn1_4.c1.c.W[16 x 144], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.y = BatchNormalization(rn1_4.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c1.c.c.sc[16 x 1], rn1_4.c1.c.c.b[16 x 1], rn1_4.c1.c.c.m[16 x 1], rn1_4.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.y = RectifiedLinear(rn1_4.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c2.c.c = Convolution(rn1_4.c2.W[16 x 144], rn1_4.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.y = BatchNormalization(rn1_4.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c2.c.sc[16 x 1], rn1_4.c2.c.b[16 x 1], rn1_4.c2.c.m[16 x 1], rn1_4.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.p = Plus(rn1_4.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.y = RectifiedLinear(rn1_4.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.c.c.c = Convolution(rn1_5.c1.c.W[16 x 144], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.y = BatchNormalization(rn1_5.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c1.c.c.sc[16 x 1], rn1_5.c1.c.c.b[16 x 1], rn1_5.c1.c.c.m[16 x 1], rn1_5.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.y = RectifiedLinear(rn1_5.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c2.c.c = Convolution(rn1_5.c2.W[16 x 144], rn1_5.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.y = BatchNormalization(rn1_5.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c2.c.sc[16 x 1], rn1_5.c2.c.b[16 x 1], rn1_5.c2.c.m[16 x 1], rn1_5.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.p = Plus(rn1_5.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.y = RectifiedLinear(rn1_5.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.c.c.c = Convolution(rn1_6.c1.c.W[16 x 144], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.y = BatchNormalization(rn1_6.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c1.c.c.sc[16 x 1], rn1_6.c1.c.c.b[16 x 1], rn1_6.c1.c.c.m[16 x 1], rn1_6.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.y = RectifiedLinear(rn1_6.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c2.c.c = Convolution(rn1_6.c2.W[16 x 144], rn1_6.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.y = BatchNormalization(rn1_6.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c2.c.sc[16 x 1], rn1_6.c2.c.b[16 x 1], rn1_6.c2.c.m[16 x 1], rn1_6.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.p = Plus(rn1_6.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.y = RectifiedLinear(rn1_6.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.c.c.c = Convolution(rn1_7.c1.c.W[16 x 144], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.y = BatchNormalization(rn1_7.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c1.c.c.sc[16 x 1], rn1_7.c1.c.c.b[16 x 1], rn1_7.c1.c.c.m[16 x 1], rn1_7.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.y = RectifiedLinear(rn1_7.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c2.c.c = Convolution(rn1_7.c2.W[16 x 144], rn1_7.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.y = BatchNormalization(rn1_7.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c2.c.sc[16 x 1], rn1_7.c2.c.b[16 x 1], rn1_7.c2.c.m[16 x 1], rn1_7.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.p = Plus(rn1_7.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.y = RectifiedLinear(rn1_7.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.c.c.c = Convolution(rn1_8.c1.c.W[16 x 144], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.y = BatchNormalization(rn1_8.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c1.c.c.sc[16 x 1], rn1_8.c1.c.c.b[16 x 1], rn1_8.c1.c.c.m[16 x 1], rn1_8.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.y = RectifiedLinear(rn1_8.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c2.c.c = Convolution(rn1_8.c2.W[16 x 144], rn1_8.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.y = BatchNormalization(rn1_8.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c2.c.sc[16 x 1], rn1_8.c2.c.b[16 x 1], rn1_8.c2.c.m[16 x 1], rn1_8.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.p = Plus(rn1_8.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.y = RectifiedLinear(rn1_8.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.c.c.c = Convolution(rn1_9.c1.c.W[16 x 144], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.y = BatchNormalization(rn1_9.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c1.c.c.sc[16 x 1], rn1_9.c1.c.c.b[16 x 1], rn1_9.c1.c.c.m[16 x 1], rn1_9.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.y = RectifiedLinear(rn1_9.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c2.c.c = Convolution(rn1_9.c2.W[16 x 144], rn1_9.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.y = BatchNormalization(rn1_9.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c2.c.sc[16 x 1], rn1_9.c2.c.b[16 x 1], rn1_9.c2.c.m[16 x 1], rn1_9.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.p = Plus(rn1_9.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.y = RectifiedLinear(rn1_9.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.c.c.c = Convolution(rn1_10.c1.c.W[16 x 144], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.y = BatchNormalization(rn1_10.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c1.c.c.sc[16 x 1], rn1_10.c1.c.c.b[16 x 1], rn1_10.c1.c.c.m[16 x 1], rn1_10.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.y = RectifiedLinear(rn1_10.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c2.c.c = Convolution(rn1_10.c2.W[16 x 144], rn1_10.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.y = BatchNormalization(rn1_10.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c2.c.sc[16 x 1], rn1_10.c2.c.b[16 x 1], rn1_10.c2.c.m[16 x 1], rn1_10.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.p = Plus(rn1_10.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.y = RectifiedLinear(rn1_10.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.c.c.c = Convolution(rn1_11.c1.c.W[16 x 144], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.y = BatchNormalization(rn1_11.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c1.c.c.sc[16 x 1], rn1_11.c1.c.c.b[16 x 1], rn1_11.c1.c.c.m[16 x 1], rn1_11.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.y = RectifiedLinear(rn1_11.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c2.c.c = Convolution(rn1_11.c2.W[16 x 144], rn1_11.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.y = BatchNormalization(rn1_11.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c2.c.sc[16 x 1], rn1_11.c2.c.b[16 x 1], rn1_11.c2.c.m[16 x 1], rn1_11.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.p = Plus(rn1_11.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.y = RectifiedLinear(rn1_11.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.c.c.c = Convolution(rn1_12.c1.c.W[16 x 144], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.y = BatchNormalization(rn1_12.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c1.c.c.sc[16 x 1], rn1_12.c1.c.c.b[16 x 1], rn1_12.c1.c.c.m[16 x 1], rn1_12.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.y = RectifiedLinear(rn1_12.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c2.c.c = Convolution(rn1_12.c2.W[16 x 144], rn1_12.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.y = BatchNormalization(rn1_12.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c2.c.sc[16 x 1], rn1_12.c2.c.b[16 x 1], rn1_12.c2.c.m[16 x 1], rn1_12.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.p = Plus(rn1_12.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.y = RectifiedLinear(rn1_12.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.c.c.c = Convolution(rn1_13.c1.c.W[16 x 144], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.y = BatchNormalization(rn1_13.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c1.c.c.sc[16 x 1], rn1_13.c1.c.c.b[16 x 1], rn1_13.c1.c.c.m[16 x 1], rn1_13.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.y = RectifiedLinear(rn1_13.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c2.c.c = Convolution(rn1_13.c2.W[16 x 144], rn1_13.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.y = BatchNormalization(rn1_13.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c2.c.sc[16 x 1], rn1_13.c2.c.b[16 x 1], rn1_13.c2.c.m[16 x 1], rn1_13.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.p = Plus(rn1_13.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.y = RectifiedLinear(rn1_13.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.c.c.c = Convolution(rn1_14.c1.c.W[16 x 144], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.y = BatchNormalization(rn1_14.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c1.c.c.sc[16 x 1], rn1_14.c1.c.c.b[16 x 1], rn1_14.c1.c.c.m[16 x 1], rn1_14.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.y = RectifiedLinear(rn1_14.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c2.c.c = Convolution(rn1_14.c2.W[16 x 144], rn1_14.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.y = BatchNormalization(rn1_14.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c2.c.sc[16 x 1], rn1_14.c2.c.b[16 x 1], rn1_14.c2.c.m[16 x 1], rn1_14.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.p = Plus(rn1_14.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.y = RectifiedLinear(rn1_14.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.c.c.c = Convolution(rn1_15.c1.c.W[16 x 144], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.y = BatchNormalization(rn1_15.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c1.c.c.sc[16 x 1], rn1_15.c1.c.c.b[16 x 1], rn1_15.c1.c.c.m[16 x 1], rn1_15.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.y = RectifiedLinear(rn1_15.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c2.c.c = Convolution(rn1_15.c2.W[16 x 144], rn1_15.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.y = BatchNormalization(rn1_15.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c2.c.sc[16 x 1], rn1_15.c2.c.b[16 x 1], rn1_15.c2.c.m[16 x 1], rn1_15.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.p = Plus(rn1_15.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.y = RectifiedLinear(rn1_15.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.c.c.c = Convolution(rn1_16.c1.c.W[16 x 144], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.y = BatchNormalization(rn1_16.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c1.c.c.sc[16 x 1], rn1_16.c1.c.c.b[16 x 1], rn1_16.c1.c.c.m[16 x 1], rn1_16.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.y = RectifiedLinear(rn1_16.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c2.c.c = Convolution(rn1_16.c2.W[16 x 144], rn1_16.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.y = BatchNormalization(rn1_16.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c2.c.sc[16 x 1], rn1_16.c2.c.b[16 x 1], rn1_16.c2.c.m[16 x 1], rn1_16.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.p = Plus(rn1_16.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.y = RectifiedLinear(rn1_16.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.c.c.c = Convolution(rn1_17.c1.c.W[16 x 144], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.y = BatchNormalization(rn1_17.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c1.c.c.sc[16 x 1], rn1_17.c1.c.c.b[16 x 1], rn1_17.c1.c.c.m[16 x 1], rn1_17.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.y = RectifiedLinear(rn1_17.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c2.c.c = Convolution(rn1_17.c2.W[16 x 144], rn1_17.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.y = BatchNormalization(rn1_17.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c2.c.sc[16 x 1], rn1_17.c2.c.b[16 x 1], rn1_17.c2.c.m[16 x 1], rn1_17.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.p = Plus(rn1_17.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.y = RectifiedLinear(rn1_17.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.c.c.c = Convolution(rn1_18.c1.c.W[16 x 144], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.y = BatchNormalization(rn1_18.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c1.c.c.sc[16 x 1], rn1_18.c1.c.c.b[16 x 1], rn1_18.c1.c.c.m[16 x 1], rn1_18.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.y = RectifiedLinear(rn1_18.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c2.c.c = Convolution(rn1_18.c2.W[16 x 144], rn1_18.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.y = BatchNormalization(rn1_18.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c2.c.sc[16 x 1], rn1_18.c2.c.b[16 x 1], rn1_18.c2.c.m[16 x 1], rn1_18.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.p = Plus(rn1_18.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.y = RectifiedLinear(rn1_18.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn2_1.c1.c.c.c = Convolution(rn2_1.c1.c.W[32 x 144], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.y = BatchNormalization(rn2_1.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c1.c.c.sc[32 x 1], rn2_1.c1.c.c.b[32 x 1], rn2_1.c1.c.c.m[32 x 1], rn2_1.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c2.c.c = Convolution(rn2_1.c2.W[32 x 288], rn2_1.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.y = BatchNormalization(rn2_1.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c2.c.sc[32 x 1], rn2_1.c2.c.b[32 x 1], rn2_1.c2.c.m[32 x 1], rn2_1.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1_Wproj = LearnableParameter -> [32 x 16] +Validating --> rn2_1.c_proj.c = Convolution(rn2_1_Wproj[32 x 16], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c_proj.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.y = BatchNormalization(rn2_1.c_proj.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.sc[32 x 1], rn2_1.c_proj.b[32 x 1], rn2_1.c_proj.m[32 x 1], rn2_1.c_proj.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.p = Plus(rn2_1.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.c.c.c = Convolution(rn2_2.c1.c.W[32 x 288], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.y = BatchNormalization(rn2_2.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c1.c.c.sc[32 x 1], rn2_2.c1.c.c.b[32 x 1], rn2_2.c1.c.c.m[32 x 1], rn2_2.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c2.c.c = Convolution(rn2_2.c2.W[32 x 288], rn2_2.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.y = BatchNormalization(rn2_2.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c2.c.sc[32 x 1], rn2_2.c2.c.b[32 x 1], rn2_2.c2.c.m[32 x 1], rn2_2.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.p = Plus(rn2_2.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.c.c.c = Convolution(rn2_3.c1.c.W[32 x 288], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.y = BatchNormalization(rn2_3.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c1.c.c.sc[32 x 1], rn2_3.c1.c.c.b[32 x 1], rn2_3.c1.c.c.m[32 x 1], rn2_3.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c2.c.c = Convolution(rn2_3.c2.W[32 x 288], rn2_3.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.y = BatchNormalization(rn2_3.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c2.c.sc[32 x 1], rn2_3.c2.c.b[32 x 1], rn2_3.c2.c.m[32 x 1], rn2_3.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.p = Plus(rn2_3.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.c.c.c = Convolution(rn2_4.c1.c.W[32 x 288], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.y = BatchNormalization(rn2_4.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c1.c.c.sc[32 x 1], rn2_4.c1.c.c.b[32 x 1], rn2_4.c1.c.c.m[32 x 1], rn2_4.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.y = RectifiedLinear(rn2_4.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c2.c.c = Convolution(rn2_4.c2.W[32 x 288], rn2_4.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.y = BatchNormalization(rn2_4.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c2.c.sc[32 x 1], rn2_4.c2.c.b[32 x 1], rn2_4.c2.c.m[32 x 1], rn2_4.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.p = Plus(rn2_4.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.y = RectifiedLinear(rn2_4.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.c.c.c = Convolution(rn2_5.c1.c.W[32 x 288], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.y = BatchNormalization(rn2_5.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c1.c.c.sc[32 x 1], rn2_5.c1.c.c.b[32 x 1], rn2_5.c1.c.c.m[32 x 1], rn2_5.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.y = RectifiedLinear(rn2_5.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c2.c.c = Convolution(rn2_5.c2.W[32 x 288], rn2_5.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.y = BatchNormalization(rn2_5.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c2.c.sc[32 x 1], rn2_5.c2.c.b[32 x 1], rn2_5.c2.c.m[32 x 1], rn2_5.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.p = Plus(rn2_5.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.y = RectifiedLinear(rn2_5.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.c.c.c = Convolution(rn2_6.c1.c.W[32 x 288], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.y = BatchNormalization(rn2_6.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c1.c.c.sc[32 x 1], rn2_6.c1.c.c.b[32 x 1], rn2_6.c1.c.c.m[32 x 1], rn2_6.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.y = RectifiedLinear(rn2_6.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c2.c.c = Convolution(rn2_6.c2.W[32 x 288], rn2_6.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.y = BatchNormalization(rn2_6.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c2.c.sc[32 x 1], rn2_6.c2.c.b[32 x 1], rn2_6.c2.c.m[32 x 1], rn2_6.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.p = Plus(rn2_6.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.y = RectifiedLinear(rn2_6.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.c.c.c = Convolution(rn2_7.c1.c.W[32 x 288], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.y = BatchNormalization(rn2_7.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c1.c.c.sc[32 x 1], rn2_7.c1.c.c.b[32 x 1], rn2_7.c1.c.c.m[32 x 1], rn2_7.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.y = RectifiedLinear(rn2_7.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c2.c.c = Convolution(rn2_7.c2.W[32 x 288], rn2_7.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.y = BatchNormalization(rn2_7.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c2.c.sc[32 x 1], rn2_7.c2.c.b[32 x 1], rn2_7.c2.c.m[32 x 1], rn2_7.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.p = Plus(rn2_7.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.y = RectifiedLinear(rn2_7.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.c.c.c = Convolution(rn2_8.c1.c.W[32 x 288], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.y = BatchNormalization(rn2_8.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c1.c.c.sc[32 x 1], rn2_8.c1.c.c.b[32 x 1], rn2_8.c1.c.c.m[32 x 1], rn2_8.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.y = RectifiedLinear(rn2_8.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c2.c.c = Convolution(rn2_8.c2.W[32 x 288], rn2_8.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.y = BatchNormalization(rn2_8.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c2.c.sc[32 x 1], rn2_8.c2.c.b[32 x 1], rn2_8.c2.c.m[32 x 1], rn2_8.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.p = Plus(rn2_8.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.y = RectifiedLinear(rn2_8.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.c.c.c = Convolution(rn2_9.c1.c.W[32 x 288], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.y = BatchNormalization(rn2_9.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c1.c.c.sc[32 x 1], rn2_9.c1.c.c.b[32 x 1], rn2_9.c1.c.c.m[32 x 1], rn2_9.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.y = RectifiedLinear(rn2_9.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c2.c.c = Convolution(rn2_9.c2.W[32 x 288], rn2_9.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.y = BatchNormalization(rn2_9.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c2.c.sc[32 x 1], rn2_9.c2.c.b[32 x 1], rn2_9.c2.c.m[32 x 1], rn2_9.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.p = Plus(rn2_9.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.y = RectifiedLinear(rn2_9.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.c.c.c = Convolution(rn2_10.c1.c.W[32 x 288], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.y = BatchNormalization(rn2_10.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c1.c.c.sc[32 x 1], rn2_10.c1.c.c.b[32 x 1], rn2_10.c1.c.c.m[32 x 1], rn2_10.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.y = RectifiedLinear(rn2_10.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c2.c.c = Convolution(rn2_10.c2.W[32 x 288], rn2_10.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.y = BatchNormalization(rn2_10.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c2.c.sc[32 x 1], rn2_10.c2.c.b[32 x 1], rn2_10.c2.c.m[32 x 1], rn2_10.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.p = Plus(rn2_10.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.y = RectifiedLinear(rn2_10.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.c.c.c = Convolution(rn2_11.c1.c.W[32 x 288], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.y = BatchNormalization(rn2_11.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c1.c.c.sc[32 x 1], rn2_11.c1.c.c.b[32 x 1], rn2_11.c1.c.c.m[32 x 1], rn2_11.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.y = RectifiedLinear(rn2_11.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c2.c.c = Convolution(rn2_11.c2.W[32 x 288], rn2_11.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.y = BatchNormalization(rn2_11.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c2.c.sc[32 x 1], rn2_11.c2.c.b[32 x 1], rn2_11.c2.c.m[32 x 1], rn2_11.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.p = Plus(rn2_11.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.y = RectifiedLinear(rn2_11.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.c.c.c = Convolution(rn2_12.c1.c.W[32 x 288], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.y = BatchNormalization(rn2_12.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c1.c.c.sc[32 x 1], rn2_12.c1.c.c.b[32 x 1], rn2_12.c1.c.c.m[32 x 1], rn2_12.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.y = RectifiedLinear(rn2_12.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c2.c.c = Convolution(rn2_12.c2.W[32 x 288], rn2_12.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.y = BatchNormalization(rn2_12.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c2.c.sc[32 x 1], rn2_12.c2.c.b[32 x 1], rn2_12.c2.c.m[32 x 1], rn2_12.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.p = Plus(rn2_12.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.y = RectifiedLinear(rn2_12.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.c.c.c = Convolution(rn2_13.c1.c.W[32 x 288], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.y = BatchNormalization(rn2_13.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c1.c.c.sc[32 x 1], rn2_13.c1.c.c.b[32 x 1], rn2_13.c1.c.c.m[32 x 1], rn2_13.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.y = RectifiedLinear(rn2_13.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c2.c.c = Convolution(rn2_13.c2.W[32 x 288], rn2_13.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.y = BatchNormalization(rn2_13.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c2.c.sc[32 x 1], rn2_13.c2.c.b[32 x 1], rn2_13.c2.c.m[32 x 1], rn2_13.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.p = Plus(rn2_13.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.y = RectifiedLinear(rn2_13.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.c.c.c = Convolution(rn2_14.c1.c.W[32 x 288], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.y = BatchNormalization(rn2_14.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c1.c.c.sc[32 x 1], rn2_14.c1.c.c.b[32 x 1], rn2_14.c1.c.c.m[32 x 1], rn2_14.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.y = RectifiedLinear(rn2_14.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c2.c.c = Convolution(rn2_14.c2.W[32 x 288], rn2_14.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.y = BatchNormalization(rn2_14.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c2.c.sc[32 x 1], rn2_14.c2.c.b[32 x 1], rn2_14.c2.c.m[32 x 1], rn2_14.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.p = Plus(rn2_14.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.y = RectifiedLinear(rn2_14.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.c.c.c = Convolution(rn2_15.c1.c.W[32 x 288], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.y = BatchNormalization(rn2_15.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c1.c.c.sc[32 x 1], rn2_15.c1.c.c.b[32 x 1], rn2_15.c1.c.c.m[32 x 1], rn2_15.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.y = RectifiedLinear(rn2_15.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c2.c.c = Convolution(rn2_15.c2.W[32 x 288], rn2_15.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.y = BatchNormalization(rn2_15.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c2.c.sc[32 x 1], rn2_15.c2.c.b[32 x 1], rn2_15.c2.c.m[32 x 1], rn2_15.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.p = Plus(rn2_15.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.y = RectifiedLinear(rn2_15.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.c.c.c = Convolution(rn2_16.c1.c.W[32 x 288], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.y = BatchNormalization(rn2_16.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c1.c.c.sc[32 x 1], rn2_16.c1.c.c.b[32 x 1], rn2_16.c1.c.c.m[32 x 1], rn2_16.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.y = RectifiedLinear(rn2_16.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c2.c.c = Convolution(rn2_16.c2.W[32 x 288], rn2_16.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.y = BatchNormalization(rn2_16.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c2.c.sc[32 x 1], rn2_16.c2.c.b[32 x 1], rn2_16.c2.c.m[32 x 1], rn2_16.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.p = Plus(rn2_16.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.y = RectifiedLinear(rn2_16.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.c.c.c = Convolution(rn2_17.c1.c.W[32 x 288], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.y = BatchNormalization(rn2_17.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c1.c.c.sc[32 x 1], rn2_17.c1.c.c.b[32 x 1], rn2_17.c1.c.c.m[32 x 1], rn2_17.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.y = RectifiedLinear(rn2_17.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c2.c.c = Convolution(rn2_17.c2.W[32 x 288], rn2_17.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.y = BatchNormalization(rn2_17.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c2.c.sc[32 x 1], rn2_17.c2.c.b[32 x 1], rn2_17.c2.c.m[32 x 1], rn2_17.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.p = Plus(rn2_17.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.y = RectifiedLinear(rn2_17.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.c.c.c = Convolution(rn2_18.c1.c.W[32 x 288], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.y = BatchNormalization(rn2_18.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c1.c.c.sc[32 x 1], rn2_18.c1.c.c.b[32 x 1], rn2_18.c1.c.c.m[32 x 1], rn2_18.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.y = RectifiedLinear(rn2_18.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c2.c.c = Convolution(rn2_18.c2.W[32 x 288], rn2_18.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.y = BatchNormalization(rn2_18.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c2.c.sc[32 x 1], rn2_18.c2.c.b[32 x 1], rn2_18.c2.c.m[32 x 1], rn2_18.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.p = Plus(rn2_18.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.y = RectifiedLinear(rn2_18.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn3_1.c1.c.c.c = Convolution(rn3_1.c1.c.W[64 x 288], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.y = BatchNormalization(rn3_1.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c1.c.c.sc[64 x 1], rn3_1.c1.c.c.b[64 x 1], rn3_1.c1.c.c.m[64 x 1], rn3_1.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c2.c.c = Convolution(rn3_1.c2.W[64 x 576], rn3_1.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.y = BatchNormalization(rn3_1.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c2.c.sc[64 x 1], rn3_1.c2.c.b[64 x 1], rn3_1.c2.c.m[64 x 1], rn3_1.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1_Wproj = LearnableParameter -> [64 x 32] +Validating --> rn3_1.c_proj.c = Convolution(rn3_1_Wproj[64 x 32], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c_proj.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.y = BatchNormalization(rn3_1.c_proj.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.sc[64 x 1], rn3_1.c_proj.b[64 x 1], rn3_1.c_proj.m[64 x 1], rn3_1.c_proj.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.p = Plus(rn3_1.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.c.c.c = Convolution(rn3_2.c1.c.W[64 x 576], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.y = BatchNormalization(rn3_2.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c1.c.c.sc[64 x 1], rn3_2.c1.c.c.b[64 x 1], rn3_2.c1.c.c.m[64 x 1], rn3_2.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c2.c.c = Convolution(rn3_2.c2.W[64 x 576], rn3_2.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.y = BatchNormalization(rn3_2.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c2.c.sc[64 x 1], rn3_2.c2.c.b[64 x 1], rn3_2.c2.c.m[64 x 1], rn3_2.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.p = Plus(rn3_2.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.c.c.c = Convolution(rn3_3.c1.c.W[64 x 576], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.y = BatchNormalization(rn3_3.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c1.c.c.sc[64 x 1], rn3_3.c1.c.c.b[64 x 1], rn3_3.c1.c.c.m[64 x 1], rn3_3.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c2.c.c = Convolution(rn3_3.c2.W[64 x 576], rn3_3.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.y = BatchNormalization(rn3_3.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c2.c.sc[64 x 1], rn3_3.c2.c.b[64 x 1], rn3_3.c2.c.m[64 x 1], rn3_3.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.p = Plus(rn3_3.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.c.c.c = Convolution(rn3_4.c1.c.W[64 x 576], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.y = BatchNormalization(rn3_4.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c1.c.c.sc[64 x 1], rn3_4.c1.c.c.b[64 x 1], rn3_4.c1.c.c.m[64 x 1], rn3_4.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.y = RectifiedLinear(rn3_4.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c2.c.c = Convolution(rn3_4.c2.W[64 x 576], rn3_4.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.y = BatchNormalization(rn3_4.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c2.c.sc[64 x 1], rn3_4.c2.c.b[64 x 1], rn3_4.c2.c.m[64 x 1], rn3_4.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.p = Plus(rn3_4.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.y = RectifiedLinear(rn3_4.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.c.c.c = Convolution(rn3_5.c1.c.W[64 x 576], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.y = BatchNormalization(rn3_5.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c1.c.c.sc[64 x 1], rn3_5.c1.c.c.b[64 x 1], rn3_5.c1.c.c.m[64 x 1], rn3_5.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.y = RectifiedLinear(rn3_5.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c2.c.c = Convolution(rn3_5.c2.W[64 x 576], rn3_5.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.y = BatchNormalization(rn3_5.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c2.c.sc[64 x 1], rn3_5.c2.c.b[64 x 1], rn3_5.c2.c.m[64 x 1], rn3_5.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.p = Plus(rn3_5.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.y = RectifiedLinear(rn3_5.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.c.c.c = Convolution(rn3_6.c1.c.W[64 x 576], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.y = BatchNormalization(rn3_6.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c1.c.c.sc[64 x 1], rn3_6.c1.c.c.b[64 x 1], rn3_6.c1.c.c.m[64 x 1], rn3_6.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.y = RectifiedLinear(rn3_6.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c2.c.c = Convolution(rn3_6.c2.W[64 x 576], rn3_6.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.y = BatchNormalization(rn3_6.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c2.c.sc[64 x 1], rn3_6.c2.c.b[64 x 1], rn3_6.c2.c.m[64 x 1], rn3_6.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.p = Plus(rn3_6.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.y = RectifiedLinear(rn3_6.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.c.c.c = Convolution(rn3_7.c1.c.W[64 x 576], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.y = BatchNormalization(rn3_7.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c1.c.c.sc[64 x 1], rn3_7.c1.c.c.b[64 x 1], rn3_7.c1.c.c.m[64 x 1], rn3_7.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.y = RectifiedLinear(rn3_7.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c2.c.c = Convolution(rn3_7.c2.W[64 x 576], rn3_7.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.y = BatchNormalization(rn3_7.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c2.c.sc[64 x 1], rn3_7.c2.c.b[64 x 1], rn3_7.c2.c.m[64 x 1], rn3_7.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.p = Plus(rn3_7.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.y = RectifiedLinear(rn3_7.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.c.c.c = Convolution(rn3_8.c1.c.W[64 x 576], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.y = BatchNormalization(rn3_8.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c1.c.c.sc[64 x 1], rn3_8.c1.c.c.b[64 x 1], rn3_8.c1.c.c.m[64 x 1], rn3_8.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.y = RectifiedLinear(rn3_8.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c2.c.c = Convolution(rn3_8.c2.W[64 x 576], rn3_8.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.y = BatchNormalization(rn3_8.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c2.c.sc[64 x 1], rn3_8.c2.c.b[64 x 1], rn3_8.c2.c.m[64 x 1], rn3_8.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.p = Plus(rn3_8.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.y = RectifiedLinear(rn3_8.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.c.c.c = Convolution(rn3_9.c1.c.W[64 x 576], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.y = BatchNormalization(rn3_9.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c1.c.c.sc[64 x 1], rn3_9.c1.c.c.b[64 x 1], rn3_9.c1.c.c.m[64 x 1], rn3_9.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.y = RectifiedLinear(rn3_9.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c2.c.c = Convolution(rn3_9.c2.W[64 x 576], rn3_9.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.y = BatchNormalization(rn3_9.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c2.c.sc[64 x 1], rn3_9.c2.c.b[64 x 1], rn3_9.c2.c.m[64 x 1], rn3_9.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.p = Plus(rn3_9.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.y = RectifiedLinear(rn3_9.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.c.c.c = Convolution(rn3_10.c1.c.W[64 x 576], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.y = BatchNormalization(rn3_10.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c1.c.c.sc[64 x 1], rn3_10.c1.c.c.b[64 x 1], rn3_10.c1.c.c.m[64 x 1], rn3_10.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.y = RectifiedLinear(rn3_10.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c2.c.c = Convolution(rn3_10.c2.W[64 x 576], rn3_10.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.y = BatchNormalization(rn3_10.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c2.c.sc[64 x 1], rn3_10.c2.c.b[64 x 1], rn3_10.c2.c.m[64 x 1], rn3_10.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.p = Plus(rn3_10.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.y = RectifiedLinear(rn3_10.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.c.c.c = Convolution(rn3_11.c1.c.W[64 x 576], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.y = BatchNormalization(rn3_11.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c1.c.c.sc[64 x 1], rn3_11.c1.c.c.b[64 x 1], rn3_11.c1.c.c.m[64 x 1], rn3_11.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.y = RectifiedLinear(rn3_11.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c2.c.c = Convolution(rn3_11.c2.W[64 x 576], rn3_11.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.y = BatchNormalization(rn3_11.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c2.c.sc[64 x 1], rn3_11.c2.c.b[64 x 1], rn3_11.c2.c.m[64 x 1], rn3_11.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.p = Plus(rn3_11.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.y = RectifiedLinear(rn3_11.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.c.c.c = Convolution(rn3_12.c1.c.W[64 x 576], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.y = BatchNormalization(rn3_12.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c1.c.c.sc[64 x 1], rn3_12.c1.c.c.b[64 x 1], rn3_12.c1.c.c.m[64 x 1], rn3_12.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.y = RectifiedLinear(rn3_12.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c2.c.c = Convolution(rn3_12.c2.W[64 x 576], rn3_12.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.y = BatchNormalization(rn3_12.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c2.c.sc[64 x 1], rn3_12.c2.c.b[64 x 1], rn3_12.c2.c.m[64 x 1], rn3_12.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.p = Plus(rn3_12.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.y = RectifiedLinear(rn3_12.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.c.c.c = Convolution(rn3_13.c1.c.W[64 x 576], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.y = BatchNormalization(rn3_13.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c1.c.c.sc[64 x 1], rn3_13.c1.c.c.b[64 x 1], rn3_13.c1.c.c.m[64 x 1], rn3_13.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.y = RectifiedLinear(rn3_13.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c2.c.c = Convolution(rn3_13.c2.W[64 x 576], rn3_13.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.y = BatchNormalization(rn3_13.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c2.c.sc[64 x 1], rn3_13.c2.c.b[64 x 1], rn3_13.c2.c.m[64 x 1], rn3_13.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.p = Plus(rn3_13.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.y = RectifiedLinear(rn3_13.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.c.c.c = Convolution(rn3_14.c1.c.W[64 x 576], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.y = BatchNormalization(rn3_14.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c1.c.c.sc[64 x 1], rn3_14.c1.c.c.b[64 x 1], rn3_14.c1.c.c.m[64 x 1], rn3_14.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.y = RectifiedLinear(rn3_14.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c2.c.c = Convolution(rn3_14.c2.W[64 x 576], rn3_14.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.y = BatchNormalization(rn3_14.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c2.c.sc[64 x 1], rn3_14.c2.c.b[64 x 1], rn3_14.c2.c.m[64 x 1], rn3_14.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.p = Plus(rn3_14.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.y = RectifiedLinear(rn3_14.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.c.c.c = Convolution(rn3_15.c1.c.W[64 x 576], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.y = BatchNormalization(rn3_15.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c1.c.c.sc[64 x 1], rn3_15.c1.c.c.b[64 x 1], rn3_15.c1.c.c.m[64 x 1], rn3_15.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.y = RectifiedLinear(rn3_15.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c2.c.c = Convolution(rn3_15.c2.W[64 x 576], rn3_15.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.y = BatchNormalization(rn3_15.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c2.c.sc[64 x 1], rn3_15.c2.c.b[64 x 1], rn3_15.c2.c.m[64 x 1], rn3_15.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.p = Plus(rn3_15.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.y = RectifiedLinear(rn3_15.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.c.c.c = Convolution(rn3_16.c1.c.W[64 x 576], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.y = BatchNormalization(rn3_16.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c1.c.c.sc[64 x 1], rn3_16.c1.c.c.b[64 x 1], rn3_16.c1.c.c.m[64 x 1], rn3_16.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.y = RectifiedLinear(rn3_16.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c2.c.c = Convolution(rn3_16.c2.W[64 x 576], rn3_16.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.y = BatchNormalization(rn3_16.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c2.c.sc[64 x 1], rn3_16.c2.c.b[64 x 1], rn3_16.c2.c.m[64 x 1], rn3_16.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.p = Plus(rn3_16.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.y = RectifiedLinear(rn3_16.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.c.c.c = Convolution(rn3_17.c1.c.W[64 x 576], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.y = BatchNormalization(rn3_17.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c1.c.c.sc[64 x 1], rn3_17.c1.c.c.b[64 x 1], rn3_17.c1.c.c.m[64 x 1], rn3_17.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.y = RectifiedLinear(rn3_17.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c2.c.c = Convolution(rn3_17.c2.W[64 x 576], rn3_17.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.y = BatchNormalization(rn3_17.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c2.c.sc[64 x 1], rn3_17.c2.c.b[64 x 1], rn3_17.c2.c.m[64 x 1], rn3_17.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.p = Plus(rn3_17.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.y = RectifiedLinear(rn3_17.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.c.c.c = Convolution(rn3_18.c1.c.W[64 x 576], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.y = BatchNormalization(rn3_18.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c1.c.c.sc[64 x 1], rn3_18.c1.c.c.b[64 x 1], rn3_18.c1.c.c.m[64 x 1], rn3_18.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.y = RectifiedLinear(rn3_18.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c2.c.c = Convolution(rn3_18.c2.W[64 x 576], rn3_18.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.y = BatchNormalization(rn3_18.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c2.c.sc[64 x 1], rn3_18.c2.c.b[64 x 1], rn3_18.c2.c.m[64 x 1], rn3_18.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.p = Plus(rn3_18.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.y = RectifiedLinear(rn3_18.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> pool = AveragePooling(rn3_18.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [1 x 1 x 64 x *] +Validating --> OutputNodes.t = Times(OutputNodes.W[10 x 64], pool[1 x 1 x 64 x *]) -> [10 x *] +Validating --> OutputNodes.b = LearnableParameter -> [10] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10 x *], OutputNodes.b[10]) -> [10 x *] +Validating --> CE = CrossEntropyWithSoftmax(labels[10 x *], OutputNodes.z[10 x *]) -> [1] +Validating --> Err = ErrorPrediction(labels[10 x *], OutputNodes.z[10 x *]) -> [1] + +Validating network, final pass. + +Validating --> labels = InputValue -> [10 x *] +Validating --> OutputNodes.W = LearnableParameter -> [10 x 64] +Validating --> rn3_18.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_18.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_17.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_17.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_16.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_16.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_15.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_15.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_14.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_14.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_13.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_13.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_12.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_12.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_11.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_11.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_10.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_10.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_9.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_9.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_8.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_8.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_7.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_7.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_6.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_6.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_5.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_5.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_4.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_4.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 x 288] +Validating --> rn2_18.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_18.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_17.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_17.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_16.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_16.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_15.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_15.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_14.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_14.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_13.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_13.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_12.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_12.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_11.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_11.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_10.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_10.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_9.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_9.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_8.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_8.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_7.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_7.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_6.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_6.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_5.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_5.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_4.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_4.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 x 144] +Validating --> rn1_18.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_18.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_17.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_17.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_16.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_16.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_15.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_15.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_14.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_14.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_13.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_13.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_12.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_12.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_11.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_11.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_10.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_10.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_9.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_9.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_8.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_8.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_7.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_7.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_6.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_6.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_5.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_5.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_4.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_4.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> conv1.c.W = LearnableParameter -> [16 x 27] +Validating --> features = InputValue -> [32 x 32 x 3 x *] +Validating --> conv1.c.c.c = Convolution(conv1.c.W[16 x 27], features[32 x 32 x 3 x * {W=32, H=3, C=32}]) -> [32 x 32 x 16 x *] +Validating --> conv1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.y = BatchNormalization(conv1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.c.c.sc[16 x 1], conv1.c.c.b[16 x 1], conv1.c.c.m[16 x 1], conv1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> conv1.y = RectifiedLinear(conv1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.c.c.c = Convolution(rn1_1.c1.c.W[16 x 144], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.y = BatchNormalization(rn1_1.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c1.c.c.sc[16 x 1], rn1_1.c1.c.c.b[16 x 1], rn1_1.c1.c.c.m[16 x 1], rn1_1.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c2.c.c = Convolution(rn1_1.c2.W[16 x 144], rn1_1.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.y = BatchNormalization(rn1_1.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c2.c.sc[16 x 1], rn1_1.c2.c.b[16 x 1], rn1_1.c2.c.m[16 x 1], rn1_1.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.p = Plus(rn1_1.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.c.c.c = Convolution(rn1_2.c1.c.W[16 x 144], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.y = BatchNormalization(rn1_2.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c1.c.c.sc[16 x 1], rn1_2.c1.c.c.b[16 x 1], rn1_2.c1.c.c.m[16 x 1], rn1_2.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c2.c.c = Convolution(rn1_2.c2.W[16 x 144], rn1_2.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.y = BatchNormalization(rn1_2.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c2.c.sc[16 x 1], rn1_2.c2.c.b[16 x 1], rn1_2.c2.c.m[16 x 1], rn1_2.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.p = Plus(rn1_2.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.c.c.c = Convolution(rn1_3.c1.c.W[16 x 144], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.y = BatchNormalization(rn1_3.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c1.c.c.sc[16 x 1], rn1_3.c1.c.c.b[16 x 1], rn1_3.c1.c.c.m[16 x 1], rn1_3.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c2.c.c = Convolution(rn1_3.c2.W[16 x 144], rn1_3.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.y = BatchNormalization(rn1_3.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c2.c.sc[16 x 1], rn1_3.c2.c.b[16 x 1], rn1_3.c2.c.m[16 x 1], rn1_3.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.p = Plus(rn1_3.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.c.c.c = Convolution(rn1_4.c1.c.W[16 x 144], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.y = BatchNormalization(rn1_4.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c1.c.c.sc[16 x 1], rn1_4.c1.c.c.b[16 x 1], rn1_4.c1.c.c.m[16 x 1], rn1_4.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.y = RectifiedLinear(rn1_4.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c2.c.c = Convolution(rn1_4.c2.W[16 x 144], rn1_4.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.y = BatchNormalization(rn1_4.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c2.c.sc[16 x 1], rn1_4.c2.c.b[16 x 1], rn1_4.c2.c.m[16 x 1], rn1_4.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.p = Plus(rn1_4.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.y = RectifiedLinear(rn1_4.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.c.c.c = Convolution(rn1_5.c1.c.W[16 x 144], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.y = BatchNormalization(rn1_5.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c1.c.c.sc[16 x 1], rn1_5.c1.c.c.b[16 x 1], rn1_5.c1.c.c.m[16 x 1], rn1_5.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.y = RectifiedLinear(rn1_5.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c2.c.c = Convolution(rn1_5.c2.W[16 x 144], rn1_5.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.y = BatchNormalization(rn1_5.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c2.c.sc[16 x 1], rn1_5.c2.c.b[16 x 1], rn1_5.c2.c.m[16 x 1], rn1_5.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.p = Plus(rn1_5.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.y = RectifiedLinear(rn1_5.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.c.c.c = Convolution(rn1_6.c1.c.W[16 x 144], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.y = BatchNormalization(rn1_6.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c1.c.c.sc[16 x 1], rn1_6.c1.c.c.b[16 x 1], rn1_6.c1.c.c.m[16 x 1], rn1_6.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.y = RectifiedLinear(rn1_6.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c2.c.c = Convolution(rn1_6.c2.W[16 x 144], rn1_6.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.y = BatchNormalization(rn1_6.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c2.c.sc[16 x 1], rn1_6.c2.c.b[16 x 1], rn1_6.c2.c.m[16 x 1], rn1_6.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.p = Plus(rn1_6.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.y = RectifiedLinear(rn1_6.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.c.c.c = Convolution(rn1_7.c1.c.W[16 x 144], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.y = BatchNormalization(rn1_7.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c1.c.c.sc[16 x 1], rn1_7.c1.c.c.b[16 x 1], rn1_7.c1.c.c.m[16 x 1], rn1_7.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.y = RectifiedLinear(rn1_7.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c2.c.c = Convolution(rn1_7.c2.W[16 x 144], rn1_7.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.y = BatchNormalization(rn1_7.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c2.c.sc[16 x 1], rn1_7.c2.c.b[16 x 1], rn1_7.c2.c.m[16 x 1], rn1_7.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.p = Plus(rn1_7.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.y = RectifiedLinear(rn1_7.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.c.c.c = Convolution(rn1_8.c1.c.W[16 x 144], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.y = BatchNormalization(rn1_8.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c1.c.c.sc[16 x 1], rn1_8.c1.c.c.b[16 x 1], rn1_8.c1.c.c.m[16 x 1], rn1_8.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.y = RectifiedLinear(rn1_8.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c2.c.c = Convolution(rn1_8.c2.W[16 x 144], rn1_8.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.y = BatchNormalization(rn1_8.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c2.c.sc[16 x 1], rn1_8.c2.c.b[16 x 1], rn1_8.c2.c.m[16 x 1], rn1_8.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.p = Plus(rn1_8.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.y = RectifiedLinear(rn1_8.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.c.c.c = Convolution(rn1_9.c1.c.W[16 x 144], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.y = BatchNormalization(rn1_9.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c1.c.c.sc[16 x 1], rn1_9.c1.c.c.b[16 x 1], rn1_9.c1.c.c.m[16 x 1], rn1_9.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.y = RectifiedLinear(rn1_9.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c2.c.c = Convolution(rn1_9.c2.W[16 x 144], rn1_9.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.y = BatchNormalization(rn1_9.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c2.c.sc[16 x 1], rn1_9.c2.c.b[16 x 1], rn1_9.c2.c.m[16 x 1], rn1_9.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.p = Plus(rn1_9.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.y = RectifiedLinear(rn1_9.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.c.c.c = Convolution(rn1_10.c1.c.W[16 x 144], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.y = BatchNormalization(rn1_10.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c1.c.c.sc[16 x 1], rn1_10.c1.c.c.b[16 x 1], rn1_10.c1.c.c.m[16 x 1], rn1_10.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.y = RectifiedLinear(rn1_10.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c2.c.c = Convolution(rn1_10.c2.W[16 x 144], rn1_10.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.y = BatchNormalization(rn1_10.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c2.c.sc[16 x 1], rn1_10.c2.c.b[16 x 1], rn1_10.c2.c.m[16 x 1], rn1_10.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.p = Plus(rn1_10.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.y = RectifiedLinear(rn1_10.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.c.c.c = Convolution(rn1_11.c1.c.W[16 x 144], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.y = BatchNormalization(rn1_11.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c1.c.c.sc[16 x 1], rn1_11.c1.c.c.b[16 x 1], rn1_11.c1.c.c.m[16 x 1], rn1_11.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.y = RectifiedLinear(rn1_11.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c2.c.c = Convolution(rn1_11.c2.W[16 x 144], rn1_11.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.y = BatchNormalization(rn1_11.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c2.c.sc[16 x 1], rn1_11.c2.c.b[16 x 1], rn1_11.c2.c.m[16 x 1], rn1_11.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.p = Plus(rn1_11.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.y = RectifiedLinear(rn1_11.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.c.c.c = Convolution(rn1_12.c1.c.W[16 x 144], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.y = BatchNormalization(rn1_12.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c1.c.c.sc[16 x 1], rn1_12.c1.c.c.b[16 x 1], rn1_12.c1.c.c.m[16 x 1], rn1_12.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.y = RectifiedLinear(rn1_12.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c2.c.c = Convolution(rn1_12.c2.W[16 x 144], rn1_12.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.y = BatchNormalization(rn1_12.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c2.c.sc[16 x 1], rn1_12.c2.c.b[16 x 1], rn1_12.c2.c.m[16 x 1], rn1_12.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.p = Plus(rn1_12.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.y = RectifiedLinear(rn1_12.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.c.c.c = Convolution(rn1_13.c1.c.W[16 x 144], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.y = BatchNormalization(rn1_13.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c1.c.c.sc[16 x 1], rn1_13.c1.c.c.b[16 x 1], rn1_13.c1.c.c.m[16 x 1], rn1_13.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.y = RectifiedLinear(rn1_13.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c2.c.c = Convolution(rn1_13.c2.W[16 x 144], rn1_13.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.y = BatchNormalization(rn1_13.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c2.c.sc[16 x 1], rn1_13.c2.c.b[16 x 1], rn1_13.c2.c.m[16 x 1], rn1_13.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.p = Plus(rn1_13.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.y = RectifiedLinear(rn1_13.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.c.c.c = Convolution(rn1_14.c1.c.W[16 x 144], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.y = BatchNormalization(rn1_14.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c1.c.c.sc[16 x 1], rn1_14.c1.c.c.b[16 x 1], rn1_14.c1.c.c.m[16 x 1], rn1_14.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.y = RectifiedLinear(rn1_14.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c2.c.c = Convolution(rn1_14.c2.W[16 x 144], rn1_14.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.y = BatchNormalization(rn1_14.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c2.c.sc[16 x 1], rn1_14.c2.c.b[16 x 1], rn1_14.c2.c.m[16 x 1], rn1_14.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.p = Plus(rn1_14.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.y = RectifiedLinear(rn1_14.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.c.c.c = Convolution(rn1_15.c1.c.W[16 x 144], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.y = BatchNormalization(rn1_15.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c1.c.c.sc[16 x 1], rn1_15.c1.c.c.b[16 x 1], rn1_15.c1.c.c.m[16 x 1], rn1_15.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.y = RectifiedLinear(rn1_15.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c2.c.c = Convolution(rn1_15.c2.W[16 x 144], rn1_15.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.y = BatchNormalization(rn1_15.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c2.c.sc[16 x 1], rn1_15.c2.c.b[16 x 1], rn1_15.c2.c.m[16 x 1], rn1_15.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.p = Plus(rn1_15.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.y = RectifiedLinear(rn1_15.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.c.c.c = Convolution(rn1_16.c1.c.W[16 x 144], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.y = BatchNormalization(rn1_16.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c1.c.c.sc[16 x 1], rn1_16.c1.c.c.b[16 x 1], rn1_16.c1.c.c.m[16 x 1], rn1_16.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.y = RectifiedLinear(rn1_16.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c2.c.c = Convolution(rn1_16.c2.W[16 x 144], rn1_16.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.y = BatchNormalization(rn1_16.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c2.c.sc[16 x 1], rn1_16.c2.c.b[16 x 1], rn1_16.c2.c.m[16 x 1], rn1_16.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.p = Plus(rn1_16.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.y = RectifiedLinear(rn1_16.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.c.c.c = Convolution(rn1_17.c1.c.W[16 x 144], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.y = BatchNormalization(rn1_17.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c1.c.c.sc[16 x 1], rn1_17.c1.c.c.b[16 x 1], rn1_17.c1.c.c.m[16 x 1], rn1_17.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.y = RectifiedLinear(rn1_17.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c2.c.c = Convolution(rn1_17.c2.W[16 x 144], rn1_17.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.y = BatchNormalization(rn1_17.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c2.c.sc[16 x 1], rn1_17.c2.c.b[16 x 1], rn1_17.c2.c.m[16 x 1], rn1_17.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.p = Plus(rn1_17.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.y = RectifiedLinear(rn1_17.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.c.c.c = Convolution(rn1_18.c1.c.W[16 x 144], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.y = BatchNormalization(rn1_18.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c1.c.c.sc[16 x 1], rn1_18.c1.c.c.b[16 x 1], rn1_18.c1.c.c.m[16 x 1], rn1_18.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.y = RectifiedLinear(rn1_18.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c2.c.c = Convolution(rn1_18.c2.W[16 x 144], rn1_18.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.y = BatchNormalization(rn1_18.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c2.c.sc[16 x 1], rn1_18.c2.c.b[16 x 1], rn1_18.c2.c.m[16 x 1], rn1_18.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.p = Plus(rn1_18.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.y = RectifiedLinear(rn1_18.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn2_1.c1.c.c.c = Convolution(rn2_1.c1.c.W[32 x 144], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.y = BatchNormalization(rn2_1.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c1.c.c.sc[32 x 1], rn2_1.c1.c.c.b[32 x 1], rn2_1.c1.c.c.m[32 x 1], rn2_1.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c2.c.c = Convolution(rn2_1.c2.W[32 x 288], rn2_1.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.y = BatchNormalization(rn2_1.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c2.c.sc[32 x 1], rn2_1.c2.c.b[32 x 1], rn2_1.c2.c.m[32 x 1], rn2_1.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1_Wproj = LearnableParameter -> [32 x 16] +Validating --> rn2_1.c_proj.c = Convolution(rn2_1_Wproj[32 x 16], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c_proj.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.y = BatchNormalization(rn2_1.c_proj.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.sc[32 x 1], rn2_1.c_proj.b[32 x 1], rn2_1.c_proj.m[32 x 1], rn2_1.c_proj.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.p = Plus(rn2_1.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.c.c.c = Convolution(rn2_2.c1.c.W[32 x 288], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.y = BatchNormalization(rn2_2.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c1.c.c.sc[32 x 1], rn2_2.c1.c.c.b[32 x 1], rn2_2.c1.c.c.m[32 x 1], rn2_2.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c2.c.c = Convolution(rn2_2.c2.W[32 x 288], rn2_2.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.y = BatchNormalization(rn2_2.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c2.c.sc[32 x 1], rn2_2.c2.c.b[32 x 1], rn2_2.c2.c.m[32 x 1], rn2_2.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.p = Plus(rn2_2.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.c.c.c = Convolution(rn2_3.c1.c.W[32 x 288], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.y = BatchNormalization(rn2_3.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c1.c.c.sc[32 x 1], rn2_3.c1.c.c.b[32 x 1], rn2_3.c1.c.c.m[32 x 1], rn2_3.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c2.c.c = Convolution(rn2_3.c2.W[32 x 288], rn2_3.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.y = BatchNormalization(rn2_3.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c2.c.sc[32 x 1], rn2_3.c2.c.b[32 x 1], rn2_3.c2.c.m[32 x 1], rn2_3.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.p = Plus(rn2_3.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.c.c.c = Convolution(rn2_4.c1.c.W[32 x 288], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.y = BatchNormalization(rn2_4.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c1.c.c.sc[32 x 1], rn2_4.c1.c.c.b[32 x 1], rn2_4.c1.c.c.m[32 x 1], rn2_4.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.y = RectifiedLinear(rn2_4.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c2.c.c = Convolution(rn2_4.c2.W[32 x 288], rn2_4.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.y = BatchNormalization(rn2_4.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c2.c.sc[32 x 1], rn2_4.c2.c.b[32 x 1], rn2_4.c2.c.m[32 x 1], rn2_4.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.p = Plus(rn2_4.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.y = RectifiedLinear(rn2_4.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.c.c.c = Convolution(rn2_5.c1.c.W[32 x 288], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.y = BatchNormalization(rn2_5.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c1.c.c.sc[32 x 1], rn2_5.c1.c.c.b[32 x 1], rn2_5.c1.c.c.m[32 x 1], rn2_5.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.y = RectifiedLinear(rn2_5.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c2.c.c = Convolution(rn2_5.c2.W[32 x 288], rn2_5.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.y = BatchNormalization(rn2_5.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c2.c.sc[32 x 1], rn2_5.c2.c.b[32 x 1], rn2_5.c2.c.m[32 x 1], rn2_5.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.p = Plus(rn2_5.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.y = RectifiedLinear(rn2_5.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.c.c.c = Convolution(rn2_6.c1.c.W[32 x 288], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.y = BatchNormalization(rn2_6.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c1.c.c.sc[32 x 1], rn2_6.c1.c.c.b[32 x 1], rn2_6.c1.c.c.m[32 x 1], rn2_6.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.y = RectifiedLinear(rn2_6.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c2.c.c = Convolution(rn2_6.c2.W[32 x 288], rn2_6.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.y = BatchNormalization(rn2_6.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c2.c.sc[32 x 1], rn2_6.c2.c.b[32 x 1], rn2_6.c2.c.m[32 x 1], rn2_6.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.p = Plus(rn2_6.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.y = RectifiedLinear(rn2_6.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.c.c.c = Convolution(rn2_7.c1.c.W[32 x 288], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.y = BatchNormalization(rn2_7.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c1.c.c.sc[32 x 1], rn2_7.c1.c.c.b[32 x 1], rn2_7.c1.c.c.m[32 x 1], rn2_7.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.y = RectifiedLinear(rn2_7.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c2.c.c = Convolution(rn2_7.c2.W[32 x 288], rn2_7.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.y = BatchNormalization(rn2_7.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c2.c.sc[32 x 1], rn2_7.c2.c.b[32 x 1], rn2_7.c2.c.m[32 x 1], rn2_7.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.p = Plus(rn2_7.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.y = RectifiedLinear(rn2_7.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.c.c.c = Convolution(rn2_8.c1.c.W[32 x 288], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.y = BatchNormalization(rn2_8.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c1.c.c.sc[32 x 1], rn2_8.c1.c.c.b[32 x 1], rn2_8.c1.c.c.m[32 x 1], rn2_8.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.y = RectifiedLinear(rn2_8.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c2.c.c = Convolution(rn2_8.c2.W[32 x 288], rn2_8.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.y = BatchNormalization(rn2_8.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c2.c.sc[32 x 1], rn2_8.c2.c.b[32 x 1], rn2_8.c2.c.m[32 x 1], rn2_8.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.p = Plus(rn2_8.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.y = RectifiedLinear(rn2_8.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.c.c.c = Convolution(rn2_9.c1.c.W[32 x 288], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.y = BatchNormalization(rn2_9.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c1.c.c.sc[32 x 1], rn2_9.c1.c.c.b[32 x 1], rn2_9.c1.c.c.m[32 x 1], rn2_9.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.y = RectifiedLinear(rn2_9.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c2.c.c = Convolution(rn2_9.c2.W[32 x 288], rn2_9.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.y = BatchNormalization(rn2_9.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c2.c.sc[32 x 1], rn2_9.c2.c.b[32 x 1], rn2_9.c2.c.m[32 x 1], rn2_9.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.p = Plus(rn2_9.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.y = RectifiedLinear(rn2_9.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.c.c.c = Convolution(rn2_10.c1.c.W[32 x 288], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.y = BatchNormalization(rn2_10.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c1.c.c.sc[32 x 1], rn2_10.c1.c.c.b[32 x 1], rn2_10.c1.c.c.m[32 x 1], rn2_10.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.y = RectifiedLinear(rn2_10.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c2.c.c = Convolution(rn2_10.c2.W[32 x 288], rn2_10.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.y = BatchNormalization(rn2_10.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c2.c.sc[32 x 1], rn2_10.c2.c.b[32 x 1], rn2_10.c2.c.m[32 x 1], rn2_10.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.p = Plus(rn2_10.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.y = RectifiedLinear(rn2_10.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.c.c.c = Convolution(rn2_11.c1.c.W[32 x 288], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.y = BatchNormalization(rn2_11.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c1.c.c.sc[32 x 1], rn2_11.c1.c.c.b[32 x 1], rn2_11.c1.c.c.m[32 x 1], rn2_11.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.y = RectifiedLinear(rn2_11.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c2.c.c = Convolution(rn2_11.c2.W[32 x 288], rn2_11.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.y = BatchNormalization(rn2_11.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c2.c.sc[32 x 1], rn2_11.c2.c.b[32 x 1], rn2_11.c2.c.m[32 x 1], rn2_11.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.p = Plus(rn2_11.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.y = RectifiedLinear(rn2_11.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.c.c.c = Convolution(rn2_12.c1.c.W[32 x 288], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.y = BatchNormalization(rn2_12.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c1.c.c.sc[32 x 1], rn2_12.c1.c.c.b[32 x 1], rn2_12.c1.c.c.m[32 x 1], rn2_12.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.y = RectifiedLinear(rn2_12.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c2.c.c = Convolution(rn2_12.c2.W[32 x 288], rn2_12.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.y = BatchNormalization(rn2_12.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c2.c.sc[32 x 1], rn2_12.c2.c.b[32 x 1], rn2_12.c2.c.m[32 x 1], rn2_12.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.p = Plus(rn2_12.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.y = RectifiedLinear(rn2_12.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.c.c.c = Convolution(rn2_13.c1.c.W[32 x 288], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.y = BatchNormalization(rn2_13.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c1.c.c.sc[32 x 1], rn2_13.c1.c.c.b[32 x 1], rn2_13.c1.c.c.m[32 x 1], rn2_13.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.y = RectifiedLinear(rn2_13.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c2.c.c = Convolution(rn2_13.c2.W[32 x 288], rn2_13.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.y = BatchNormalization(rn2_13.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c2.c.sc[32 x 1], rn2_13.c2.c.b[32 x 1], rn2_13.c2.c.m[32 x 1], rn2_13.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.p = Plus(rn2_13.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.y = RectifiedLinear(rn2_13.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.c.c.c = Convolution(rn2_14.c1.c.W[32 x 288], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.y = BatchNormalization(rn2_14.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c1.c.c.sc[32 x 1], rn2_14.c1.c.c.b[32 x 1], rn2_14.c1.c.c.m[32 x 1], rn2_14.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.y = RectifiedLinear(rn2_14.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c2.c.c = Convolution(rn2_14.c2.W[32 x 288], rn2_14.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.y = BatchNormalization(rn2_14.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c2.c.sc[32 x 1], rn2_14.c2.c.b[32 x 1], rn2_14.c2.c.m[32 x 1], rn2_14.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.p = Plus(rn2_14.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.y = RectifiedLinear(rn2_14.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.c.c.c = Convolution(rn2_15.c1.c.W[32 x 288], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.y = BatchNormalization(rn2_15.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c1.c.c.sc[32 x 1], rn2_15.c1.c.c.b[32 x 1], rn2_15.c1.c.c.m[32 x 1], rn2_15.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.y = RectifiedLinear(rn2_15.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c2.c.c = Convolution(rn2_15.c2.W[32 x 288], rn2_15.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.y = BatchNormalization(rn2_15.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c2.c.sc[32 x 1], rn2_15.c2.c.b[32 x 1], rn2_15.c2.c.m[32 x 1], rn2_15.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.p = Plus(rn2_15.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.y = RectifiedLinear(rn2_15.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.c.c.c = Convolution(rn2_16.c1.c.W[32 x 288], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.y = BatchNormalization(rn2_16.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c1.c.c.sc[32 x 1], rn2_16.c1.c.c.b[32 x 1], rn2_16.c1.c.c.m[32 x 1], rn2_16.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.y = RectifiedLinear(rn2_16.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c2.c.c = Convolution(rn2_16.c2.W[32 x 288], rn2_16.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.y = BatchNormalization(rn2_16.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c2.c.sc[32 x 1], rn2_16.c2.c.b[32 x 1], rn2_16.c2.c.m[32 x 1], rn2_16.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.p = Plus(rn2_16.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.y = RectifiedLinear(rn2_16.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.c.c.c = Convolution(rn2_17.c1.c.W[32 x 288], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.y = BatchNormalization(rn2_17.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c1.c.c.sc[32 x 1], rn2_17.c1.c.c.b[32 x 1], rn2_17.c1.c.c.m[32 x 1], rn2_17.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.y = RectifiedLinear(rn2_17.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c2.c.c = Convolution(rn2_17.c2.W[32 x 288], rn2_17.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.y = BatchNormalization(rn2_17.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c2.c.sc[32 x 1], rn2_17.c2.c.b[32 x 1], rn2_17.c2.c.m[32 x 1], rn2_17.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.p = Plus(rn2_17.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.y = RectifiedLinear(rn2_17.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.c.c.c = Convolution(rn2_18.c1.c.W[32 x 288], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.y = BatchNormalization(rn2_18.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c1.c.c.sc[32 x 1], rn2_18.c1.c.c.b[32 x 1], rn2_18.c1.c.c.m[32 x 1], rn2_18.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.y = RectifiedLinear(rn2_18.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c2.c.c = Convolution(rn2_18.c2.W[32 x 288], rn2_18.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.y = BatchNormalization(rn2_18.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c2.c.sc[32 x 1], rn2_18.c2.c.b[32 x 1], rn2_18.c2.c.m[32 x 1], rn2_18.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.p = Plus(rn2_18.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.y = RectifiedLinear(rn2_18.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn3_1.c1.c.c.c = Convolution(rn3_1.c1.c.W[64 x 288], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.y = BatchNormalization(rn3_1.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c1.c.c.sc[64 x 1], rn3_1.c1.c.c.b[64 x 1], rn3_1.c1.c.c.m[64 x 1], rn3_1.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c2.c.c = Convolution(rn3_1.c2.W[64 x 576], rn3_1.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.y = BatchNormalization(rn3_1.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c2.c.sc[64 x 1], rn3_1.c2.c.b[64 x 1], rn3_1.c2.c.m[64 x 1], rn3_1.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1_Wproj = LearnableParameter -> [64 x 32] +Validating --> rn3_1.c_proj.c = Convolution(rn3_1_Wproj[64 x 32], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c_proj.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.y = BatchNormalization(rn3_1.c_proj.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.sc[64 x 1], rn3_1.c_proj.b[64 x 1], rn3_1.c_proj.m[64 x 1], rn3_1.c_proj.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.p = Plus(rn3_1.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.c.c.c = Convolution(rn3_2.c1.c.W[64 x 576], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.y = BatchNormalization(rn3_2.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c1.c.c.sc[64 x 1], rn3_2.c1.c.c.b[64 x 1], rn3_2.c1.c.c.m[64 x 1], rn3_2.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c2.c.c = Convolution(rn3_2.c2.W[64 x 576], rn3_2.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.y = BatchNormalization(rn3_2.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c2.c.sc[64 x 1], rn3_2.c2.c.b[64 x 1], rn3_2.c2.c.m[64 x 1], rn3_2.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.p = Plus(rn3_2.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.c.c.c = Convolution(rn3_3.c1.c.W[64 x 576], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.y = BatchNormalization(rn3_3.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c1.c.c.sc[64 x 1], rn3_3.c1.c.c.b[64 x 1], rn3_3.c1.c.c.m[64 x 1], rn3_3.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c2.c.c = Convolution(rn3_3.c2.W[64 x 576], rn3_3.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.y = BatchNormalization(rn3_3.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c2.c.sc[64 x 1], rn3_3.c2.c.b[64 x 1], rn3_3.c2.c.m[64 x 1], rn3_3.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.p = Plus(rn3_3.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.c.c.c = Convolution(rn3_4.c1.c.W[64 x 576], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.y = BatchNormalization(rn3_4.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c1.c.c.sc[64 x 1], rn3_4.c1.c.c.b[64 x 1], rn3_4.c1.c.c.m[64 x 1], rn3_4.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.y = RectifiedLinear(rn3_4.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c2.c.c = Convolution(rn3_4.c2.W[64 x 576], rn3_4.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.y = BatchNormalization(rn3_4.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c2.c.sc[64 x 1], rn3_4.c2.c.b[64 x 1], rn3_4.c2.c.m[64 x 1], rn3_4.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.p = Plus(rn3_4.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.y = RectifiedLinear(rn3_4.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.c.c.c = Convolution(rn3_5.c1.c.W[64 x 576], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.y = BatchNormalization(rn3_5.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c1.c.c.sc[64 x 1], rn3_5.c1.c.c.b[64 x 1], rn3_5.c1.c.c.m[64 x 1], rn3_5.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.y = RectifiedLinear(rn3_5.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c2.c.c = Convolution(rn3_5.c2.W[64 x 576], rn3_5.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.y = BatchNormalization(rn3_5.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c2.c.sc[64 x 1], rn3_5.c2.c.b[64 x 1], rn3_5.c2.c.m[64 x 1], rn3_5.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.p = Plus(rn3_5.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.y = RectifiedLinear(rn3_5.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.c.c.c = Convolution(rn3_6.c1.c.W[64 x 576], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.y = BatchNormalization(rn3_6.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c1.c.c.sc[64 x 1], rn3_6.c1.c.c.b[64 x 1], rn3_6.c1.c.c.m[64 x 1], rn3_6.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.y = RectifiedLinear(rn3_6.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c2.c.c = Convolution(rn3_6.c2.W[64 x 576], rn3_6.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.y = BatchNormalization(rn3_6.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c2.c.sc[64 x 1], rn3_6.c2.c.b[64 x 1], rn3_6.c2.c.m[64 x 1], rn3_6.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.p = Plus(rn3_6.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.y = RectifiedLinear(rn3_6.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.c.c.c = Convolution(rn3_7.c1.c.W[64 x 576], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.y = BatchNormalization(rn3_7.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c1.c.c.sc[64 x 1], rn3_7.c1.c.c.b[64 x 1], rn3_7.c1.c.c.m[64 x 1], rn3_7.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.y = RectifiedLinear(rn3_7.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c2.c.c = Convolution(rn3_7.c2.W[64 x 576], rn3_7.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.y = BatchNormalization(rn3_7.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c2.c.sc[64 x 1], rn3_7.c2.c.b[64 x 1], rn3_7.c2.c.m[64 x 1], rn3_7.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.p = Plus(rn3_7.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.y = RectifiedLinear(rn3_7.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.c.c.c = Convolution(rn3_8.c1.c.W[64 x 576], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.y = BatchNormalization(rn3_8.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c1.c.c.sc[64 x 1], rn3_8.c1.c.c.b[64 x 1], rn3_8.c1.c.c.m[64 x 1], rn3_8.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.y = RectifiedLinear(rn3_8.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c2.c.c = Convolution(rn3_8.c2.W[64 x 576], rn3_8.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.y = BatchNormalization(rn3_8.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c2.c.sc[64 x 1], rn3_8.c2.c.b[64 x 1], rn3_8.c2.c.m[64 x 1], rn3_8.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.p = Plus(rn3_8.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.y = RectifiedLinear(rn3_8.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.c.c.c = Convolution(rn3_9.c1.c.W[64 x 576], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.y = BatchNormalization(rn3_9.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c1.c.c.sc[64 x 1], rn3_9.c1.c.c.b[64 x 1], rn3_9.c1.c.c.m[64 x 1], rn3_9.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.y = RectifiedLinear(rn3_9.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c2.c.c = Convolution(rn3_9.c2.W[64 x 576], rn3_9.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.y = BatchNormalization(rn3_9.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c2.c.sc[64 x 1], rn3_9.c2.c.b[64 x 1], rn3_9.c2.c.m[64 x 1], rn3_9.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.p = Plus(rn3_9.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.y = RectifiedLinear(rn3_9.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.c.c.c = Convolution(rn3_10.c1.c.W[64 x 576], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.y = BatchNormalization(rn3_10.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c1.c.c.sc[64 x 1], rn3_10.c1.c.c.b[64 x 1], rn3_10.c1.c.c.m[64 x 1], rn3_10.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.y = RectifiedLinear(rn3_10.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c2.c.c = Convolution(rn3_10.c2.W[64 x 576], rn3_10.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.y = BatchNormalization(rn3_10.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c2.c.sc[64 x 1], rn3_10.c2.c.b[64 x 1], rn3_10.c2.c.m[64 x 1], rn3_10.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.p = Plus(rn3_10.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.y = RectifiedLinear(rn3_10.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.c.c.c = Convolution(rn3_11.c1.c.W[64 x 576], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.y = BatchNormalization(rn3_11.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c1.c.c.sc[64 x 1], rn3_11.c1.c.c.b[64 x 1], rn3_11.c1.c.c.m[64 x 1], rn3_11.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.y = RectifiedLinear(rn3_11.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c2.c.c = Convolution(rn3_11.c2.W[64 x 576], rn3_11.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.y = BatchNormalization(rn3_11.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c2.c.sc[64 x 1], rn3_11.c2.c.b[64 x 1], rn3_11.c2.c.m[64 x 1], rn3_11.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.p = Plus(rn3_11.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.y = RectifiedLinear(rn3_11.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.c.c.c = Convolution(rn3_12.c1.c.W[64 x 576], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.y = BatchNormalization(rn3_12.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c1.c.c.sc[64 x 1], rn3_12.c1.c.c.b[64 x 1], rn3_12.c1.c.c.m[64 x 1], rn3_12.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.y = RectifiedLinear(rn3_12.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c2.c.c = Convolution(rn3_12.c2.W[64 x 576], rn3_12.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.y = BatchNormalization(rn3_12.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c2.c.sc[64 x 1], rn3_12.c2.c.b[64 x 1], rn3_12.c2.c.m[64 x 1], rn3_12.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.p = Plus(rn3_12.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.y = RectifiedLinear(rn3_12.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.c.c.c = Convolution(rn3_13.c1.c.W[64 x 576], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.y = BatchNormalization(rn3_13.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c1.c.c.sc[64 x 1], rn3_13.c1.c.c.b[64 x 1], rn3_13.c1.c.c.m[64 x 1], rn3_13.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.y = RectifiedLinear(rn3_13.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c2.c.c = Convolution(rn3_13.c2.W[64 x 576], rn3_13.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.y = BatchNormalization(rn3_13.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c2.c.sc[64 x 1], rn3_13.c2.c.b[64 x 1], rn3_13.c2.c.m[64 x 1], rn3_13.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.p = Plus(rn3_13.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.y = RectifiedLinear(rn3_13.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.c.c.c = Convolution(rn3_14.c1.c.W[64 x 576], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.y = BatchNormalization(rn3_14.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c1.c.c.sc[64 x 1], rn3_14.c1.c.c.b[64 x 1], rn3_14.c1.c.c.m[64 x 1], rn3_14.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.y = RectifiedLinear(rn3_14.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c2.c.c = Convolution(rn3_14.c2.W[64 x 576], rn3_14.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.y = BatchNormalization(rn3_14.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c2.c.sc[64 x 1], rn3_14.c2.c.b[64 x 1], rn3_14.c2.c.m[64 x 1], rn3_14.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.p = Plus(rn3_14.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.y = RectifiedLinear(rn3_14.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.c.c.c = Convolution(rn3_15.c1.c.W[64 x 576], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.y = BatchNormalization(rn3_15.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c1.c.c.sc[64 x 1], rn3_15.c1.c.c.b[64 x 1], rn3_15.c1.c.c.m[64 x 1], rn3_15.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.y = RectifiedLinear(rn3_15.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c2.c.c = Convolution(rn3_15.c2.W[64 x 576], rn3_15.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.y = BatchNormalization(rn3_15.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c2.c.sc[64 x 1], rn3_15.c2.c.b[64 x 1], rn3_15.c2.c.m[64 x 1], rn3_15.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.p = Plus(rn3_15.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.y = RectifiedLinear(rn3_15.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.c.c.c = Convolution(rn3_16.c1.c.W[64 x 576], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.y = BatchNormalization(rn3_16.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c1.c.c.sc[64 x 1], rn3_16.c1.c.c.b[64 x 1], rn3_16.c1.c.c.m[64 x 1], rn3_16.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.y = RectifiedLinear(rn3_16.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c2.c.c = Convolution(rn3_16.c2.W[64 x 576], rn3_16.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.y = BatchNormalization(rn3_16.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c2.c.sc[64 x 1], rn3_16.c2.c.b[64 x 1], rn3_16.c2.c.m[64 x 1], rn3_16.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.p = Plus(rn3_16.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.y = RectifiedLinear(rn3_16.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.c.c.c = Convolution(rn3_17.c1.c.W[64 x 576], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.y = BatchNormalization(rn3_17.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c1.c.c.sc[64 x 1], rn3_17.c1.c.c.b[64 x 1], rn3_17.c1.c.c.m[64 x 1], rn3_17.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.y = RectifiedLinear(rn3_17.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c2.c.c = Convolution(rn3_17.c2.W[64 x 576], rn3_17.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.y = BatchNormalization(rn3_17.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c2.c.sc[64 x 1], rn3_17.c2.c.b[64 x 1], rn3_17.c2.c.m[64 x 1], rn3_17.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.p = Plus(rn3_17.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.y = RectifiedLinear(rn3_17.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.c.c.c = Convolution(rn3_18.c1.c.W[64 x 576], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.y = BatchNormalization(rn3_18.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c1.c.c.sc[64 x 1], rn3_18.c1.c.c.b[64 x 1], rn3_18.c1.c.c.m[64 x 1], rn3_18.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.y = RectifiedLinear(rn3_18.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c2.c.c = Convolution(rn3_18.c2.W[64 x 576], rn3_18.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.y = BatchNormalization(rn3_18.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c2.c.sc[64 x 1], rn3_18.c2.c.b[64 x 1], rn3_18.c2.c.m[64 x 1], rn3_18.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.p = Plus(rn3_18.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.y = RectifiedLinear(rn3_18.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> pool = AveragePooling(rn3_18.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [1 x 1 x 64 x *] +Validating --> OutputNodes.t = Times(OutputNodes.W[10 x 64], pool[1 x 1 x 64 x *]) -> [10 x *] +Validating --> OutputNodes.b = LearnableParameter -> [10] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10 x *], OutputNodes.b[10]) -> [10 x *] +Validating --> CE = CrossEntropyWithSoftmax(labels[10 x *], OutputNodes.z[10 x *]) -> [1] +Validating --> Err = ErrorPrediction(labels[10 x *], OutputNodes.z[10 x *]) -> [1] + +559 out of 949 nodes do not share the minibatch layout with the input data. + +Post-processing network complete. + +Post-processing network... + +3 roots: + CE = CrossEntropyWithSoftmax + Err = ErrorPrediction + OutputNodes.z = Plus +FormNestedNetwork: WARNING: Was called twice for CE CrossEntropyWithSoftmax operation +FormNestedNetwork: WARNING: Was called twice for Err ErrorPrediction operation +FormNestedNetwork: WARNING: Was called twice for OutputNodes.z Plus operation + + +Validating network. 949 nodes to process in pass 1. + +Validating --> labels = InputValue -> [10 x *] +Validating --> OutputNodes.W = LearnableParameter -> [10 x 64] +Validating --> rn3_18.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_18.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_17.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_17.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_16.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_16.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_15.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_15.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_14.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_14.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_13.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_13.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_12.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_12.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_11.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_11.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_10.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_10.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_9.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_9.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_8.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_8.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_7.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_7.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_6.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_6.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_5.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_5.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_4.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_4.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 x 288] +Validating --> rn2_18.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_18.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_17.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_17.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_16.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_16.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_15.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_15.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_14.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_14.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_13.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_13.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_12.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_12.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_11.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_11.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_10.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_10.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_9.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_9.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_8.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_8.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_7.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_7.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_6.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_6.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_5.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_5.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_4.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_4.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 x 144] +Validating --> rn1_18.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_18.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_17.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_17.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_16.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_16.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_15.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_15.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_14.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_14.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_13.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_13.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_12.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_12.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_11.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_11.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_10.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_10.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_9.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_9.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_8.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_8.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_7.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_7.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_6.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_6.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_5.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_5.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_4.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_4.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> conv1.c.W = LearnableParameter -> [16 x 27] +Validating --> features = InputValue -> [32 x 32 x 3 x *] +Validating --> conv1.c.c.c = Convolution(conv1.c.W[16 x 27], features[32 x 32 x 3 x * {W=32, H=3, C=32}]) -> [32 x 32 x 16 x *] +Validating --> conv1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.y = BatchNormalization(conv1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.c.c.sc[16 x 1], conv1.c.c.b[16 x 1], conv1.c.c.m[16 x 1], conv1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> conv1.y = RectifiedLinear(conv1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.c.c.c = Convolution(rn1_1.c1.c.W[16 x 144], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.y = BatchNormalization(rn1_1.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c1.c.c.sc[16 x 1], rn1_1.c1.c.c.b[16 x 1], rn1_1.c1.c.c.m[16 x 1], rn1_1.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c2.c.c = Convolution(rn1_1.c2.W[16 x 144], rn1_1.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.y = BatchNormalization(rn1_1.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c2.c.sc[16 x 1], rn1_1.c2.c.b[16 x 1], rn1_1.c2.c.m[16 x 1], rn1_1.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.p = Plus(rn1_1.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.c.c.c = Convolution(rn1_2.c1.c.W[16 x 144], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.y = BatchNormalization(rn1_2.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c1.c.c.sc[16 x 1], rn1_2.c1.c.c.b[16 x 1], rn1_2.c1.c.c.m[16 x 1], rn1_2.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c2.c.c = Convolution(rn1_2.c2.W[16 x 144], rn1_2.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.y = BatchNormalization(rn1_2.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c2.c.sc[16 x 1], rn1_2.c2.c.b[16 x 1], rn1_2.c2.c.m[16 x 1], rn1_2.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.p = Plus(rn1_2.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.c.c.c = Convolution(rn1_3.c1.c.W[16 x 144], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.y = BatchNormalization(rn1_3.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c1.c.c.sc[16 x 1], rn1_3.c1.c.c.b[16 x 1], rn1_3.c1.c.c.m[16 x 1], rn1_3.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c2.c.c = Convolution(rn1_3.c2.W[16 x 144], rn1_3.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.y = BatchNormalization(rn1_3.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c2.c.sc[16 x 1], rn1_3.c2.c.b[16 x 1], rn1_3.c2.c.m[16 x 1], rn1_3.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.p = Plus(rn1_3.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.c.c.c = Convolution(rn1_4.c1.c.W[16 x 144], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.y = BatchNormalization(rn1_4.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c1.c.c.sc[16 x 1], rn1_4.c1.c.c.b[16 x 1], rn1_4.c1.c.c.m[16 x 1], rn1_4.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.y = RectifiedLinear(rn1_4.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c2.c.c = Convolution(rn1_4.c2.W[16 x 144], rn1_4.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.y = BatchNormalization(rn1_4.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c2.c.sc[16 x 1], rn1_4.c2.c.b[16 x 1], rn1_4.c2.c.m[16 x 1], rn1_4.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.p = Plus(rn1_4.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.y = RectifiedLinear(rn1_4.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.c.c.c = Convolution(rn1_5.c1.c.W[16 x 144], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.y = BatchNormalization(rn1_5.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c1.c.c.sc[16 x 1], rn1_5.c1.c.c.b[16 x 1], rn1_5.c1.c.c.m[16 x 1], rn1_5.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.y = RectifiedLinear(rn1_5.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c2.c.c = Convolution(rn1_5.c2.W[16 x 144], rn1_5.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.y = BatchNormalization(rn1_5.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c2.c.sc[16 x 1], rn1_5.c2.c.b[16 x 1], rn1_5.c2.c.m[16 x 1], rn1_5.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.p = Plus(rn1_5.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.y = RectifiedLinear(rn1_5.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.c.c.c = Convolution(rn1_6.c1.c.W[16 x 144], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.y = BatchNormalization(rn1_6.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c1.c.c.sc[16 x 1], rn1_6.c1.c.c.b[16 x 1], rn1_6.c1.c.c.m[16 x 1], rn1_6.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.y = RectifiedLinear(rn1_6.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c2.c.c = Convolution(rn1_6.c2.W[16 x 144], rn1_6.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.y = BatchNormalization(rn1_6.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c2.c.sc[16 x 1], rn1_6.c2.c.b[16 x 1], rn1_6.c2.c.m[16 x 1], rn1_6.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.p = Plus(rn1_6.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.y = RectifiedLinear(rn1_6.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.c.c.c = Convolution(rn1_7.c1.c.W[16 x 144], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.y = BatchNormalization(rn1_7.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c1.c.c.sc[16 x 1], rn1_7.c1.c.c.b[16 x 1], rn1_7.c1.c.c.m[16 x 1], rn1_7.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.y = RectifiedLinear(rn1_7.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c2.c.c = Convolution(rn1_7.c2.W[16 x 144], rn1_7.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.y = BatchNormalization(rn1_7.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c2.c.sc[16 x 1], rn1_7.c2.c.b[16 x 1], rn1_7.c2.c.m[16 x 1], rn1_7.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.p = Plus(rn1_7.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.y = RectifiedLinear(rn1_7.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.c.c.c = Convolution(rn1_8.c1.c.W[16 x 144], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.y = BatchNormalization(rn1_8.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c1.c.c.sc[16 x 1], rn1_8.c1.c.c.b[16 x 1], rn1_8.c1.c.c.m[16 x 1], rn1_8.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.y = RectifiedLinear(rn1_8.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c2.c.c = Convolution(rn1_8.c2.W[16 x 144], rn1_8.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.y = BatchNormalization(rn1_8.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c2.c.sc[16 x 1], rn1_8.c2.c.b[16 x 1], rn1_8.c2.c.m[16 x 1], rn1_8.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.p = Plus(rn1_8.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.y = RectifiedLinear(rn1_8.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.c.c.c = Convolution(rn1_9.c1.c.W[16 x 144], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.y = BatchNormalization(rn1_9.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c1.c.c.sc[16 x 1], rn1_9.c1.c.c.b[16 x 1], rn1_9.c1.c.c.m[16 x 1], rn1_9.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.y = RectifiedLinear(rn1_9.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c2.c.c = Convolution(rn1_9.c2.W[16 x 144], rn1_9.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.y = BatchNormalization(rn1_9.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c2.c.sc[16 x 1], rn1_9.c2.c.b[16 x 1], rn1_9.c2.c.m[16 x 1], rn1_9.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.p = Plus(rn1_9.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.y = RectifiedLinear(rn1_9.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.c.c.c = Convolution(rn1_10.c1.c.W[16 x 144], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.y = BatchNormalization(rn1_10.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c1.c.c.sc[16 x 1], rn1_10.c1.c.c.b[16 x 1], rn1_10.c1.c.c.m[16 x 1], rn1_10.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.y = RectifiedLinear(rn1_10.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c2.c.c = Convolution(rn1_10.c2.W[16 x 144], rn1_10.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.y = BatchNormalization(rn1_10.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c2.c.sc[16 x 1], rn1_10.c2.c.b[16 x 1], rn1_10.c2.c.m[16 x 1], rn1_10.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.p = Plus(rn1_10.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.y = RectifiedLinear(rn1_10.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.c.c.c = Convolution(rn1_11.c1.c.W[16 x 144], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.y = BatchNormalization(rn1_11.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c1.c.c.sc[16 x 1], rn1_11.c1.c.c.b[16 x 1], rn1_11.c1.c.c.m[16 x 1], rn1_11.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.y = RectifiedLinear(rn1_11.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c2.c.c = Convolution(rn1_11.c2.W[16 x 144], rn1_11.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.y = BatchNormalization(rn1_11.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c2.c.sc[16 x 1], rn1_11.c2.c.b[16 x 1], rn1_11.c2.c.m[16 x 1], rn1_11.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.p = Plus(rn1_11.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.y = RectifiedLinear(rn1_11.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.c.c.c = Convolution(rn1_12.c1.c.W[16 x 144], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.y = BatchNormalization(rn1_12.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c1.c.c.sc[16 x 1], rn1_12.c1.c.c.b[16 x 1], rn1_12.c1.c.c.m[16 x 1], rn1_12.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.y = RectifiedLinear(rn1_12.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c2.c.c = Convolution(rn1_12.c2.W[16 x 144], rn1_12.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.y = BatchNormalization(rn1_12.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c2.c.sc[16 x 1], rn1_12.c2.c.b[16 x 1], rn1_12.c2.c.m[16 x 1], rn1_12.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.p = Plus(rn1_12.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.y = RectifiedLinear(rn1_12.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.c.c.c = Convolution(rn1_13.c1.c.W[16 x 144], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.y = BatchNormalization(rn1_13.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c1.c.c.sc[16 x 1], rn1_13.c1.c.c.b[16 x 1], rn1_13.c1.c.c.m[16 x 1], rn1_13.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.y = RectifiedLinear(rn1_13.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c2.c.c = Convolution(rn1_13.c2.W[16 x 144], rn1_13.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.y = BatchNormalization(rn1_13.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c2.c.sc[16 x 1], rn1_13.c2.c.b[16 x 1], rn1_13.c2.c.m[16 x 1], rn1_13.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.p = Plus(rn1_13.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.y = RectifiedLinear(rn1_13.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.c.c.c = Convolution(rn1_14.c1.c.W[16 x 144], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.y = BatchNormalization(rn1_14.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c1.c.c.sc[16 x 1], rn1_14.c1.c.c.b[16 x 1], rn1_14.c1.c.c.m[16 x 1], rn1_14.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.y = RectifiedLinear(rn1_14.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c2.c.c = Convolution(rn1_14.c2.W[16 x 144], rn1_14.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.y = BatchNormalization(rn1_14.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c2.c.sc[16 x 1], rn1_14.c2.c.b[16 x 1], rn1_14.c2.c.m[16 x 1], rn1_14.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.p = Plus(rn1_14.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.y = RectifiedLinear(rn1_14.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.c.c.c = Convolution(rn1_15.c1.c.W[16 x 144], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.y = BatchNormalization(rn1_15.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c1.c.c.sc[16 x 1], rn1_15.c1.c.c.b[16 x 1], rn1_15.c1.c.c.m[16 x 1], rn1_15.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.y = RectifiedLinear(rn1_15.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c2.c.c = Convolution(rn1_15.c2.W[16 x 144], rn1_15.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.y = BatchNormalization(rn1_15.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c2.c.sc[16 x 1], rn1_15.c2.c.b[16 x 1], rn1_15.c2.c.m[16 x 1], rn1_15.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.p = Plus(rn1_15.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.y = RectifiedLinear(rn1_15.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.c.c.c = Convolution(rn1_16.c1.c.W[16 x 144], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.y = BatchNormalization(rn1_16.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c1.c.c.sc[16 x 1], rn1_16.c1.c.c.b[16 x 1], rn1_16.c1.c.c.m[16 x 1], rn1_16.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.y = RectifiedLinear(rn1_16.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c2.c.c = Convolution(rn1_16.c2.W[16 x 144], rn1_16.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.y = BatchNormalization(rn1_16.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c2.c.sc[16 x 1], rn1_16.c2.c.b[16 x 1], rn1_16.c2.c.m[16 x 1], rn1_16.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.p = Plus(rn1_16.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.y = RectifiedLinear(rn1_16.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.c.c.c = Convolution(rn1_17.c1.c.W[16 x 144], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.y = BatchNormalization(rn1_17.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c1.c.c.sc[16 x 1], rn1_17.c1.c.c.b[16 x 1], rn1_17.c1.c.c.m[16 x 1], rn1_17.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.y = RectifiedLinear(rn1_17.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c2.c.c = Convolution(rn1_17.c2.W[16 x 144], rn1_17.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.y = BatchNormalization(rn1_17.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c2.c.sc[16 x 1], rn1_17.c2.c.b[16 x 1], rn1_17.c2.c.m[16 x 1], rn1_17.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.p = Plus(rn1_17.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.y = RectifiedLinear(rn1_17.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.c.c.c = Convolution(rn1_18.c1.c.W[16 x 144], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.y = BatchNormalization(rn1_18.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c1.c.c.sc[16 x 1], rn1_18.c1.c.c.b[16 x 1], rn1_18.c1.c.c.m[16 x 1], rn1_18.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.y = RectifiedLinear(rn1_18.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c2.c.c = Convolution(rn1_18.c2.W[16 x 144], rn1_18.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.y = BatchNormalization(rn1_18.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c2.c.sc[16 x 1], rn1_18.c2.c.b[16 x 1], rn1_18.c2.c.m[16 x 1], rn1_18.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.p = Plus(rn1_18.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.y = RectifiedLinear(rn1_18.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn2_1.c1.c.c.c = Convolution(rn2_1.c1.c.W[32 x 144], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.y = BatchNormalization(rn2_1.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c1.c.c.sc[32 x 1], rn2_1.c1.c.c.b[32 x 1], rn2_1.c1.c.c.m[32 x 1], rn2_1.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c2.c.c = Convolution(rn2_1.c2.W[32 x 288], rn2_1.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.y = BatchNormalization(rn2_1.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c2.c.sc[32 x 1], rn2_1.c2.c.b[32 x 1], rn2_1.c2.c.m[32 x 1], rn2_1.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1_Wproj = LearnableParameter -> [32 x 16] +Validating --> rn2_1.c_proj.c = Convolution(rn2_1_Wproj[32 x 16], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c_proj.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.y = BatchNormalization(rn2_1.c_proj.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.sc[32 x 1], rn2_1.c_proj.b[32 x 1], rn2_1.c_proj.m[32 x 1], rn2_1.c_proj.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.p = Plus(rn2_1.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.c.c.c = Convolution(rn2_2.c1.c.W[32 x 288], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.y = BatchNormalization(rn2_2.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c1.c.c.sc[32 x 1], rn2_2.c1.c.c.b[32 x 1], rn2_2.c1.c.c.m[32 x 1], rn2_2.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c2.c.c = Convolution(rn2_2.c2.W[32 x 288], rn2_2.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.y = BatchNormalization(rn2_2.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c2.c.sc[32 x 1], rn2_2.c2.c.b[32 x 1], rn2_2.c2.c.m[32 x 1], rn2_2.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.p = Plus(rn2_2.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.c.c.c = Convolution(rn2_3.c1.c.W[32 x 288], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.y = BatchNormalization(rn2_3.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c1.c.c.sc[32 x 1], rn2_3.c1.c.c.b[32 x 1], rn2_3.c1.c.c.m[32 x 1], rn2_3.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c2.c.c = Convolution(rn2_3.c2.W[32 x 288], rn2_3.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.y = BatchNormalization(rn2_3.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c2.c.sc[32 x 1], rn2_3.c2.c.b[32 x 1], rn2_3.c2.c.m[32 x 1], rn2_3.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.p = Plus(rn2_3.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.c.c.c = Convolution(rn2_4.c1.c.W[32 x 288], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.y = BatchNormalization(rn2_4.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c1.c.c.sc[32 x 1], rn2_4.c1.c.c.b[32 x 1], rn2_4.c1.c.c.m[32 x 1], rn2_4.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.y = RectifiedLinear(rn2_4.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c2.c.c = Convolution(rn2_4.c2.W[32 x 288], rn2_4.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.y = BatchNormalization(rn2_4.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c2.c.sc[32 x 1], rn2_4.c2.c.b[32 x 1], rn2_4.c2.c.m[32 x 1], rn2_4.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.p = Plus(rn2_4.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.y = RectifiedLinear(rn2_4.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.c.c.c = Convolution(rn2_5.c1.c.W[32 x 288], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.y = BatchNormalization(rn2_5.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c1.c.c.sc[32 x 1], rn2_5.c1.c.c.b[32 x 1], rn2_5.c1.c.c.m[32 x 1], rn2_5.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.y = RectifiedLinear(rn2_5.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c2.c.c = Convolution(rn2_5.c2.W[32 x 288], rn2_5.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.y = BatchNormalization(rn2_5.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c2.c.sc[32 x 1], rn2_5.c2.c.b[32 x 1], rn2_5.c2.c.m[32 x 1], rn2_5.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.p = Plus(rn2_5.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.y = RectifiedLinear(rn2_5.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.c.c.c = Convolution(rn2_6.c1.c.W[32 x 288], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.y = BatchNormalization(rn2_6.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c1.c.c.sc[32 x 1], rn2_6.c1.c.c.b[32 x 1], rn2_6.c1.c.c.m[32 x 1], rn2_6.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.y = RectifiedLinear(rn2_6.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c2.c.c = Convolution(rn2_6.c2.W[32 x 288], rn2_6.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.y = BatchNormalization(rn2_6.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c2.c.sc[32 x 1], rn2_6.c2.c.b[32 x 1], rn2_6.c2.c.m[32 x 1], rn2_6.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.p = Plus(rn2_6.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.y = RectifiedLinear(rn2_6.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.c.c.c = Convolution(rn2_7.c1.c.W[32 x 288], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.y = BatchNormalization(rn2_7.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c1.c.c.sc[32 x 1], rn2_7.c1.c.c.b[32 x 1], rn2_7.c1.c.c.m[32 x 1], rn2_7.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.y = RectifiedLinear(rn2_7.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c2.c.c = Convolution(rn2_7.c2.W[32 x 288], rn2_7.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.y = BatchNormalization(rn2_7.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c2.c.sc[32 x 1], rn2_7.c2.c.b[32 x 1], rn2_7.c2.c.m[32 x 1], rn2_7.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.p = Plus(rn2_7.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.y = RectifiedLinear(rn2_7.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.c.c.c = Convolution(rn2_8.c1.c.W[32 x 288], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.y = BatchNormalization(rn2_8.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c1.c.c.sc[32 x 1], rn2_8.c1.c.c.b[32 x 1], rn2_8.c1.c.c.m[32 x 1], rn2_8.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.y = RectifiedLinear(rn2_8.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c2.c.c = Convolution(rn2_8.c2.W[32 x 288], rn2_8.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.y = BatchNormalization(rn2_8.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c2.c.sc[32 x 1], rn2_8.c2.c.b[32 x 1], rn2_8.c2.c.m[32 x 1], rn2_8.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.p = Plus(rn2_8.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.y = RectifiedLinear(rn2_8.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.c.c.c = Convolution(rn2_9.c1.c.W[32 x 288], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.y = BatchNormalization(rn2_9.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c1.c.c.sc[32 x 1], rn2_9.c1.c.c.b[32 x 1], rn2_9.c1.c.c.m[32 x 1], rn2_9.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.y = RectifiedLinear(rn2_9.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c2.c.c = Convolution(rn2_9.c2.W[32 x 288], rn2_9.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.y = BatchNormalization(rn2_9.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c2.c.sc[32 x 1], rn2_9.c2.c.b[32 x 1], rn2_9.c2.c.m[32 x 1], rn2_9.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.p = Plus(rn2_9.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.y = RectifiedLinear(rn2_9.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.c.c.c = Convolution(rn2_10.c1.c.W[32 x 288], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.y = BatchNormalization(rn2_10.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c1.c.c.sc[32 x 1], rn2_10.c1.c.c.b[32 x 1], rn2_10.c1.c.c.m[32 x 1], rn2_10.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.y = RectifiedLinear(rn2_10.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c2.c.c = Convolution(rn2_10.c2.W[32 x 288], rn2_10.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.y = BatchNormalization(rn2_10.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c2.c.sc[32 x 1], rn2_10.c2.c.b[32 x 1], rn2_10.c2.c.m[32 x 1], rn2_10.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.p = Plus(rn2_10.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.y = RectifiedLinear(rn2_10.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.c.c.c = Convolution(rn2_11.c1.c.W[32 x 288], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.y = BatchNormalization(rn2_11.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c1.c.c.sc[32 x 1], rn2_11.c1.c.c.b[32 x 1], rn2_11.c1.c.c.m[32 x 1], rn2_11.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.y = RectifiedLinear(rn2_11.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c2.c.c = Convolution(rn2_11.c2.W[32 x 288], rn2_11.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.y = BatchNormalization(rn2_11.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c2.c.sc[32 x 1], rn2_11.c2.c.b[32 x 1], rn2_11.c2.c.m[32 x 1], rn2_11.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.p = Plus(rn2_11.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.y = RectifiedLinear(rn2_11.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.c.c.c = Convolution(rn2_12.c1.c.W[32 x 288], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.y = BatchNormalization(rn2_12.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c1.c.c.sc[32 x 1], rn2_12.c1.c.c.b[32 x 1], rn2_12.c1.c.c.m[32 x 1], rn2_12.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.y = RectifiedLinear(rn2_12.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c2.c.c = Convolution(rn2_12.c2.W[32 x 288], rn2_12.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.y = BatchNormalization(rn2_12.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c2.c.sc[32 x 1], rn2_12.c2.c.b[32 x 1], rn2_12.c2.c.m[32 x 1], rn2_12.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.p = Plus(rn2_12.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.y = RectifiedLinear(rn2_12.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.c.c.c = Convolution(rn2_13.c1.c.W[32 x 288], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.y = BatchNormalization(rn2_13.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c1.c.c.sc[32 x 1], rn2_13.c1.c.c.b[32 x 1], rn2_13.c1.c.c.m[32 x 1], rn2_13.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.y = RectifiedLinear(rn2_13.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c2.c.c = Convolution(rn2_13.c2.W[32 x 288], rn2_13.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.y = BatchNormalization(rn2_13.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c2.c.sc[32 x 1], rn2_13.c2.c.b[32 x 1], rn2_13.c2.c.m[32 x 1], rn2_13.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.p = Plus(rn2_13.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.y = RectifiedLinear(rn2_13.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.c.c.c = Convolution(rn2_14.c1.c.W[32 x 288], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.y = BatchNormalization(rn2_14.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c1.c.c.sc[32 x 1], rn2_14.c1.c.c.b[32 x 1], rn2_14.c1.c.c.m[32 x 1], rn2_14.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.y = RectifiedLinear(rn2_14.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c2.c.c = Convolution(rn2_14.c2.W[32 x 288], rn2_14.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.y = BatchNormalization(rn2_14.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c2.c.sc[32 x 1], rn2_14.c2.c.b[32 x 1], rn2_14.c2.c.m[32 x 1], rn2_14.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.p = Plus(rn2_14.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.y = RectifiedLinear(rn2_14.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.c.c.c = Convolution(rn2_15.c1.c.W[32 x 288], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.y = BatchNormalization(rn2_15.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c1.c.c.sc[32 x 1], rn2_15.c1.c.c.b[32 x 1], rn2_15.c1.c.c.m[32 x 1], rn2_15.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.y = RectifiedLinear(rn2_15.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c2.c.c = Convolution(rn2_15.c2.W[32 x 288], rn2_15.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.y = BatchNormalization(rn2_15.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c2.c.sc[32 x 1], rn2_15.c2.c.b[32 x 1], rn2_15.c2.c.m[32 x 1], rn2_15.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.p = Plus(rn2_15.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.y = RectifiedLinear(rn2_15.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.c.c.c = Convolution(rn2_16.c1.c.W[32 x 288], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.y = BatchNormalization(rn2_16.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c1.c.c.sc[32 x 1], rn2_16.c1.c.c.b[32 x 1], rn2_16.c1.c.c.m[32 x 1], rn2_16.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.y = RectifiedLinear(rn2_16.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c2.c.c = Convolution(rn2_16.c2.W[32 x 288], rn2_16.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.y = BatchNormalization(rn2_16.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c2.c.sc[32 x 1], rn2_16.c2.c.b[32 x 1], rn2_16.c2.c.m[32 x 1], rn2_16.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.p = Plus(rn2_16.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.y = RectifiedLinear(rn2_16.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.c.c.c = Convolution(rn2_17.c1.c.W[32 x 288], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.y = BatchNormalization(rn2_17.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c1.c.c.sc[32 x 1], rn2_17.c1.c.c.b[32 x 1], rn2_17.c1.c.c.m[32 x 1], rn2_17.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.y = RectifiedLinear(rn2_17.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c2.c.c = Convolution(rn2_17.c2.W[32 x 288], rn2_17.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.y = BatchNormalization(rn2_17.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c2.c.sc[32 x 1], rn2_17.c2.c.b[32 x 1], rn2_17.c2.c.m[32 x 1], rn2_17.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.p = Plus(rn2_17.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.y = RectifiedLinear(rn2_17.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.c.c.c = Convolution(rn2_18.c1.c.W[32 x 288], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.y = BatchNormalization(rn2_18.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c1.c.c.sc[32 x 1], rn2_18.c1.c.c.b[32 x 1], rn2_18.c1.c.c.m[32 x 1], rn2_18.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.y = RectifiedLinear(rn2_18.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c2.c.c = Convolution(rn2_18.c2.W[32 x 288], rn2_18.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.y = BatchNormalization(rn2_18.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c2.c.sc[32 x 1], rn2_18.c2.c.b[32 x 1], rn2_18.c2.c.m[32 x 1], rn2_18.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.p = Plus(rn2_18.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.y = RectifiedLinear(rn2_18.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn3_1.c1.c.c.c = Convolution(rn3_1.c1.c.W[64 x 288], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.y = BatchNormalization(rn3_1.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c1.c.c.sc[64 x 1], rn3_1.c1.c.c.b[64 x 1], rn3_1.c1.c.c.m[64 x 1], rn3_1.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c2.c.c = Convolution(rn3_1.c2.W[64 x 576], rn3_1.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.y = BatchNormalization(rn3_1.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c2.c.sc[64 x 1], rn3_1.c2.c.b[64 x 1], rn3_1.c2.c.m[64 x 1], rn3_1.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1_Wproj = LearnableParameter -> [64 x 32] +Validating --> rn3_1.c_proj.c = Convolution(rn3_1_Wproj[64 x 32], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c_proj.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.y = BatchNormalization(rn3_1.c_proj.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.sc[64 x 1], rn3_1.c_proj.b[64 x 1], rn3_1.c_proj.m[64 x 1], rn3_1.c_proj.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.p = Plus(rn3_1.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.c.c.c = Convolution(rn3_2.c1.c.W[64 x 576], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.y = BatchNormalization(rn3_2.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c1.c.c.sc[64 x 1], rn3_2.c1.c.c.b[64 x 1], rn3_2.c1.c.c.m[64 x 1], rn3_2.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c2.c.c = Convolution(rn3_2.c2.W[64 x 576], rn3_2.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.y = BatchNormalization(rn3_2.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c2.c.sc[64 x 1], rn3_2.c2.c.b[64 x 1], rn3_2.c2.c.m[64 x 1], rn3_2.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.p = Plus(rn3_2.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.c.c.c = Convolution(rn3_3.c1.c.W[64 x 576], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.y = BatchNormalization(rn3_3.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c1.c.c.sc[64 x 1], rn3_3.c1.c.c.b[64 x 1], rn3_3.c1.c.c.m[64 x 1], rn3_3.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c2.c.c = Convolution(rn3_3.c2.W[64 x 576], rn3_3.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.y = BatchNormalization(rn3_3.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c2.c.sc[64 x 1], rn3_3.c2.c.b[64 x 1], rn3_3.c2.c.m[64 x 1], rn3_3.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.p = Plus(rn3_3.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.c.c.c = Convolution(rn3_4.c1.c.W[64 x 576], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.y = BatchNormalization(rn3_4.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c1.c.c.sc[64 x 1], rn3_4.c1.c.c.b[64 x 1], rn3_4.c1.c.c.m[64 x 1], rn3_4.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.y = RectifiedLinear(rn3_4.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c2.c.c = Convolution(rn3_4.c2.W[64 x 576], rn3_4.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.y = BatchNormalization(rn3_4.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c2.c.sc[64 x 1], rn3_4.c2.c.b[64 x 1], rn3_4.c2.c.m[64 x 1], rn3_4.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.p = Plus(rn3_4.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.y = RectifiedLinear(rn3_4.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.c.c.c = Convolution(rn3_5.c1.c.W[64 x 576], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.y = BatchNormalization(rn3_5.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c1.c.c.sc[64 x 1], rn3_5.c1.c.c.b[64 x 1], rn3_5.c1.c.c.m[64 x 1], rn3_5.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.y = RectifiedLinear(rn3_5.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c2.c.c = Convolution(rn3_5.c2.W[64 x 576], rn3_5.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.y = BatchNormalization(rn3_5.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c2.c.sc[64 x 1], rn3_5.c2.c.b[64 x 1], rn3_5.c2.c.m[64 x 1], rn3_5.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.p = Plus(rn3_5.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.y = RectifiedLinear(rn3_5.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.c.c.c = Convolution(rn3_6.c1.c.W[64 x 576], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.y = BatchNormalization(rn3_6.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c1.c.c.sc[64 x 1], rn3_6.c1.c.c.b[64 x 1], rn3_6.c1.c.c.m[64 x 1], rn3_6.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.y = RectifiedLinear(rn3_6.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c2.c.c = Convolution(rn3_6.c2.W[64 x 576], rn3_6.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.y = BatchNormalization(rn3_6.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c2.c.sc[64 x 1], rn3_6.c2.c.b[64 x 1], rn3_6.c2.c.m[64 x 1], rn3_6.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.p = Plus(rn3_6.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.y = RectifiedLinear(rn3_6.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.c.c.c = Convolution(rn3_7.c1.c.W[64 x 576], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.y = BatchNormalization(rn3_7.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c1.c.c.sc[64 x 1], rn3_7.c1.c.c.b[64 x 1], rn3_7.c1.c.c.m[64 x 1], rn3_7.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.y = RectifiedLinear(rn3_7.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c2.c.c = Convolution(rn3_7.c2.W[64 x 576], rn3_7.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.y = BatchNormalization(rn3_7.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c2.c.sc[64 x 1], rn3_7.c2.c.b[64 x 1], rn3_7.c2.c.m[64 x 1], rn3_7.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.p = Plus(rn3_7.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.y = RectifiedLinear(rn3_7.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.c.c.c = Convolution(rn3_8.c1.c.W[64 x 576], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.y = BatchNormalization(rn3_8.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c1.c.c.sc[64 x 1], rn3_8.c1.c.c.b[64 x 1], rn3_8.c1.c.c.m[64 x 1], rn3_8.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.y = RectifiedLinear(rn3_8.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c2.c.c = Convolution(rn3_8.c2.W[64 x 576], rn3_8.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.y = BatchNormalization(rn3_8.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c2.c.sc[64 x 1], rn3_8.c2.c.b[64 x 1], rn3_8.c2.c.m[64 x 1], rn3_8.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.p = Plus(rn3_8.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.y = RectifiedLinear(rn3_8.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.c.c.c = Convolution(rn3_9.c1.c.W[64 x 576], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.y = BatchNormalization(rn3_9.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c1.c.c.sc[64 x 1], rn3_9.c1.c.c.b[64 x 1], rn3_9.c1.c.c.m[64 x 1], rn3_9.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.y = RectifiedLinear(rn3_9.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c2.c.c = Convolution(rn3_9.c2.W[64 x 576], rn3_9.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.y = BatchNormalization(rn3_9.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c2.c.sc[64 x 1], rn3_9.c2.c.b[64 x 1], rn3_9.c2.c.m[64 x 1], rn3_9.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.p = Plus(rn3_9.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.y = RectifiedLinear(rn3_9.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.c.c.c = Convolution(rn3_10.c1.c.W[64 x 576], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.y = BatchNormalization(rn3_10.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c1.c.c.sc[64 x 1], rn3_10.c1.c.c.b[64 x 1], rn3_10.c1.c.c.m[64 x 1], rn3_10.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.y = RectifiedLinear(rn3_10.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c2.c.c = Convolution(rn3_10.c2.W[64 x 576], rn3_10.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.y = BatchNormalization(rn3_10.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c2.c.sc[64 x 1], rn3_10.c2.c.b[64 x 1], rn3_10.c2.c.m[64 x 1], rn3_10.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.p = Plus(rn3_10.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.y = RectifiedLinear(rn3_10.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.c.c.c = Convolution(rn3_11.c1.c.W[64 x 576], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.y = BatchNormalization(rn3_11.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c1.c.c.sc[64 x 1], rn3_11.c1.c.c.b[64 x 1], rn3_11.c1.c.c.m[64 x 1], rn3_11.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.y = RectifiedLinear(rn3_11.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c2.c.c = Convolution(rn3_11.c2.W[64 x 576], rn3_11.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.y = BatchNormalization(rn3_11.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c2.c.sc[64 x 1], rn3_11.c2.c.b[64 x 1], rn3_11.c2.c.m[64 x 1], rn3_11.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.p = Plus(rn3_11.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.y = RectifiedLinear(rn3_11.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.c.c.c = Convolution(rn3_12.c1.c.W[64 x 576], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.y = BatchNormalization(rn3_12.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c1.c.c.sc[64 x 1], rn3_12.c1.c.c.b[64 x 1], rn3_12.c1.c.c.m[64 x 1], rn3_12.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.y = RectifiedLinear(rn3_12.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c2.c.c = Convolution(rn3_12.c2.W[64 x 576], rn3_12.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.y = BatchNormalization(rn3_12.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c2.c.sc[64 x 1], rn3_12.c2.c.b[64 x 1], rn3_12.c2.c.m[64 x 1], rn3_12.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.p = Plus(rn3_12.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.y = RectifiedLinear(rn3_12.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.c.c.c = Convolution(rn3_13.c1.c.W[64 x 576], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.y = BatchNormalization(rn3_13.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c1.c.c.sc[64 x 1], rn3_13.c1.c.c.b[64 x 1], rn3_13.c1.c.c.m[64 x 1], rn3_13.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.y = RectifiedLinear(rn3_13.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c2.c.c = Convolution(rn3_13.c2.W[64 x 576], rn3_13.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.y = BatchNormalization(rn3_13.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c2.c.sc[64 x 1], rn3_13.c2.c.b[64 x 1], rn3_13.c2.c.m[64 x 1], rn3_13.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.p = Plus(rn3_13.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.y = RectifiedLinear(rn3_13.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.c.c.c = Convolution(rn3_14.c1.c.W[64 x 576], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.y = BatchNormalization(rn3_14.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c1.c.c.sc[64 x 1], rn3_14.c1.c.c.b[64 x 1], rn3_14.c1.c.c.m[64 x 1], rn3_14.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.y = RectifiedLinear(rn3_14.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c2.c.c = Convolution(rn3_14.c2.W[64 x 576], rn3_14.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.y = BatchNormalization(rn3_14.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c2.c.sc[64 x 1], rn3_14.c2.c.b[64 x 1], rn3_14.c2.c.m[64 x 1], rn3_14.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.p = Plus(rn3_14.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.y = RectifiedLinear(rn3_14.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.c.c.c = Convolution(rn3_15.c1.c.W[64 x 576], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.y = BatchNormalization(rn3_15.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c1.c.c.sc[64 x 1], rn3_15.c1.c.c.b[64 x 1], rn3_15.c1.c.c.m[64 x 1], rn3_15.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.y = RectifiedLinear(rn3_15.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c2.c.c = Convolution(rn3_15.c2.W[64 x 576], rn3_15.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.y = BatchNormalization(rn3_15.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c2.c.sc[64 x 1], rn3_15.c2.c.b[64 x 1], rn3_15.c2.c.m[64 x 1], rn3_15.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.p = Plus(rn3_15.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.y = RectifiedLinear(rn3_15.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.c.c.c = Convolution(rn3_16.c1.c.W[64 x 576], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.y = BatchNormalization(rn3_16.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c1.c.c.sc[64 x 1], rn3_16.c1.c.c.b[64 x 1], rn3_16.c1.c.c.m[64 x 1], rn3_16.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.y = RectifiedLinear(rn3_16.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c2.c.c = Convolution(rn3_16.c2.W[64 x 576], rn3_16.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.y = BatchNormalization(rn3_16.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c2.c.sc[64 x 1], rn3_16.c2.c.b[64 x 1], rn3_16.c2.c.m[64 x 1], rn3_16.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.p = Plus(rn3_16.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.y = RectifiedLinear(rn3_16.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.c.c.c = Convolution(rn3_17.c1.c.W[64 x 576], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.y = BatchNormalization(rn3_17.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c1.c.c.sc[64 x 1], rn3_17.c1.c.c.b[64 x 1], rn3_17.c1.c.c.m[64 x 1], rn3_17.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.y = RectifiedLinear(rn3_17.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c2.c.c = Convolution(rn3_17.c2.W[64 x 576], rn3_17.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.y = BatchNormalization(rn3_17.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c2.c.sc[64 x 1], rn3_17.c2.c.b[64 x 1], rn3_17.c2.c.m[64 x 1], rn3_17.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.p = Plus(rn3_17.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.y = RectifiedLinear(rn3_17.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.c.c.c = Convolution(rn3_18.c1.c.W[64 x 576], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.y = BatchNormalization(rn3_18.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c1.c.c.sc[64 x 1], rn3_18.c1.c.c.b[64 x 1], rn3_18.c1.c.c.m[64 x 1], rn3_18.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.y = RectifiedLinear(rn3_18.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c2.c.c = Convolution(rn3_18.c2.W[64 x 576], rn3_18.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.y = BatchNormalization(rn3_18.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c2.c.sc[64 x 1], rn3_18.c2.c.b[64 x 1], rn3_18.c2.c.m[64 x 1], rn3_18.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.p = Plus(rn3_18.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.y = RectifiedLinear(rn3_18.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> pool = AveragePooling(rn3_18.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [1 x 1 x 64 x *] +Validating --> OutputNodes.t = Times(OutputNodes.W[10 x 64], pool[1 x 1 x 64 x *]) -> [10 x *] +Validating --> OutputNodes.b = LearnableParameter -> [10] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10 x *], OutputNodes.b[10]) -> [10 x *] +Validating --> CE = CrossEntropyWithSoftmax(labels[10 x *], OutputNodes.z[10 x *]) -> [1] +Validating --> Err = ErrorPrediction(labels[10 x *], OutputNodes.z[10 x *]) -> [1] + +Validating network. 390 nodes to process in pass 2. + +Validating --> labels = InputValue -> [10 x *] +Validating --> OutputNodes.W = LearnableParameter -> [10 x 64] +Validating --> rn3_18.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_18.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_17.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_17.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_16.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_16.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_15.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_15.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_14.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_14.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_13.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_13.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_12.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_12.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_11.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_11.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_10.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_10.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_9.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_9.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_8.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_8.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_7.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_7.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_6.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_6.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_5.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_5.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_4.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_4.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 x 288] +Validating --> rn2_18.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_18.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_17.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_17.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_16.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_16.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_15.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_15.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_14.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_14.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_13.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_13.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_12.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_12.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_11.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_11.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_10.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_10.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_9.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_9.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_8.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_8.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_7.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_7.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_6.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_6.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_5.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_5.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_4.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_4.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 x 144] +Validating --> rn1_18.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_18.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_17.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_17.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_16.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_16.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_15.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_15.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_14.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_14.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_13.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_13.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_12.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_12.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_11.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_11.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_10.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_10.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_9.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_9.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_8.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_8.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_7.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_7.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_6.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_6.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_5.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_5.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_4.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_4.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> conv1.c.W = LearnableParameter -> [16 x 27] +Validating --> features = InputValue -> [32 x 32 x 3 x *] +Validating --> conv1.c.c.c = Convolution(conv1.c.W[16 x 27], features[32 x 32 x 3 x * {W=32, H=3, C=32}]) -> [32 x 32 x 16 x *] +Validating --> conv1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.y = BatchNormalization(conv1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.c.c.sc[16 x 1], conv1.c.c.b[16 x 1], conv1.c.c.m[16 x 1], conv1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> conv1.y = RectifiedLinear(conv1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.c.c.c = Convolution(rn1_1.c1.c.W[16 x 144], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.y = BatchNormalization(rn1_1.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c1.c.c.sc[16 x 1], rn1_1.c1.c.c.b[16 x 1], rn1_1.c1.c.c.m[16 x 1], rn1_1.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c2.c.c = Convolution(rn1_1.c2.W[16 x 144], rn1_1.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.y = BatchNormalization(rn1_1.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c2.c.sc[16 x 1], rn1_1.c2.c.b[16 x 1], rn1_1.c2.c.m[16 x 1], rn1_1.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.p = Plus(rn1_1.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.c.c.c = Convolution(rn1_2.c1.c.W[16 x 144], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.y = BatchNormalization(rn1_2.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c1.c.c.sc[16 x 1], rn1_2.c1.c.c.b[16 x 1], rn1_2.c1.c.c.m[16 x 1], rn1_2.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c2.c.c = Convolution(rn1_2.c2.W[16 x 144], rn1_2.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.y = BatchNormalization(rn1_2.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c2.c.sc[16 x 1], rn1_2.c2.c.b[16 x 1], rn1_2.c2.c.m[16 x 1], rn1_2.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.p = Plus(rn1_2.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.c.c.c = Convolution(rn1_3.c1.c.W[16 x 144], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.y = BatchNormalization(rn1_3.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c1.c.c.sc[16 x 1], rn1_3.c1.c.c.b[16 x 1], rn1_3.c1.c.c.m[16 x 1], rn1_3.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c2.c.c = Convolution(rn1_3.c2.W[16 x 144], rn1_3.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.y = BatchNormalization(rn1_3.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c2.c.sc[16 x 1], rn1_3.c2.c.b[16 x 1], rn1_3.c2.c.m[16 x 1], rn1_3.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.p = Plus(rn1_3.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.c.c.c = Convolution(rn1_4.c1.c.W[16 x 144], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.y = BatchNormalization(rn1_4.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c1.c.c.sc[16 x 1], rn1_4.c1.c.c.b[16 x 1], rn1_4.c1.c.c.m[16 x 1], rn1_4.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.y = RectifiedLinear(rn1_4.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c2.c.c = Convolution(rn1_4.c2.W[16 x 144], rn1_4.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.y = BatchNormalization(rn1_4.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c2.c.sc[16 x 1], rn1_4.c2.c.b[16 x 1], rn1_4.c2.c.m[16 x 1], rn1_4.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.p = Plus(rn1_4.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.y = RectifiedLinear(rn1_4.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.c.c.c = Convolution(rn1_5.c1.c.W[16 x 144], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.y = BatchNormalization(rn1_5.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c1.c.c.sc[16 x 1], rn1_5.c1.c.c.b[16 x 1], rn1_5.c1.c.c.m[16 x 1], rn1_5.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.y = RectifiedLinear(rn1_5.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c2.c.c = Convolution(rn1_5.c2.W[16 x 144], rn1_5.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.y = BatchNormalization(rn1_5.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c2.c.sc[16 x 1], rn1_5.c2.c.b[16 x 1], rn1_5.c2.c.m[16 x 1], rn1_5.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.p = Plus(rn1_5.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.y = RectifiedLinear(rn1_5.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.c.c.c = Convolution(rn1_6.c1.c.W[16 x 144], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.y = BatchNormalization(rn1_6.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c1.c.c.sc[16 x 1], rn1_6.c1.c.c.b[16 x 1], rn1_6.c1.c.c.m[16 x 1], rn1_6.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.y = RectifiedLinear(rn1_6.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c2.c.c = Convolution(rn1_6.c2.W[16 x 144], rn1_6.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.y = BatchNormalization(rn1_6.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c2.c.sc[16 x 1], rn1_6.c2.c.b[16 x 1], rn1_6.c2.c.m[16 x 1], rn1_6.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.p = Plus(rn1_6.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.y = RectifiedLinear(rn1_6.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.c.c.c = Convolution(rn1_7.c1.c.W[16 x 144], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.y = BatchNormalization(rn1_7.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c1.c.c.sc[16 x 1], rn1_7.c1.c.c.b[16 x 1], rn1_7.c1.c.c.m[16 x 1], rn1_7.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.y = RectifiedLinear(rn1_7.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c2.c.c = Convolution(rn1_7.c2.W[16 x 144], rn1_7.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.y = BatchNormalization(rn1_7.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c2.c.sc[16 x 1], rn1_7.c2.c.b[16 x 1], rn1_7.c2.c.m[16 x 1], rn1_7.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.p = Plus(rn1_7.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.y = RectifiedLinear(rn1_7.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.c.c.c = Convolution(rn1_8.c1.c.W[16 x 144], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.y = BatchNormalization(rn1_8.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c1.c.c.sc[16 x 1], rn1_8.c1.c.c.b[16 x 1], rn1_8.c1.c.c.m[16 x 1], rn1_8.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.y = RectifiedLinear(rn1_8.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c2.c.c = Convolution(rn1_8.c2.W[16 x 144], rn1_8.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.y = BatchNormalization(rn1_8.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c2.c.sc[16 x 1], rn1_8.c2.c.b[16 x 1], rn1_8.c2.c.m[16 x 1], rn1_8.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.p = Plus(rn1_8.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.y = RectifiedLinear(rn1_8.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.c.c.c = Convolution(rn1_9.c1.c.W[16 x 144], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.y = BatchNormalization(rn1_9.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c1.c.c.sc[16 x 1], rn1_9.c1.c.c.b[16 x 1], rn1_9.c1.c.c.m[16 x 1], rn1_9.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.y = RectifiedLinear(rn1_9.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c2.c.c = Convolution(rn1_9.c2.W[16 x 144], rn1_9.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.y = BatchNormalization(rn1_9.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c2.c.sc[16 x 1], rn1_9.c2.c.b[16 x 1], rn1_9.c2.c.m[16 x 1], rn1_9.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.p = Plus(rn1_9.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.y = RectifiedLinear(rn1_9.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.c.c.c = Convolution(rn1_10.c1.c.W[16 x 144], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.y = BatchNormalization(rn1_10.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c1.c.c.sc[16 x 1], rn1_10.c1.c.c.b[16 x 1], rn1_10.c1.c.c.m[16 x 1], rn1_10.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.y = RectifiedLinear(rn1_10.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c2.c.c = Convolution(rn1_10.c2.W[16 x 144], rn1_10.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.y = BatchNormalization(rn1_10.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c2.c.sc[16 x 1], rn1_10.c2.c.b[16 x 1], rn1_10.c2.c.m[16 x 1], rn1_10.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.p = Plus(rn1_10.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.y = RectifiedLinear(rn1_10.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.c.c.c = Convolution(rn1_11.c1.c.W[16 x 144], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.y = BatchNormalization(rn1_11.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c1.c.c.sc[16 x 1], rn1_11.c1.c.c.b[16 x 1], rn1_11.c1.c.c.m[16 x 1], rn1_11.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.y = RectifiedLinear(rn1_11.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c2.c.c = Convolution(rn1_11.c2.W[16 x 144], rn1_11.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.y = BatchNormalization(rn1_11.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c2.c.sc[16 x 1], rn1_11.c2.c.b[16 x 1], rn1_11.c2.c.m[16 x 1], rn1_11.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.p = Plus(rn1_11.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.y = RectifiedLinear(rn1_11.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.c.c.c = Convolution(rn1_12.c1.c.W[16 x 144], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.y = BatchNormalization(rn1_12.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c1.c.c.sc[16 x 1], rn1_12.c1.c.c.b[16 x 1], rn1_12.c1.c.c.m[16 x 1], rn1_12.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.y = RectifiedLinear(rn1_12.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c2.c.c = Convolution(rn1_12.c2.W[16 x 144], rn1_12.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.y = BatchNormalization(rn1_12.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c2.c.sc[16 x 1], rn1_12.c2.c.b[16 x 1], rn1_12.c2.c.m[16 x 1], rn1_12.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.p = Plus(rn1_12.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.y = RectifiedLinear(rn1_12.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.c.c.c = Convolution(rn1_13.c1.c.W[16 x 144], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.y = BatchNormalization(rn1_13.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c1.c.c.sc[16 x 1], rn1_13.c1.c.c.b[16 x 1], rn1_13.c1.c.c.m[16 x 1], rn1_13.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.y = RectifiedLinear(rn1_13.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c2.c.c = Convolution(rn1_13.c2.W[16 x 144], rn1_13.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.y = BatchNormalization(rn1_13.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c2.c.sc[16 x 1], rn1_13.c2.c.b[16 x 1], rn1_13.c2.c.m[16 x 1], rn1_13.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.p = Plus(rn1_13.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.y = RectifiedLinear(rn1_13.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.c.c.c = Convolution(rn1_14.c1.c.W[16 x 144], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.y = BatchNormalization(rn1_14.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c1.c.c.sc[16 x 1], rn1_14.c1.c.c.b[16 x 1], rn1_14.c1.c.c.m[16 x 1], rn1_14.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.y = RectifiedLinear(rn1_14.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c2.c.c = Convolution(rn1_14.c2.W[16 x 144], rn1_14.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.y = BatchNormalization(rn1_14.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c2.c.sc[16 x 1], rn1_14.c2.c.b[16 x 1], rn1_14.c2.c.m[16 x 1], rn1_14.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.p = Plus(rn1_14.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.y = RectifiedLinear(rn1_14.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.c.c.c = Convolution(rn1_15.c1.c.W[16 x 144], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.y = BatchNormalization(rn1_15.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c1.c.c.sc[16 x 1], rn1_15.c1.c.c.b[16 x 1], rn1_15.c1.c.c.m[16 x 1], rn1_15.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.y = RectifiedLinear(rn1_15.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c2.c.c = Convolution(rn1_15.c2.W[16 x 144], rn1_15.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.y = BatchNormalization(rn1_15.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c2.c.sc[16 x 1], rn1_15.c2.c.b[16 x 1], rn1_15.c2.c.m[16 x 1], rn1_15.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.p = Plus(rn1_15.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.y = RectifiedLinear(rn1_15.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.c.c.c = Convolution(rn1_16.c1.c.W[16 x 144], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.y = BatchNormalization(rn1_16.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c1.c.c.sc[16 x 1], rn1_16.c1.c.c.b[16 x 1], rn1_16.c1.c.c.m[16 x 1], rn1_16.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.y = RectifiedLinear(rn1_16.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c2.c.c = Convolution(rn1_16.c2.W[16 x 144], rn1_16.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.y = BatchNormalization(rn1_16.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c2.c.sc[16 x 1], rn1_16.c2.c.b[16 x 1], rn1_16.c2.c.m[16 x 1], rn1_16.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.p = Plus(rn1_16.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.y = RectifiedLinear(rn1_16.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.c.c.c = Convolution(rn1_17.c1.c.W[16 x 144], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.y = BatchNormalization(rn1_17.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c1.c.c.sc[16 x 1], rn1_17.c1.c.c.b[16 x 1], rn1_17.c1.c.c.m[16 x 1], rn1_17.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.y = RectifiedLinear(rn1_17.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c2.c.c = Convolution(rn1_17.c2.W[16 x 144], rn1_17.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.y = BatchNormalization(rn1_17.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c2.c.sc[16 x 1], rn1_17.c2.c.b[16 x 1], rn1_17.c2.c.m[16 x 1], rn1_17.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.p = Plus(rn1_17.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.y = RectifiedLinear(rn1_17.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.c.c.c = Convolution(rn1_18.c1.c.W[16 x 144], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.y = BatchNormalization(rn1_18.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c1.c.c.sc[16 x 1], rn1_18.c1.c.c.b[16 x 1], rn1_18.c1.c.c.m[16 x 1], rn1_18.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.y = RectifiedLinear(rn1_18.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c2.c.c = Convolution(rn1_18.c2.W[16 x 144], rn1_18.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.y = BatchNormalization(rn1_18.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c2.c.sc[16 x 1], rn1_18.c2.c.b[16 x 1], rn1_18.c2.c.m[16 x 1], rn1_18.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.p = Plus(rn1_18.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.y = RectifiedLinear(rn1_18.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn2_1.c1.c.c.c = Convolution(rn2_1.c1.c.W[32 x 144], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.y = BatchNormalization(rn2_1.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c1.c.c.sc[32 x 1], rn2_1.c1.c.c.b[32 x 1], rn2_1.c1.c.c.m[32 x 1], rn2_1.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c2.c.c = Convolution(rn2_1.c2.W[32 x 288], rn2_1.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.y = BatchNormalization(rn2_1.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c2.c.sc[32 x 1], rn2_1.c2.c.b[32 x 1], rn2_1.c2.c.m[32 x 1], rn2_1.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1_Wproj = LearnableParameter -> [32 x 16] +Validating --> rn2_1.c_proj.c = Convolution(rn2_1_Wproj[32 x 16], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c_proj.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.y = BatchNormalization(rn2_1.c_proj.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.sc[32 x 1], rn2_1.c_proj.b[32 x 1], rn2_1.c_proj.m[32 x 1], rn2_1.c_proj.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.p = Plus(rn2_1.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.c.c.c = Convolution(rn2_2.c1.c.W[32 x 288], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.y = BatchNormalization(rn2_2.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c1.c.c.sc[32 x 1], rn2_2.c1.c.c.b[32 x 1], rn2_2.c1.c.c.m[32 x 1], rn2_2.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c2.c.c = Convolution(rn2_2.c2.W[32 x 288], rn2_2.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.y = BatchNormalization(rn2_2.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c2.c.sc[32 x 1], rn2_2.c2.c.b[32 x 1], rn2_2.c2.c.m[32 x 1], rn2_2.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.p = Plus(rn2_2.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.c.c.c = Convolution(rn2_3.c1.c.W[32 x 288], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.y = BatchNormalization(rn2_3.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c1.c.c.sc[32 x 1], rn2_3.c1.c.c.b[32 x 1], rn2_3.c1.c.c.m[32 x 1], rn2_3.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c2.c.c = Convolution(rn2_3.c2.W[32 x 288], rn2_3.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.y = BatchNormalization(rn2_3.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c2.c.sc[32 x 1], rn2_3.c2.c.b[32 x 1], rn2_3.c2.c.m[32 x 1], rn2_3.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.p = Plus(rn2_3.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.c.c.c = Convolution(rn2_4.c1.c.W[32 x 288], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.y = BatchNormalization(rn2_4.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c1.c.c.sc[32 x 1], rn2_4.c1.c.c.b[32 x 1], rn2_4.c1.c.c.m[32 x 1], rn2_4.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.y = RectifiedLinear(rn2_4.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c2.c.c = Convolution(rn2_4.c2.W[32 x 288], rn2_4.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.y = BatchNormalization(rn2_4.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c2.c.sc[32 x 1], rn2_4.c2.c.b[32 x 1], rn2_4.c2.c.m[32 x 1], rn2_4.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.p = Plus(rn2_4.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.y = RectifiedLinear(rn2_4.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.c.c.c = Convolution(rn2_5.c1.c.W[32 x 288], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.y = BatchNormalization(rn2_5.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c1.c.c.sc[32 x 1], rn2_5.c1.c.c.b[32 x 1], rn2_5.c1.c.c.m[32 x 1], rn2_5.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.y = RectifiedLinear(rn2_5.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c2.c.c = Convolution(rn2_5.c2.W[32 x 288], rn2_5.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.y = BatchNormalization(rn2_5.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c2.c.sc[32 x 1], rn2_5.c2.c.b[32 x 1], rn2_5.c2.c.m[32 x 1], rn2_5.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.p = Plus(rn2_5.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.y = RectifiedLinear(rn2_5.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.c.c.c = Convolution(rn2_6.c1.c.W[32 x 288], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.y = BatchNormalization(rn2_6.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c1.c.c.sc[32 x 1], rn2_6.c1.c.c.b[32 x 1], rn2_6.c1.c.c.m[32 x 1], rn2_6.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.y = RectifiedLinear(rn2_6.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c2.c.c = Convolution(rn2_6.c2.W[32 x 288], rn2_6.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.y = BatchNormalization(rn2_6.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c2.c.sc[32 x 1], rn2_6.c2.c.b[32 x 1], rn2_6.c2.c.m[32 x 1], rn2_6.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.p = Plus(rn2_6.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.y = RectifiedLinear(rn2_6.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.c.c.c = Convolution(rn2_7.c1.c.W[32 x 288], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.y = BatchNormalization(rn2_7.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c1.c.c.sc[32 x 1], rn2_7.c1.c.c.b[32 x 1], rn2_7.c1.c.c.m[32 x 1], rn2_7.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.y = RectifiedLinear(rn2_7.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c2.c.c = Convolution(rn2_7.c2.W[32 x 288], rn2_7.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.y = BatchNormalization(rn2_7.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c2.c.sc[32 x 1], rn2_7.c2.c.b[32 x 1], rn2_7.c2.c.m[32 x 1], rn2_7.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.p = Plus(rn2_7.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.y = RectifiedLinear(rn2_7.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.c.c.c = Convolution(rn2_8.c1.c.W[32 x 288], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.y = BatchNormalization(rn2_8.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c1.c.c.sc[32 x 1], rn2_8.c1.c.c.b[32 x 1], rn2_8.c1.c.c.m[32 x 1], rn2_8.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.y = RectifiedLinear(rn2_8.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c2.c.c = Convolution(rn2_8.c2.W[32 x 288], rn2_8.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.y = BatchNormalization(rn2_8.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c2.c.sc[32 x 1], rn2_8.c2.c.b[32 x 1], rn2_8.c2.c.m[32 x 1], rn2_8.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.p = Plus(rn2_8.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.y = RectifiedLinear(rn2_8.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.c.c.c = Convolution(rn2_9.c1.c.W[32 x 288], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.y = BatchNormalization(rn2_9.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c1.c.c.sc[32 x 1], rn2_9.c1.c.c.b[32 x 1], rn2_9.c1.c.c.m[32 x 1], rn2_9.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.y = RectifiedLinear(rn2_9.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c2.c.c = Convolution(rn2_9.c2.W[32 x 288], rn2_9.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.y = BatchNormalization(rn2_9.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c2.c.sc[32 x 1], rn2_9.c2.c.b[32 x 1], rn2_9.c2.c.m[32 x 1], rn2_9.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.p = Plus(rn2_9.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.y = RectifiedLinear(rn2_9.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.c.c.c = Convolution(rn2_10.c1.c.W[32 x 288], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.y = BatchNormalization(rn2_10.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c1.c.c.sc[32 x 1], rn2_10.c1.c.c.b[32 x 1], rn2_10.c1.c.c.m[32 x 1], rn2_10.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.y = RectifiedLinear(rn2_10.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c2.c.c = Convolution(rn2_10.c2.W[32 x 288], rn2_10.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.y = BatchNormalization(rn2_10.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c2.c.sc[32 x 1], rn2_10.c2.c.b[32 x 1], rn2_10.c2.c.m[32 x 1], rn2_10.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.p = Plus(rn2_10.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.y = RectifiedLinear(rn2_10.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.c.c.c = Convolution(rn2_11.c1.c.W[32 x 288], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.y = BatchNormalization(rn2_11.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c1.c.c.sc[32 x 1], rn2_11.c1.c.c.b[32 x 1], rn2_11.c1.c.c.m[32 x 1], rn2_11.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.y = RectifiedLinear(rn2_11.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c2.c.c = Convolution(rn2_11.c2.W[32 x 288], rn2_11.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.y = BatchNormalization(rn2_11.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c2.c.sc[32 x 1], rn2_11.c2.c.b[32 x 1], rn2_11.c2.c.m[32 x 1], rn2_11.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.p = Plus(rn2_11.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.y = RectifiedLinear(rn2_11.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.c.c.c = Convolution(rn2_12.c1.c.W[32 x 288], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.y = BatchNormalization(rn2_12.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c1.c.c.sc[32 x 1], rn2_12.c1.c.c.b[32 x 1], rn2_12.c1.c.c.m[32 x 1], rn2_12.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.y = RectifiedLinear(rn2_12.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c2.c.c = Convolution(rn2_12.c2.W[32 x 288], rn2_12.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.y = BatchNormalization(rn2_12.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c2.c.sc[32 x 1], rn2_12.c2.c.b[32 x 1], rn2_12.c2.c.m[32 x 1], rn2_12.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.p = Plus(rn2_12.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.y = RectifiedLinear(rn2_12.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.c.c.c = Convolution(rn2_13.c1.c.W[32 x 288], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.y = BatchNormalization(rn2_13.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c1.c.c.sc[32 x 1], rn2_13.c1.c.c.b[32 x 1], rn2_13.c1.c.c.m[32 x 1], rn2_13.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.y = RectifiedLinear(rn2_13.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c2.c.c = Convolution(rn2_13.c2.W[32 x 288], rn2_13.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.y = BatchNormalization(rn2_13.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c2.c.sc[32 x 1], rn2_13.c2.c.b[32 x 1], rn2_13.c2.c.m[32 x 1], rn2_13.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.p = Plus(rn2_13.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.y = RectifiedLinear(rn2_13.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.c.c.c = Convolution(rn2_14.c1.c.W[32 x 288], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.y = BatchNormalization(rn2_14.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c1.c.c.sc[32 x 1], rn2_14.c1.c.c.b[32 x 1], rn2_14.c1.c.c.m[32 x 1], rn2_14.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.y = RectifiedLinear(rn2_14.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c2.c.c = Convolution(rn2_14.c2.W[32 x 288], rn2_14.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.y = BatchNormalization(rn2_14.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c2.c.sc[32 x 1], rn2_14.c2.c.b[32 x 1], rn2_14.c2.c.m[32 x 1], rn2_14.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.p = Plus(rn2_14.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.y = RectifiedLinear(rn2_14.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.c.c.c = Convolution(rn2_15.c1.c.W[32 x 288], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.y = BatchNormalization(rn2_15.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c1.c.c.sc[32 x 1], rn2_15.c1.c.c.b[32 x 1], rn2_15.c1.c.c.m[32 x 1], rn2_15.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.y = RectifiedLinear(rn2_15.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c2.c.c = Convolution(rn2_15.c2.W[32 x 288], rn2_15.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.y = BatchNormalization(rn2_15.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c2.c.sc[32 x 1], rn2_15.c2.c.b[32 x 1], rn2_15.c2.c.m[32 x 1], rn2_15.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.p = Plus(rn2_15.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.y = RectifiedLinear(rn2_15.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.c.c.c = Convolution(rn2_16.c1.c.W[32 x 288], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.y = BatchNormalization(rn2_16.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c1.c.c.sc[32 x 1], rn2_16.c1.c.c.b[32 x 1], rn2_16.c1.c.c.m[32 x 1], rn2_16.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.y = RectifiedLinear(rn2_16.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c2.c.c = Convolution(rn2_16.c2.W[32 x 288], rn2_16.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.y = BatchNormalization(rn2_16.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c2.c.sc[32 x 1], rn2_16.c2.c.b[32 x 1], rn2_16.c2.c.m[32 x 1], rn2_16.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.p = Plus(rn2_16.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.y = RectifiedLinear(rn2_16.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.c.c.c = Convolution(rn2_17.c1.c.W[32 x 288], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.y = BatchNormalization(rn2_17.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c1.c.c.sc[32 x 1], rn2_17.c1.c.c.b[32 x 1], rn2_17.c1.c.c.m[32 x 1], rn2_17.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.y = RectifiedLinear(rn2_17.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c2.c.c = Convolution(rn2_17.c2.W[32 x 288], rn2_17.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.y = BatchNormalization(rn2_17.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c2.c.sc[32 x 1], rn2_17.c2.c.b[32 x 1], rn2_17.c2.c.m[32 x 1], rn2_17.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.p = Plus(rn2_17.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.y = RectifiedLinear(rn2_17.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.c.c.c = Convolution(rn2_18.c1.c.W[32 x 288], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.y = BatchNormalization(rn2_18.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c1.c.c.sc[32 x 1], rn2_18.c1.c.c.b[32 x 1], rn2_18.c1.c.c.m[32 x 1], rn2_18.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.y = RectifiedLinear(rn2_18.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c2.c.c = Convolution(rn2_18.c2.W[32 x 288], rn2_18.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.y = BatchNormalization(rn2_18.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c2.c.sc[32 x 1], rn2_18.c2.c.b[32 x 1], rn2_18.c2.c.m[32 x 1], rn2_18.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.p = Plus(rn2_18.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.y = RectifiedLinear(rn2_18.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn3_1.c1.c.c.c = Convolution(rn3_1.c1.c.W[64 x 288], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.y = BatchNormalization(rn3_1.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c1.c.c.sc[64 x 1], rn3_1.c1.c.c.b[64 x 1], rn3_1.c1.c.c.m[64 x 1], rn3_1.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c2.c.c = Convolution(rn3_1.c2.W[64 x 576], rn3_1.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.y = BatchNormalization(rn3_1.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c2.c.sc[64 x 1], rn3_1.c2.c.b[64 x 1], rn3_1.c2.c.m[64 x 1], rn3_1.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1_Wproj = LearnableParameter -> [64 x 32] +Validating --> rn3_1.c_proj.c = Convolution(rn3_1_Wproj[64 x 32], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c_proj.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.y = BatchNormalization(rn3_1.c_proj.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.sc[64 x 1], rn3_1.c_proj.b[64 x 1], rn3_1.c_proj.m[64 x 1], rn3_1.c_proj.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.p = Plus(rn3_1.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.c.c.c = Convolution(rn3_2.c1.c.W[64 x 576], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.y = BatchNormalization(rn3_2.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c1.c.c.sc[64 x 1], rn3_2.c1.c.c.b[64 x 1], rn3_2.c1.c.c.m[64 x 1], rn3_2.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c2.c.c = Convolution(rn3_2.c2.W[64 x 576], rn3_2.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.y = BatchNormalization(rn3_2.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c2.c.sc[64 x 1], rn3_2.c2.c.b[64 x 1], rn3_2.c2.c.m[64 x 1], rn3_2.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.p = Plus(rn3_2.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.c.c.c = Convolution(rn3_3.c1.c.W[64 x 576], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.y = BatchNormalization(rn3_3.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c1.c.c.sc[64 x 1], rn3_3.c1.c.c.b[64 x 1], rn3_3.c1.c.c.m[64 x 1], rn3_3.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c2.c.c = Convolution(rn3_3.c2.W[64 x 576], rn3_3.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.y = BatchNormalization(rn3_3.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c2.c.sc[64 x 1], rn3_3.c2.c.b[64 x 1], rn3_3.c2.c.m[64 x 1], rn3_3.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.p = Plus(rn3_3.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.c.c.c = Convolution(rn3_4.c1.c.W[64 x 576], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.y = BatchNormalization(rn3_4.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c1.c.c.sc[64 x 1], rn3_4.c1.c.c.b[64 x 1], rn3_4.c1.c.c.m[64 x 1], rn3_4.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.y = RectifiedLinear(rn3_4.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c2.c.c = Convolution(rn3_4.c2.W[64 x 576], rn3_4.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.y = BatchNormalization(rn3_4.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c2.c.sc[64 x 1], rn3_4.c2.c.b[64 x 1], rn3_4.c2.c.m[64 x 1], rn3_4.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.p = Plus(rn3_4.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.y = RectifiedLinear(rn3_4.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.c.c.c = Convolution(rn3_5.c1.c.W[64 x 576], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.y = BatchNormalization(rn3_5.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c1.c.c.sc[64 x 1], rn3_5.c1.c.c.b[64 x 1], rn3_5.c1.c.c.m[64 x 1], rn3_5.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.y = RectifiedLinear(rn3_5.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c2.c.c = Convolution(rn3_5.c2.W[64 x 576], rn3_5.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.y = BatchNormalization(rn3_5.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c2.c.sc[64 x 1], rn3_5.c2.c.b[64 x 1], rn3_5.c2.c.m[64 x 1], rn3_5.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.p = Plus(rn3_5.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.y = RectifiedLinear(rn3_5.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.c.c.c = Convolution(rn3_6.c1.c.W[64 x 576], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.y = BatchNormalization(rn3_6.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c1.c.c.sc[64 x 1], rn3_6.c1.c.c.b[64 x 1], rn3_6.c1.c.c.m[64 x 1], rn3_6.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.y = RectifiedLinear(rn3_6.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c2.c.c = Convolution(rn3_6.c2.W[64 x 576], rn3_6.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.y = BatchNormalization(rn3_6.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c2.c.sc[64 x 1], rn3_6.c2.c.b[64 x 1], rn3_6.c2.c.m[64 x 1], rn3_6.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.p = Plus(rn3_6.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.y = RectifiedLinear(rn3_6.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.c.c.c = Convolution(rn3_7.c1.c.W[64 x 576], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.y = BatchNormalization(rn3_7.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c1.c.c.sc[64 x 1], rn3_7.c1.c.c.b[64 x 1], rn3_7.c1.c.c.m[64 x 1], rn3_7.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.y = RectifiedLinear(rn3_7.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c2.c.c = Convolution(rn3_7.c2.W[64 x 576], rn3_7.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.y = BatchNormalization(rn3_7.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c2.c.sc[64 x 1], rn3_7.c2.c.b[64 x 1], rn3_7.c2.c.m[64 x 1], rn3_7.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.p = Plus(rn3_7.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.y = RectifiedLinear(rn3_7.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.c.c.c = Convolution(rn3_8.c1.c.W[64 x 576], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.y = BatchNormalization(rn3_8.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c1.c.c.sc[64 x 1], rn3_8.c1.c.c.b[64 x 1], rn3_8.c1.c.c.m[64 x 1], rn3_8.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.y = RectifiedLinear(rn3_8.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c2.c.c = Convolution(rn3_8.c2.W[64 x 576], rn3_8.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.y = BatchNormalization(rn3_8.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c2.c.sc[64 x 1], rn3_8.c2.c.b[64 x 1], rn3_8.c2.c.m[64 x 1], rn3_8.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.p = Plus(rn3_8.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.y = RectifiedLinear(rn3_8.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.c.c.c = Convolution(rn3_9.c1.c.W[64 x 576], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.y = BatchNormalization(rn3_9.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c1.c.c.sc[64 x 1], rn3_9.c1.c.c.b[64 x 1], rn3_9.c1.c.c.m[64 x 1], rn3_9.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.y = RectifiedLinear(rn3_9.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c2.c.c = Convolution(rn3_9.c2.W[64 x 576], rn3_9.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.y = BatchNormalization(rn3_9.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c2.c.sc[64 x 1], rn3_9.c2.c.b[64 x 1], rn3_9.c2.c.m[64 x 1], rn3_9.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.p = Plus(rn3_9.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.y = RectifiedLinear(rn3_9.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.c.c.c = Convolution(rn3_10.c1.c.W[64 x 576], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.y = BatchNormalization(rn3_10.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c1.c.c.sc[64 x 1], rn3_10.c1.c.c.b[64 x 1], rn3_10.c1.c.c.m[64 x 1], rn3_10.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.y = RectifiedLinear(rn3_10.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c2.c.c = Convolution(rn3_10.c2.W[64 x 576], rn3_10.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.y = BatchNormalization(rn3_10.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c2.c.sc[64 x 1], rn3_10.c2.c.b[64 x 1], rn3_10.c2.c.m[64 x 1], rn3_10.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.p = Plus(rn3_10.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.y = RectifiedLinear(rn3_10.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.c.c.c = Convolution(rn3_11.c1.c.W[64 x 576], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.y = BatchNormalization(rn3_11.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c1.c.c.sc[64 x 1], rn3_11.c1.c.c.b[64 x 1], rn3_11.c1.c.c.m[64 x 1], rn3_11.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.y = RectifiedLinear(rn3_11.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c2.c.c = Convolution(rn3_11.c2.W[64 x 576], rn3_11.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.y = BatchNormalization(rn3_11.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c2.c.sc[64 x 1], rn3_11.c2.c.b[64 x 1], rn3_11.c2.c.m[64 x 1], rn3_11.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.p = Plus(rn3_11.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.y = RectifiedLinear(rn3_11.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.c.c.c = Convolution(rn3_12.c1.c.W[64 x 576], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.y = BatchNormalization(rn3_12.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c1.c.c.sc[64 x 1], rn3_12.c1.c.c.b[64 x 1], rn3_12.c1.c.c.m[64 x 1], rn3_12.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.y = RectifiedLinear(rn3_12.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c2.c.c = Convolution(rn3_12.c2.W[64 x 576], rn3_12.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.y = BatchNormalization(rn3_12.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c2.c.sc[64 x 1], rn3_12.c2.c.b[64 x 1], rn3_12.c2.c.m[64 x 1], rn3_12.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.p = Plus(rn3_12.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.y = RectifiedLinear(rn3_12.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.c.c.c = Convolution(rn3_13.c1.c.W[64 x 576], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.y = BatchNormalization(rn3_13.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c1.c.c.sc[64 x 1], rn3_13.c1.c.c.b[64 x 1], rn3_13.c1.c.c.m[64 x 1], rn3_13.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.y = RectifiedLinear(rn3_13.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c2.c.c = Convolution(rn3_13.c2.W[64 x 576], rn3_13.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.y = BatchNormalization(rn3_13.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c2.c.sc[64 x 1], rn3_13.c2.c.b[64 x 1], rn3_13.c2.c.m[64 x 1], rn3_13.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.p = Plus(rn3_13.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.y = RectifiedLinear(rn3_13.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.c.c.c = Convolution(rn3_14.c1.c.W[64 x 576], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.y = BatchNormalization(rn3_14.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c1.c.c.sc[64 x 1], rn3_14.c1.c.c.b[64 x 1], rn3_14.c1.c.c.m[64 x 1], rn3_14.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.y = RectifiedLinear(rn3_14.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c2.c.c = Convolution(rn3_14.c2.W[64 x 576], rn3_14.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.y = BatchNormalization(rn3_14.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c2.c.sc[64 x 1], rn3_14.c2.c.b[64 x 1], rn3_14.c2.c.m[64 x 1], rn3_14.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.p = Plus(rn3_14.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.y = RectifiedLinear(rn3_14.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.c.c.c = Convolution(rn3_15.c1.c.W[64 x 576], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.y = BatchNormalization(rn3_15.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c1.c.c.sc[64 x 1], rn3_15.c1.c.c.b[64 x 1], rn3_15.c1.c.c.m[64 x 1], rn3_15.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.y = RectifiedLinear(rn3_15.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c2.c.c = Convolution(rn3_15.c2.W[64 x 576], rn3_15.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.y = BatchNormalization(rn3_15.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c2.c.sc[64 x 1], rn3_15.c2.c.b[64 x 1], rn3_15.c2.c.m[64 x 1], rn3_15.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.p = Plus(rn3_15.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.y = RectifiedLinear(rn3_15.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.c.c.c = Convolution(rn3_16.c1.c.W[64 x 576], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.y = BatchNormalization(rn3_16.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c1.c.c.sc[64 x 1], rn3_16.c1.c.c.b[64 x 1], rn3_16.c1.c.c.m[64 x 1], rn3_16.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.y = RectifiedLinear(rn3_16.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c2.c.c = Convolution(rn3_16.c2.W[64 x 576], rn3_16.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.y = BatchNormalization(rn3_16.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c2.c.sc[64 x 1], rn3_16.c2.c.b[64 x 1], rn3_16.c2.c.m[64 x 1], rn3_16.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.p = Plus(rn3_16.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.y = RectifiedLinear(rn3_16.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.c.c.c = Convolution(rn3_17.c1.c.W[64 x 576], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.y = BatchNormalization(rn3_17.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c1.c.c.sc[64 x 1], rn3_17.c1.c.c.b[64 x 1], rn3_17.c1.c.c.m[64 x 1], rn3_17.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.y = RectifiedLinear(rn3_17.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c2.c.c = Convolution(rn3_17.c2.W[64 x 576], rn3_17.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.y = BatchNormalization(rn3_17.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c2.c.sc[64 x 1], rn3_17.c2.c.b[64 x 1], rn3_17.c2.c.m[64 x 1], rn3_17.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.p = Plus(rn3_17.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.y = RectifiedLinear(rn3_17.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.c.c.c = Convolution(rn3_18.c1.c.W[64 x 576], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.y = BatchNormalization(rn3_18.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c1.c.c.sc[64 x 1], rn3_18.c1.c.c.b[64 x 1], rn3_18.c1.c.c.m[64 x 1], rn3_18.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.y = RectifiedLinear(rn3_18.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c2.c.c = Convolution(rn3_18.c2.W[64 x 576], rn3_18.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.y = BatchNormalization(rn3_18.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c2.c.sc[64 x 1], rn3_18.c2.c.b[64 x 1], rn3_18.c2.c.m[64 x 1], rn3_18.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.p = Plus(rn3_18.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.y = RectifiedLinear(rn3_18.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> pool = AveragePooling(rn3_18.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [1 x 1 x 64 x *] +Validating --> OutputNodes.t = Times(OutputNodes.W[10 x 64], pool[1 x 1 x 64 x *]) -> [10 x *] +Validating --> OutputNodes.b = LearnableParameter -> [10] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10 x *], OutputNodes.b[10]) -> [10 x *] +Validating --> CE = CrossEntropyWithSoftmax(labels[10 x *], OutputNodes.z[10 x *]) -> [1] +Validating --> Err = ErrorPrediction(labels[10 x *], OutputNodes.z[10 x *]) -> [1] + +Validating network, final pass. + +Validating --> labels = InputValue -> [10 x *] +Validating --> OutputNodes.W = LearnableParameter -> [10 x 64] +Validating --> rn3_18.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_18.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_17.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_17.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_16.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_16.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_15.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_15.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_14.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_14.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_13.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_13.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_12.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_12.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_11.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_11.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_10.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_10.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_9.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_9.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_8.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_8.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_7.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_7.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_6.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_6.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_5.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_5.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_4.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_4.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_3.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_3.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_2.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_2.c1.c.W = LearnableParameter -> [64 x 576] +Validating --> rn3_1.c2.W = LearnableParameter -> [64 x 576] +Validating --> rn3_1.c1.c.W = LearnableParameter -> [64 x 288] +Validating --> rn2_18.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_18.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_17.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_17.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_16.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_16.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_15.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_15.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_14.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_14.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_13.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_13.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_12.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_12.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_11.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_11.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_10.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_10.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_9.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_9.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_8.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_8.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_7.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_7.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_6.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_6.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_5.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_5.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_4.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_4.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_3.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_3.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_2.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_2.c1.c.W = LearnableParameter -> [32 x 288] +Validating --> rn2_1.c2.W = LearnableParameter -> [32 x 288] +Validating --> rn2_1.c1.c.W = LearnableParameter -> [32 x 144] +Validating --> rn1_18.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_18.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_17.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_17.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_16.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_16.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_15.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_15.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_14.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_14.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_13.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_13.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_12.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_12.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_11.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_11.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_10.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_10.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_9.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_9.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_8.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_8.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_7.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_7.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_6.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_6.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_5.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_5.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_4.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_4.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_3.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_3.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_2.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_2.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> rn1_1.c2.W = LearnableParameter -> [16 x 144] +Validating --> rn1_1.c1.c.W = LearnableParameter -> [16 x 144] +Validating --> conv1.c.W = LearnableParameter -> [16 x 27] +Validating --> features = InputValue -> [32 x 32 x 3 x *] +Validating --> conv1.c.c.c = Convolution(conv1.c.W[16 x 27], features[32 x 32 x 3 x * {W=32, H=3, C=32}]) -> [32 x 32 x 16 x *] +Validating --> conv1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> conv1.c.c.y = BatchNormalization(conv1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.c.c.sc[16 x 1], conv1.c.c.b[16 x 1], conv1.c.c.m[16 x 1], conv1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> conv1.y = RectifiedLinear(conv1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.c.c.c = Convolution(rn1_1.c1.c.W[16 x 144], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c1.c.c.y = BatchNormalization(rn1_1.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c1.c.c.sc[16 x 1], rn1_1.c1.c.c.b[16 x 1], rn1_1.c1.c.c.m[16 x 1], rn1_1.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c1.y = RectifiedLinear(rn1_1.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c2.c.c = Convolution(rn1_1.c2.W[16 x 144], rn1_1.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_1.c2.c.y = BatchNormalization(rn1_1.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.c2.c.sc[16 x 1], rn1_1.c2.c.b[16 x 1], rn1_1.c2.c.m[16 x 1], rn1_1.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.p = Plus(rn1_1.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], conv1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_1.y = RectifiedLinear(rn1_1.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.c.c.c = Convolution(rn1_2.c1.c.W[16 x 144], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c1.c.c.y = BatchNormalization(rn1_2.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c1.c.c.sc[16 x 1], rn1_2.c1.c.c.b[16 x 1], rn1_2.c1.c.c.m[16 x 1], rn1_2.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c1.y = RectifiedLinear(rn1_2.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c2.c.c = Convolution(rn1_2.c2.W[16 x 144], rn1_2.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_2.c2.c.y = BatchNormalization(rn1_2.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.c2.c.sc[16 x 1], rn1_2.c2.c.b[16 x 1], rn1_2.c2.c.m[16 x 1], rn1_2.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.p = Plus(rn1_2.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_2.y = RectifiedLinear(rn1_2.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.c.c.c = Convolution(rn1_3.c1.c.W[16 x 144], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c1.c.c.y = BatchNormalization(rn1_3.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c1.c.c.sc[16 x 1], rn1_3.c1.c.c.b[16 x 1], rn1_3.c1.c.c.m[16 x 1], rn1_3.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c1.y = RectifiedLinear(rn1_3.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c2.c.c = Convolution(rn1_3.c2.W[16 x 144], rn1_3.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_3.c2.c.y = BatchNormalization(rn1_3.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.c2.c.sc[16 x 1], rn1_3.c2.c.b[16 x 1], rn1_3.c2.c.m[16 x 1], rn1_3.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.p = Plus(rn1_3.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_2.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_3.y = RectifiedLinear(rn1_3.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.c.c.c = Convolution(rn1_4.c1.c.W[16 x 144], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c1.c.c.y = BatchNormalization(rn1_4.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c1.c.c.sc[16 x 1], rn1_4.c1.c.c.b[16 x 1], rn1_4.c1.c.c.m[16 x 1], rn1_4.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c1.y = RectifiedLinear(rn1_4.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c2.c.c = Convolution(rn1_4.c2.W[16 x 144], rn1_4.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_4.c2.c.y = BatchNormalization(rn1_4.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.c2.c.sc[16 x 1], rn1_4.c2.c.b[16 x 1], rn1_4.c2.c.m[16 x 1], rn1_4.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.p = Plus(rn1_4.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_3.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_4.y = RectifiedLinear(rn1_4.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.c.c.c = Convolution(rn1_5.c1.c.W[16 x 144], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c1.c.c.y = BatchNormalization(rn1_5.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c1.c.c.sc[16 x 1], rn1_5.c1.c.c.b[16 x 1], rn1_5.c1.c.c.m[16 x 1], rn1_5.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c1.y = RectifiedLinear(rn1_5.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c2.c.c = Convolution(rn1_5.c2.W[16 x 144], rn1_5.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_5.c2.c.y = BatchNormalization(rn1_5.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.c2.c.sc[16 x 1], rn1_5.c2.c.b[16 x 1], rn1_5.c2.c.m[16 x 1], rn1_5.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.p = Plus(rn1_5.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_4.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_5.y = RectifiedLinear(rn1_5.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.c.c.c = Convolution(rn1_6.c1.c.W[16 x 144], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c1.c.c.y = BatchNormalization(rn1_6.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c1.c.c.sc[16 x 1], rn1_6.c1.c.c.b[16 x 1], rn1_6.c1.c.c.m[16 x 1], rn1_6.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c1.y = RectifiedLinear(rn1_6.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c2.c.c = Convolution(rn1_6.c2.W[16 x 144], rn1_6.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_6.c2.c.y = BatchNormalization(rn1_6.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.c2.c.sc[16 x 1], rn1_6.c2.c.b[16 x 1], rn1_6.c2.c.m[16 x 1], rn1_6.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.p = Plus(rn1_6.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_5.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_6.y = RectifiedLinear(rn1_6.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.c.c.c = Convolution(rn1_7.c1.c.W[16 x 144], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c1.c.c.y = BatchNormalization(rn1_7.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c1.c.c.sc[16 x 1], rn1_7.c1.c.c.b[16 x 1], rn1_7.c1.c.c.m[16 x 1], rn1_7.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c1.y = RectifiedLinear(rn1_7.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c2.c.c = Convolution(rn1_7.c2.W[16 x 144], rn1_7.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_7.c2.c.y = BatchNormalization(rn1_7.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.c2.c.sc[16 x 1], rn1_7.c2.c.b[16 x 1], rn1_7.c2.c.m[16 x 1], rn1_7.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.p = Plus(rn1_7.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_6.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_7.y = RectifiedLinear(rn1_7.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.c.c.c = Convolution(rn1_8.c1.c.W[16 x 144], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c1.c.c.y = BatchNormalization(rn1_8.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c1.c.c.sc[16 x 1], rn1_8.c1.c.c.b[16 x 1], rn1_8.c1.c.c.m[16 x 1], rn1_8.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c1.y = RectifiedLinear(rn1_8.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c2.c.c = Convolution(rn1_8.c2.W[16 x 144], rn1_8.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_8.c2.c.y = BatchNormalization(rn1_8.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.c2.c.sc[16 x 1], rn1_8.c2.c.b[16 x 1], rn1_8.c2.c.m[16 x 1], rn1_8.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.p = Plus(rn1_8.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_7.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_8.y = RectifiedLinear(rn1_8.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.c.c.c = Convolution(rn1_9.c1.c.W[16 x 144], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c1.c.c.y = BatchNormalization(rn1_9.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c1.c.c.sc[16 x 1], rn1_9.c1.c.c.b[16 x 1], rn1_9.c1.c.c.m[16 x 1], rn1_9.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c1.y = RectifiedLinear(rn1_9.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c2.c.c = Convolution(rn1_9.c2.W[16 x 144], rn1_9.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_9.c2.c.y = BatchNormalization(rn1_9.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.c2.c.sc[16 x 1], rn1_9.c2.c.b[16 x 1], rn1_9.c2.c.m[16 x 1], rn1_9.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.p = Plus(rn1_9.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_8.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_9.y = RectifiedLinear(rn1_9.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.c.c.c = Convolution(rn1_10.c1.c.W[16 x 144], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c1.c.c.y = BatchNormalization(rn1_10.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c1.c.c.sc[16 x 1], rn1_10.c1.c.c.b[16 x 1], rn1_10.c1.c.c.m[16 x 1], rn1_10.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c1.y = RectifiedLinear(rn1_10.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c2.c.c = Convolution(rn1_10.c2.W[16 x 144], rn1_10.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_10.c2.c.y = BatchNormalization(rn1_10.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.c2.c.sc[16 x 1], rn1_10.c2.c.b[16 x 1], rn1_10.c2.c.m[16 x 1], rn1_10.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.p = Plus(rn1_10.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_9.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_10.y = RectifiedLinear(rn1_10.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.c.c.c = Convolution(rn1_11.c1.c.W[16 x 144], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c1.c.c.y = BatchNormalization(rn1_11.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c1.c.c.sc[16 x 1], rn1_11.c1.c.c.b[16 x 1], rn1_11.c1.c.c.m[16 x 1], rn1_11.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c1.y = RectifiedLinear(rn1_11.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c2.c.c = Convolution(rn1_11.c2.W[16 x 144], rn1_11.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_11.c2.c.y = BatchNormalization(rn1_11.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.c2.c.sc[16 x 1], rn1_11.c2.c.b[16 x 1], rn1_11.c2.c.m[16 x 1], rn1_11.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.p = Plus(rn1_11.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_10.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_11.y = RectifiedLinear(rn1_11.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.c.c.c = Convolution(rn1_12.c1.c.W[16 x 144], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c1.c.c.y = BatchNormalization(rn1_12.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c1.c.c.sc[16 x 1], rn1_12.c1.c.c.b[16 x 1], rn1_12.c1.c.c.m[16 x 1], rn1_12.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c1.y = RectifiedLinear(rn1_12.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c2.c.c = Convolution(rn1_12.c2.W[16 x 144], rn1_12.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_12.c2.c.y = BatchNormalization(rn1_12.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.c2.c.sc[16 x 1], rn1_12.c2.c.b[16 x 1], rn1_12.c2.c.m[16 x 1], rn1_12.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.p = Plus(rn1_12.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_11.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_12.y = RectifiedLinear(rn1_12.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.c.c.c = Convolution(rn1_13.c1.c.W[16 x 144], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c1.c.c.y = BatchNormalization(rn1_13.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c1.c.c.sc[16 x 1], rn1_13.c1.c.c.b[16 x 1], rn1_13.c1.c.c.m[16 x 1], rn1_13.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c1.y = RectifiedLinear(rn1_13.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c2.c.c = Convolution(rn1_13.c2.W[16 x 144], rn1_13.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_13.c2.c.y = BatchNormalization(rn1_13.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.c2.c.sc[16 x 1], rn1_13.c2.c.b[16 x 1], rn1_13.c2.c.m[16 x 1], rn1_13.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.p = Plus(rn1_13.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_12.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_13.y = RectifiedLinear(rn1_13.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.c.c.c = Convolution(rn1_14.c1.c.W[16 x 144], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c1.c.c.y = BatchNormalization(rn1_14.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c1.c.c.sc[16 x 1], rn1_14.c1.c.c.b[16 x 1], rn1_14.c1.c.c.m[16 x 1], rn1_14.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c1.y = RectifiedLinear(rn1_14.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c2.c.c = Convolution(rn1_14.c2.W[16 x 144], rn1_14.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_14.c2.c.y = BatchNormalization(rn1_14.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.c2.c.sc[16 x 1], rn1_14.c2.c.b[16 x 1], rn1_14.c2.c.m[16 x 1], rn1_14.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.p = Plus(rn1_14.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_13.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_14.y = RectifiedLinear(rn1_14.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.c.c.c = Convolution(rn1_15.c1.c.W[16 x 144], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c1.c.c.y = BatchNormalization(rn1_15.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c1.c.c.sc[16 x 1], rn1_15.c1.c.c.b[16 x 1], rn1_15.c1.c.c.m[16 x 1], rn1_15.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c1.y = RectifiedLinear(rn1_15.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c2.c.c = Convolution(rn1_15.c2.W[16 x 144], rn1_15.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_15.c2.c.y = BatchNormalization(rn1_15.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.c2.c.sc[16 x 1], rn1_15.c2.c.b[16 x 1], rn1_15.c2.c.m[16 x 1], rn1_15.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.p = Plus(rn1_15.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_14.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_15.y = RectifiedLinear(rn1_15.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.c.c.c = Convolution(rn1_16.c1.c.W[16 x 144], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c1.c.c.y = BatchNormalization(rn1_16.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c1.c.c.sc[16 x 1], rn1_16.c1.c.c.b[16 x 1], rn1_16.c1.c.c.m[16 x 1], rn1_16.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c1.y = RectifiedLinear(rn1_16.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c2.c.c = Convolution(rn1_16.c2.W[16 x 144], rn1_16.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_16.c2.c.y = BatchNormalization(rn1_16.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.c2.c.sc[16 x 1], rn1_16.c2.c.b[16 x 1], rn1_16.c2.c.m[16 x 1], rn1_16.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.p = Plus(rn1_16.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_15.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_16.y = RectifiedLinear(rn1_16.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.c.c.c = Convolution(rn1_17.c1.c.W[16 x 144], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c1.c.c.y = BatchNormalization(rn1_17.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c1.c.c.sc[16 x 1], rn1_17.c1.c.c.b[16 x 1], rn1_17.c1.c.c.m[16 x 1], rn1_17.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c1.y = RectifiedLinear(rn1_17.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c2.c.c = Convolution(rn1_17.c2.W[16 x 144], rn1_17.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_17.c2.c.y = BatchNormalization(rn1_17.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.c2.c.sc[16 x 1], rn1_17.c2.c.b[16 x 1], rn1_17.c2.c.m[16 x 1], rn1_17.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.p = Plus(rn1_17.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_16.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_17.y = RectifiedLinear(rn1_17.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.c.c.c = Convolution(rn1_18.c1.c.W[16 x 144], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.c.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c1.c.c.y = BatchNormalization(rn1_18.c1.c.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c1.c.c.sc[16 x 1], rn1_18.c1.c.c.b[16 x 1], rn1_18.c1.c.c.m[16 x 1], rn1_18.c1.c.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c1.y = RectifiedLinear(rn1_18.c1.c.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c2.c.c = Convolution(rn1_18.c2.W[16 x 144], rn1_18.c1.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.c2.c.sc = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.b = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.m = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.isd = LearnableParameter -> [16 x 1] +Validating --> rn1_18.c2.c.y = BatchNormalization(rn1_18.c2.c.c[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_18.c2.c.sc[16 x 1], rn1_18.c2.c.b[16 x 1], rn1_18.c2.c.m[16 x 1], rn1_18.c2.c.isd[16 x 1]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.p = Plus(rn1_18.c2.c.y[32 x 32 x 16 x * {W=32, H=16, C=32}], rn1_17.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn1_18.y = RectifiedLinear(rn1_18.p[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [32 x 32 x 16 x *] +Validating --> rn2_1.c1.c.c.c = Convolution(rn2_1.c1.c.W[32 x 144], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c1.c.c.y = BatchNormalization(rn2_1.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c1.c.c.sc[32 x 1], rn2_1.c1.c.c.b[32 x 1], rn2_1.c1.c.c.m[32 x 1], rn2_1.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c1.y = RectifiedLinear(rn2_1.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c2.c.c = Convolution(rn2_1.c2.W[32 x 288], rn2_1.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c2.c.y = BatchNormalization(rn2_1.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c2.c.sc[32 x 1], rn2_1.c2.c.b[32 x 1], rn2_1.c2.c.m[32 x 1], rn2_1.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1_Wproj = LearnableParameter -> [32 x 16] +Validating --> rn2_1.c_proj.c = Convolution(rn2_1_Wproj[32 x 16], rn1_18.y[32 x 32 x 16 x * {W=32, H=16, C=32}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.c_proj.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.b = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.m = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_1.c_proj.y = BatchNormalization(rn2_1.c_proj.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.sc[32 x 1], rn2_1.c_proj.b[32 x 1], rn2_1.c_proj.m[32 x 1], rn2_1.c_proj.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.p = Plus(rn2_1.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.c_proj.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_1.y = RectifiedLinear(rn2_1.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.c.c.c = Convolution(rn2_2.c1.c.W[32 x 288], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c1.c.c.y = BatchNormalization(rn2_2.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c1.c.c.sc[32 x 1], rn2_2.c1.c.c.b[32 x 1], rn2_2.c1.c.c.m[32 x 1], rn2_2.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c1.y = RectifiedLinear(rn2_2.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c2.c.c = Convolution(rn2_2.c2.W[32 x 288], rn2_2.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_2.c2.c.y = BatchNormalization(rn2_2.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.c2.c.sc[32 x 1], rn2_2.c2.c.b[32 x 1], rn2_2.c2.c.m[32 x 1], rn2_2.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.p = Plus(rn2_2.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_2.y = RectifiedLinear(rn2_2.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.c.c.c = Convolution(rn2_3.c1.c.W[32 x 288], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c1.c.c.y = BatchNormalization(rn2_3.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c1.c.c.sc[32 x 1], rn2_3.c1.c.c.b[32 x 1], rn2_3.c1.c.c.m[32 x 1], rn2_3.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c1.y = RectifiedLinear(rn2_3.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c2.c.c = Convolution(rn2_3.c2.W[32 x 288], rn2_3.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_3.c2.c.y = BatchNormalization(rn2_3.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.c2.c.sc[32 x 1], rn2_3.c2.c.b[32 x 1], rn2_3.c2.c.m[32 x 1], rn2_3.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.p = Plus(rn2_3.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_2.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_3.y = RectifiedLinear(rn2_3.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.c.c.c = Convolution(rn2_4.c1.c.W[32 x 288], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c1.c.c.y = BatchNormalization(rn2_4.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c1.c.c.sc[32 x 1], rn2_4.c1.c.c.b[32 x 1], rn2_4.c1.c.c.m[32 x 1], rn2_4.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c1.y = RectifiedLinear(rn2_4.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c2.c.c = Convolution(rn2_4.c2.W[32 x 288], rn2_4.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_4.c2.c.y = BatchNormalization(rn2_4.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.c2.c.sc[32 x 1], rn2_4.c2.c.b[32 x 1], rn2_4.c2.c.m[32 x 1], rn2_4.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.p = Plus(rn2_4.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_3.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_4.y = RectifiedLinear(rn2_4.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.c.c.c = Convolution(rn2_5.c1.c.W[32 x 288], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c1.c.c.y = BatchNormalization(rn2_5.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c1.c.c.sc[32 x 1], rn2_5.c1.c.c.b[32 x 1], rn2_5.c1.c.c.m[32 x 1], rn2_5.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c1.y = RectifiedLinear(rn2_5.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c2.c.c = Convolution(rn2_5.c2.W[32 x 288], rn2_5.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_5.c2.c.y = BatchNormalization(rn2_5.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.c2.c.sc[32 x 1], rn2_5.c2.c.b[32 x 1], rn2_5.c2.c.m[32 x 1], rn2_5.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.p = Plus(rn2_5.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_4.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_5.y = RectifiedLinear(rn2_5.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.c.c.c = Convolution(rn2_6.c1.c.W[32 x 288], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c1.c.c.y = BatchNormalization(rn2_6.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c1.c.c.sc[32 x 1], rn2_6.c1.c.c.b[32 x 1], rn2_6.c1.c.c.m[32 x 1], rn2_6.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c1.y = RectifiedLinear(rn2_6.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c2.c.c = Convolution(rn2_6.c2.W[32 x 288], rn2_6.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_6.c2.c.y = BatchNormalization(rn2_6.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.c2.c.sc[32 x 1], rn2_6.c2.c.b[32 x 1], rn2_6.c2.c.m[32 x 1], rn2_6.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.p = Plus(rn2_6.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_5.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_6.y = RectifiedLinear(rn2_6.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.c.c.c = Convolution(rn2_7.c1.c.W[32 x 288], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c1.c.c.y = BatchNormalization(rn2_7.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c1.c.c.sc[32 x 1], rn2_7.c1.c.c.b[32 x 1], rn2_7.c1.c.c.m[32 x 1], rn2_7.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c1.y = RectifiedLinear(rn2_7.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c2.c.c = Convolution(rn2_7.c2.W[32 x 288], rn2_7.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_7.c2.c.y = BatchNormalization(rn2_7.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.c2.c.sc[32 x 1], rn2_7.c2.c.b[32 x 1], rn2_7.c2.c.m[32 x 1], rn2_7.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.p = Plus(rn2_7.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_6.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_7.y = RectifiedLinear(rn2_7.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.c.c.c = Convolution(rn2_8.c1.c.W[32 x 288], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c1.c.c.y = BatchNormalization(rn2_8.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c1.c.c.sc[32 x 1], rn2_8.c1.c.c.b[32 x 1], rn2_8.c1.c.c.m[32 x 1], rn2_8.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c1.y = RectifiedLinear(rn2_8.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c2.c.c = Convolution(rn2_8.c2.W[32 x 288], rn2_8.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_8.c2.c.y = BatchNormalization(rn2_8.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.c2.c.sc[32 x 1], rn2_8.c2.c.b[32 x 1], rn2_8.c2.c.m[32 x 1], rn2_8.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.p = Plus(rn2_8.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_7.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_8.y = RectifiedLinear(rn2_8.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.c.c.c = Convolution(rn2_9.c1.c.W[32 x 288], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c1.c.c.y = BatchNormalization(rn2_9.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c1.c.c.sc[32 x 1], rn2_9.c1.c.c.b[32 x 1], rn2_9.c1.c.c.m[32 x 1], rn2_9.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c1.y = RectifiedLinear(rn2_9.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c2.c.c = Convolution(rn2_9.c2.W[32 x 288], rn2_9.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_9.c2.c.y = BatchNormalization(rn2_9.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.c2.c.sc[32 x 1], rn2_9.c2.c.b[32 x 1], rn2_9.c2.c.m[32 x 1], rn2_9.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.p = Plus(rn2_9.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_8.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_9.y = RectifiedLinear(rn2_9.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.c.c.c = Convolution(rn2_10.c1.c.W[32 x 288], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c1.c.c.y = BatchNormalization(rn2_10.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c1.c.c.sc[32 x 1], rn2_10.c1.c.c.b[32 x 1], rn2_10.c1.c.c.m[32 x 1], rn2_10.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c1.y = RectifiedLinear(rn2_10.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c2.c.c = Convolution(rn2_10.c2.W[32 x 288], rn2_10.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_10.c2.c.y = BatchNormalization(rn2_10.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.c2.c.sc[32 x 1], rn2_10.c2.c.b[32 x 1], rn2_10.c2.c.m[32 x 1], rn2_10.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.p = Plus(rn2_10.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_9.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_10.y = RectifiedLinear(rn2_10.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.c.c.c = Convolution(rn2_11.c1.c.W[32 x 288], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c1.c.c.y = BatchNormalization(rn2_11.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c1.c.c.sc[32 x 1], rn2_11.c1.c.c.b[32 x 1], rn2_11.c1.c.c.m[32 x 1], rn2_11.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c1.y = RectifiedLinear(rn2_11.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c2.c.c = Convolution(rn2_11.c2.W[32 x 288], rn2_11.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_11.c2.c.y = BatchNormalization(rn2_11.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.c2.c.sc[32 x 1], rn2_11.c2.c.b[32 x 1], rn2_11.c2.c.m[32 x 1], rn2_11.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.p = Plus(rn2_11.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_10.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_11.y = RectifiedLinear(rn2_11.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.c.c.c = Convolution(rn2_12.c1.c.W[32 x 288], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c1.c.c.y = BatchNormalization(rn2_12.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c1.c.c.sc[32 x 1], rn2_12.c1.c.c.b[32 x 1], rn2_12.c1.c.c.m[32 x 1], rn2_12.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c1.y = RectifiedLinear(rn2_12.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c2.c.c = Convolution(rn2_12.c2.W[32 x 288], rn2_12.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_12.c2.c.y = BatchNormalization(rn2_12.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.c2.c.sc[32 x 1], rn2_12.c2.c.b[32 x 1], rn2_12.c2.c.m[32 x 1], rn2_12.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.p = Plus(rn2_12.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_11.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_12.y = RectifiedLinear(rn2_12.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.c.c.c = Convolution(rn2_13.c1.c.W[32 x 288], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c1.c.c.y = BatchNormalization(rn2_13.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c1.c.c.sc[32 x 1], rn2_13.c1.c.c.b[32 x 1], rn2_13.c1.c.c.m[32 x 1], rn2_13.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c1.y = RectifiedLinear(rn2_13.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c2.c.c = Convolution(rn2_13.c2.W[32 x 288], rn2_13.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_13.c2.c.y = BatchNormalization(rn2_13.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.c2.c.sc[32 x 1], rn2_13.c2.c.b[32 x 1], rn2_13.c2.c.m[32 x 1], rn2_13.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.p = Plus(rn2_13.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_12.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_13.y = RectifiedLinear(rn2_13.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.c.c.c = Convolution(rn2_14.c1.c.W[32 x 288], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c1.c.c.y = BatchNormalization(rn2_14.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c1.c.c.sc[32 x 1], rn2_14.c1.c.c.b[32 x 1], rn2_14.c1.c.c.m[32 x 1], rn2_14.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c1.y = RectifiedLinear(rn2_14.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c2.c.c = Convolution(rn2_14.c2.W[32 x 288], rn2_14.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_14.c2.c.y = BatchNormalization(rn2_14.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.c2.c.sc[32 x 1], rn2_14.c2.c.b[32 x 1], rn2_14.c2.c.m[32 x 1], rn2_14.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.p = Plus(rn2_14.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_13.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_14.y = RectifiedLinear(rn2_14.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.c.c.c = Convolution(rn2_15.c1.c.W[32 x 288], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c1.c.c.y = BatchNormalization(rn2_15.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c1.c.c.sc[32 x 1], rn2_15.c1.c.c.b[32 x 1], rn2_15.c1.c.c.m[32 x 1], rn2_15.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c1.y = RectifiedLinear(rn2_15.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c2.c.c = Convolution(rn2_15.c2.W[32 x 288], rn2_15.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_15.c2.c.y = BatchNormalization(rn2_15.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.c2.c.sc[32 x 1], rn2_15.c2.c.b[32 x 1], rn2_15.c2.c.m[32 x 1], rn2_15.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.p = Plus(rn2_15.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_14.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_15.y = RectifiedLinear(rn2_15.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.c.c.c = Convolution(rn2_16.c1.c.W[32 x 288], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c1.c.c.y = BatchNormalization(rn2_16.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c1.c.c.sc[32 x 1], rn2_16.c1.c.c.b[32 x 1], rn2_16.c1.c.c.m[32 x 1], rn2_16.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c1.y = RectifiedLinear(rn2_16.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c2.c.c = Convolution(rn2_16.c2.W[32 x 288], rn2_16.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_16.c2.c.y = BatchNormalization(rn2_16.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.c2.c.sc[32 x 1], rn2_16.c2.c.b[32 x 1], rn2_16.c2.c.m[32 x 1], rn2_16.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.p = Plus(rn2_16.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_15.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_16.y = RectifiedLinear(rn2_16.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.c.c.c = Convolution(rn2_17.c1.c.W[32 x 288], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c1.c.c.y = BatchNormalization(rn2_17.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c1.c.c.sc[32 x 1], rn2_17.c1.c.c.b[32 x 1], rn2_17.c1.c.c.m[32 x 1], rn2_17.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c1.y = RectifiedLinear(rn2_17.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c2.c.c = Convolution(rn2_17.c2.W[32 x 288], rn2_17.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_17.c2.c.y = BatchNormalization(rn2_17.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.c2.c.sc[32 x 1], rn2_17.c2.c.b[32 x 1], rn2_17.c2.c.m[32 x 1], rn2_17.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.p = Plus(rn2_17.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_16.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_17.y = RectifiedLinear(rn2_17.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.c.c.c = Convolution(rn2_18.c1.c.W[32 x 288], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.c.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c1.c.c.y = BatchNormalization(rn2_18.c1.c.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c1.c.c.sc[32 x 1], rn2_18.c1.c.c.b[32 x 1], rn2_18.c1.c.c.m[32 x 1], rn2_18.c1.c.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c1.y = RectifiedLinear(rn2_18.c1.c.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c2.c.c = Convolution(rn2_18.c2.W[32 x 288], rn2_18.c1.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.c2.c.sc = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.b = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.m = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.isd = LearnableParameter -> [32 x 1] +Validating --> rn2_18.c2.c.y = BatchNormalization(rn2_18.c2.c.c[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_18.c2.c.sc[32 x 1], rn2_18.c2.c.b[32 x 1], rn2_18.c2.c.m[32 x 1], rn2_18.c2.c.isd[32 x 1]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.p = Plus(rn2_18.c2.c.y[16 x 16 x 32 x * {W=16, H=32, C=16}], rn2_17.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn2_18.y = RectifiedLinear(rn2_18.p[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [16 x 16 x 32 x *] +Validating --> rn3_1.c1.c.c.c = Convolution(rn3_1.c1.c.W[64 x 288], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c1.c.c.y = BatchNormalization(rn3_1.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c1.c.c.sc[64 x 1], rn3_1.c1.c.c.b[64 x 1], rn3_1.c1.c.c.m[64 x 1], rn3_1.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c1.y = RectifiedLinear(rn3_1.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c2.c.c = Convolution(rn3_1.c2.W[64 x 576], rn3_1.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c2.c.y = BatchNormalization(rn3_1.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c2.c.sc[64 x 1], rn3_1.c2.c.b[64 x 1], rn3_1.c2.c.m[64 x 1], rn3_1.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1_Wproj = LearnableParameter -> [64 x 32] +Validating --> rn3_1.c_proj.c = Convolution(rn3_1_Wproj[64 x 32], rn2_18.y[16 x 16 x 32 x * {W=16, H=32, C=16}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.c_proj.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.b = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.m = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_1.c_proj.y = BatchNormalization(rn3_1.c_proj.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.sc[64 x 1], rn3_1.c_proj.b[64 x 1], rn3_1.c_proj.m[64 x 1], rn3_1.c_proj.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.p = Plus(rn3_1.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.c_proj.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_1.y = RectifiedLinear(rn3_1.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.c.c.c = Convolution(rn3_2.c1.c.W[64 x 576], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c1.c.c.y = BatchNormalization(rn3_2.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c1.c.c.sc[64 x 1], rn3_2.c1.c.c.b[64 x 1], rn3_2.c1.c.c.m[64 x 1], rn3_2.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c1.y = RectifiedLinear(rn3_2.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c2.c.c = Convolution(rn3_2.c2.W[64 x 576], rn3_2.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_2.c2.c.y = BatchNormalization(rn3_2.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.c2.c.sc[64 x 1], rn3_2.c2.c.b[64 x 1], rn3_2.c2.c.m[64 x 1], rn3_2.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.p = Plus(rn3_2.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_2.y = RectifiedLinear(rn3_2.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.c.c.c = Convolution(rn3_3.c1.c.W[64 x 576], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c1.c.c.y = BatchNormalization(rn3_3.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c1.c.c.sc[64 x 1], rn3_3.c1.c.c.b[64 x 1], rn3_3.c1.c.c.m[64 x 1], rn3_3.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c1.y = RectifiedLinear(rn3_3.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c2.c.c = Convolution(rn3_3.c2.W[64 x 576], rn3_3.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_3.c2.c.y = BatchNormalization(rn3_3.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.c2.c.sc[64 x 1], rn3_3.c2.c.b[64 x 1], rn3_3.c2.c.m[64 x 1], rn3_3.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.p = Plus(rn3_3.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_2.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_3.y = RectifiedLinear(rn3_3.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.c.c.c = Convolution(rn3_4.c1.c.W[64 x 576], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c1.c.c.y = BatchNormalization(rn3_4.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c1.c.c.sc[64 x 1], rn3_4.c1.c.c.b[64 x 1], rn3_4.c1.c.c.m[64 x 1], rn3_4.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c1.y = RectifiedLinear(rn3_4.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c2.c.c = Convolution(rn3_4.c2.W[64 x 576], rn3_4.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_4.c2.c.y = BatchNormalization(rn3_4.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.c2.c.sc[64 x 1], rn3_4.c2.c.b[64 x 1], rn3_4.c2.c.m[64 x 1], rn3_4.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.p = Plus(rn3_4.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_3.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_4.y = RectifiedLinear(rn3_4.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.c.c.c = Convolution(rn3_5.c1.c.W[64 x 576], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c1.c.c.y = BatchNormalization(rn3_5.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c1.c.c.sc[64 x 1], rn3_5.c1.c.c.b[64 x 1], rn3_5.c1.c.c.m[64 x 1], rn3_5.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c1.y = RectifiedLinear(rn3_5.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c2.c.c = Convolution(rn3_5.c2.W[64 x 576], rn3_5.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_5.c2.c.y = BatchNormalization(rn3_5.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.c2.c.sc[64 x 1], rn3_5.c2.c.b[64 x 1], rn3_5.c2.c.m[64 x 1], rn3_5.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.p = Plus(rn3_5.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_4.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_5.y = RectifiedLinear(rn3_5.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.c.c.c = Convolution(rn3_6.c1.c.W[64 x 576], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c1.c.c.y = BatchNormalization(rn3_6.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c1.c.c.sc[64 x 1], rn3_6.c1.c.c.b[64 x 1], rn3_6.c1.c.c.m[64 x 1], rn3_6.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c1.y = RectifiedLinear(rn3_6.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c2.c.c = Convolution(rn3_6.c2.W[64 x 576], rn3_6.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_6.c2.c.y = BatchNormalization(rn3_6.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.c2.c.sc[64 x 1], rn3_6.c2.c.b[64 x 1], rn3_6.c2.c.m[64 x 1], rn3_6.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.p = Plus(rn3_6.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_5.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_6.y = RectifiedLinear(rn3_6.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.c.c.c = Convolution(rn3_7.c1.c.W[64 x 576], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c1.c.c.y = BatchNormalization(rn3_7.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c1.c.c.sc[64 x 1], rn3_7.c1.c.c.b[64 x 1], rn3_7.c1.c.c.m[64 x 1], rn3_7.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c1.y = RectifiedLinear(rn3_7.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c2.c.c = Convolution(rn3_7.c2.W[64 x 576], rn3_7.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_7.c2.c.y = BatchNormalization(rn3_7.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.c2.c.sc[64 x 1], rn3_7.c2.c.b[64 x 1], rn3_7.c2.c.m[64 x 1], rn3_7.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.p = Plus(rn3_7.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_6.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_7.y = RectifiedLinear(rn3_7.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.c.c.c = Convolution(rn3_8.c1.c.W[64 x 576], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c1.c.c.y = BatchNormalization(rn3_8.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c1.c.c.sc[64 x 1], rn3_8.c1.c.c.b[64 x 1], rn3_8.c1.c.c.m[64 x 1], rn3_8.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c1.y = RectifiedLinear(rn3_8.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c2.c.c = Convolution(rn3_8.c2.W[64 x 576], rn3_8.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_8.c2.c.y = BatchNormalization(rn3_8.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.c2.c.sc[64 x 1], rn3_8.c2.c.b[64 x 1], rn3_8.c2.c.m[64 x 1], rn3_8.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.p = Plus(rn3_8.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_7.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_8.y = RectifiedLinear(rn3_8.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.c.c.c = Convolution(rn3_9.c1.c.W[64 x 576], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c1.c.c.y = BatchNormalization(rn3_9.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c1.c.c.sc[64 x 1], rn3_9.c1.c.c.b[64 x 1], rn3_9.c1.c.c.m[64 x 1], rn3_9.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c1.y = RectifiedLinear(rn3_9.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c2.c.c = Convolution(rn3_9.c2.W[64 x 576], rn3_9.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_9.c2.c.y = BatchNormalization(rn3_9.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.c2.c.sc[64 x 1], rn3_9.c2.c.b[64 x 1], rn3_9.c2.c.m[64 x 1], rn3_9.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.p = Plus(rn3_9.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_8.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_9.y = RectifiedLinear(rn3_9.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.c.c.c = Convolution(rn3_10.c1.c.W[64 x 576], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c1.c.c.y = BatchNormalization(rn3_10.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c1.c.c.sc[64 x 1], rn3_10.c1.c.c.b[64 x 1], rn3_10.c1.c.c.m[64 x 1], rn3_10.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c1.y = RectifiedLinear(rn3_10.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c2.c.c = Convolution(rn3_10.c2.W[64 x 576], rn3_10.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_10.c2.c.y = BatchNormalization(rn3_10.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.c2.c.sc[64 x 1], rn3_10.c2.c.b[64 x 1], rn3_10.c2.c.m[64 x 1], rn3_10.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.p = Plus(rn3_10.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_9.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_10.y = RectifiedLinear(rn3_10.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.c.c.c = Convolution(rn3_11.c1.c.W[64 x 576], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c1.c.c.y = BatchNormalization(rn3_11.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c1.c.c.sc[64 x 1], rn3_11.c1.c.c.b[64 x 1], rn3_11.c1.c.c.m[64 x 1], rn3_11.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c1.y = RectifiedLinear(rn3_11.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c2.c.c = Convolution(rn3_11.c2.W[64 x 576], rn3_11.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_11.c2.c.y = BatchNormalization(rn3_11.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.c2.c.sc[64 x 1], rn3_11.c2.c.b[64 x 1], rn3_11.c2.c.m[64 x 1], rn3_11.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.p = Plus(rn3_11.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_10.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_11.y = RectifiedLinear(rn3_11.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.c.c.c = Convolution(rn3_12.c1.c.W[64 x 576], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c1.c.c.y = BatchNormalization(rn3_12.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c1.c.c.sc[64 x 1], rn3_12.c1.c.c.b[64 x 1], rn3_12.c1.c.c.m[64 x 1], rn3_12.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c1.y = RectifiedLinear(rn3_12.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c2.c.c = Convolution(rn3_12.c2.W[64 x 576], rn3_12.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_12.c2.c.y = BatchNormalization(rn3_12.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.c2.c.sc[64 x 1], rn3_12.c2.c.b[64 x 1], rn3_12.c2.c.m[64 x 1], rn3_12.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.p = Plus(rn3_12.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_11.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_12.y = RectifiedLinear(rn3_12.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.c.c.c = Convolution(rn3_13.c1.c.W[64 x 576], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c1.c.c.y = BatchNormalization(rn3_13.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c1.c.c.sc[64 x 1], rn3_13.c1.c.c.b[64 x 1], rn3_13.c1.c.c.m[64 x 1], rn3_13.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c1.y = RectifiedLinear(rn3_13.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c2.c.c = Convolution(rn3_13.c2.W[64 x 576], rn3_13.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_13.c2.c.y = BatchNormalization(rn3_13.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.c2.c.sc[64 x 1], rn3_13.c2.c.b[64 x 1], rn3_13.c2.c.m[64 x 1], rn3_13.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.p = Plus(rn3_13.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_12.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_13.y = RectifiedLinear(rn3_13.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.c.c.c = Convolution(rn3_14.c1.c.W[64 x 576], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c1.c.c.y = BatchNormalization(rn3_14.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c1.c.c.sc[64 x 1], rn3_14.c1.c.c.b[64 x 1], rn3_14.c1.c.c.m[64 x 1], rn3_14.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c1.y = RectifiedLinear(rn3_14.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c2.c.c = Convolution(rn3_14.c2.W[64 x 576], rn3_14.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_14.c2.c.y = BatchNormalization(rn3_14.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.c2.c.sc[64 x 1], rn3_14.c2.c.b[64 x 1], rn3_14.c2.c.m[64 x 1], rn3_14.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.p = Plus(rn3_14.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_13.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_14.y = RectifiedLinear(rn3_14.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.c.c.c = Convolution(rn3_15.c1.c.W[64 x 576], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c1.c.c.y = BatchNormalization(rn3_15.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c1.c.c.sc[64 x 1], rn3_15.c1.c.c.b[64 x 1], rn3_15.c1.c.c.m[64 x 1], rn3_15.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c1.y = RectifiedLinear(rn3_15.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c2.c.c = Convolution(rn3_15.c2.W[64 x 576], rn3_15.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_15.c2.c.y = BatchNormalization(rn3_15.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.c2.c.sc[64 x 1], rn3_15.c2.c.b[64 x 1], rn3_15.c2.c.m[64 x 1], rn3_15.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.p = Plus(rn3_15.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_14.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_15.y = RectifiedLinear(rn3_15.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.c.c.c = Convolution(rn3_16.c1.c.W[64 x 576], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c1.c.c.y = BatchNormalization(rn3_16.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c1.c.c.sc[64 x 1], rn3_16.c1.c.c.b[64 x 1], rn3_16.c1.c.c.m[64 x 1], rn3_16.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c1.y = RectifiedLinear(rn3_16.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c2.c.c = Convolution(rn3_16.c2.W[64 x 576], rn3_16.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_16.c2.c.y = BatchNormalization(rn3_16.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.c2.c.sc[64 x 1], rn3_16.c2.c.b[64 x 1], rn3_16.c2.c.m[64 x 1], rn3_16.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.p = Plus(rn3_16.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_15.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_16.y = RectifiedLinear(rn3_16.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.c.c.c = Convolution(rn3_17.c1.c.W[64 x 576], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c1.c.c.y = BatchNormalization(rn3_17.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c1.c.c.sc[64 x 1], rn3_17.c1.c.c.b[64 x 1], rn3_17.c1.c.c.m[64 x 1], rn3_17.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c1.y = RectifiedLinear(rn3_17.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c2.c.c = Convolution(rn3_17.c2.W[64 x 576], rn3_17.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_17.c2.c.y = BatchNormalization(rn3_17.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.c2.c.sc[64 x 1], rn3_17.c2.c.b[64 x 1], rn3_17.c2.c.m[64 x 1], rn3_17.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.p = Plus(rn3_17.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_16.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_17.y = RectifiedLinear(rn3_17.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.c.c.c = Convolution(rn3_18.c1.c.W[64 x 576], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.c.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c1.c.c.y = BatchNormalization(rn3_18.c1.c.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c1.c.c.sc[64 x 1], rn3_18.c1.c.c.b[64 x 1], rn3_18.c1.c.c.m[64 x 1], rn3_18.c1.c.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c1.y = RectifiedLinear(rn3_18.c1.c.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c2.c.c = Convolution(rn3_18.c2.W[64 x 576], rn3_18.c1.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.c2.c.sc = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.b = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.m = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.isd = LearnableParameter -> [64 x 1] +Validating --> rn3_18.c2.c.y = BatchNormalization(rn3_18.c2.c.c[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_18.c2.c.sc[64 x 1], rn3_18.c2.c.b[64 x 1], rn3_18.c2.c.m[64 x 1], rn3_18.c2.c.isd[64 x 1]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.p = Plus(rn3_18.c2.c.y[8 x 8 x 64 x * {W=8, H=64, C=8}], rn3_17.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> rn3_18.y = RectifiedLinear(rn3_18.p[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [8 x 8 x 64 x *] +Validating --> pool = AveragePooling(rn3_18.y[8 x 8 x 64 x * {W=8, H=64, C=8}]) -> [1 x 1 x 64 x *] +Validating --> OutputNodes.t = Times(OutputNodes.W[10 x 64], pool[1 x 1 x 64 x *]) -> [10 x *] +Validating --> OutputNodes.b = LearnableParameter -> [10] +Validating --> OutputNodes.z = Plus(OutputNodes.t[10 x *], OutputNodes.b[10]) -> [10 x *] +Validating --> CE = CrossEntropyWithSoftmax(labels[10 x *], OutputNodes.z[10 x *]) -> [1] +Validating --> Err = ErrorPrediction(labels[10 x *], OutputNodes.z[10 x *]) -> [1] + +559 out of 949 nodes do not share the minibatch layout with the input data. + +Post-processing network complete. +evalNodeNames are not specified, using all the default evalnodes and training criterion nodes. + + +Allocating matrices for forward and/or backward propagation. +Minibatch[1-20]: Samples Seen = 10000 Err: ErrorPrediction/Sample = 0.0644 CE: CrossEntropyWithSoftmax/Sample = 0.3034767 +Final Results: Minibatch[1-20]: Samples Seen = 10000 Err: ErrorPrediction/Sample = 0.0644 CE: CrossEntropyWithSoftmax/Sample = 0.3034767 Perplexity = 1.35456 +__COMPLETED__ diff --git a/Source/CNTK/CNTK.cpp b/Source/CNTK/CNTK.cpp index 1e0af6dee..f16d26d16 100644 --- a/Source/CNTK/CNTK.cpp +++ b/Source/CNTK/CNTK.cpp @@ -70,7 +70,7 @@ void TestCn(const ConfigParameters& config); void RedirectStdErr(wstring logpath) { - fprintf(stderr, "Redirecting stderr to file %S\n", logpath.c_str()); + LOGPRINTF(stderr, "Redirecting stderr to file %S\n", logpath.c_str()); auto f = make_shared(logpath.c_str(), fileOptionsWrite | fileOptionsText); if (dup2(fileno(*f), 2) == -1) { @@ -165,7 +165,7 @@ void DoCommands(const ConfigParameters& config, const shared_ptr& mp if (numCPUThreads > 0) { - std::cerr << "Using " << numCPUThreads << " CPU threads." << endl; + LOGPRINTF(stderr, "Using %d CPU threads.\n", numCPUThreads); } bool progressTracing = config(L"progressTracing", false); @@ -187,14 +187,14 @@ void DoCommands(const ConfigParameters& config, const shared_ptr& mp if (action[j] == "train" || action[j] == "trainRNN") { wstring modelPath = commandParams("modelPath"); - std::wcerr << "CNTKModelPath: " << modelPath << endl; + LOGPRINTF(stderr, "CNTKModelPath: %ls\n", modelPath.c_str()); size_t maxEpochs = GetMaxEpochs(commandParams); - std::cerr << "CNTKCommandTrainInfo: " + command[i] << " : " << maxEpochs << endl; + LOGPRINTF(stderr, "CNTKCommandTrainInfo: %s : %d\n", command[i].c_str(), (int) maxEpochs); fullTotalMaxEpochs += maxEpochs; } } } - std::cerr << "CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : " << fullTotalMaxEpochs << endl; + LOGPRINTF(stderr, "CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : %d\n", (int) fullTotalMaxEpochs); // set up progress tracing for compute cluster management if (progressTracing && (!mpi || mpi->IsMainNode())) @@ -225,19 +225,20 @@ void DoCommands(const ConfigParameters& config, const shared_ptr& mp // print a banner to visually separate each action in the log const char* delim = "##############################################################################"; const char* prefix = "Action "; - fprintf(stderr, "\n%s\n", delim); - fprintf(stderr, "#%*s#\n", (int)(strlen(delim) - 2), ""); - fprintf(stderr, "# %s\"%s\"%*s #\n", prefix, thisAction.c_str(), (int)(strlen(delim) - strlen(prefix) - thisAction.size() - 6), ""); - fprintf(stderr, "#%*s#\n", (int)(strlen(delim) - 2), ""); - fprintf(stderr, "%s\n\n", delim); + fprintf(stderr, "\n"); + LOGPRINTF(stderr, "%s\n", delim); + LOGPRINTF(stderr, "#%*s#\n", (int)(strlen(delim) - 2), ""); + LOGPRINTF(stderr, "# %s\"%s\"%*s #\n", prefix, thisAction.c_str(), (int)(strlen(delim) - strlen(prefix) - thisAction.size() - 6), ""); + LOGPRINTF(stderr, "#%*s#\n", (int)(strlen(delim) - 2), ""); + LOGPRINTF(stderr, "%s\n\n", delim); if ((mpi == nullptr) || (commandstoRunOnAllRanks.find(thisAction) != commandstoRunOnAllRanks.end()) || mpi->IsMainNode()) { if (thisAction == "train" || thisAction == "trainRNN") { - std::cerr << "CNTKCommandTrainBegin: " + command[i] << endl; + LOGPRINTF(stderr, "CNTKCommandTrainBegin: %s\n", command[i].c_str()); DoTrain(commandParams); - std::cerr << "CNTKCommandTrainEnd: " + command[i] << endl; + LOGPRINTF(stderr, "CNTKCommandTrainEnd: %s\n", command[i].c_str()); fullEpochsOffset += GetMaxEpochs(commandParams); } else if (thisAction == "adapt") @@ -298,7 +299,8 @@ void DoCommands(const ConfigParameters& config, const shared_ptr& mp } } - fprintf(stderr, "\nAction \"%s\" complete.\n\n", thisAction.c_str()); + fprintf(stderr, "\n"); + LOGPRINTF(stderr, "Action \"%s\" complete.\n\n", thisAction.c_str()); NDLScript ndlScript; ndlScript.ClearGlobal(); // clear global macros between commands @@ -321,51 +323,51 @@ std::string TimeDateStamp() void PrintBuiltInfo() { - fprintf(stderr, "-------------------------------------------------------------------\n"); - fprintf(stderr, "Build info: \n\n"); - fprintf(stderr, "\t\tBuilt time: %s %s\n", __DATE__, __TIME__); - fprintf(stderr, "\t\tLast modified date: %s\n", __TIMESTAMP__); + LOGPRINTF(stderr, "-------------------------------------------------------------------\n"); + LOGPRINTF(stderr, "Build info: \n\n"); + LOGPRINTF(stderr, "\t\tBuilt time: %s %s\n", __DATE__, __TIME__); + LOGPRINTF(stderr, "\t\tLast modified date: %s\n", __TIMESTAMP__); #ifdef _BUILDTYPE_ - fprintf(stderr, "\t\tBuild type: %s\n", _BUILDTYPE_); + LOGPRINTF(stderr, "\t\tBuild type: %s\n", _BUILDTYPE_); #endif #ifdef _BUILDTARGET_ - fprintf(stderr, "\t\tBuild target: %s\n", _BUILDTARGET_); + LOGPRINTF(stderr, "\t\tBuild target: %s\n", _BUILDTARGET_); #endif #ifdef _WITH_1BITSGD_ - fprintf(stderr, "\t\tWith 1bit-SGD: %s\n", _WITH_1BITSGD_); + LOGPRINTF(stderr, "\t\tWith 1bit-SGD: %s\n", _WITH_1BITSGD_); #endif #ifdef _MATHLIB_ - fprintf(stderr, "\t\tMath lib: %s\n", _MATHLIB_); + LOGPRINTF(stderr, "\t\tMath lib: %s\n", _MATHLIB_); #endif #ifdef _CUDA_PATH_ - fprintf(stderr, "\t\tCUDA_PATH: %s\n", _CUDA_PATH_); + LOGPRINTF(stderr, "\t\tCUDA_PATH: %s\n", _CUDA_PATH_); #endif #ifdef _CUB_PATH_ - fprintf(stderr, "\t\tCUB_PATH: %s\n", _CUB_PATH_); + LOGPRINTF(stderr, "\t\tCUB_PATH: %s\n", _CUB_PATH_); #endif #ifdef _CUDNN_PATH_ - fprintf(stderr, "\t\tCUDNN_PATH: %s\n", _CUDNN_PATH_); + LOGPRINTF(stderr, "\t\tCUDNN_PATH: %s\n", _CUDNN_PATH_); #endif #ifdef _GIT_EXIST - fprintf(stderr, "\t\tBuild Branch: %s\n", _BUILDBRANCH_); - fprintf(stderr, "\t\tBuild SHA1: %s\n", _BUILDSHA1_); + LOGPRINTF(stderr, "\t\tBuild Branch: %s\n", _BUILDBRANCH_); + LOGPRINTF(stderr, "\t\tBuild SHA1: %s\n", _BUILDSHA1_); #endif #ifdef _BUILDER_ - fprintf(stderr, "\t\tBuilt by %s on %s\n", _BUILDER_, _BUILDMACHINE_); + LOGPRINTF(stderr, "\t\tBuilt by %s on %s\n", _BUILDER_, _BUILDMACHINE_); #endif #ifdef _BUILDPATH_ - fprintf(stderr, "\t\tBuild Path: %s\n", _BUILDPATH_); + LOGPRINTF(stderr, "\t\tBuild Path: %s\n", _BUILDPATH_); #endif - fprintf(stderr, "-------------------------------------------------------------------\n"); + LOGPRINTF(stderr, "-------------------------------------------------------------------\n"); } void PrintUsageInfo() { - fprintf(stderr, "-------------------------------------------------------------------\n"); - fprintf(stderr, "Usage: cntk configFile=yourConfigFile\n"); - fprintf(stderr, "For detailed information please consult the CNTK book\n"); - fprintf(stderr, "\"An Introduction to Computational Networks and the Computational Network Toolkit\"\n"); - fprintf(stderr, "-------------------------------------------------------------------\n"); + LOGPRINTF(stderr, "-------------------------------------------------------------------\n"); + LOGPRINTF(stderr, "Usage: cntk configFile=yourConfigFile\n"); + LOGPRINTF(stderr, "For detailed information please consult the CNTK book\n"); + LOGPRINTF(stderr, "\"An Introduction to Computational Networks and the Computational Network Toolkit\"\n"); + LOGPRINTF(stderr, "-------------------------------------------------------------------\n"); } // --------------------------------------------------------------------------- @@ -412,9 +414,11 @@ int wmainWithBS(int argc, wchar_t* argv[]) // called from wmain which is a wrapp wstring startupMessage = msra::strfun::wstrprintf(L"running on %ls at %ls\n", msra::strfun::utf16(GetHostName()).c_str(), msra::strfun::utf16(TimeDateStamp()).c_str()); startupMessage += msra::strfun::wstrprintf(L"command line: %ls", exePath.c_str()); for (const auto& arg : args) + { startupMessage += L" " + arg; + } - fprintf(stderr, "%ls\n", startupMessage.c_str()); + LOGPRINTF(stderr, "%ls\n", startupMessage.c_str()); // parse command-line options vector sourceFiles; @@ -443,6 +447,7 @@ int wmainWithBS(int argc, wchar_t* argv[]) // called from wmain which is a wrapp // compile the BrainScript wstring bs = L"[\n"; bs += L"include \'cntk.core.bs'"; // start with including the standard macros + // Note: Using lowercase ^^ here to match the Linux name of the CNTK exe. //bs += standardFunctions + computationNodes + commonMacros + L"\n"; for (const auto& sourceFile : sourceFiles) @@ -451,7 +456,8 @@ int wmainWithBS(int argc, wchar_t* argv[]) // called from wmain which is a wrapp for (const auto& over : overrides) bs += L"with [ " + over + L" ]\n"; - fprintf(stderr, "\n\nBrainScript -->\n\n%ls\n\n", bs.c_str()); + fprintf(stderr, "\n\n"); + LOGPRINTF(stderr, "BrainScript -->\n\n%ls\n\n", bs.c_str()); let expr = BS::ParseConfigExpression(bs, move(includePaths)); // parse let valp = BS::Evaluate(expr); // evaluate parse into a dictionary @@ -486,7 +492,7 @@ int wmainWithBS(int argc, wchar_t* argv[]) // called from wmain which is a wrapp logpath += msra::strfun::wstrprintf(L"rank%d", (int) mpi->CurrentNodeRank()); RedirectStdErr(logpath); - fprintf(stderr, "%ls\n", startupMessage.c_str()); + LOGPRINTF(stderr, "%ls\n", startupMessage.c_str()); } // echo config info to log @@ -497,10 +503,11 @@ int wmainWithBS(int argc, wchar_t* argv[]) // called from wmain which is a wrapp int numCPUThreads = config(L"numCPUThreads", 0); numCPUThreads = CPUMatrix::SetNumThreads(numCPUThreads); if (numCPUThreads > 0) - fprintf(stderr, "Using %d CPU threads.\n", numCPUThreads); + LOGPRINTF(stderr, "Using %d CPU threads.\n", numCPUThreads); bool progressTracing = config(L"progressTracing", false); size_t fullTotalMaxEpochs = 1; // BUGBUG: BS does not allow me to read out the max epochs parameters, as that would instantiate and thus execute the objects + // set up progress tracing for compute cluster management if (progressTracing && ((mpi == nullptr) || mpi->IsMainNode())) ProgressTracing::TraceTotalNumberOfSteps(fullTotalMaxEpochs); // enable tracing, using this as the total number of epochs @@ -532,7 +539,8 @@ int wmainWithBS(int argc, wchar_t* argv[]) // called from wmain which is a wrapp fprintf(fp, "successfully finished at %s on %s\n", TimeDateStamp().c_str(), GetHostName().c_str()); fcloseOrDie(fp); } - fprintf(stderr, "COMPLETED\n"), fflush(stderr); + LOGPRINTF(stderr, "__COMPLETED__\n"); + fflush(stderr); MPIWrapper::DeleteInstance(); return EXIT_SUCCESS; @@ -585,36 +593,51 @@ int wmainOldCNTKConfig(int argc, wchar_t* argv[]) // called from wmain which is PrintBuiltInfo(); // this one goes to log file std::string timestamp = TimeDateStamp(); + bool timestamping = config(L"timestamping", false); + if (timestamping) + { + ProgressTracing::SetTimestampingFlag(); + } + // dump config info - fprintf(stderr, "\nRunning on %s at %s\n", GetHostName().c_str(), timestamp.c_str()); - fprintf(stderr, "Command line: \n"); + fprintf(stderr, "\n"); + LOGPRINTF(stderr, "Running on %s at %s\n", GetHostName().c_str(), timestamp.c_str()); + LOGPRINTF(stderr, "Command line: \n"); for (int i = 0; i < argc; i++) - fprintf(stderr, "%*s%ls", i > 0 ? 2 : 0, "", argv[i]); // use 2 spaces for better visual separability + { + // use 2 spaces for better visual separability + fprintf(stderr, "%*s%ls", i > 0 ? 2 : 0, "", argv[i]); + } fprintf(stderr, "\n\n"); #if 1 //def _DEBUG // This simply merges all the different config parameters specified (eg, via config files or via command line directly), // and prints it. - fprintf(stderr, "\n\n>>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>\n"); - fprintf(stderr, "%s\n", rawConfigString.c_str()); - fprintf(stderr, "<<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<\n"); + fprintf(stderr, "\n\n"); + LOGPRINTF(stderr, ">>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>\n"); + LOGPRINTF(stderr, "%s\n", rawConfigString.c_str()); + LOGPRINTF(stderr, "<<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<\n"); - // Same as above, but all variables are resolved. If a parameter is set multiple times (eg, set in config, overriden at command line), + // Same as above, but all variables are resolved. If a parameter is set multiple times (eg, set in config, overridden at command line), // All of these assignments will appear, even though only the last assignment matters. - fprintf(stderr, "\n>>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>\n"); - fprintf(stderr, "%s\n", config.ResolveVariables(rawConfigString).c_str()); - fprintf(stderr, "<<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<\n"); + fprintf(stderr, "\n"); + LOGPRINTF(stderr, ">>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>\n"); + LOGPRINTF(stderr, "%s\n", config.ResolveVariables(rawConfigString).c_str()); + LOGPRINTF(stderr, "<<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<\n"); // This outputs the final value each variable/parameter is assigned to in config (so if a parameter is set multiple times, only the last // value it is set to will appear). - fprintf(stderr, "\n>>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>\n"); + fprintf(stderr, "\n"); + LOGPRINTF(stderr, ">>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>\n"); config.dumpWithResolvedVariables(); - fprintf(stderr, "<<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<\n"); + LOGPRINTF(stderr, "<<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<\n"); #endif - fprintf(stderr, "Commands:"); + LOGPRINTF(stderr, "Commands:"); for (int i = 0; i < command.size(); i++) + { fprintf(stderr, " %s", command[i].c_str()); + } fprintf(stderr, "\n"); // run commands @@ -623,7 +646,8 @@ int wmainOldCNTKConfig(int argc, wchar_t* argv[]) // called from wmain which is if (config.Exists("type")) InvalidArgument("CNTK: Use of 'type' parameter is deprecated, it is called 'precision' now."); - fprintf(stderr, "Precision = \"%s\"\n", type.c_str()); + LOGPRINTF(stderr, "Precision = \"%s\"\n", type.c_str()); + if (type == "float") DoCommands(config, mpi); else if (type == "double") @@ -638,7 +662,8 @@ int wmainOldCNTKConfig(int argc, wchar_t* argv[]) // called from wmain which is fprintf(fp, "successfully finished at %s on %s\n", TimeDateStamp().c_str(), GetHostName().c_str()); fcloseOrDie(fp); } - fprintf(stderr, "COMPLETED\n"), fflush(stderr); + LOGPRINTF(stderr, "__COMPLETED__\n"); + fflush(stderr); MPIWrapper::DeleteInstance(); return EXIT_SUCCESS; @@ -664,38 +689,45 @@ int wmain1(int argc, wchar_t* argv[]) // called from wmain which is a wrapper th PrintBuiltInfo(); // print build info directly in case that user provides zero argument (convenient for checking build type) if (argc <= 1) { - fprintf(stderr, "No command-line argument given.\n"); + LOGPRINTF(stderr, "No command-line argument given.\n"); PrintUsageInfo(); return EXIT_FAILURE; } + // detect legacy CNTK configuration bool isOldCNTKConfig = false; for (int i = 0; i < argc && !isOldCNTKConfig; i++) isOldCNTKConfig |= !_wcsnicmp(L"configFile=", argv[i], 11); + if (isOldCNTKConfig) return wmainOldCNTKConfig(argc, argv); + // run from BrainScript return wmainWithBS(argc, argv); } catch (const ScriptableObjects::ScriptingException& err) { - fprintf(stderr, "\nEXCEPTION occurred: %s\n", err.what()); + fprintf(stderr, "\n"); + LOGPRINTF(stderr, "EXCEPTION occurred: %s\n", err.what()); err.PrintError(); return EXIT_FAILURE; } catch (const IExceptionWithCallStackBase& err) { - fprintf(stderr, "\nEXCEPTION occurred: %s\n%s", dynamic_cast(err).what(), err.CallStack()); + fprintf(stderr, "\n"); + LOGPRINTF(stderr, "EXCEPTION occurred: %s\n%s", dynamic_cast(err).what(), err.CallStack()); return EXIT_FAILURE; } catch (const std::exception& err) { - fprintf(stderr, "\nEXCEPTION occurred: %s\n", err.what()); + fprintf(stderr, "\n"); + LOGPRINTF(stderr, "EXCEPTION occurred: %s\n", err.what()); return EXIT_FAILURE; } catch (...) { - fprintf(stderr, "\nUnknown ERROR occurred\n"); + fprintf(stderr, "\n"); + LOGPRINTF(stderr, "Unknown ERROR occurred\n"); return EXIT_FAILURE; } } @@ -703,7 +735,8 @@ int wmain1(int argc, wchar_t* argv[]) // called from wmain which is a wrapper th #ifdef __WINDOWS__ void TerminateThis() { - fprintf(stderr, "terminate_this: aborting\n"), fflush(stderr); + LOGPRINTF(stderr, "terminate_this: aborting\n"); + fflush(stderr); exit(EXIT_FAILURE); } @@ -714,7 +747,7 @@ static void LogDelayLoadError(PEXCEPTION_POINTERS pExcPointers) if (pExcPointers->ExceptionRecord->ExceptionCode == EXCEPTION_DLL_NOT_FOUND) { const auto & pDelayLoadInfo = *PDelayLoadInfo(pExcPointers->ExceptionRecord->ExceptionInformation[0]); - fprintf(stderr, "CNTK: Failed to load DLL '%s'.\n", pDelayLoadInfo.szDll); + LOGPRINTF(stderr, "CNTK: Failed to load DLL '%s'.\n", pDelayLoadInfo.szDll); } } @@ -736,7 +769,7 @@ int wmain(int argc, wchar_t* argv[]) // wmain wrapper that reports Win32 excepti else if (code == EXCEPTION_INT_DIVIDE_BY_ZERO) msg = ": Integer division by zero"; else if (code == EXCEPTION_STACK_OVERFLOW) msg = ": Stack overflow"; else if (code == EXCEPTION_DLL_NOT_FOUND) msg = ": Module not found"; - fprintf(stderr, "CNTK: Caught Win32 exception 0x%08x%s.\n", (unsigned int)code, msg); + LOGPRINTF(stderr, "CNTK: Caught Win32 exception 0x%08x%s.\n", (unsigned int)code, msg); fflush(stderr); exit(EXIT_FAILURE); } diff --git a/Source/Common/Include/ProgressTracing.h b/Source/Common/Include/ProgressTracing.h index fba0b8e3c..f15435431 100644 --- a/Source/Common/Include/ProgressTracing.h +++ b/Source/Common/Include/ProgressTracing.h @@ -4,10 +4,32 @@ // #pragma once +#include #include "TimerUtility.h" namespace Microsoft { namespace MSR { namespace CNTK { +// If the Tracing flag is set, print out a timestamp with no new line at the end +#define PREPENDTS(stream) \ + do \ + { \ + if (ProgressTracing::GetTimestampingFlag()) \ + { \ + std::time_t tt = std::chrono::system_clock::to_time_t(std::chrono::system_clock::now()); \ + char mbstr[30]; \ + if (std::strftime(mbstr, sizeof(mbstr), "%m/%d/%Y %H:%M:%S", std::localtime(&tt))) \ + fprintf(stream, "%s: ", mbstr); \ + } \ + } while(0) + +// Print out a log message. If the Tracing flag is set, prepend with a timestamp +#define LOGPRINTF(stream, ...) \ + do \ + { \ + PREPENDTS(stream); \ + fprintf(stream, __VA_ARGS__); \ + } while(0) + // --------------------------------------------------------------------------- // ProgressTracing -- static helper class for logging a progress indicator // @@ -29,12 +51,13 @@ namespace Microsoft { namespace MSR { namespace CNTK { { bool m_enabled; bool m_tracingFlag; + bool m_timestampFlag; size_t m_totalNumberOfSteps; // total number of epochs in entire training run size_t m_currentStepOffset; // current offset Timer m_progressTracingTimer; ProgressTracing() - : m_enabled(false), m_tracingFlag(false), m_totalNumberOfSteps(0), m_currentStepOffset(0) + : m_enabled(false), m_tracingFlag(false), m_timestampFlag(false), m_totalNumberOfSteps(0), m_currentStepOffset(0) { } @@ -50,12 +73,23 @@ public: return GetStaticInstance().m_tracingFlag; } + static bool GetTimestampingFlag() + { + return GetStaticInstance().m_timestampFlag; + } + static void SetTracingFlag() { auto& us = GetStaticInstance(); us.m_tracingFlag = true; } + static void SetTimestampingFlag() + { + auto& us = GetStaticInstance(); + us.m_timestampFlag = true; + } + // call TraceTotalNumberOfSteps() to set the total number of steps // Calling this with totalNumberOfSteps>0 will enable progress tracing. static void TraceTotalNumberOfSteps(size_t totalNumberOfSteps) diff --git a/Source/Common/fileutil.cpp b/Source/Common/fileutil.cpp index a30d89376..d90ae5996 100644 --- a/Source/Common/fileutil.cpp +++ b/Source/Common/fileutil.cpp @@ -609,11 +609,6 @@ void renameOrDie(const std::string& from, const std::string& to) // WORKAROUND: "rename" should do this but this is a workaround // to the HDFS FUSE implementation's bug of failing to do so // workaround for FUSE rename when running on Philly - if (ProgressTracing::GetTracingFlag()) - { - fprintf(stderr, "rename %s to %s\n", from.c_str(), to.c_str()); - } - unlinkOrDie(to); if (rename(from.c_str(), to.c_str()) != 0) { diff --git a/Source/ComputationNetworkLib/ComputationNetworkAnalysis.cpp b/Source/ComputationNetworkLib/ComputationNetworkAnalysis.cpp index b865f50f0..a60e0655d 100644 --- a/Source/ComputationNetworkLib/ComputationNetworkAnalysis.cpp +++ b/Source/ComputationNetworkLib/ComputationNetworkAnalysis.cpp @@ -94,7 +94,9 @@ void ComputationNetwork::FormRecurrentLoops(const ComputationNodeBasePtr& rootNo if (node->Input(i)->m_loopId == node->m_loopId && GetRecurrenceSteppingDirection(node) == 0/*not a Delay node*/) { // assert(node->Input(i)->m_indexInLoop == 0); // No. It seems this variable really counts the number of parents. - node->Input(i)->m_indexInLoop++; // BUGBUG: this is bumping up the m_indexInLoop, but I don't think it is initialized anywhere other than PurgeStateForFormingRecurrentLoops(). i-1? + + // BUGBUG: this is bumping up the m_indexInLoop, but I don't think it is initialized anywhere other than PurgeStateForFormingRecurrentLoops(). i-1? + node->Input(i)->m_indexInLoop++; } } } diff --git a/Source/ComputationNetworkLib/ComputationNetworkEvaluation.cpp b/Source/ComputationNetworkLib/ComputationNetworkEvaluation.cpp index 77e5fac3c..bcbc92b4c 100644 --- a/Source/ComputationNetworkLib/ComputationNetworkEvaluation.cpp +++ b/Source/ComputationNetworkLib/ComputationNetworkEvaluation.cpp @@ -114,9 +114,11 @@ ComputationNetwork::PARTraversalFlowControlNode::PARTraversalFlowControlNode(con { // instead of the node itself, include the sentinel SEQTraversalFlowControlNode in our list m_nestedNodes.push_back(recInfo); + // and verify that we only encountered the loop once (all nodes should have been consecutive) if (!loopsSeen.insert(recInfo).second) LogicError("PARTraversalFlowControlNode: members of loop %ls are not consecutive in node list.", recInfo->NodeName().c_str()); + // consume all nodes that are part of the same loop (they are all consecutive) while (nodeIter != allNodes.end() && (*nodeIter)->IsPartOfLoop() && FindInRecurrentLoops(recurrentInfo, *nodeIter) == recInfo) nodeIter++; @@ -303,8 +305,10 @@ ComputationNetwork::PARTraversalFlowControlNode::PARTraversalFlowControlNode(con // look in all recurrent loops of the network // TODO: Check for IsPartOfLoop(). Also why not store the loop id in the node for direct lookup? for (auto& iter : recurrentInfo) + { if (std::find(iter->m_nestedNodes.begin(), iter->m_nestedNodes.end(), node) != iter->m_nestedNodes.end()) // TODO: should this loop need to be a method of SEQTraversalFlowControlNode? return iter; + } return nullptr; // not part of a recurrent loop } @@ -357,8 +361,10 @@ void ComputationNetwork::PrintComputationTree(const ComputationNodeBasePtr& root if (nodes.size() == 0) fprintf(stderr, "\n(empty)\n"); else + { for (const auto& node : nodes) node->PrintSelf(printMatrices); + } } // ----------------------------------------------------------------------- @@ -397,9 +403,11 @@ void ComputationNetwork::CompileNetwork() // all steps below have to be repeated for all root nodes (=nodes without parents and PreComputeNodes) DetermineSetOfAllRoots(); - fprintf(stderr, "\n%d roots:\n", (int) m_allRoots.size()); + fprintf(stderr, "\n%d roots:\n", (int)m_allRoots.size()); for (const auto& root : m_allRoots) + { fprintf(stderr, "\t%ls = %ls\n", root->NodeName().c_str(), root->OperationName().c_str()); + } // Note: Steps below are loops over root nodes. We will gradually push those loops through to the functions, // to reduce redundant operation on shared portions of the network. @@ -473,10 +481,13 @@ void ComputationNetwork::DetermineSetOfAllRoots() set allKnownRoots; for (const auto& node : FinalCriterionNodes()) allKnownRoots.insert(node); + for (const auto& node : EvaluationNodes()) allKnownRoots.insert(node); + for (const auto& node : OutputNodes()) allKnownRoots.insert(node); + for (const auto& iter : m_nameToNodeMap) // PreComputeNodes { auto node = iter.second; @@ -513,7 +524,9 @@ void ComputationNetwork::ValidateNetwork() // set up MBLayout links of inputs (all others get propagated upwards through Validate()) // TODO: Once we support mismatching layouts, this will be more involved. For now, everything shares the one layout that the Network knows about. for (auto node : InputNodes(nullptr)) + { node->LinkToMBLayout(m_pMBLayout); + } // we call all nodes' Validate() in order to validate, that is, set up MBLayout and FunctionValues dimension // A problem is that recurrent loops may require partial validation. @@ -542,6 +555,7 @@ void ComputationNetwork::ValidateNetwork() } fprintf(stderr, "\nValidating network, final pass.\n\n"); toValidate = ValidateNodes(nodes, /*isFirstPass=*/pass == 1, true /*isFinalValidationPass*/); + if (toValidate != 0) LogicError("ValidateSubNetwork: ValidateNodes(true) unexpectedly returned with work left to do."); @@ -571,7 +585,7 @@ void ComputationNetwork::ValidateNetwork() } if (!nonDefaultNodes.empty()) { - fprintf(stderr, "%d out of %d nodes do not share the minibatch layout with the input data.\n", (int) nonDefaultNodes.size(), (int) nodes.size()); + fprintf(stderr, "%d out of %d nodes do not share the minibatch layout with the input data.\n", (int)nonDefaultNodes.size(), (int)nodes.size()); // for (auto node : nonDefaultNodes) // fprintf(stderr, " %ls\n", node->NodeName().c_str()); // fprintf(stderr, "\n\n"); @@ -631,6 +645,7 @@ size_t ComputationNetwork::ValidateNodes(list nodes, boo hasVisitedChild |= child->m_visited; // if not a single visited child then no point in validating allChildrenVisited &= child->m_visited; } + // if there is not at least one visited child bool valid = false; if (hasVisitedChild || isLeaf) // got at least one child: it makes sense to call Validate() @@ -652,8 +667,10 @@ size_t ComputationNetwork::ValidateNodes(list nodes, boo node->m_visited = true; // print the new type // sanity checks + if (isFinalValidationPass && !unchanged) LogicError("ValidateSubNetwork: %ls %ls operation changed during final validation.", node->NodeName().c_str(), node->OperationName().c_str()); + if (isFinalValidationPass && !allChildrenVisited) LogicError("ValidateSubNetwork: %ls %ls operation in final validation although not all children were visited?", node->NodeName().c_str(), node->OperationName().c_str()); // if all children valid then @@ -830,7 +847,7 @@ void ComputationNetwork::AllocateAllMatrices(const std::vectorRequestMatricesBeforeForwardProp(m_matrixPool); - // we only release matrices for the children since the root node's informatioin will be used and should not be shared + // we only release matrices for the children since the root node's information will be used and should not be shared // with others ReleaseMatricesAfterEvalForChildren(nodeIter, parentCount); } diff --git a/Source/SGDLib/SGD.cpp b/Source/SGDLib/SGD.cpp index 463f2aa37..adfe55d4e 100644 --- a/Source/SGDLib/SGD.cpp +++ b/Source/SGDLib/SGD.cpp @@ -44,22 +44,23 @@ void SGD::Train(function createN int startEpoch = DetermineStartEpoch(makeMode); if (startEpoch == m_maxEpochs) { - fprintf(stderr, "No further training is necessary.\n"); + LOGPRINTF(stderr, "No further training is necessary.\n"); return; } wstring modelFileName = GetModelNameForEpoch(int(startEpoch) - 1); bool loadNetworkFromCheckpoint = startEpoch >= 0; + fprintf(stderr, "\n"); if (loadNetworkFromCheckpoint) - fprintf(stderr, "\nStarting from checkpoint. Loading network from '%ls'.\n", modelFileName.c_str()); + LOGPRINTF(stderr, "Starting from checkpoint. Loading network from '%ls'.\n", modelFileName.c_str()); else - fprintf(stderr, "\nCreating virgin network.\n"); + LOGPRINTF(stderr, "Creating virgin network.\n"); // create or load from checkpoint shared_ptr net = !loadNetworkFromCheckpoint ? createNetworkFn(deviceId) : ComputationNetwork::CreateFromFile(deviceId, modelFileName); // log the device we are computing on - fprintf(stderr, "%s model with %d nodes", loadNetworkFromCheckpoint ? "Loaded" : "Created", (int)net->GetTotalNumberOfNodes()); + LOGPRINTF(stderr, "%s model with %d nodes", loadNetworkFromCheckpoint ? "Loaded" : "Created", (int)net->GetTotalNumberOfNodes()); if (net->GetDeviceId() < 0) fprintf(stderr, " on CPU.\n"); else @@ -74,6 +75,7 @@ void SGD::Train(function createN // set tracing flags for (const auto& traceNodeName : m_traceNodeNamesReal) net->GetNodeFromName(traceNodeName)->EnableNodeTracing(/*isCategoryLabel=*/false); + for (const auto& traceNodeName : m_traceNodeNamesCategory) net->GetNodeFromName(traceNodeName)->EnableNodeTracing(/*isCategoryLabel=*/true); @@ -93,7 +95,7 @@ void SGD::Adapt(wstring origModelFileName, wstring refNodeName, int startEpoch = DetermineStartEpoch(makeMode); if (startEpoch == m_maxEpochs) { - fprintf(stderr, "No further training is necessary.\n"); + LOGPRINTF(stderr, "No further training is necessary.\n"); return; } @@ -102,13 +104,13 @@ void SGD::Adapt(wstring origModelFileName, wstring refNodeName, if (startEpoch >= 0) { wstring modelFileName = GetModelNameForEpoch(int(startEpoch) - 1); - fprintf(stderr, "Starting from checkpoint. Loading network from '%ls'.\n", modelFileName.c_str()); + LOGPRINTF(stderr, "Starting from checkpoint. Loading network from '%ls'.\n", modelFileName.c_str()); net = ComputationNetwork::CreateFromFile(deviceId, modelFileName); networkLoadedFromCheckpoint = true; } else { - fprintf(stderr, "Load Network From the original model file %ls.\n", origModelFileName.c_str()); + LOGPRINTF(stderr, "Load Network From the original model file %ls.\n", origModelFileName.c_str()); net = ComputationNetwork::CreateFromFile(deviceId, origModelFileName); } @@ -118,14 +120,14 @@ void SGD::Adapt(wstring origModelFileName, wstring refNodeName, m_needAdaptRegularization = m_adaptationRegType != AdaptationRegType::None && m_adaptationRegWeight > 0; if (m_needAdaptRegularization) { - fprintf(stderr, "Load reference Network From the original model file %ls.\n", origModelFileName.c_str()); + LOGPRINTF(stderr, "Load reference Network From the original model file %ls.\n", origModelFileName.c_str()); refNet = ComputationNetwork::CreateFromFile(deviceId, origModelFileName); } ComputationNodeBasePtr refNode; if (m_needAdaptRegularization && m_adaptationRegType == AdaptationRegType::KL) { - fprintf(stderr, "Checking refNodeName %ls.\n", origModelFileName.c_str()); + LOGPRINTF(stderr, "Checking refNodeName %ls.\n", origModelFileName.c_str()); if (refNodeName == L"") InvalidArgument("refNodeName does not exist and is needed when adaptationRegType is KL."); refNode = refNet->GetNodeFromName(refNodeName); @@ -152,9 +154,12 @@ void SGD::TrainOrAdaptModel(int startEpoch, ComputationNetworkPtr net, auto& labelNodes = net->LabelNodes(); auto& criterionNodes = GetTrainCriterionNodes(net); - fprintf(stderr, "\nTraining criterion node(s):\n"); + fprintf(stderr, "\n"); + LOGPRINTF(stderr, "Training criterion node(s):\n"); for (const auto& node : criterionNodes) - fprintf(stderr, "\t%ls = %ls\n", node->NodeName().c_str(), node->OperationName().c_str()); + { + LOGPRINTF(stderr, "\t%ls = %ls\n", node->NodeName().c_str(), node->OperationName().c_str()); + } // determine evaluationNodes from GetEvalCriterionNodes(), ensuring each criterion is only logged once std::vector evaluationNodes; @@ -170,9 +175,13 @@ void SGD::TrainOrAdaptModel(int startEpoch, ComputationNetworkPtr net, if (!evaluationNodes.empty()) { - fprintf(stderr, "\nEvaluation criterion node(s):\n"); + fprintf(stderr, "\n"); + LOGPRINTF(stderr, "Evaluation criterion node(s):\n"); + fprintf(stderr, "\n"); for (const auto& node : evaluationNodes) - fprintf(stderr, "\t%ls = %ls\n", node->NodeName().c_str(), node->OperationName().c_str()); + { + LOGPRINTF(stderr, "\t%ls = %ls\n", node->NodeName().c_str(), node->OperationName().c_str()); + } } } @@ -389,8 +398,8 @@ void SGD::TrainOrAdaptModel(int startEpoch, ComputationNetworkPtr net, if (learnRatePerSample < m_minLearnRate) { - fprintf(stderr, "Learn Rate Per Sample for Epoch[%d] = %.8g is less than minLearnRate %.8g. Training complete.\n", - i + 1, learnRatePerSample, m_minLearnRate); + LOGPRINTF(stderr, "Learn Rate Per Sample for Epoch[%d] = %.8g is less than minLearnRate %.8g. Training complete.\n", + i + 1, learnRatePerSample, m_minLearnRate); if (m_autoLearnRateSearchType != LearningRateSearchAlgorithm::None) { // In case of parallel training only the main node should we saving the model to prevent @@ -440,8 +449,9 @@ void SGD::TrainOrAdaptModel(int startEpoch, ComputationNetworkPtr net, double momentumAsTimeConstant = momentumPerSample == 0.0 ? 0.0 : momentumPerSample >= 1.0 ? 0.0 : -1.0 / log(momentumPerSample); - fprintf(stderr, "\nStarting Epoch %d: learning rate per sample = %f effective momentum = %f momentum as time constant = %.1f samples\n", - i + 1, learnRatePerSample, MomentumPerMB(momentumPerSample, actualMinibatchSize), momentumAsTimeConstant); + fprintf(stderr, "\n"); + LOGPRINTF(stderr, "Starting Epoch %d: learning rate per sample = %f effective momentum = %f momentum as time constant = %.1f samples\n", + i + 1, learnRatePerSample, MomentumPerMB(momentumPerSample, actualMinibatchSize), momentumAsTimeConstant); TrainOneEpoch(net, refNet, @@ -473,9 +483,9 @@ void SGD::TrainOrAdaptModel(int startEpoch, ComputationNetworkPtr net, lrControlCriterion = epochCriterion; } - fprintf(stderr, - "Finished Epoch[%2d of %d]: [Training Set] TrainLossPerSample = %.8g; TotalSamplesSeen = %d; ", - i + 1, (int)m_maxEpochs, epochCriterion, (int)totalSamplesSeen); + LOGPRINTF(stderr, + "Finished Epoch[%2d of %d]: [Training Set] TrainLossPerSample = %.8g; TotalSamplesSeen = %d; ", + i + 1, (int)m_maxEpochs, epochCriterion, (int)totalSamplesSeen); m_lastFinishedEpochTrainLoss = epochCriterion; if (epochEvalErrors.size() == 0) // no eval criterion, only train criterion itself { @@ -501,13 +511,13 @@ void SGD::TrainOrAdaptModel(int startEpoch, ComputationNetworkPtr net, learnRatePerSample, epochTime); // TODO: why these extra log messages here and not for 1 eval criterion? - fprintf(stderr, "Finished Epoch[%2d of %d]: Criterion Node [%ls] Per Sample = %.8g\n", - i + 1, (int) m_maxEpochs, criterionNodes[0]->NodeName().c_str(), epochCriterion); + LOGPRINTF(stderr, "Finished Epoch[%2d of %d]: Criterion Node [%ls] Per Sample = %.8g\n", + i + 1, (int) m_maxEpochs, criterionNodes[0]->NodeName().c_str(), epochCriterion); for (size_t j = 0; j < epochEvalErrors.size(); j++) { - fprintf(stderr, "Finished Epoch[%2d of %d]: Evaluation Node [%ls] Per Sample = %.8g\n", - i + 1, (int) m_maxEpochs, evalNodeNames[j].c_str(), epochEvalErrors[j]); + LOGPRINTF(stderr, "Finished Epoch[%2d of %d]: Evaluation Node [%ls] Per Sample = %.8g\n", + i + 1, (int) m_maxEpochs, evalNodeNames[j].c_str(), epochEvalErrors[j]); } } @@ -526,7 +536,7 @@ void SGD::TrainOrAdaptModel(int startEpoch, ComputationNetworkPtr net, // BUGBUG: We should not use the training MB size. The training MB size is constrained by both convergence and memory. Eval is only constrained by memory. vector vScore = evalforvalidation.Evaluate(validationSetDataReader, cvSetTrainAndEvalNodes, m_mbSize[i]); - fprintf(stderr, "Finished Epoch[%2d of %d]: [Validation Set] TrainLossPerSample = %.8g", i + 1, (int) m_maxEpochs, vScore[0]); + LOGPRINTF(stderr, "Finished Epoch[%2d of %d]: [Validation Set] TrainLossPerSample = %.8g", i + 1, (int) m_maxEpochs, vScore[0]); if (vScore.size() > 1) { fprintf(stderr, "; EvalErrPerSample = %.8g", vScore[1]); @@ -575,7 +585,7 @@ void SGD::TrainOrAdaptModel(int startEpoch, ComputationNetworkPtr net, if (m_loadBestModel) { auto bestModelPath = GetModelNameForEpoch(i - m_learnRateAdjustInterval); - fprintf(stderr, "Loading previous model with best training-criterion value: %ls.\n", bestModelPath.c_str()); + LOGPRINTF(stderr, "Loading previous model with best training-criterion value: %ls.\n", bestModelPath.c_str()); net->RereadPersistableParameters(bestModelPath); LoadCheckPointInfo(i - m_learnRateAdjustInterval, /*out*/ totalSamplesSeen, @@ -604,7 +614,7 @@ void SGD::TrainOrAdaptModel(int startEpoch, ComputationNetworkPtr net, if ((m_mpi == nullptr) || m_mpi->IsMainNode()) net->Save(GetModelNameForEpoch(i, true)); - fprintf(stderr, "Finished training and saved final model\n\n"); + LOGPRINTF(stderr, "Finished training and saved final model\n\n"); break; } } @@ -612,7 +622,7 @@ void SGD::TrainOrAdaptModel(int startEpoch, ComputationNetworkPtr net, if (learnRateReduced) { learnRatePerSample *= m_learnRateDecreaseFactor; - fprintf(stderr, "learnRatePerSample reduced to %.8g\n", learnRatePerSample); + LOGPRINTF(stderr, "learnRatePerSample reduced to %.8g\n", learnRatePerSample); } } else @@ -623,13 +633,13 @@ void SGD::TrainOrAdaptModel(int startEpoch, ComputationNetworkPtr net, { learnRatePerSample *= m_learnRateDecreaseFactor; - fprintf(stderr, "learnRatePerSample reduced to %.8g\n", learnRatePerSample); + LOGPRINTF(stderr, "learnRatePerSample reduced to %.8g\n", learnRatePerSample); } else if (prevCriterion - avgCriterion > m_increaseLearnRateIfImproveMoreThan * prevCriterion && prevCriterion != std::numeric_limits::infinity()) { learnRatePerSample *= m_learnRateIncreaseFactor; - fprintf(stderr, "learnRatePerSample increased to %.8g\n", learnRatePerSample); + LOGPRINTF(stderr, "learnRatePerSample increased to %.8g\n", learnRatePerSample); } } } @@ -659,7 +669,7 @@ void SGD::TrainOrAdaptModel(int startEpoch, ComputationNetworkPtr net, { SaveCheckPointInfo(i, totalSamplesSeen, learnRatePerSample, smoothedGradients, prevCriterion, chosenMinibatchSize); auto modelName = GetModelNameForEpoch(i); - fprintf(stderr, "SGD: Saving checkpoint model '%ls'\n", modelName.c_str()); + LOGPRINTF(stderr, "SGD: Saving checkpoint model '%ls'\n", modelName.c_str()); net->Save(modelName); if (!m_keepCheckPointFiles) { @@ -684,8 +694,8 @@ void SGD::TrainOrAdaptModel(int startEpoch, ComputationNetworkPtr net, if (learnRatePerSample < 1e-12) { - fprintf(stderr, "learnRate per sample is reduced to %.8g which is below 1e-12. stop training.\n", - learnRatePerSample); + LOGPRINTF(stderr, "learnRate per sample is reduced to %.8g which is below 1e-12. stop training.\n", + learnRatePerSample); } } // --- END OF MAIN EPOCH LOOP @@ -812,6 +822,7 @@ size_t SGD::TrainOneEpoch(ComputationNetworkPtr net, // Sub-minibatching is used if a single minibatch is too large to fit into GPU RAM. DataReaderHelpers::SubminibatchDispatcher smbDispatcher; size_t numSubminibatchesNeeded = DataReaderHelpers::GetNumSubminibatchesNeeded(trainSetDataReader, m_maxSamplesInRAM, m_numSubminiBatches, tunedMBSize); + // this is non-trivial, we need a manager object to handle this if (numSubminibatchesNeeded > 1) smbDispatcher.Init(net, learnableNodes, criterionNodes, evaluationNodes); @@ -824,26 +835,30 @@ size_t SGD::TrainOneEpoch(ComputationNetworkPtr net, // TODO: move the two-forward-pass support out of the reader, make a first-class citizen. AttemptUtteranceDerivativeFeatures(net, trainSetDataReader, featureNodes, inputMatrices); - fprintf(stderr, "\nStarting minibatch loop"); + fprintf(stderr, "\n"); + LOGPRINTF(stderr, "Starting minibatch loop"); if (useGradientAggregation) { fprintf(stderr, ", DataParallelSGD training (MyRank = %d, NumNodes = %d, NumGradientBits = %d)", (int) m_mpi->CurrentNodeRank(), (int) m_mpi->NumNodesInUse(), (int) m_numGradientBits); + if (m_bufferedAsyncGradientAggregation) { fprintf(stderr, ", BufferedAsyncGradientAggregation is ENABLED"); } } + if (useDistributedMBReading) { fprintf(stderr, ", distributed reading is ENABLED"); } + if (numSubminibatchesNeeded > 1) { if (m_maxSamplesInRAM < SIZE_MAX) - fprintf(stderr, ", with maximum %d samples in RAM", (int) m_maxSamplesInRAM); + fprintf(stderr, ", with maximum %d samples in RAM", (int)m_maxSamplesInRAM); else - fprintf(stderr, ", with %d subminibatch", (int) numSubminibatchesNeeded); + fprintf(stderr, ", with %d subminibatch", (int)numSubminibatchesNeeded); } fprintf(stderr, ".\n"); @@ -1103,7 +1118,7 @@ size_t SGD::TrainOneEpoch(ComputationNetworkPtr net, // progress tracing for regular log string formatString = "%s Epoch[%2d of %d]-Minibatch[%4d-%4d, %2." + std::to_string(mbProgNumPrecision) + "f%%]: SamplesSeen = %d; TrainLossPerSample = " + GeneratePaddedFloatOrExpFormat(11, 8, trainLossPerSample) + "; "; - SGDTrace(stderr, formatString.c_str(), + SGDTrace(stderr, true, formatString.c_str(), prefixMsg.c_str(), epochNumber + 1, m_maxEpochs, numMBsRun - m_numMBsToShowResult + 1, numMBsRun, mbProg * 100, numSamplesLastMBs, trainLossPerSample); } @@ -1113,7 +1128,7 @@ size_t SGD::TrainOneEpoch(ComputationNetworkPtr net, string formatString = "%s Epoch[%2d of %d]-Minibatch[%4d-%4d]: SamplesSeen = %d; TrainLossPerSample = " + GeneratePaddedFloatOrExpFormat(11, 8, trainLossPerSample) + "; "; - SGDTrace(stderr, formatString.c_str(), + SGDTrace(stderr, true, formatString.c_str(), prefixMsg.c_str(), epochNumber + 1, m_maxEpochs, numMBsRun - m_numMBsToShowResult + 1, numMBsRun, numSamplesLastMBs, trainLossPerSample); m_maxComputedEpochSize = numMBsRun * numSamplesLastMBs / m_numMBsToShowResult; @@ -1124,11 +1139,11 @@ size_t SGD::TrainOneEpoch(ComputationNetworkPtr net, { evalError = (epochEvalErrors[i] - epochEvalErrorsLastMBs[i]) / numSamplesLastMBs; string formatString = "EvalErr[%lu]PerSample = " + GeneratePaddedFloatOrExpFormat(0, 8, evalError) + "; "; - SGDTrace(stderr, formatString.c_str(), i, evalError); + SGDTrace(stderr, false, formatString.c_str(), i, evalError); } string formatString = "TotalTime = " + GeneratePaddedFloatOrExpFormat(0, 4, totalTimeInMBs) + "s; SamplesPerSecond = %.1f\n"; - SGDTrace(stderr, formatString.c_str(), totalTimeInMBs, numSamplesLastMBs / totalTimeInMBs); + SGDTrace(stderr, false, formatString.c_str(), totalTimeInMBs, numSamplesLastMBs / totalTimeInMBs); // progress tracing for compute cluster management if (wasProgressPrinted) @@ -1287,13 +1302,16 @@ bool SGD::PreCompute(ComputationNetworkPtr net, if (nodes.size() == 0) { - fprintf(stderr, "No PreCompute nodes found, skipping PreCompute step.\n"); + LOGPRINTF(stderr, "No PreCompute nodes found, skipping PreCompute step.\n"); return false; } - fprintf(stderr, "\nPrecomputing --> %lu PreCompute nodes found.\n\n", nodes.size()); + fprintf(stderr, "\n"); + LOGPRINTF(stderr, "Precomputing --> %lu PreCompute nodes found.\n\n", nodes.size()); for (const auto & node : nodes) - fprintf(stderr, "\tNodeName: %ls\n", (node->NodeName()).c_str()); + { + LOGPRINTF(stderr, "\tNodeName: %ls\n", (node->NodeName()).c_str()); + } // compute ScopedNetworkOperationMode modeGuard(net, NetworkOperationMode::preComputing); @@ -1328,9 +1346,12 @@ bool SGD::PreCompute(ComputationNetworkPtr net, // finalize for (auto & node : nodes) + { dynamic_pointer_cast(node)->MarkComputed(true /*done accumulating*/); + } - fprintf(stderr, "\nPrecomputing --> Completed.\n\n"); + fprintf(stderr, "\n"); + LOGPRINTF(stderr, "Precomputing --> Completed.\n\n"); return true; } @@ -1490,8 +1511,8 @@ double SGD::SearchForBestLearnRate(ComputationNetworkPtr net, bestLearnRatePerSample = (leftCriterion < rightCriterion) ? leftLearnRatePerSample : rightLearnRatePerSample; } - fprintf(stderr, "Best Learn Rate Per Sample for Epoch[%d] = %.10g baseCriterion=%.10g\n", - epochNumber + 1, bestLearnRatePerSample, baseCriterion); + LOGPRINTF(stderr, "Best Learn Rate Per Sample for Epoch[%d] = %.10g baseCriterion=%.10g\n", + epochNumber + 1, bestLearnRatePerSample, baseCriterion); return bestLearnRatePerSample; } @@ -1542,8 +1563,8 @@ size_t SGD::AdaptiveMinibatchSizing(ComputationNetworkPtr net, if (epochNumber < 2 && m_prevChosenMinibatchSize != 0) { // newly started training: any previous MB size stored in the model is to be ignored - fprintf(stderr, "before epoch .2, previous minibatchSize %zd is " - "considered invalid -> resetting\n", + LOGPRINTF(stderr, "before epoch .2, previous minibatchSize %zd is " + "considered invalid -> resetting\n", m_prevChosenMinibatchSize); m_prevChosenMinibatchSize = 0; } @@ -1553,9 +1574,9 @@ size_t SGD::AdaptiveMinibatchSizing(ComputationNetworkPtr net, (epochNumber + 1) > m_minibatchSizeTuningFrequency && (epochNumber + 1) % m_minibatchSizeTuningFrequency != 0) { - fprintf(stderr, "AdaptiveMinibatchSearch: Search for a better minibatchSize " - "in epoch %d skipped, keeping minibatchSize of %zd\n", - epochNumber + 1, m_prevChosenMinibatchSize); + LOGPRINTF(stderr, "AdaptiveMinibatchSearch: Search for a better minibatchSize " + "in epoch %d skipped, keeping minibatchSize of %zd\n", + epochNumber + 1, m_prevChosenMinibatchSize); chosenMinibatchSize = m_prevChosenMinibatchSize; } else @@ -1565,9 +1586,9 @@ size_t SGD::AdaptiveMinibatchSizing(ComputationNetworkPtr net, // if m_prevChosenMinibatchSize (the chosen minibatch size for the previous epoch) div 2 // is higher than initialMinibatchSize (the minibatch size we start with for this epoch), // then start the search with m_prevChosenMinibatchSize/2 instead of initialMinibatchSize. - fprintf(stderr, "AdaptiveMinibatchSearch: Limiting minMinibatchSize to " - "largest of previous minibatchSize = (%d / 2) or %d\n", - (int) m_prevChosenMinibatchSize, (int) minMinibatchSize); + LOGPRINTF(stderr, "AdaptiveMinibatchSearch: Limiting minMinibatchSize to " + "largest of previous minibatchSize = (%d / 2) or %d\n", + (int) m_prevChosenMinibatchSize, (int) minMinibatchSize); minMinibatchSize = max(minMinibatchSize, m_prevChosenMinibatchSize / 2); } @@ -1578,8 +1599,8 @@ size_t SGD::AdaptiveMinibatchSizing(ComputationNetworkPtr net, { assert(m_prevChosenMinibatchSize >= chosenMinibatchSize); - fprintf(stderr, "AdaptiveMinibatchSearch: Limiting maxMinibatchSize to " - "previous minibatchSize %zd*2\n", + LOGPRINTF(stderr, "AdaptiveMinibatchSearch: Limiting maxMinibatchSize to " + "previous minibatchSize %zd*2\n", m_prevChosenMinibatchSize); maxMinibatchSize = min(maxMinibatchSize, m_prevChosenMinibatchSize * 2); } @@ -1647,8 +1668,9 @@ size_t SGD::SearchForBestMinibatchSize(ComputationNetworkPtr net, // round mbsize to something meaningful trialMinibatchSize = RoundToMultipleOf64(trialMinibatchSizeFloat); - fprintf(stderr, "\nAdaptiveMinibatchSearch: Evaluating trial minibatchSize=%zd out of range %zd..%zd ...\n\n", - trialMinibatchSize, RoundToMultipleOf64(minMinibatchSize), RoundToMultipleOf64(maxMinibatchSize)); + fprintf(stderr, "\n"); + LOGPRINTF(stderr, "AdaptiveMinibatchSearch: Evaluating trial minibatchSize=%zd out of range %zd..%zd ...\n\n", + trialMinibatchSize, RoundToMultipleOf64(minMinibatchSize), RoundToMultipleOf64(maxMinibatchSize)); size_t totalSamplesSeen; std::vector epochEvalErrors(evaluationNodes.size(), std::numeric_limits::infinity()); @@ -1675,7 +1697,7 @@ size_t SGD::SearchForBestMinibatchSize(ComputationNetworkPtr net, lastTriedTrialEpochCriterion = baseCriterion; isFirstIteration = false; - fprintf(stderr, "AdaptiveMinibatchSearch: Computed BaseCriterion %.10g\n", baseCriterion); + LOGPRINTF(stderr, "AdaptiveMinibatchSearch: Computed BaseCriterion %.10g\n", baseCriterion); } else if (!std::isnan(epochCriterion) && (epochCriterion > (baseCriterion * (1.0 + (m_minibatchSearchCriterionErrorMargin / 100.0))))) @@ -1692,15 +1714,15 @@ size_t SGD::SearchForBestMinibatchSize(ComputationNetworkPtr net, lastTriedTrialEpochCriterion = epochCriterion; if (trialMinibatchSizeFloat * minibatchSizeTuningFactor <= maxMinibatchSize) { - fprintf(stderr, "AdaptiveMinibatchSearch: Keep searching... " - "EpochCriterion = %.10g vs BaseCriterion = %.10g\n", - epochCriterion, baseCriterion); + LOGPRINTF(stderr, "AdaptiveMinibatchSearch: Keep searching... " + "EpochCriterion = %.10g vs BaseCriterion = %.10g\n", + epochCriterion, baseCriterion); } } } - fprintf(stderr, "AdaptiveMinibatchSearch: Search successful!!! Chose new minibatchSize of %d. " - "EpochCriterion = %.10g vs BaseCriterion = %.10g\n\n", - (int) lastTriedTrialMinibatchSize, lastTriedTrialEpochCriterion, baseCriterion); + LOGPRINTF(stderr, "AdaptiveMinibatchSearch: Search successful!!! Chose new minibatchSize of %d. " + "EpochCriterion = %.10g vs BaseCriterion = %.10g\n\n", + (int) lastTriedTrialMinibatchSize, lastTriedTrialEpochCriterion, baseCriterion); return lastTriedTrialMinibatchSize; } @@ -1732,18 +1754,18 @@ void SGD::TrainOneMiniEpochAndReloadModel(ComputationNetworkPtr net, /*out*/ epochCriterion, /*out*/ epochEvalErrors, /*out*/ totalSamplesSeen, prefixMsg); - fprintf(stderr, "Finished Mini-Epoch For LearnRate Selection: TrainLossPerSample = %.8g;", epochCriterion); + LOGPRINTF(stderr, "Finished Mini-Epoch For LearnRate Selection: TrainLossPerSample = %.8g;", epochCriterion); if (epochEvalErrors.size() == 1) - fprintf(stderr, "EvalErrPerSample = %.8g; AvgLearningRatePerSample = %.8g\n", epochEvalErrors[0], learnRatePerSample); + LOGPRINTF(stderr, "EvalErrPerSample = %.8g; AvgLearningRatePerSample = %.8g\n", epochEvalErrors[0], learnRatePerSample); else { - fprintf(stderr, "EvalErrPerSample "); + LOGPRINTF(stderr, "EvalErrPerSample "); for (size_t i = 0; i < epochEvalErrors.size(); i++) { - fprintf(stderr, "[%lu] = %.8g; ", i, epochEvalErrors[i]); + LOGPRINTF(stderr, "[%lu] = %.8g; ", i, epochEvalErrors[i]); } - fprintf(stderr, "AvgLearningRatePerSample = %.8g\n", learnRatePerSample); + LOGPRINTF(stderr, "AvgLearningRatePerSample = %.8g\n", learnRatePerSample); } int baseModelEpoch = epochNumber - 1; @@ -1813,13 +1835,18 @@ static string GeneratePaddedFloatOrExpFormat(int padSize, int precision, double } template -int SGD::SGDTrace(FILE* __restrict __stream, const char* __restrict __format, ...) +int SGD::SGDTrace(FILE* __restrict __stream, bool isPrependTimestamp, const char* __restrict __format, ...) { int result = 0; if (m_traceLevel > 0) { va_list args; va_start(args, __format); + if (isPrependTimestamp) + { + PREPENDTS(__stream); + } + result = vfprintf(__stream, __format, args); va_end(args); } @@ -1886,10 +1913,10 @@ template // we use simple linear (instead of log linear) scaling here const double momentum = MomentumPerMB(momentumPerSample, actualMBSize); #if DUMPOUTPUT - fprintf(stderr, "learnRatePerSample=%0.8f, momentum=%0.8f, actualMBSize=%ld\n", - learnRatePerSample, momentum, actualMBSize); - fprintf(stderr, "sgd->GradUpdateType()=%d, sgd->GradientUpdateNoiseStd()=%0.8f\n", - sgd->GradUpdateType(), sgd->GradientUpdateNoiseStd()); + LOGPRINTF(stderr, "learnRatePerSample=%0.8f, momentum=%0.8f, actualMBSize=%ld\n", + learnRatePerSample, momentum, actualMBSize); + LOGPRINTF(stderr, "sgd->GradUpdateType()=%d, sgd->GradientUpdateNoiseStd()=%0.8f\n", + sgd->GradUpdateType(), sgd->GradientUpdateNoiseStd()); gradientValues.Print("Gradient Input"); smoothedGradient.Print("Smoothed Gradient Input"); #endif @@ -1976,7 +2003,7 @@ void SGD::UpdateWeights(const ComputationNodeBasePtr& node, const bool useNesterovMomentum) const { #if DUMPOUTPUT - fprintf(stderr, "Update_%ls\n", node->NodeName().c_str()); + LOGPRINTF(stderr, "Update_%ls\n", node->NodeName().c_str()); #endif if (!node->IsParameterUpdateRequired()) LogicError("UpdateWeights() called for a learnable ComputationNode which has m_learningRateMultiplier == 0!"); @@ -2072,7 +2099,7 @@ bool SGD::LoadCheckPointInfo(const size_t epochNumber, wstring checkPointFileName = GetCheckPointFileNameForEpoch(int(epochNumber)); if (!fexists(checkPointFileName.c_str())) { - fprintf(stderr, "Warning: checkpoint file is missing. learning parameters will be initialized from 0\n"); + LOGPRINTF(stderr, "Warning: checkpoint file is missing. learning parameters will be initialized from 0\n"); return false; } @@ -2167,7 +2194,7 @@ int SGD::DetermineStartEpoch(const bool makeMode) } } if (firstEpoch == m_maxEpochs) - fprintf(stderr, "Final model exists: %ls\n", GetModelNameForEpoch(firstEpoch - 1).c_str()); + LOGPRINTF(stderr, "Final model exists: %ls\n", GetModelNameForEpoch(firstEpoch - 1).c_str()); return firstEpoch; } @@ -2201,7 +2228,8 @@ bool SGD::GradientCheck(ComputationNetworkPtr net, irow = max(0, irow); icol = max(0, icol); - fprintf(stderr, "\n###### d%ls######\n", node->NodeName().c_str()); + fprintf(stderr, "\n"); + LOGPRINTF(stderr, "###### d%ls######\n", node->NodeName().c_str()); double eOrg = node->Value()(irow, icol); node->Value().TransferToDeviceIfNotThere(net->GetDeviceId(), true); @@ -2259,8 +2287,9 @@ bool SGD::GradientCheck(ComputationNetworkPtr net, bool wrong = (std::isnan(diff) || diff > threshold); if (wrong) { - fprintf(stderr, "\nd%ls Numeric gradient = %e, Error BP gradient = %e\n", - node->NodeName().c_str(), eGradNum, eGradErr); + fprintf(stderr, "\n"); + LOGPRINTF(stderr, "d%ls Numeric gradient = %e, Error BP gradient = %e\n", + node->NodeName().c_str(), eGradNum, eGradErr); sprintf(wstrtmp, "\nd%ls Numeric gradient = %e, Error BP gradient = %e\n", node->NodeName().c_str(), eGradNum, eGradErr); errMsgs.push_back(wstrtmp); diff --git a/Source/SGDLib/SGD.h b/Source/SGDLib/SGD.h index c0e503786..77f0a3108 100644 --- a/Source/SGDLib/SGD.h +++ b/Source/SGDLib/SGD.h @@ -537,7 +537,7 @@ protected: shared_ptr> m_pMASGDHelper; private: - int SGDTrace(FILE* __restrict __stream, const char* __restrict __format, ...); + int SGDTrace(FILE* __restrict __stream, bool isPrependTimestamp, const char* __restrict __format, ...); }; }}} diff --git a/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/DoublePrecision/baseline.cpu.txt b/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/DoublePrecision/baseline.cpu.txt index f686a0048..114e63a93 100644 --- a/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/DoublePrecision/baseline.cpu.txt +++ b/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/DoublePrecision/baseline.cpu.txt @@ -512,7 +512,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14587123; EvalErr[0]PerSample = 0.06400000; TotalTime = 2.60663s; TotalTimePerSample = 10.42652ms; SamplesPerSecond = 95 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15919599; EvalErrPerSample = 0.0765; AvgLearningRatePerSample = 0.00800000038; EpochTime=104.16469 MPI Rank 0: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: running on localhost at 2015/10/06 12:01:30 MPI Rank 1: command line options: @@ -987,7 +987,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14587123; EvalErr[0]PerSample = 0.06400000; TotalTime = 2.63654s; TotalTimePerSample = 10.54614ms; SamplesPerSecond = 94 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15919599; EvalErrPerSample = 0.0765; AvgLearningRatePerSample = 0.00800000038; EpochTime=104.15309 MPI Rank 1: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: running on localhost at 2015/10/06 12:01:30 MPI Rank 2: command line options: @@ -1462,7 +1462,7 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14587123; EvalErr[0]PerSample = 0.06400000; TotalTime = 2.61322s; TotalTimePerSample = 10.45290ms; SamplesPerSecond = 95 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15919599; EvalErrPerSample = 0.0765; AvgLearningRatePerSample = 0.00800000038; EpochTime=104.16806 MPI Rank 2: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: running on localhost at 2015/10/06 12:01:31 MPI Rank 3: command line options: @@ -1937,5 +1937,5 @@ MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14587123; EvalErr[0]PerSample = 0.06400000; TotalTime = 2.58782s; TotalTimePerSample = 10.35128ms; SamplesPerSecond = 96 MPI Rank 3: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15919599; EvalErrPerSample = 0.0765; AvgLearningRatePerSample = 0.00800000038; EpochTime=104.17161 MPI Rank 3: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper diff --git a/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/DoublePrecision/baseline.gpu.txt b/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/DoublePrecision/baseline.gpu.txt index e6211f46c..dac2722f0 100644 --- a/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/DoublePrecision/baseline.gpu.txt +++ b/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/DoublePrecision/baseline.gpu.txt @@ -512,7 +512,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14604076; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.09571s; TotalTimePerSample = 0.38285ms; SamplesPerSecond = 2612 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15920517; EvalErrPerSample = 0.0766; AvgLearningRatePerSample = 0.00800000038; EpochTime=3.84576 MPI Rank 0: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: running on localhost at 2015/10/06 11:58:26 MPI Rank 1: command line options: @@ -987,7 +987,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14604076; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.09571s; TotalTimePerSample = 0.38285ms; SamplesPerSecond = 2612 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15920517; EvalErrPerSample = 0.0766; AvgLearningRatePerSample = 0.00800000038; EpochTime=3.845791 MPI Rank 1: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: running on localhost at 2015/10/06 11:58:27 MPI Rank 2: command line options: @@ -1462,7 +1462,7 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14604076; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.09571s; TotalTimePerSample = 0.38284ms; SamplesPerSecond = 2612 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15920517; EvalErrPerSample = 0.0766; AvgLearningRatePerSample = 0.00800000038; EpochTime=3.845644 MPI Rank 2: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: running on localhost at 2015/10/06 11:58:27 MPI Rank 3: command line options: @@ -1937,5 +1937,5 @@ MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14604076; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.09571s; TotalTimePerSample = 0.38284ms; SamplesPerSecond = 2612 MPI Rank 3: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15920517; EvalErrPerSample = 0.0766; AvgLearningRatePerSample = 0.00800000038; EpochTime=3.845718 MPI Rank 3: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper diff --git a/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/DoublePrecision/baseline.windows.cpu.txt b/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/DoublePrecision/baseline.windows.cpu.txt index 9d04585f9..b39194776 100644 --- a/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/DoublePrecision/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/DoublePrecision/baseline.windows.cpu.txt @@ -518,7 +518,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14624377; EvalErr[0]PerSample = 0.06800000; TotalTime = 0.09126s; TotalTimePerSample = 0.36503ms; SamplesPerSecond = 2739 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.159072; EvalErrPerSample = 0.0774; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.243167 MPI Rank 0: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151006100025.151784\ParallelTraining\NoQuantization_DoublePrecision@debug_cpu/stderr_SimpleMultiGPU.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -1003,7 +1003,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14624377; EvalErr[0]PerSample = 0.06800000; TotalTime = 0.09356s; TotalTimePerSample = 0.37426ms; SamplesPerSecond = 2671 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.159072; EvalErrPerSample = 0.0774; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.24663 MPI Rank 1: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151006100025.151784\ParallelTraining\NoQuantization_DoublePrecision@debug_cpu/stderr_SimpleMultiGPU.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -1488,7 +1488,7 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14624377; EvalErr[0]PerSample = 0.06800000; TotalTime = 0.09356s; TotalTimePerSample = 0.37426ms; SamplesPerSecond = 2671 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.159072; EvalErrPerSample = 0.0774; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.246647 MPI Rank 2: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151006100025.151784\ParallelTraining\NoQuantization_DoublePrecision@debug_cpu/stderr_SimpleMultiGPU.logrank3 MPI Rank 3: ------------------------------------------------------------------- @@ -1973,5 +1973,5 @@ MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14624377; EvalErr[0]PerSample = 0.06800000; TotalTime = 0.09126s; TotalTimePerSample = 0.36503ms; SamplesPerSecond = 2739 MPI Rank 3: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.159072; EvalErrPerSample = 0.0774; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.243121 MPI Rank 3: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper diff --git a/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/DoublePrecision/baseline.windows.gpu.txt b/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/DoublePrecision/baseline.windows.gpu.txt index dd5a59c56..85c4aa1ef 100644 --- a/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/DoublePrecision/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/DoublePrecision/baseline.windows.gpu.txt @@ -518,7 +518,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14604076; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.13598s; TotalTimePerSample = 0.54394ms; SamplesPerSecond = 1838 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15920517; EvalErrPerSample = 0.0766; AvgLearningRatePerSample = 0.00800000038; EpochTime=5.509512 MPI Rank 0: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151006100025.151784\ParallelTraining\NoQuantization_DoublePrecision@debug_gpu/stderr_SimpleMultiGPU.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -1003,7 +1003,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14604076; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.13600s; TotalTimePerSample = 0.54401ms; SamplesPerSecond = 1838 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15920517; EvalErrPerSample = 0.0766; AvgLearningRatePerSample = 0.00800000038; EpochTime=5.509397 MPI Rank 1: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151006100025.151784\ParallelTraining\NoQuantization_DoublePrecision@debug_gpu/stderr_SimpleMultiGPU.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -1488,7 +1488,7 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14604076; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.13601s; TotalTimePerSample = 0.54403ms; SamplesPerSecond = 1838 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15920517; EvalErrPerSample = 0.0766; AvgLearningRatePerSample = 0.00800000038; EpochTime=5.509323 MPI Rank 2: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151006100025.151784\ParallelTraining\NoQuantization_DoublePrecision@debug_gpu/stderr_SimpleMultiGPU.logrank3 MPI Rank 3: ------------------------------------------------------------------- @@ -1973,5 +1973,5 @@ MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14604076; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.13601s; TotalTimePerSample = 0.54403ms; SamplesPerSecond = 1838 MPI Rank 3: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15920517; EvalErrPerSample = 0.0766; AvgLearningRatePerSample = 0.00800000038; EpochTime=5.509212 MPI Rank 3: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper diff --git a/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/SinglePrecision/baseline.cpu.txt b/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/SinglePrecision/baseline.cpu.txt index 37b880adb..db05e1b81 100644 --- a/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/SinglePrecision/baseline.cpu.txt +++ b/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/SinglePrecision/baseline.cpu.txt @@ -496,7 +496,7 @@ MPI Rank 0: Epoch[ 4 of 10]-Minibatch[ 371- 380]: SamplesSeen = 250; TrainLossP MPI Rank 0: Epoch[ 4 of 10]-Minibatch[ 381- 390]: SamplesSeen = 250; TrainLossPerSample = 0.20657080; EvalErr[0]PerSample = 0.11600000; TotalTime = 5.56086s; TotalTimePerSample = 22.24344ms; SamplesPerSecond = 44 MPI Rank 0: Epoch[ 4 of 10]-Minibatch[ 391- 400]: SamplesSeen = 250; TrainLossPerSample = 0.14566553; EvalErr[0]PerSample = 0.06400000; TotalTime = 5.57143s; TotalTimePerSample = 22.28572ms; SamplesPerSecond = 44 MPI Rank 0: Finished Epoch[ 4 of 10]: [Training Set] TrainLossPerSample = 0.15888368; EvalErrPerSample = 0.076499999; AvgLearningRatePerSample = 0.00800000038; EpochTime=222.08354 -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: running on localhost at 2015/08/25 20:50:23 MPI Rank 1: command line options: @@ -955,7 +955,7 @@ MPI Rank 1: Epoch[ 4 of 10]-Minibatch[ 371- 380]: SamplesSeen = 250; TrainLossP MPI Rank 1: Epoch[ 4 of 10]-Minibatch[ 381- 390]: SamplesSeen = 250; TrainLossPerSample = 0.20657080; EvalErr[0]PerSample = 0.11600000; TotalTime = 5.56099s; TotalTimePerSample = 22.24397ms; SamplesPerSecond = 44 MPI Rank 1: Epoch[ 4 of 10]-Minibatch[ 391- 400]: SamplesSeen = 250; TrainLossPerSample = 0.14566553; EvalErr[0]PerSample = 0.06400000; TotalTime = 5.57339s; TotalTimePerSample = 22.29357ms; SamplesPerSecond = 44 MPI Rank 1: Finished Epoch[ 4 of 10]: [Training Set] TrainLossPerSample = 0.15888368; EvalErrPerSample = 0.076499999; AvgLearningRatePerSample = 0.00800000038; EpochTime=222.07455 -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: running on localhost at 2015/08/25 20:50:24 MPI Rank 2: command line options: @@ -1414,7 +1414,7 @@ MPI Rank 2: Epoch[ 4 of 10]-Minibatch[ 371- 380]: SamplesSeen = 250; TrainLossP MPI Rank 2: Epoch[ 4 of 10]-Minibatch[ 381- 390]: SamplesSeen = 250; TrainLossPerSample = 0.20657080; EvalErr[0]PerSample = 0.11600000; TotalTime = 5.56393s; TotalTimePerSample = 22.25572ms; SamplesPerSecond = 44 MPI Rank 2: Epoch[ 4 of 10]-Minibatch[ 391- 400]: SamplesSeen = 250; TrainLossPerSample = 0.14566553; EvalErr[0]PerSample = 0.06400000; TotalTime = 5.57187s; TotalTimePerSample = 22.28747ms; SamplesPerSecond = 44 MPI Rank 2: Finished Epoch[ 4 of 10]: [Training Set] TrainLossPerSample = 0.15888368; EvalErrPerSample = 0.076499999; AvgLearningRatePerSample = 0.00800000038; EpochTime=222.08799 -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: running on localhost at 2015/08/25 20:50:24 MPI Rank 3: command line options: @@ -1873,5 +1873,5 @@ MPI Rank 3: Epoch[ 4 of 10]-Minibatch[ 371- 380]: SamplesSeen = 250; TrainLossP MPI Rank 3: Epoch[ 4 of 10]-Minibatch[ 381- 390]: SamplesSeen = 250; TrainLossPerSample = 0.20657080; EvalErr[0]PerSample = 0.11600000; TotalTime = 5.54955s; TotalTimePerSample = 22.19822ms; SamplesPerSecond = 45 MPI Rank 3: Epoch[ 4 of 10]-Minibatch[ 391- 400]: SamplesSeen = 250; TrainLossPerSample = 0.14566553; EvalErr[0]PerSample = 0.06400000; TotalTime = 5.58100s; TotalTimePerSample = 22.32401ms; SamplesPerSecond = 44 MPI Rank 3: Finished Epoch[ 4 of 10]: [Training Set] TrainLossPerSample = 0.15888368; EvalErrPerSample = 0.076499999; AvgLearningRatePerSample = 0.00800000038; EpochTime=222.07455 -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper diff --git a/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/SinglePrecision/baseline.gpu.txt b/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/SinglePrecision/baseline.gpu.txt index 61f4a7554..4615d227f 100644 --- a/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/SinglePrecision/baseline.gpu.txt +++ b/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/SinglePrecision/baseline.gpu.txt @@ -631,7 +631,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14585245; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.12570s; TotalTimePerSample = 0.50281ms; SamplesPerSecond = 1988 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15914931; EvalErrPerSample = 0.0767; AvgLearningRatePerSample = 0.00800000038; EpochTime=5.018144 MPI Rank 0: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: running on localhost at 2015/10/24 12:44:54 MPI Rank 1: command line: @@ -1225,7 +1225,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14585245; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.12566s; TotalTimePerSample = 0.50264ms; SamplesPerSecond = 1989 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15914931; EvalErrPerSample = 0.0767; AvgLearningRatePerSample = 0.00800000038; EpochTime=5.01855 MPI Rank 1: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: running on localhost at 2015/10/24 12:44:54 MPI Rank 2: command line: @@ -1819,7 +1819,7 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14585245; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.12566s; TotalTimePerSample = 0.50262ms; SamplesPerSecond = 1989 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15914931; EvalErrPerSample = 0.0767; AvgLearningRatePerSample = 0.00800000038; EpochTime=5.018583 MPI Rank 2: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: running on localhost at 2015/10/24 12:44:55 MPI Rank 3: command line: @@ -2413,5 +2413,5 @@ MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14585245; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.12570s; TotalTimePerSample = 0.50282ms; SamplesPerSecond = 1988 MPI Rank 3: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15914931; EvalErrPerSample = 0.0767; AvgLearningRatePerSample = 0.00800000038; EpochTime=5.018182 MPI Rank 3: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper diff --git a/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/SinglePrecision/baseline.windows.cpu.txt b/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/SinglePrecision/baseline.windows.cpu.txt index 135d6ff42..b047b3277 100644 --- a/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/SinglePrecision/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/SinglePrecision/baseline.windows.cpu.txt @@ -502,7 +502,7 @@ MPI Rank 0: Epoch[ 4 of 10]-Minibatch[ 371- 380]: SamplesSeen = 250; TrainLossP MPI Rank 0: Epoch[ 4 of 10]-Minibatch[ 381- 390]: SamplesSeen = 250; TrainLossPerSample = 0.20619434; EvalErr[0]PerSample = 0.11200000; TotalTime = 0.12883s; TotalTimePerSample = 0.51532ms; SamplesPerSecond = 1940 MPI Rank 0: Epoch[ 4 of 10]-Minibatch[ 391- 400]: SamplesSeen = 250; TrainLossPerSample = 0.14624365; EvalErr[0]PerSample = 0.06800000; TotalTime = 0.12283s; TotalTimePerSample = 0.49132ms; SamplesPerSecond = 2035 MPI Rank 0: Finished Epoch[ 4 of 10]: [Training Set] TrainLossPerSample = 0.15907188; EvalErrPerSample = 0.077399999; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.887408 -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20150825180808.217636\ParallelTraining\NoQuantization_SinglePrecision@debug_cpu/stderr_SimpleMultiGPU.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -971,7 +971,7 @@ MPI Rank 1: Epoch[ 4 of 10]-Minibatch[ 371- 380]: SamplesSeen = 250; TrainLossP MPI Rank 1: Epoch[ 4 of 10]-Minibatch[ 381- 390]: SamplesSeen = 250; TrainLossPerSample = 0.20619434; EvalErr[0]PerSample = 0.11200000; TotalTime = 0.12881s; TotalTimePerSample = 0.51526ms; SamplesPerSecond = 1940 MPI Rank 1: Epoch[ 4 of 10]-Minibatch[ 391- 400]: SamplesSeen = 250; TrainLossPerSample = 0.14624365; EvalErr[0]PerSample = 0.06800000; TotalTime = 0.12287s; TotalTimePerSample = 0.49148ms; SamplesPerSecond = 2034 MPI Rank 1: Finished Epoch[ 4 of 10]: [Training Set] TrainLossPerSample = 0.15907188; EvalErrPerSample = 0.077399999; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.887381 -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20150825180808.217636\ParallelTraining\NoQuantization_SinglePrecision@debug_cpu/stderr_SimpleMultiGPU.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -1440,7 +1440,7 @@ MPI Rank 2: Epoch[ 4 of 10]-Minibatch[ 371- 380]: SamplesSeen = 250; TrainLossP MPI Rank 2: Epoch[ 4 of 10]-Minibatch[ 381- 390]: SamplesSeen = 250; TrainLossPerSample = 0.20619434; EvalErr[0]PerSample = 0.11200000; TotalTime = 0.12898s; TotalTimePerSample = 0.51592ms; SamplesPerSecond = 1938 MPI Rank 2: Epoch[ 4 of 10]-Minibatch[ 391- 400]: SamplesSeen = 250; TrainLossPerSample = 0.14624365; EvalErr[0]PerSample = 0.06800000; TotalTime = 0.12295s; TotalTimePerSample = 0.49182ms; SamplesPerSecond = 2033 MPI Rank 2: Finished Epoch[ 4 of 10]: [Training Set] TrainLossPerSample = 0.15907188; EvalErrPerSample = 0.077399999; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.887366 -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20150825180808.217636\ParallelTraining\NoQuantization_SinglePrecision@debug_cpu/stderr_SimpleMultiGPU.logrank3 MPI Rank 3: ------------------------------------------------------------------- @@ -1909,5 +1909,5 @@ MPI Rank 3: Epoch[ 4 of 10]-Minibatch[ 371- 380]: SamplesSeen = 250; TrainLossP MPI Rank 3: Epoch[ 4 of 10]-Minibatch[ 381- 390]: SamplesSeen = 250; TrainLossPerSample = 0.20619434; EvalErr[0]PerSample = 0.11200000; TotalTime = 0.12882s; TotalTimePerSample = 0.51529ms; SamplesPerSecond = 1940 MPI Rank 3: Epoch[ 4 of 10]-Minibatch[ 391- 400]: SamplesSeen = 250; TrainLossPerSample = 0.14624365; EvalErr[0]PerSample = 0.06800000; TotalTime = 0.12279s; TotalTimePerSample = 0.49116ms; SamplesPerSecond = 2036 MPI Rank 3: Finished Epoch[ 4 of 10]: [Training Set] TrainLossPerSample = 0.15907188; EvalErrPerSample = 0.077399999; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.887371 -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper diff --git a/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/SinglePrecision/baseline.windows.gpu.txt b/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/SinglePrecision/baseline.windows.gpu.txt index e7c567b18..8ec779c8f 100644 --- a/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/SinglePrecision/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/CNTKTextFormatReader/ParallelTraining/NoQuantization/SinglePrecision/baseline.windows.gpu.txt @@ -636,7 +636,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14585245; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.12520s; TotalTimePerSample = 0.50081ms; SamplesPerSecond = 1996 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15914931; EvalErrPerSample = 0.0767; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.931563 MPI Rank 0: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151024134937.188247\ParallelTraining\NoQuantization_SinglePrecision@debug_gpu/stderr_SimpleMultiGPU.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -1239,7 +1239,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14585245; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.12625s; TotalTimePerSample = 0.50498ms; SamplesPerSecond = 1980 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15914931; EvalErrPerSample = 0.0767; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.931591 MPI Rank 1: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151024134937.188247\ParallelTraining\NoQuantization_SinglePrecision@debug_gpu/stderr_SimpleMultiGPU.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -1842,7 +1842,7 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14585245; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.12606s; TotalTimePerSample = 0.50426ms; SamplesPerSecond = 1983 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15914931; EvalErrPerSample = 0.0767; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.931381 MPI Rank 2: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151024134937.188247\ParallelTraining\NoQuantization_SinglePrecision@debug_gpu/stderr_SimpleMultiGPU.logrank3 MPI Rank 3: ------------------------------------------------------------------- @@ -2445,5 +2445,5 @@ MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14585245; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.12588s; TotalTimePerSample = 0.50353ms; SamplesPerSecond = 1985 MPI Rank 3: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15914931; EvalErrPerSample = 0.0767; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.931393 MPI Rank 3: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.linux.debug.cpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.linux.debug.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.linux.debug.cpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.linux.debug.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.linux.debug.gpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.linux.debug.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.linux.debug.gpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.linux.debug.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.linux.release.cpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.linux.release.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.linux.release.cpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.linux.release.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.linux.release.gpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.linux.release.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.linux.release.gpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.linux.release.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.windows.debug.cpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.windows.debug.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.windows.debug.cpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.windows.debug.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.windows.debug.gpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.windows.debug.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.windows.debug.gpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.windows.debug.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.windows.release.cpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.windows.release.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.windows.release.cpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.windows.release.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.windows.release.gpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.windows.release.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.windows.release.gpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/baseline.windows.release.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/testcases.yml b/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/testcases.yml index e52344bfb..713182b70 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/testcases.yml +++ b/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/testcases.yml @@ -9,5 +9,5 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.linux.debug.cpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.linux.debug.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.linux.debug.cpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.linux.debug.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.linux.debug.gpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.linux.debug.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.linux.debug.gpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.linux.debug.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.linux.release.cpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.linux.release.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.linux.release.cpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.linux.release.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.linux.release.gpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.linux.release.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.linux.release.gpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.linux.release.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.windows.debug.cpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.windows.debug.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.windows.debug.cpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.windows.debug.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.windows.debug.gpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.windows.debug.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.windows.debug.gpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.windows.debug.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.windows.release.cpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.windows.release.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.windows.release.cpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.windows.release.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.windows.release.gpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.windows.release.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.windows.release.gpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/baseline.windows.release.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/testcases.yml b/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/testcases.yml index f7d5751e8..485f09752 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/testcases.yml +++ b/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/testcases.yml @@ -11,5 +11,5 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.linux.debug.cpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.linux.debug.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.linux.debug.cpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.linux.debug.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.linux.debug.gpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.linux.debug.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.linux.debug.gpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.linux.debug.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.linux.release.cpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.linux.release.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.linux.release.cpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.linux.release.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.linux.release.gpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.linux.release.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.linux.release.gpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.linux.release.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.windows.debug.cpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.windows.debug.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.windows.debug.cpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.windows.debug.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.windows.debug.gpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.windows.debug.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.windows.debug.gpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.windows.debug.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.windows.release.cpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.windows.release.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.windows.release.cpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.windows.release.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.windows.release.gpu.txt b/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.windows.release.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.windows.release.gpu.txt +++ b/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/baseline.windows.release.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/testcases.yml b/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/testcases.yml index 68b7fed82..3ad32557c 100644 --- a/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/testcases.yml +++ b/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/testcases.yml @@ -9,5 +9,5 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.linux.debug.cpu.txt b/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.linux.debug.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.linux.debug.cpu.txt +++ b/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.linux.debug.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.linux.debug.gpu.txt b/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.linux.debug.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.linux.debug.gpu.txt +++ b/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.linux.debug.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.linux.release.cpu.txt b/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.linux.release.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.linux.release.cpu.txt +++ b/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.linux.release.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.linux.release.gpu.txt b/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.linux.release.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.linux.release.gpu.txt +++ b/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.linux.release.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.windows.debug.cpu.txt b/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.windows.debug.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.windows.debug.cpu.txt +++ b/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.windows.debug.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.windows.debug.gpu.txt b/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.windows.debug.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.windows.debug.gpu.txt +++ b/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.windows.debug.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.windows.release.cpu.txt b/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.windows.release.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.windows.release.cpu.txt +++ b/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.windows.release.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.windows.release.gpu.txt b/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.windows.release.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.windows.release.gpu.txt +++ b/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/baseline.windows.release.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/testcases.yml b/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/testcases.yml index 3e1053097..bef057ef1 100644 --- a/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/testcases.yml +++ b/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/testcases.yml @@ -9,5 +9,5 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.linux.debug.cpu.txt b/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.linux.debug.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.linux.debug.cpu.txt +++ b/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.linux.debug.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.linux.debug.gpu.txt b/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.linux.debug.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.linux.debug.gpu.txt +++ b/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.linux.debug.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.linux.release.cpu.txt b/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.linux.release.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.linux.release.cpu.txt +++ b/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.linux.release.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.linux.release.gpu.txt b/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.linux.release.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.linux.release.gpu.txt +++ b/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.linux.release.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.windows.debug.cpu.txt b/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.windows.debug.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.windows.debug.cpu.txt +++ b/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.windows.debug.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.windows.debug.gpu.txt b/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.windows.debug.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.windows.debug.gpu.txt +++ b/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.windows.debug.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.windows.release.cpu.txt b/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.windows.release.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.windows.release.cpu.txt +++ b/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.windows.release.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.windows.release.gpu.txt b/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.windows.release.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.windows.release.gpu.txt +++ b/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/baseline.windows.release.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/testcases.yml b/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/testcases.yml index 200bdabb7..2a89172fa 100644 --- a/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/testcases.yml +++ b/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/testcases.yml @@ -9,5 +9,5 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.linux.debug.cpu.txt b/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.linux.debug.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.linux.debug.cpu.txt +++ b/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.linux.debug.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.linux.debug.gpu.txt b/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.linux.debug.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.linux.debug.gpu.txt +++ b/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.linux.debug.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.linux.release.cpu.txt b/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.linux.release.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.linux.release.cpu.txt +++ b/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.linux.release.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.linux.release.gpu.txt b/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.linux.release.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.linux.release.gpu.txt +++ b/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.linux.release.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.windows.debug.cpu.txt b/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.windows.debug.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.windows.debug.cpu.txt +++ b/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.windows.debug.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.windows.debug.gpu.txt b/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.windows.debug.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.windows.debug.gpu.txt +++ b/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.windows.debug.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.windows.release.cpu.txt b/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.windows.release.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.windows.release.cpu.txt +++ b/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.windows.release.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.windows.release.gpu.txt b/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.windows.release.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.windows.release.gpu.txt +++ b/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/baseline.windows.release.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/testcases.yml b/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/testcases.yml index 03ab69821..3a8ae7f09 100644 --- a/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/testcases.yml +++ b/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/testcases.yml @@ -9,5 +9,5 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.linux.debug.cpu.txt b/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.linux.debug.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.linux.debug.cpu.txt +++ b/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.linux.debug.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.linux.debug.gpu.txt b/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.linux.debug.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.linux.debug.gpu.txt +++ b/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.linux.debug.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.linux.release.cpu.txt b/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.linux.release.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.linux.release.cpu.txt +++ b/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.linux.release.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.linux.release.gpu.txt b/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.linux.release.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.linux.release.gpu.txt +++ b/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.linux.release.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.windows.debug.cpu.txt b/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.windows.debug.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.windows.debug.cpu.txt +++ b/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.windows.debug.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.windows.debug.gpu.txt b/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.windows.debug.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.windows.debug.gpu.txt +++ b/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.windows.debug.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.windows.release.cpu.txt b/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.windows.release.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.windows.release.cpu.txt +++ b/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.windows.release.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.windows.release.gpu.txt b/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.windows.release.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.windows.release.gpu.txt +++ b/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/baseline.windows.release.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/testcases.yml b/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/testcases.yml index 03ab69821..3a8ae7f09 100644 --- a/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/testcases.yml +++ b/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/testcases.yml @@ -9,5 +9,5 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.linux.debug.cpu.txt b/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.linux.debug.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.linux.debug.cpu.txt +++ b/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.linux.debug.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.linux.debug.gpu.txt b/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.linux.debug.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.linux.debug.gpu.txt +++ b/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.linux.debug.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.linux.release.cpu.txt b/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.linux.release.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.linux.release.cpu.txt +++ b/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.linux.release.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.linux.release.gpu.txt b/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.linux.release.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.linux.release.gpu.txt +++ b/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.linux.release.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.windows.debug.cpu.txt b/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.windows.debug.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.windows.debug.cpu.txt +++ b/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.windows.debug.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.windows.debug.gpu.txt b/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.windows.debug.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.windows.debug.gpu.txt +++ b/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.windows.debug.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.windows.release.cpu.txt b/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.windows.release.cpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.windows.release.cpu.txt +++ b/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.windows.release.cpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.windows.release.gpu.txt b/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.windows.release.gpu.txt index 814710451..284dfdff9 100644 --- a/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.windows.release.gpu.txt +++ b/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/baseline.windows.release.gpu.txt @@ -1 +1 @@ -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/testcases.yml b/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/testcases.yml index eadfab345..2d4d1a988 100644 --- a/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/testcases.yml +++ b/Tests/EndToEndTests/Examples/Text/PennTreebank/RNN/testcases.yml @@ -9,5 +9,5 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ diff --git a/Tests/EndToEndTests/Image/AlexNet/baseline.linux.debug.gpu.txt b/Tests/EndToEndTests/Image/AlexNet/baseline.linux.debug.gpu.txt index ebf740566..f670f0100 100644 --- a/Tests/EndToEndTests/Image/AlexNet/baseline.linux.debug.gpu.txt +++ b/Tests/EndToEndTests/Image/AlexNet/baseline.linux.debug.gpu.txt @@ -2533,4 +2533,4 @@ evalNodeNames are not specified, using all the default evalnodes and training cr Allocating matrices for forward and/or backward propagation. Minibatch[1-32]: Samples Seen = 500 Err: ErrorPrediction/Sample = 0.998 errTop5: ErrorPrediction/Sample = 0.992 CE: CrossEntropyWithSoftmax/Sample = 6.9591762 Final Results: Minibatch[1-32]: Samples Seen = 500 Err: ErrorPrediction/Sample = 0.998 errTop5: ErrorPrediction/Sample = 0.992 CE: CrossEntropyWithSoftmax/Sample = 6.9591762 Perplexity = 1052.766 -COMPLETED \ No newline at end of file +__COMPLETED__ diff --git a/Tests/EndToEndTests/Image/AlexNet/baseline.linux.release.gpu.txt b/Tests/EndToEndTests/Image/AlexNet/baseline.linux.release.gpu.txt index 410cebeaf..180170511 100644 --- a/Tests/EndToEndTests/Image/AlexNet/baseline.linux.release.gpu.txt +++ b/Tests/EndToEndTests/Image/AlexNet/baseline.linux.release.gpu.txt @@ -1075,9 +1075,11 @@ evalNodeNames are not specified, using all the default evalnodes and training cr Allocating matrices for forward and/or backward propagation. + Minibatch[1-32]: SamplesSeen = 500 Err: ErrorPrediction/Sample = 0.998 errTop5: ErrorPrediction/Sample = 0.996 CE: CrossEntropyWithSoftmax/Sample = 6.9611959 Final Results: Minibatch[1-32]: SamplesSeen = 500 Err: ErrorPrediction/Sample = 0.998 errTop5: ErrorPrediction/Sample = 0.996 CE: CrossEntropyWithSoftmax/Sample = 6.9611959 Perplexity = 1054.8943 Action "test" complete. -COMPLETED \ No newline at end of file +__COMPLETED__ + diff --git a/Tests/EndToEndTests/Image/AlexNet/baseline.windows.debug.gpu.txt b/Tests/EndToEndTests/Image/AlexNet/baseline.windows.debug.gpu.txt index 837103565..ce3b68629 100644 --- a/Tests/EndToEndTests/Image/AlexNet/baseline.windows.debug.gpu.txt +++ b/Tests/EndToEndTests/Image/AlexNet/baseline.windows.debug.gpu.txt @@ -2981,4 +2981,4 @@ CUDA error 11 [c:\tools\cub-1.4.1\cub\device\dispatch/dispatch_radix_sort.cuh, 7 CUDA error 11 [c:\tools\cub-1.4.1\cub\device\dispatch/dispatch_radix_sort.cuh, 796]: invalid argument Minibatch[1-32]: Samples Seen = 500 Err: ErrorPrediction/Sample = 1 errTop5: ErrorPrediction/Sample = 0.992 CE: CrossEntropyWithSoftmax/Sample = 6.9566009 Final Results: Minibatch[1-32]: Samples Seen = 500 Err: ErrorPrediction/Sample = 1 errTop5: ErrorPrediction/Sample = 0.992 CE: CrossEntropyWithSoftmax/Sample = 6.9566009 Perplexity = 1050.0582 -COMPLETED \ No newline at end of file +__COMPLETED__ diff --git a/Tests/EndToEndTests/Image/AlexNet/baseline.windows.release.gpu.txt b/Tests/EndToEndTests/Image/AlexNet/baseline.windows.release.gpu.txt index 7c41a970a..c8ed55786 100644 --- a/Tests/EndToEndTests/Image/AlexNet/baseline.windows.release.gpu.txt +++ b/Tests/EndToEndTests/Image/AlexNet/baseline.windows.release.gpu.txt @@ -2533,4 +2533,4 @@ evalNodeNames are not specified, using all the default evalnodes and training cr Allocating matrices for forward and/or backward propagation. Minibatch[1-32]: Samples Seen = 500 Err: ErrorPrediction/Sample = 1 errTop5: ErrorPrediction/Sample = 0.996 CE: CrossEntropyWithSoftmax/Sample = 6.9640379 Final Results: Minibatch[1-32]: Samples Seen = 500 Err: ErrorPrediction/Sample = 1 errTop5: ErrorPrediction/Sample = 0.996 CE: CrossEntropyWithSoftmax/Sample = 6.9640379 Perplexity = 1057.8967 -COMPLETED \ No newline at end of file +__COMPLETED__ diff --git a/Tests/EndToEndTests/Image/AlexNet/testcases.yml b/Tests/EndToEndTests/Image/AlexNet/testcases.yml index 8cc7a4340..cb80a662c 100644 --- a/Tests/EndToEndTests/Image/AlexNet/testcases.yml +++ b/Tests/EndToEndTests/Image/AlexNet/testcases.yml @@ -8,24 +8,24 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ Must train epochs in exactly same order and parameters: patterns: - - ^Starting Epoch {{integer}} + - Starting Epoch {{integer}} - learning rate per sample = {{float}} - momentum = {{float}} Epochs must be finished with expected results: patterns: - - ^Finished Epoch[{{integer}} of {{integer}}] + - Finished Epoch[{{integer}} of {{integer}}] - TrainLossPerSample = {{float,tolerance=.2%}} - EvalErrPerSample = {{float,tolerance=.2%}} - AvgLearningRatePerSample = {{float,tolerance=0.001%}} Per-minibatch training results must match: patterns: - - ^ Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} + - Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} - SamplesSeen = {{integer}} - TrainLossPerSample = {{float,tolerance=.2%}} diff --git a/Tests/EndToEndTests/Image/QuickE2E/baseline.linux.debug.gpu.txt b/Tests/EndToEndTests/Image/QuickE2E/baseline.linux.debug.gpu.txt index 3c5b6f82d..88bc52f36 100644 --- a/Tests/EndToEndTests/Image/QuickE2E/baseline.linux.debug.gpu.txt +++ b/Tests/EndToEndTests/Image/QuickE2E/baseline.linux.debug.gpu.txt @@ -913,7 +913,7 @@ already there from last epoch RandomOrdering: 21 retries for 100 elements (21.0%) to ensure window condition RandomOrdering: recached sequence for seed 0: 38, 46, ... Final Results: Minibatch[1-1]: Samples Seen = 100 err: ErrorPrediction/Sample = 0 ce: CrossEntropyWithSoftmax/Sample = 0.30271576 Perplexity = 1.3535297 -COMPLETED +__COMPLETED__ === Deleting last epoch data ==== Re-running from checkpoint @@ -1734,4 +1734,4 @@ already there from last epoch RandomOrdering: 21 retries for 100 elements (21.0%) to ensure window condition RandomOrdering: recached sequence for seed 0: 38, 46, ... Final Results: Minibatch[1-1]: Samples Seen = 100 err: ErrorPrediction/Sample = 0 ce: CrossEntropyWithSoftmax/Sample = 0.31798401 Perplexity = 1.3743543 -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Image/QuickE2E/baseline.linux.release.gpu.txt b/Tests/EndToEndTests/Image/QuickE2E/baseline.linux.release.gpu.txt index 2dcc47bf6..b2356fea8 100644 --- a/Tests/EndToEndTests/Image/QuickE2E/baseline.linux.release.gpu.txt +++ b/Tests/EndToEndTests/Image/QuickE2E/baseline.linux.release.gpu.txt @@ -915,7 +915,7 @@ RandomOrdering: 21 retries for 100 elements (21.0%) to ensure window condition RandomOrdering: recached sequence for seed 0: 38, 46, ... MBLayout::Init: Resizing m_distanceToStart from 1 x 0 to 100 x 1 Final Results: Minibatch[1-1]: Samples Seen = 100 err: ErrorPrediction/Sample = 0 ce: CrossEntropyWithSoftmax/Sample = 0.30270519 Perplexity = 1.3535154 -COMPLETED +__COMPLETED__ === Deleting last epoch data ==== Re-running from checkpoint ------------------------------------------------------------------- @@ -1737,4 +1737,4 @@ RandomOrdering: 21 retries for 100 elements (21.0%) to ensure window condition RandomOrdering: recached sequence for seed 0: 38, 46, ... MBLayout::Init: Resizing m_distanceToStart from 1 x 0 to 100 x 1 Final Results: Minibatch[1-1]: Samples Seen = 100 err: ErrorPrediction/Sample = 0 ce: CrossEntropyWithSoftmax/Sample = 0.31781933 Perplexity = 1.374128 -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Image/QuickE2E/baseline.windows.debug.cpu.txt b/Tests/EndToEndTests/Image/QuickE2E/baseline.windows.debug.cpu.txt index 396954569..e088befb2 100644 --- a/Tests/EndToEndTests/Image/QuickE2E/baseline.windows.debug.cpu.txt +++ b/Tests/EndToEndTests/Image/QuickE2E/baseline.windows.debug.cpu.txt @@ -1468,7 +1468,7 @@ already there from last epoch randomordering: 11 retries for 100 elements (11.0%) to ensure window condition randomordering: recached sequence for seed 0: 15, 33, ... Final Results: Minibatch[1-1]: Samples Seen = 100 Err: ErrorPrediction/Sample = 0 CE: CrossEntropyWithSoftmax/Sample = 0.31800278 Perplexity = 1.3743801 -COMPLETED +__COMPLETED__ === Deleting last epoch data ==== Re-running from checkpoint ------------------------------------------------------------------- @@ -2844,4 +2844,4 @@ already there from last epoch randomordering: 11 retries for 100 elements (11.0%) to ensure window condition randomordering: recached sequence for seed 0: 15, 33, ... Final Results: Minibatch[1-1]: Samples Seen = 100 Err: ErrorPrediction/Sample = 0 CE: CrossEntropyWithSoftmax/Sample = 0.33039909 Perplexity = 1.3915234 -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Image/QuickE2E/baseline.windows.debug.gpu.txt b/Tests/EndToEndTests/Image/QuickE2E/baseline.windows.debug.gpu.txt index a0f43cc3a..27e5f3435 100644 --- a/Tests/EndToEndTests/Image/QuickE2E/baseline.windows.debug.gpu.txt +++ b/Tests/EndToEndTests/Image/QuickE2E/baseline.windows.debug.gpu.txt @@ -910,7 +910,7 @@ already there from last epoch RandomOrdering: 11 retries for 100 elements (11.0%) to ensure window condition RandomOrdering: recached sequence for seed 0: 15, 33, ... Final Results: Minibatch[1-1]: Samples Seen = 100 err: ErrorPrediction/Sample = 0 ce: CrossEntropyWithSoftmax/Sample = 0.29111851 Perplexity = 1.3379231 -COMPLETED +__COMPLETED__ === Deleting last epoch data ==== Re-running from checkpoint ------------------------------------------------------------------- @@ -1727,4 +1727,4 @@ already there from last epoch RandomOrdering: 11 retries for 100 elements (11.0%) to ensure window condition RandomOrdering: recached sequence for seed 0: 15, 33, ... Final Results: Minibatch[1-1]: Samples Seen = 100 err: ErrorPrediction/Sample = 0 ce: CrossEntropyWithSoftmax/Sample = 0.30440025 Perplexity = 1.3558116 -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Image/QuickE2E/baseline.windows.release.cpu.txt b/Tests/EndToEndTests/Image/QuickE2E/baseline.windows.release.cpu.txt index aacee7bf8..65a8204e5 100644 --- a/Tests/EndToEndTests/Image/QuickE2E/baseline.windows.release.cpu.txt +++ b/Tests/EndToEndTests/Image/QuickE2E/baseline.windows.release.cpu.txt @@ -1410,7 +1410,7 @@ already there from last epoch randomordering: 11 retries for 100 elements (11.0%) to ensure window condition randomordering: recached sequence for seed 0: 15, 33, ... Final Results: Minibatch[1-1]: Samples Seen = 100 Err: ErrorPrediction/Sample = 0 CE: CrossEntropyWithSoftmax/Sample = 0.31800278 Perplexity = 1.3743801 -COMPLETED +__COMPLETED__ === Deleting last epoch data ==== Re-running from checkpoint ------------------------------------------------------------------- @@ -2728,4 +2728,4 @@ already there from last epoch randomordering: 11 retries for 100 elements (11.0%) to ensure window condition randomordering: recached sequence for seed 0: 15, 33, ... Final Results: Minibatch[1-1]: Samples Seen = 100 Err: ErrorPrediction/Sample = 0 CE: CrossEntropyWithSoftmax/Sample = 0.33039909 Perplexity = 1.3915234 -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Image/QuickE2E/baseline.windows.release.gpu.txt b/Tests/EndToEndTests/Image/QuickE2E/baseline.windows.release.gpu.txt index c34022c07..ee2e4180a 100644 --- a/Tests/EndToEndTests/Image/QuickE2E/baseline.windows.release.gpu.txt +++ b/Tests/EndToEndTests/Image/QuickE2E/baseline.windows.release.gpu.txt @@ -910,7 +910,7 @@ already there from last epoch RandomOrdering: 11 retries for 100 elements (11.0%) to ensure window condition RandomOrdering: recached sequence for seed 0: 15, 33, ... Final Results: Minibatch[1-1]: Samples Seen = 100 err: ErrorPrediction/Sample = 0 ce: CrossEntropyWithSoftmax/Sample = 0.29111847 Perplexity = 1.3379231 -COMPLETED +__COMPLETED__ === Deleting last epoch data ==== Re-running from checkpoint ------------------------------------------------------------------- @@ -1727,4 +1727,4 @@ already there from last epoch RandomOrdering: 11 retries for 100 elements (11.0%) to ensure window condition RandomOrdering: recached sequence for seed 0: 15, 33, ... Final Results: Minibatch[1-1]: Samples Seen = 100 err: ErrorPrediction/Sample = 0 ce: CrossEntropyWithSoftmax/Sample = 0.30440022 Perplexity = 1.3558116 -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Image/QuickE2E/testcases.yml b/Tests/EndToEndTests/Image/QuickE2E/testcases.yml index 5ae4a1ea7..4d57433b0 100644 --- a/Tests/EndToEndTests/Image/QuickE2E/testcases.yml +++ b/Tests/EndToEndTests/Image/QuickE2E/testcases.yml @@ -8,24 +8,24 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ Must train epochs in exactly same order and parameters: patterns: - - ^Starting Epoch {{integer}} + - Starting Epoch {{integer}} - learning rate per sample = {{float}} - momentum = {{float}} Epochs must be finished with expected results: patterns: - - ^Finished Epoch[{{integer}} of {{integer}}] + - Finished Epoch[{{integer}} of {{integer}}] - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErrPerSample = {{float,tolerance=.1%}} - AvgLearningRatePerSample = {{float,tolerance=0.001%}} Per-minibatch training results must match: patterns: - - ^ Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} + - Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} - SamplesSeen = {{integer}} - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErr[0]PerSample = {{float,tolerance=.1%}} diff --git a/Tests/EndToEndTests/ModelExport/Model0/baseline.txt b/Tests/EndToEndTests/ModelExport/Model0/baseline.txt index 909445983..f12ae3a43 100644 --- a/Tests/EndToEndTests/ModelExport/Model0/baseline.txt +++ b/Tests/EndToEndTests/ModelExport/Model0/baseline.txt @@ -1,2 +1,2 @@ Post-processing network complete. -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/ModelExport/Model0/testcases.yml b/Tests/EndToEndTests/ModelExport/Model0/testcases.yml index cbfcef620..549521a66 100644 --- a/Tests/EndToEndTests/ModelExport/Model0/testcases.yml +++ b/Tests/EndToEndTests/ModelExport/Model0/testcases.yml @@ -8,5 +8,5 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ diff --git a/Tests/EndToEndTests/ModelExport/Model1/baseline.txt b/Tests/EndToEndTests/ModelExport/Model1/baseline.txt index 909445983..f12ae3a43 100644 --- a/Tests/EndToEndTests/ModelExport/Model1/baseline.txt +++ b/Tests/EndToEndTests/ModelExport/Model1/baseline.txt @@ -1,2 +1,2 @@ Post-processing network complete. -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/ModelExport/Model1/testcases.yml b/Tests/EndToEndTests/ModelExport/Model1/testcases.yml index cbfcef620..549521a66 100644 --- a/Tests/EndToEndTests/ModelExport/Model1/testcases.yml +++ b/Tests/EndToEndTests/ModelExport/Model1/testcases.yml @@ -8,5 +8,5 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ diff --git a/Tests/EndToEndTests/ParallelTraining/NoQuantization/DoublePrecision/baseline.cpu.txt b/Tests/EndToEndTests/ParallelTraining/NoQuantization/DoublePrecision/baseline.cpu.txt index f686a0048..114e63a93 100644 --- a/Tests/EndToEndTests/ParallelTraining/NoQuantization/DoublePrecision/baseline.cpu.txt +++ b/Tests/EndToEndTests/ParallelTraining/NoQuantization/DoublePrecision/baseline.cpu.txt @@ -512,7 +512,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14587123; EvalErr[0]PerSample = 0.06400000; TotalTime = 2.60663s; TotalTimePerSample = 10.42652ms; SamplesPerSecond = 95 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15919599; EvalErrPerSample = 0.0765; AvgLearningRatePerSample = 0.00800000038; EpochTime=104.16469 MPI Rank 0: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: running on localhost at 2015/10/06 12:01:30 MPI Rank 1: command line options: @@ -987,7 +987,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14587123; EvalErr[0]PerSample = 0.06400000; TotalTime = 2.63654s; TotalTimePerSample = 10.54614ms; SamplesPerSecond = 94 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15919599; EvalErrPerSample = 0.0765; AvgLearningRatePerSample = 0.00800000038; EpochTime=104.15309 MPI Rank 1: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: running on localhost at 2015/10/06 12:01:30 MPI Rank 2: command line options: @@ -1462,7 +1462,7 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14587123; EvalErr[0]PerSample = 0.06400000; TotalTime = 2.61322s; TotalTimePerSample = 10.45290ms; SamplesPerSecond = 95 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15919599; EvalErrPerSample = 0.0765; AvgLearningRatePerSample = 0.00800000038; EpochTime=104.16806 MPI Rank 2: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: running on localhost at 2015/10/06 12:01:31 MPI Rank 3: command line options: @@ -1937,5 +1937,5 @@ MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14587123; EvalErr[0]PerSample = 0.06400000; TotalTime = 2.58782s; TotalTimePerSample = 10.35128ms; SamplesPerSecond = 96 MPI Rank 3: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15919599; EvalErrPerSample = 0.0765; AvgLearningRatePerSample = 0.00800000038; EpochTime=104.17161 MPI Rank 3: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper diff --git a/Tests/EndToEndTests/ParallelTraining/NoQuantization/DoublePrecision/baseline.gpu.txt b/Tests/EndToEndTests/ParallelTraining/NoQuantization/DoublePrecision/baseline.gpu.txt index e6211f46c..dac2722f0 100644 --- a/Tests/EndToEndTests/ParallelTraining/NoQuantization/DoublePrecision/baseline.gpu.txt +++ b/Tests/EndToEndTests/ParallelTraining/NoQuantization/DoublePrecision/baseline.gpu.txt @@ -512,7 +512,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14604076; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.09571s; TotalTimePerSample = 0.38285ms; SamplesPerSecond = 2612 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15920517; EvalErrPerSample = 0.0766; AvgLearningRatePerSample = 0.00800000038; EpochTime=3.84576 MPI Rank 0: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: running on localhost at 2015/10/06 11:58:26 MPI Rank 1: command line options: @@ -987,7 +987,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14604076; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.09571s; TotalTimePerSample = 0.38285ms; SamplesPerSecond = 2612 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15920517; EvalErrPerSample = 0.0766; AvgLearningRatePerSample = 0.00800000038; EpochTime=3.845791 MPI Rank 1: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: running on localhost at 2015/10/06 11:58:27 MPI Rank 2: command line options: @@ -1462,7 +1462,7 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14604076; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.09571s; TotalTimePerSample = 0.38284ms; SamplesPerSecond = 2612 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15920517; EvalErrPerSample = 0.0766; AvgLearningRatePerSample = 0.00800000038; EpochTime=3.845644 MPI Rank 2: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: running on localhost at 2015/10/06 11:58:27 MPI Rank 3: command line options: @@ -1937,5 +1937,5 @@ MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14604076; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.09571s; TotalTimePerSample = 0.38284ms; SamplesPerSecond = 2612 MPI Rank 3: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15920517; EvalErrPerSample = 0.0766; AvgLearningRatePerSample = 0.00800000038; EpochTime=3.845718 MPI Rank 3: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper diff --git a/Tests/EndToEndTests/ParallelTraining/NoQuantization/DoublePrecision/baseline.windows.cpu.txt b/Tests/EndToEndTests/ParallelTraining/NoQuantization/DoublePrecision/baseline.windows.cpu.txt index 9d04585f9..b39194776 100644 --- a/Tests/EndToEndTests/ParallelTraining/NoQuantization/DoublePrecision/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/ParallelTraining/NoQuantization/DoublePrecision/baseline.windows.cpu.txt @@ -518,7 +518,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14624377; EvalErr[0]PerSample = 0.06800000; TotalTime = 0.09126s; TotalTimePerSample = 0.36503ms; SamplesPerSecond = 2739 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.159072; EvalErrPerSample = 0.0774; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.243167 MPI Rank 0: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151006100025.151784\ParallelTraining\NoQuantization_DoublePrecision@debug_cpu/stderr_SimpleMultiGPU.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -1003,7 +1003,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14624377; EvalErr[0]PerSample = 0.06800000; TotalTime = 0.09356s; TotalTimePerSample = 0.37426ms; SamplesPerSecond = 2671 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.159072; EvalErrPerSample = 0.0774; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.24663 MPI Rank 1: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151006100025.151784\ParallelTraining\NoQuantization_DoublePrecision@debug_cpu/stderr_SimpleMultiGPU.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -1488,7 +1488,7 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14624377; EvalErr[0]PerSample = 0.06800000; TotalTime = 0.09356s; TotalTimePerSample = 0.37426ms; SamplesPerSecond = 2671 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.159072; EvalErrPerSample = 0.0774; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.246647 MPI Rank 2: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151006100025.151784\ParallelTraining\NoQuantization_DoublePrecision@debug_cpu/stderr_SimpleMultiGPU.logrank3 MPI Rank 3: ------------------------------------------------------------------- @@ -1973,5 +1973,5 @@ MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14624377; EvalErr[0]PerSample = 0.06800000; TotalTime = 0.09126s; TotalTimePerSample = 0.36503ms; SamplesPerSecond = 2739 MPI Rank 3: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.159072; EvalErrPerSample = 0.0774; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.243121 MPI Rank 3: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper diff --git a/Tests/EndToEndTests/ParallelTraining/NoQuantization/DoublePrecision/baseline.windows.gpu.txt b/Tests/EndToEndTests/ParallelTraining/NoQuantization/DoublePrecision/baseline.windows.gpu.txt index dd5a59c56..85c4aa1ef 100644 --- a/Tests/EndToEndTests/ParallelTraining/NoQuantization/DoublePrecision/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/ParallelTraining/NoQuantization/DoublePrecision/baseline.windows.gpu.txt @@ -518,7 +518,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14604076; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.13598s; TotalTimePerSample = 0.54394ms; SamplesPerSecond = 1838 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15920517; EvalErrPerSample = 0.0766; AvgLearningRatePerSample = 0.00800000038; EpochTime=5.509512 MPI Rank 0: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151006100025.151784\ParallelTraining\NoQuantization_DoublePrecision@debug_gpu/stderr_SimpleMultiGPU.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -1003,7 +1003,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14604076; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.13600s; TotalTimePerSample = 0.54401ms; SamplesPerSecond = 1838 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15920517; EvalErrPerSample = 0.0766; AvgLearningRatePerSample = 0.00800000038; EpochTime=5.509397 MPI Rank 1: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151006100025.151784\ParallelTraining\NoQuantization_DoublePrecision@debug_gpu/stderr_SimpleMultiGPU.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -1488,7 +1488,7 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14604076; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.13601s; TotalTimePerSample = 0.54403ms; SamplesPerSecond = 1838 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15920517; EvalErrPerSample = 0.0766; AvgLearningRatePerSample = 0.00800000038; EpochTime=5.509323 MPI Rank 2: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151006100025.151784\ParallelTraining\NoQuantization_DoublePrecision@debug_gpu/stderr_SimpleMultiGPU.logrank3 MPI Rank 3: ------------------------------------------------------------------- @@ -1973,5 +1973,5 @@ MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14604076; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.13601s; TotalTimePerSample = 0.54403ms; SamplesPerSecond = 1838 MPI Rank 3: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15920517; EvalErrPerSample = 0.0766; AvgLearningRatePerSample = 0.00800000038; EpochTime=5.509212 MPI Rank 3: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper diff --git a/Tests/EndToEndTests/ParallelTraining/NoQuantization/SinglePrecision/baseline.cpu.txt b/Tests/EndToEndTests/ParallelTraining/NoQuantization/SinglePrecision/baseline.cpu.txt index 37b880adb..db05e1b81 100644 --- a/Tests/EndToEndTests/ParallelTraining/NoQuantization/SinglePrecision/baseline.cpu.txt +++ b/Tests/EndToEndTests/ParallelTraining/NoQuantization/SinglePrecision/baseline.cpu.txt @@ -496,7 +496,7 @@ MPI Rank 0: Epoch[ 4 of 10]-Minibatch[ 371- 380]: SamplesSeen = 250; TrainLossP MPI Rank 0: Epoch[ 4 of 10]-Minibatch[ 381- 390]: SamplesSeen = 250; TrainLossPerSample = 0.20657080; EvalErr[0]PerSample = 0.11600000; TotalTime = 5.56086s; TotalTimePerSample = 22.24344ms; SamplesPerSecond = 44 MPI Rank 0: Epoch[ 4 of 10]-Minibatch[ 391- 400]: SamplesSeen = 250; TrainLossPerSample = 0.14566553; EvalErr[0]PerSample = 0.06400000; TotalTime = 5.57143s; TotalTimePerSample = 22.28572ms; SamplesPerSecond = 44 MPI Rank 0: Finished Epoch[ 4 of 10]: [Training Set] TrainLossPerSample = 0.15888368; EvalErrPerSample = 0.076499999; AvgLearningRatePerSample = 0.00800000038; EpochTime=222.08354 -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: running on localhost at 2015/08/25 20:50:23 MPI Rank 1: command line options: @@ -955,7 +955,7 @@ MPI Rank 1: Epoch[ 4 of 10]-Minibatch[ 371- 380]: SamplesSeen = 250; TrainLossP MPI Rank 1: Epoch[ 4 of 10]-Minibatch[ 381- 390]: SamplesSeen = 250; TrainLossPerSample = 0.20657080; EvalErr[0]PerSample = 0.11600000; TotalTime = 5.56099s; TotalTimePerSample = 22.24397ms; SamplesPerSecond = 44 MPI Rank 1: Epoch[ 4 of 10]-Minibatch[ 391- 400]: SamplesSeen = 250; TrainLossPerSample = 0.14566553; EvalErr[0]PerSample = 0.06400000; TotalTime = 5.57339s; TotalTimePerSample = 22.29357ms; SamplesPerSecond = 44 MPI Rank 1: Finished Epoch[ 4 of 10]: [Training Set] TrainLossPerSample = 0.15888368; EvalErrPerSample = 0.076499999; AvgLearningRatePerSample = 0.00800000038; EpochTime=222.07455 -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: running on localhost at 2015/08/25 20:50:24 MPI Rank 2: command line options: @@ -1414,7 +1414,7 @@ MPI Rank 2: Epoch[ 4 of 10]-Minibatch[ 371- 380]: SamplesSeen = 250; TrainLossP MPI Rank 2: Epoch[ 4 of 10]-Minibatch[ 381- 390]: SamplesSeen = 250; TrainLossPerSample = 0.20657080; EvalErr[0]PerSample = 0.11600000; TotalTime = 5.56393s; TotalTimePerSample = 22.25572ms; SamplesPerSecond = 44 MPI Rank 2: Epoch[ 4 of 10]-Minibatch[ 391- 400]: SamplesSeen = 250; TrainLossPerSample = 0.14566553; EvalErr[0]PerSample = 0.06400000; TotalTime = 5.57187s; TotalTimePerSample = 22.28747ms; SamplesPerSecond = 44 MPI Rank 2: Finished Epoch[ 4 of 10]: [Training Set] TrainLossPerSample = 0.15888368; EvalErrPerSample = 0.076499999; AvgLearningRatePerSample = 0.00800000038; EpochTime=222.08799 -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: running on localhost at 2015/08/25 20:50:24 MPI Rank 3: command line options: @@ -1873,5 +1873,5 @@ MPI Rank 3: Epoch[ 4 of 10]-Minibatch[ 371- 380]: SamplesSeen = 250; TrainLossP MPI Rank 3: Epoch[ 4 of 10]-Minibatch[ 381- 390]: SamplesSeen = 250; TrainLossPerSample = 0.20657080; EvalErr[0]PerSample = 0.11600000; TotalTime = 5.54955s; TotalTimePerSample = 22.19822ms; SamplesPerSecond = 45 MPI Rank 3: Epoch[ 4 of 10]-Minibatch[ 391- 400]: SamplesSeen = 250; TrainLossPerSample = 0.14566553; EvalErr[0]PerSample = 0.06400000; TotalTime = 5.58100s; TotalTimePerSample = 22.32401ms; SamplesPerSecond = 44 MPI Rank 3: Finished Epoch[ 4 of 10]: [Training Set] TrainLossPerSample = 0.15888368; EvalErrPerSample = 0.076499999; AvgLearningRatePerSample = 0.00800000038; EpochTime=222.07455 -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper diff --git a/Tests/EndToEndTests/ParallelTraining/NoQuantization/SinglePrecision/baseline.gpu.txt b/Tests/EndToEndTests/ParallelTraining/NoQuantization/SinglePrecision/baseline.gpu.txt index 61f4a7554..4615d227f 100644 --- a/Tests/EndToEndTests/ParallelTraining/NoQuantization/SinglePrecision/baseline.gpu.txt +++ b/Tests/EndToEndTests/ParallelTraining/NoQuantization/SinglePrecision/baseline.gpu.txt @@ -631,7 +631,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14585245; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.12570s; TotalTimePerSample = 0.50281ms; SamplesPerSecond = 1988 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15914931; EvalErrPerSample = 0.0767; AvgLearningRatePerSample = 0.00800000038; EpochTime=5.018144 MPI Rank 0: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: running on localhost at 2015/10/24 12:44:54 MPI Rank 1: command line: @@ -1225,7 +1225,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14585245; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.12566s; TotalTimePerSample = 0.50264ms; SamplesPerSecond = 1989 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15914931; EvalErrPerSample = 0.0767; AvgLearningRatePerSample = 0.00800000038; EpochTime=5.01855 MPI Rank 1: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: running on localhost at 2015/10/24 12:44:54 MPI Rank 2: command line: @@ -1819,7 +1819,7 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14585245; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.12566s; TotalTimePerSample = 0.50262ms; SamplesPerSecond = 1989 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15914931; EvalErrPerSample = 0.0767; AvgLearningRatePerSample = 0.00800000038; EpochTime=5.018583 MPI Rank 2: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: running on localhost at 2015/10/24 12:44:55 MPI Rank 3: command line: @@ -2413,5 +2413,5 @@ MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14585245; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.12570s; TotalTimePerSample = 0.50282ms; SamplesPerSecond = 1988 MPI Rank 3: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15914931; EvalErrPerSample = 0.0767; AvgLearningRatePerSample = 0.00800000038; EpochTime=5.018182 MPI Rank 3: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper diff --git a/Tests/EndToEndTests/ParallelTraining/NoQuantization/SinglePrecision/baseline.windows.cpu.txt b/Tests/EndToEndTests/ParallelTraining/NoQuantization/SinglePrecision/baseline.windows.cpu.txt index 135d6ff42..b047b3277 100644 --- a/Tests/EndToEndTests/ParallelTraining/NoQuantization/SinglePrecision/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/ParallelTraining/NoQuantization/SinglePrecision/baseline.windows.cpu.txt @@ -502,7 +502,7 @@ MPI Rank 0: Epoch[ 4 of 10]-Minibatch[ 371- 380]: SamplesSeen = 250; TrainLossP MPI Rank 0: Epoch[ 4 of 10]-Minibatch[ 381- 390]: SamplesSeen = 250; TrainLossPerSample = 0.20619434; EvalErr[0]PerSample = 0.11200000; TotalTime = 0.12883s; TotalTimePerSample = 0.51532ms; SamplesPerSecond = 1940 MPI Rank 0: Epoch[ 4 of 10]-Minibatch[ 391- 400]: SamplesSeen = 250; TrainLossPerSample = 0.14624365; EvalErr[0]PerSample = 0.06800000; TotalTime = 0.12283s; TotalTimePerSample = 0.49132ms; SamplesPerSecond = 2035 MPI Rank 0: Finished Epoch[ 4 of 10]: [Training Set] TrainLossPerSample = 0.15907188; EvalErrPerSample = 0.077399999; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.887408 -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20150825180808.217636\ParallelTraining\NoQuantization_SinglePrecision@debug_cpu/stderr_SimpleMultiGPU.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -971,7 +971,7 @@ MPI Rank 1: Epoch[ 4 of 10]-Minibatch[ 371- 380]: SamplesSeen = 250; TrainLossP MPI Rank 1: Epoch[ 4 of 10]-Minibatch[ 381- 390]: SamplesSeen = 250; TrainLossPerSample = 0.20619434; EvalErr[0]PerSample = 0.11200000; TotalTime = 0.12881s; TotalTimePerSample = 0.51526ms; SamplesPerSecond = 1940 MPI Rank 1: Epoch[ 4 of 10]-Minibatch[ 391- 400]: SamplesSeen = 250; TrainLossPerSample = 0.14624365; EvalErr[0]PerSample = 0.06800000; TotalTime = 0.12287s; TotalTimePerSample = 0.49148ms; SamplesPerSecond = 2034 MPI Rank 1: Finished Epoch[ 4 of 10]: [Training Set] TrainLossPerSample = 0.15907188; EvalErrPerSample = 0.077399999; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.887381 -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20150825180808.217636\ParallelTraining\NoQuantization_SinglePrecision@debug_cpu/stderr_SimpleMultiGPU.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -1440,7 +1440,7 @@ MPI Rank 2: Epoch[ 4 of 10]-Minibatch[ 371- 380]: SamplesSeen = 250; TrainLossP MPI Rank 2: Epoch[ 4 of 10]-Minibatch[ 381- 390]: SamplesSeen = 250; TrainLossPerSample = 0.20619434; EvalErr[0]PerSample = 0.11200000; TotalTime = 0.12898s; TotalTimePerSample = 0.51592ms; SamplesPerSecond = 1938 MPI Rank 2: Epoch[ 4 of 10]-Minibatch[ 391- 400]: SamplesSeen = 250; TrainLossPerSample = 0.14624365; EvalErr[0]PerSample = 0.06800000; TotalTime = 0.12295s; TotalTimePerSample = 0.49182ms; SamplesPerSecond = 2033 MPI Rank 2: Finished Epoch[ 4 of 10]: [Training Set] TrainLossPerSample = 0.15907188; EvalErrPerSample = 0.077399999; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.887366 -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20150825180808.217636\ParallelTraining\NoQuantization_SinglePrecision@debug_cpu/stderr_SimpleMultiGPU.logrank3 MPI Rank 3: ------------------------------------------------------------------- @@ -1909,5 +1909,5 @@ MPI Rank 3: Epoch[ 4 of 10]-Minibatch[ 371- 380]: SamplesSeen = 250; TrainLossP MPI Rank 3: Epoch[ 4 of 10]-Minibatch[ 381- 390]: SamplesSeen = 250; TrainLossPerSample = 0.20619434; EvalErr[0]PerSample = 0.11200000; TotalTime = 0.12882s; TotalTimePerSample = 0.51529ms; SamplesPerSecond = 1940 MPI Rank 3: Epoch[ 4 of 10]-Minibatch[ 391- 400]: SamplesSeen = 250; TrainLossPerSample = 0.14624365; EvalErr[0]PerSample = 0.06800000; TotalTime = 0.12279s; TotalTimePerSample = 0.49116ms; SamplesPerSecond = 2036 MPI Rank 3: Finished Epoch[ 4 of 10]: [Training Set] TrainLossPerSample = 0.15907188; EvalErrPerSample = 0.077399999; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.887371 -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper diff --git a/Tests/EndToEndTests/ParallelTraining/NoQuantization/SinglePrecision/baseline.windows.gpu.txt b/Tests/EndToEndTests/ParallelTraining/NoQuantization/SinglePrecision/baseline.windows.gpu.txt index e7c567b18..8ec779c8f 100644 --- a/Tests/EndToEndTests/ParallelTraining/NoQuantization/SinglePrecision/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/ParallelTraining/NoQuantization/SinglePrecision/baseline.windows.gpu.txt @@ -636,7 +636,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14585245; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.12520s; TotalTimePerSample = 0.50081ms; SamplesPerSecond = 1996 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15914931; EvalErrPerSample = 0.0767; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.931563 MPI Rank 0: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151024134937.188247\ParallelTraining\NoQuantization_SinglePrecision@debug_gpu/stderr_SimpleMultiGPU.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -1239,7 +1239,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14585245; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.12625s; TotalTimePerSample = 0.50498ms; SamplesPerSecond = 1980 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15914931; EvalErrPerSample = 0.0767; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.931591 MPI Rank 1: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151024134937.188247\ParallelTraining\NoQuantization_SinglePrecision@debug_gpu/stderr_SimpleMultiGPU.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -1842,7 +1842,7 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14585245; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.12606s; TotalTimePerSample = 0.50426ms; SamplesPerSecond = 1983 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15914931; EvalErrPerSample = 0.0767; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.931381 MPI Rank 2: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151024134937.188247\ParallelTraining\NoQuantization_SinglePrecision@debug_gpu/stderr_SimpleMultiGPU.logrank3 MPI Rank 3: ------------------------------------------------------------------- @@ -2445,5 +2445,5 @@ MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 381- 390 of 400]: SamplesSeen = 250; Trai MPI Rank 3: Epoch[ 4 of 4]-Minibatch[ 391- 400 of 400]: SamplesSeen = 250; TrainLossPerSample = 0.14585245; EvalErr[0]PerSample = 0.06400000; TotalTime = 0.12588s; TotalTimePerSample = 0.50353ms; SamplesPerSecond = 1985 MPI Rank 3: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.15914931; EvalErrPerSample = 0.0767; AvgLearningRatePerSample = 0.00800000038; EpochTime=4.931393 MPI Rank 3: CNTKCommandTrainEnd: SimpleMultiGPU -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/DNN/DiscriminativePreTraining/baseline.cpu.txt b/Tests/EndToEndTests/Speech/DNN/DiscriminativePreTraining/baseline.cpu.txt index 82fdb6138..dfea1ce77 100644 --- a/Tests/EndToEndTests/Speech/DNN/DiscriminativePreTraining/baseline.cpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/DiscriminativePreTraining/baseline.cpu.txt @@ -3265,4 +3265,4 @@ Starting minibatch loop. Epoch[ 4 of 4]-Minibatch[ 151- 160 of 160]: SamplesSeen = 5120; TrainLossPerSample = 0.97683563; EvalErr[0]PerSample = 0.30175781; TotalTime = 1.78603s; TotalTimePerSample = 0.34883ms; SamplesPerSecond = 2866 Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.0043954; EvalErrPerSample = 0.31276855; AvgLearningRatePerSample = 0.003125000047; EpochTime=28.984064 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/DNN/DiscriminativePreTraining/baseline.gpu.txt b/Tests/EndToEndTests/Speech/DNN/DiscriminativePreTraining/baseline.gpu.txt index 17e8f4da6..7513c4dc6 100644 --- a/Tests/EndToEndTests/Speech/DNN/DiscriminativePreTraining/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/DiscriminativePreTraining/baseline.gpu.txt @@ -3872,4 +3872,4 @@ WARNING: The same matrix with dim [1, 1] has been transferred between different Epoch[ 4 of 4]-Minibatch[ 151- 160 of 160]: SamplesSeen = 5120; TrainLossPerSample = 0.97961731; EvalErr[0]PerSample = 0.29921875; TotalTime = 0.15761s; TotalTimePerSample = 0.03078ms; SamplesPerSecond = 32486 Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.0073979; EvalErrPerSample = 0.31477052; AvgLearningRatePerSample = 0.003125000047; EpochTime=2.874394 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/DNN/DiscriminativePreTraining/baseline.windows.cpu.txt b/Tests/EndToEndTests/Speech/DNN/DiscriminativePreTraining/baseline.windows.cpu.txt index e02d21617..7d2d64b1a 100644 --- a/Tests/EndToEndTests/Speech/DNN/DiscriminativePreTraining/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/DiscriminativePreTraining/baseline.windows.cpu.txt @@ -3274,4 +3274,4 @@ Starting minibatch loop. Epoch[ 4 of 4]-Minibatch[ 151- 160 of 160]: SamplesSeen = 5120; TrainLossPerSample = 0.96573181; EvalErr[0]PerSample = 0.30156250; TotalTime = 2.77351s; TotalTimePerSample = 0.54170ms; SamplesPerSecond = 1846 Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.9992947; EvalErrPerSample = 0.31165773; AvgLearningRatePerSample = 0.003125000047; EpochTime=48.032169 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/DNN/DiscriminativePreTraining/baseline.windows.gpu.txt b/Tests/EndToEndTests/Speech/DNN/DiscriminativePreTraining/baseline.windows.gpu.txt index 656d76c98..5bcdfa56a 100644 --- a/Tests/EndToEndTests/Speech/DNN/DiscriminativePreTraining/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/DiscriminativePreTraining/baseline.windows.gpu.txt @@ -3880,4 +3880,4 @@ WARNING: The same matrix with dim [1, 1] has been transferred between different Epoch[ 4 of 4]-Minibatch[ 151- 160 of 160]: SamplesSeen = 5120; TrainLossPerSample = 0.96711578; EvalErr[0]PerSample = 0.30175781; TotalTime = 0.49045s; TotalTimePerSample = 0.09579ms; SamplesPerSecond = 10439 Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.99611807; EvalErrPerSample = 0.31303713; AvgLearningRatePerSample = 0.003125000047; EpochTime=10.396508 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/DNN/DiscriminativePreTraining/testcases.yml b/Tests/EndToEndTests/Speech/DNN/DiscriminativePreTraining/testcases.yml index fb6cac2af..1e532f940 100644 --- a/Tests/EndToEndTests/Speech/DNN/DiscriminativePreTraining/testcases.yml +++ b/Tests/EndToEndTests/Speech/DNN/DiscriminativePreTraining/testcases.yml @@ -19,24 +19,24 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ Must train epochs in exactly same order and parameters: patterns: - - ^Starting Epoch {{integer}} + - Starting Epoch {{integer}} - learning rate per sample = {{float}} - momentum = {{float}} Epochs must be finished with expected results: patterns: - - ^Finished Epoch[{{integer}} of {{integer}}] + - Finished Epoch[{{integer}} of {{integer}}] - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErrPerSample = {{float,tolerance=.25%}} - AvgLearningRatePerSample = {{float,tolerance=0.001%}} Per-minibatch training results must match: patterns: - - ^ Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} + - Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} - SamplesSeen = {{integer}} - TrainLossPerSample = {{float,tolerance=.2%}} diff --git a/Tests/EndToEndTests/Speech/DNN/Parallel1BitQuantization/baseline.cpu.txt b/Tests/EndToEndTests/Speech/DNN/Parallel1BitQuantization/baseline.cpu.txt index 265ecc04f..8046aaf2f 100644 --- a/Tests/EndToEndTests/Speech/DNN/Parallel1BitQuantization/baseline.cpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/Parallel1BitQuantization/baseline.cpu.txt @@ -493,7 +493,7 @@ MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.93975925; EvalErr[0]PerSample = 0.53330078; TotalTime = 4.26964s; TotalTimePerSample = 0.41696ms; SamplesPerSecond = 2398 MPI Rank 0: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9483618; EvalErrPerSample = 0.53447266; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=8.545751 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: running on localhost at 2015/10/06 11:38:28 MPI Rank 1: command line options: @@ -959,7 +959,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.93975925; EvalErr[0]PerSample = 0.53330078; TotalTime = 4.25975s; TotalTimePerSample = 0.41599ms; SamplesPerSecond = 2403 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9483618; EvalErrPerSample = 0.53447266; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=8.529597 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: running on localhost at 2015/10/06 11:38:29 MPI Rank 2: command line options: @@ -1425,5 +1425,5 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.93975925; EvalErr[0]PerSample = 0.53330078; TotalTime = 4.27664s; TotalTimePerSample = 0.41764ms; SamplesPerSecond = 2394 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9483618; EvalErrPerSample = 0.53447266; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=8.524726 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/DNN/Parallel1BitQuantization/baseline.gpu.txt b/Tests/EndToEndTests/Speech/DNN/Parallel1BitQuantization/baseline.gpu.txt index 58af59e47..ebe66f7ad 100644 --- a/Tests/EndToEndTests/Speech/DNN/Parallel1BitQuantization/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/Parallel1BitQuantization/baseline.gpu.txt @@ -494,7 +494,7 @@ MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.94366837; EvalErr[0]PerSample = 0.53730469; TotalTime = 0.55136s; TotalTimePerSample = 0.05384ms; SamplesPerSecond = 18572 MPI Rank 0: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9596503; EvalErrPerSample = 0.53989258; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=1.14466 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: running on localhost at 2015/10/06 11:42:51 MPI Rank 1: command line options: @@ -961,7 +961,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.94366837; EvalErr[0]PerSample = 0.53730469; TotalTime = 0.55136s; TotalTimePerSample = 0.05384ms; SamplesPerSecond = 18572 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9596503; EvalErrPerSample = 0.53989258; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=1.144913 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: running on localhost at 2015/10/06 11:42:51 MPI Rank 2: command line options: @@ -1428,5 +1428,5 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.94366837; EvalErr[0]PerSample = 0.53730469; TotalTime = 0.55136s; TotalTimePerSample = 0.05384ms; SamplesPerSecond = 18572 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9596503; EvalErrPerSample = 0.53989258; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=1.145159 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/DNN/Parallel1BitQuantization/baseline.windows.cpu.txt b/Tests/EndToEndTests/Speech/DNN/Parallel1BitQuantization/baseline.windows.cpu.txt index 45c74451f..88e717fe8 100644 --- a/Tests/EndToEndTests/Speech/DNN/Parallel1BitQuantization/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/Parallel1BitQuantization/baseline.windows.cpu.txt @@ -500,7 +500,7 @@ MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.90745194; EvalErr[0]PerSample = 0.52822266; TotalTime = 5.33597s; TotalTimePerSample = 0.52109ms; SamplesPerSecond = 1919 MPI Rank 0: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9172556; EvalErrPerSample = 0.53793945; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=10.70695 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151006095637.485670\Speech\DNN_Parallel1BitQuantization@debug_cpu/stderr_speechTrain.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -976,7 +976,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.90745194; EvalErr[0]PerSample = 0.52822266; TotalTime = 5.33601s; TotalTimePerSample = 0.52110ms; SamplesPerSecond = 1919 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9172556; EvalErrPerSample = 0.53793945; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=10.706864 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151006095637.485670\Speech\DNN_Parallel1BitQuantization@debug_cpu/stderr_speechTrain.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -1452,5 +1452,5 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.90745194; EvalErr[0]PerSample = 0.52822266; TotalTime = 5.33578s; TotalTimePerSample = 0.52107ms; SamplesPerSecond = 1919 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9172556; EvalErrPerSample = 0.53793945; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=10.706562 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/DNN/Parallel1BitQuantization/baseline.windows.gpu.txt b/Tests/EndToEndTests/Speech/DNN/Parallel1BitQuantization/baseline.windows.gpu.txt index d982cd975..02b6bc0ce 100644 --- a/Tests/EndToEndTests/Speech/DNN/Parallel1BitQuantization/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/Parallel1BitQuantization/baseline.windows.gpu.txt @@ -501,7 +501,7 @@ MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.90162239; EvalErr[0]PerSample = 0.52011719; TotalTime = 1.36215s; TotalTimePerSample = 0.13302ms; SamplesPerSecond = 7517 MPI Rank 0: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.904514; EvalErrPerSample = 0.52109375; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=2.921597 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151006095145.884402\Speech\DNN_Parallel1BitQuantization@debug_gpu/stderr_speechTrain.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -978,7 +978,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.90162239; EvalErr[0]PerSample = 0.52011719; TotalTime = 1.36219s; TotalTimePerSample = 0.13303ms; SamplesPerSecond = 7517 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.904514; EvalErrPerSample = 0.52109375; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=2.921277 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151006095145.884402\Speech\DNN_Parallel1BitQuantization@debug_gpu/stderr_speechTrain.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -1455,5 +1455,5 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.90162239; EvalErr[0]PerSample = 0.52011719; TotalTime = 1.36172s; TotalTimePerSample = 0.13298ms; SamplesPerSecond = 7519 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.904514; EvalErrPerSample = 0.52109375; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=2.92187 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/DNN/ParallelBufferedAsyncGradientAggregation/baseline.cpu.txt b/Tests/EndToEndTests/Speech/DNN/ParallelBufferedAsyncGradientAggregation/baseline.cpu.txt index 87cf5264b..0db984cfc 100644 --- a/Tests/EndToEndTests/Speech/DNN/ParallelBufferedAsyncGradientAggregation/baseline.cpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/ParallelBufferedAsyncGradientAggregation/baseline.cpu.txt @@ -968,7 +968,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 2.03252134; EvalErr[0]PerSample = 0.54667969; TotalTime = 2.64420s; TotalTimePerSample = 0.25822ms; SamplesPerSecond = 3872 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 2.0474117; EvalErrPerSample = 0.546875; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=5.515902 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: ------------------------------------------------------------------- MPI Rank 1: Build info: @@ -1909,7 +1909,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 2.03252134; EvalErr[0]PerSample = 0.54667969; TotalTime = 2.73810s; TotalTimePerSample = 0.26739ms; SamplesPerSecond = 3739 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 2.0474117; EvalErrPerSample = 0.546875; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=5.515901 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: ------------------------------------------------------------------- MPI Rank 2: Build info: @@ -2850,5 +2850,5 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 2.03252134; EvalErr[0]PerSample = 0.54667969; TotalTime = 2.76024s; TotalTimePerSample = 0.26955ms; SamplesPerSecond = 3709 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 2.0474117; EvalErrPerSample = 0.546875; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=5.51589 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/DNN/ParallelBufferedAsyncGradientAggregation/baseline.gpu.txt b/Tests/EndToEndTests/Speech/DNN/ParallelBufferedAsyncGradientAggregation/baseline.gpu.txt index 8402d3f32..6e7ffef56 100644 --- a/Tests/EndToEndTests/Speech/DNN/ParallelBufferedAsyncGradientAggregation/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/ParallelBufferedAsyncGradientAggregation/baseline.gpu.txt @@ -970,7 +970,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.96679954; EvalErr[0]PerSample = 0.54326172; TotalTime = 0.74867s; TotalTimePerSample = 0.07311ms; SamplesPerSecond = 13677 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.9829983; EvalErrPerSample = 0.54199219; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=1.628572 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: ------------------------------------------------------------------- MPI Rank 1: Build info: @@ -1913,7 +1913,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.96679954; EvalErr[0]PerSample = 0.54326172; TotalTime = 0.73508s; TotalTimePerSample = 0.07179ms; SamplesPerSecond = 13930 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.9829983; EvalErrPerSample = 0.54199219; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=1.632037 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: ------------------------------------------------------------------- MPI Rank 2: Build info: @@ -2856,5 +2856,5 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.96679954; EvalErr[0]PerSample = 0.54326172; TotalTime = 0.73439s; TotalTimePerSample = 0.07172ms; SamplesPerSecond = 13943 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.9829983; EvalErrPerSample = 0.54199219; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=1.632004 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/DNN/ParallelBufferedAsyncGradientAggregation/baseline.windows.cpu.txt b/Tests/EndToEndTests/Speech/DNN/ParallelBufferedAsyncGradientAggregation/baseline.windows.cpu.txt index 28e525b45..6d34c8ffd 100644 --- a/Tests/EndToEndTests/Speech/DNN/ParallelBufferedAsyncGradientAggregation/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/ParallelBufferedAsyncGradientAggregation/baseline.windows.cpu.txt @@ -959,7 +959,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.90311195; EvalErr[0]PerSample = 0.51884766; TotalTime = 10.16914s; TotalTimePerSample = 0.99308ms; SamplesPerSecond = 1006 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.916061; EvalErrPerSample = 0.52392578; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=18.802169 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151129190328.957292\Speech\DNN_ParallelBufferedAsyncGradientAggregation@debug_cpu/stderr_speechTrain.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -1894,7 +1894,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.90311195; EvalErr[0]PerSample = 0.51884766; TotalTime = 10.57049s; TotalTimePerSample = 1.03227ms; SamplesPerSecond = 968 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.916061; EvalErrPerSample = 0.52392578; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=18.802116 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151129190328.957292\Speech\DNN_ParallelBufferedAsyncGradientAggregation@debug_cpu/stderr_speechTrain.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -2829,5 +2829,5 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.90311195; EvalErr[0]PerSample = 0.51884766; TotalTime = 10.02738s; TotalTimePerSample = 0.97924ms; SamplesPerSecond = 1021 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.916061; EvalErrPerSample = 0.52392578; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=18.802161 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/DNN/ParallelBufferedAsyncGradientAggregation/baseline.windows.gpu.txt b/Tests/EndToEndTests/Speech/DNN/ParallelBufferedAsyncGradientAggregation/baseline.windows.gpu.txt index 0a8246adf..ff073cba5 100644 --- a/Tests/EndToEndTests/Speech/DNN/ParallelBufferedAsyncGradientAggregation/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/ParallelBufferedAsyncGradientAggregation/baseline.windows.gpu.txt @@ -961,7 +961,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.91243517; EvalErr[0]PerSample = 0.52392578; TotalTime = 1.19099s; TotalTimePerSample = 0.11631ms; SamplesPerSecond = 8597 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.9294785; EvalErrPerSample = 0.53051758; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=2.665546 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151129190035.845361\Speech\DNN_ParallelBufferedAsyncGradientAggregation@debug_gpu/stderr_speechTrain.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -1898,7 +1898,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.91243517; EvalErr[0]PerSample = 0.52392578; TotalTime = 1.18460s; TotalTimePerSample = 0.11568ms; SamplesPerSecond = 8644 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.9294785; EvalErrPerSample = 0.53051758; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=2.665537 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151129190035.845361\Speech\DNN_ParallelBufferedAsyncGradientAggregation@debug_gpu/stderr_speechTrain.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -2835,5 +2835,5 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.91243517; EvalErr[0]PerSample = 0.52392578; TotalTime = 1.20963s; TotalTimePerSample = 0.11813ms; SamplesPerSecond = 8465 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.9294785; EvalErrPerSample = 0.53051758; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=2.665575 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/DNN/ParallelCrossValidation/baseline.cpu.txt b/Tests/EndToEndTests/Speech/DNN/ParallelCrossValidation/baseline.cpu.txt index c3fc02a9c..29ce3bdf7 100644 --- a/Tests/EndToEndTests/Speech/DNN/ParallelCrossValidation/baseline.cpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/ParallelCrossValidation/baseline.cpu.txt @@ -684,7 +684,7 @@ MPI Rank 0: CNTKCommandTrainEnd: speechTrain MPI Rank 0: MPI Rank 0: Action "train" complete. MPI Rank 0: -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: ------------------------------------------------------------------- MPI Rank 1: Build info: @@ -1301,5 +1301,5 @@ MPI Rank 1: CNTKCommandTrainEnd: speechTrain MPI Rank 1: MPI Rank 1: Action "train" complete. MPI Rank 1: -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/DNN/ParallelCrossValidation/baseline.gpu.txt b/Tests/EndToEndTests/Speech/DNN/ParallelCrossValidation/baseline.gpu.txt index 38de79728..59b73ddb2 100644 --- a/Tests/EndToEndTests/Speech/DNN/ParallelCrossValidation/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/ParallelCrossValidation/baseline.gpu.txt @@ -685,7 +685,7 @@ MPI Rank 0: CNTKCommandTrainEnd: speechTrain MPI Rank 0: MPI Rank 0: Action "train" complete. MPI Rank 0: -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: ------------------------------------------------------------------- MPI Rank 1: Build info: @@ -1303,5 +1303,5 @@ MPI Rank 1: CNTKCommandTrainEnd: speechTrain MPI Rank 1: MPI Rank 1: Action "train" complete. MPI Rank 1: -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper \ No newline at end of file diff --git a/Tests/EndToEndTests/Speech/DNN/ParallelCrossValidation/baseline.windows.cpu.txt b/Tests/EndToEndTests/Speech/DNN/ParallelCrossValidation/baseline.windows.cpu.txt index d7c6d81a9..433f7de38 100644 --- a/Tests/EndToEndTests/Speech/DNN/ParallelCrossValidation/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/ParallelCrossValidation/baseline.windows.cpu.txt @@ -622,7 +622,7 @@ MPI Rank 0: Final Results: Minibatch[1-82]: Samples Seen = 83050 CrossEntropy MPI Rank 0: Finished Epoch[ 3 of 3]: [Validation Set] TrainLossPerSample = 1.8521576; EvalErrPerSample = 0.50912703 MPI Rank 0: SGD: Saving checkpoint model 'C:\cygwin64\tmp\cntk-test-20160301170019.423861\Speech\DNN_ParallelCrossValidation@debug_cpu/models/cntkSpeech.dnn' MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160301170019.423861\Speech\DNN_ParallelCrossValidation@debug_cpu/stderr_speechTrain.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -1226,5 +1226,5 @@ MPI Rank 1: minibatchiterator: epoch 0: frames [0..83050] (first utterance at fr MPI Rank 1: Final Results: Minibatch[1-82]: Samples Seen = 83050 CrossEntropyWithSoftmax: CrossEntropyWithSoftmax/Sample = 1.8521576 Perplexity = 6.3735562 EvalErrorPrediction: ErrorPrediction/Sample = 0.50912703 MPI Rank 1: Finished Epoch[ 3 of 3]: [Validation Set] TrainLossPerSample = 1.8521576; EvalErrPerSample = 0.50912703 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/DNN/ParallelCrossValidation/baseline.windows.gpu.txt b/Tests/EndToEndTests/Speech/DNN/ParallelCrossValidation/baseline.windows.gpu.txt index c46823ec4..04c9a2610 100644 --- a/Tests/EndToEndTests/Speech/DNN/ParallelCrossValidation/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/ParallelCrossValidation/baseline.windows.gpu.txt @@ -623,7 +623,7 @@ MPI Rank 0: Final Results: Minibatch[1-82]: Samples Seen = 83050 CrossEntropy MPI Rank 0: Finished Epoch[ 3 of 3]: [Validation Set] TrainLossPerSample = 1.8458415; EvalErrPerSample = 0.50965683 MPI Rank 0: SGD: Saving checkpoint model 'C:\cygwin64\tmp\cntk-test-20160301172412.673018\Speech\DNN_ParallelCrossValidation@release_gpu/models/cntkSpeech.dnn' MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160301172412.673018\Speech\DNN_ParallelCrossValidation@release_gpu/stderr_speechTrain.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -1228,5 +1228,5 @@ MPI Rank 1: minibatchiterator: epoch 0: frames [0..83050] (first utterance at fr MPI Rank 1: Final Results: Minibatch[1-82]: Samples Seen = 83050 CrossEntropyWithSoftmax: CrossEntropyWithSoftmax/Sample = 1.8458415 Perplexity = 6.3334268 EvalErrorPrediction: ErrorPrediction/Sample = 0.50965683 MPI Rank 1: Finished Epoch[ 3 of 3]: [Validation Set] TrainLossPerSample = 1.8458415; EvalErrPerSample = 0.50965683 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantization/baseline.cpu.txt b/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantization/baseline.cpu.txt index af204e6c1..1adf6bf05 100644 --- a/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantization/baseline.cpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantization/baseline.cpu.txt @@ -494,7 +494,7 @@ MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.91062447; EvalErr[0]PerSample = 0.52783203; TotalTime = 3.92841s; TotalTimePerSample = 0.38363ms; SamplesPerSecond = 2606 MPI Rank 0: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9150216; EvalErrPerSample = 0.52836914; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=7.722059 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: running on localhost at 2015/10/02 13:34:22 MPI Rank 1: command line options: @@ -958,7 +958,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.91062447; EvalErr[0]PerSample = 0.52783203; TotalTime = 3.91134s; TotalTimePerSample = 0.38197ms; SamplesPerSecond = 2618 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9150216; EvalErrPerSample = 0.52836914; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=7.721915 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: running on localhost at 2015/10/02 13:34:22 MPI Rank 2: command line options: @@ -1422,5 +1422,5 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.91062447; EvalErr[0]PerSample = 0.52783203; TotalTime = 3.89837s; TotalTimePerSample = 0.38070ms; SamplesPerSecond = 2626 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9150216; EvalErrPerSample = 0.52836914; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=7.712128 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantization/baseline.gpu.txt b/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantization/baseline.gpu.txt index 359606b26..0c4334e0c 100644 --- a/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantization/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantization/baseline.gpu.txt @@ -606,7 +606,7 @@ MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.86656271; EvalErr[0]PerSample = 0.51748047; TotalTime = 0.34559s; TotalTimePerSample = 0.03375ms; SamplesPerSecond = 29630 MPI Rank 0: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8700806; EvalErrPerSample = 0.5184082; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=0.728516 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: running on localhost at 2015/10/24 12:56:12 MPI Rank 1: command line: @@ -1185,7 +1185,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.86656271; EvalErr[0]PerSample = 0.51748047; TotalTime = 0.34559s; TotalTimePerSample = 0.03375ms; SamplesPerSecond = 29630 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8700806; EvalErrPerSample = 0.5184082; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=0.728446 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: running on localhost at 2015/10/24 12:56:12 MPI Rank 2: command line: @@ -1764,5 +1764,5 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.86656271; EvalErr[0]PerSample = 0.51748047; TotalTime = 0.34556s; TotalTimePerSample = 0.03375ms; SamplesPerSecond = 29632 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8700806; EvalErrPerSample = 0.5184082; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=0.728405 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantization/baseline.windows.cpu.txt b/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantization/baseline.windows.cpu.txt index c0207fc32..0044448e0 100644 --- a/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantization/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantization/baseline.windows.cpu.txt @@ -501,7 +501,7 @@ MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.89380105; EvalErr[0]PerSample = 0.51816406; TotalTime = 5.32609s; TotalTimePerSample = 0.52013ms; SamplesPerSecond = 1922 MPI Rank 0: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8898486; EvalErrPerSample = 0.52172852; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=11.273566 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151002132240.147218\Speech\DNN_ParallelNoQuantization@debug_cpu/stderr_speechTrain.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -975,7 +975,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.89380105; EvalErr[0]PerSample = 0.51816406; TotalTime = 5.32607s; TotalTimePerSample = 0.52012ms; SamplesPerSecond = 1922 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8898486; EvalErrPerSample = 0.52172852; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=11.27354 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151002132240.147218\Speech\DNN_ParallelNoQuantization@debug_cpu/stderr_speechTrain.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -1449,5 +1449,5 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.89380105; EvalErr[0]PerSample = 0.51816406; TotalTime = 5.32607s; TotalTimePerSample = 0.52012ms; SamplesPerSecond = 1922 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8898486; EvalErrPerSample = 0.52172852; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=11.27344 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantization/baseline.windows.gpu.txt b/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantization/baseline.windows.gpu.txt index 2c04b9eea..b22105956 100644 --- a/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantization/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantization/baseline.windows.gpu.txt @@ -612,7 +612,7 @@ MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.87358831; EvalErr[0]PerSample = 0.51542969; TotalTime = 0.82689s; TotalTimePerSample = 0.08075ms; SamplesPerSecond = 12383 MPI Rank 0: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8705584; EvalErrPerSample = 0.51860352; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=1.909274 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151024141411.953694\Speech\DNN_ParallelNoQuantization@debug_gpu/stderr_speechTrain.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -1200,7 +1200,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.87358831; EvalErr[0]PerSample = 0.51542969; TotalTime = 0.82899s; TotalTimePerSample = 0.08096ms; SamplesPerSecond = 12352 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8705584; EvalErrPerSample = 0.51860352; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=1.90997 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151024141411.953694\Speech\DNN_ParallelNoQuantization@debug_gpu/stderr_speechTrain.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -1788,5 +1788,5 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.87358831; EvalErr[0]PerSample = 0.51542969; TotalTime = 0.82561s; TotalTimePerSample = 0.08063ms; SamplesPerSecond = 12402 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8705584; EvalErrPerSample = 0.51860352; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=1.906446 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.cpu.txt b/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.cpu.txt index 5c0259ff4..2c131b576 100644 --- a/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.cpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.cpu.txt @@ -877,7 +877,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 0: Async gradient aggregation wait time: 0.006704 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.9047436; EvalErrPerSample = 0.52290039; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=6.84798 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: ------------------------------------------------------------------- MPI Rank 1: Build info: @@ -1727,7 +1727,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 1: Async gradient aggregation wait time: 1.3e-05 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.9047436; EvalErrPerSample = 0.52290039; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=6.8934 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: ------------------------------------------------------------------- MPI Rank 2: Build info: @@ -2577,5 +2577,5 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 2: Async gradient aggregation wait time: 0.004703 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.9047436; EvalErrPerSample = 0.52290039; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=6.84798 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.gpu.txt b/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.gpu.txt index d9019ff9c..fb0d7fb87 100644 --- a/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.gpu.txt @@ -883,7 +883,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 0: Async gradient aggregation wait time: 0.004648 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.8924891; EvalErrPerSample = 0.51933594; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=1.10761 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: ------------------------------------------------------------------- MPI Rank 1: Build info: @@ -1739,7 +1739,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 1: Async gradient aggregation wait time: 0.004311 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.8924891; EvalErrPerSample = 0.51933594; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=1.10764 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: ------------------------------------------------------------------- MPI Rank 2: Build info: @@ -2595,5 +2595,5 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 2: Async gradient aggregation wait time: 0.005346 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.8924891; EvalErrPerSample = 0.51933594; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=1.10805 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.windows.cpu.txt b/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.windows.cpu.txt index 56262d3f4..46839332c 100644 --- a/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.windows.cpu.txt @@ -864,7 +864,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 0: Async gradient aggregation wait time: 9e-006 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.8894112; EvalErrPerSample = 0.51376953; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=22.561 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160106231018.691457\Speech\DNN_ParallelNoQuantizationBufferedAsyncGradientAggregation@debug_cpu/stderr_speechTrain.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -1699,7 +1699,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 1: Async gradient aggregation wait time: 8e-006 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.8894112; EvalErrPerSample = 0.51376953; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=22.7997 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160106231018.691457\Speech\DNN_ParallelNoQuantizationBufferedAsyncGradientAggregation@debug_cpu/stderr_speechTrain.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -2534,5 +2534,5 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 2: Async gradient aggregation wait time: 0.00373 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.8894112; EvalErrPerSample = 0.51376953; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=22.5056 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.windows.gpu.txt b/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.windows.gpu.txt index 6618371ea..fb027ae62 100644 --- a/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.windows.gpu.txt @@ -879,7 +879,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 0: Async gradient aggregation wait time: 0.002651 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.882856; EvalErrPerSample = 0.51445312; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=2.10527 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160106230707.566663\Speech\DNN_ParallelNoQuantizationBufferedAsyncGradientAggregation@debug_gpu/stderr_speechTrain.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -1729,7 +1729,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 1: Async gradient aggregation wait time: 0.003634 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.882856; EvalErrPerSample = 0.51445312; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=2.10546 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160106230707.566663\Speech\DNN_ParallelNoQuantizationBufferedAsyncGradientAggregation@debug_gpu/stderr_speechTrain.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -2584,5 +2584,5 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 2: Async gradient aggregation wait time: 0.001318 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.882856; EvalErrPerSample = 0.51445312; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=2.10527 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/DNN/SequenceTraining/baseline.gpu.txt b/Tests/EndToEndTests/Speech/DNN/SequenceTraining/baseline.gpu.txt index 0d3cbde62..a30ded54e 100644 --- a/Tests/EndToEndTests/Speech/DNN/SequenceTraining/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/SequenceTraining/baseline.gpu.txt @@ -9586,4 +9586,4 @@ parallelforwardbackwardlattice: 25 launches for forward, 25 launches for backwar dengamma value 1.062592 Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 0.082648888; EvalErrPerSample = 0.32607052; AvgLearningRatePerSample = 1.999999995e-06; EpochTime=15.94079 CNTKCommandTrainEnd: sequenceTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/DNN/SequenceTraining/baseline.windows.gpu.txt b/Tests/EndToEndTests/Speech/DNN/SequenceTraining/baseline.windows.gpu.txt index af3d47ba6..89ff45731 100644 --- a/Tests/EndToEndTests/Speech/DNN/SequenceTraining/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/SequenceTraining/baseline.windows.gpu.txt @@ -9598,4 +9598,4 @@ dengamma value 1.142857 Epoch[ 3 of 3]-Minibatch[ 121- 130 of 8192]: SamplesSeen = 6564; TrainLossPerSample = 0.08458945; EvalErr[0]PerSample = 0.30042657; TotalTime = 2.28939s; TotalTimePerSample = 0.34878ms; SamplesPerSecond = 2867 Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 0.083290465; EvalErrPerSample = 0.31113231; AvgLearningRatePerSample = 1.999999995e-006; EpochTime=30.742683 CNTKCommandTrainEnd: sequenceTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/DNN/SequenceTraining/testcases.yml b/Tests/EndToEndTests/Speech/DNN/SequenceTraining/testcases.yml index 5b20cd5e2..d0ddb5dec 100644 --- a/Tests/EndToEndTests/Speech/DNN/SequenceTraining/testcases.yml +++ b/Tests/EndToEndTests/Speech/DNN/SequenceTraining/testcases.yml @@ -9,24 +9,24 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ Must train epochs in exactly same order and parameters: patterns: - - ^Starting Epoch {{integer}} + - Starting Epoch {{integer}} - learning rate per sample = {{float}} - momentum = {{float}} Epochs must be finished with expected results: patterns: - - ^Finished Epoch[{{integer}} of {{integer}}] + - Finished Epoch[{{integer}} of {{integer}}] - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErrPerSample = {{float,tolerance=.25%}} - AvgLearningRatePerSample = {{float,tolerance=0.001%}} Per-minibatch training results must match: patterns: - - ^ Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} + - Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} - SamplesSeen = {{integer}} - TrainLossPerSample = {{float,tolerance=.2%}} diff --git a/Tests/EndToEndTests/Speech/DNN/WriteCommand/baseline.cpu.txt b/Tests/EndToEndTests/Speech/DNN/WriteCommand/baseline.cpu.txt index 8e6032928..4fb9661c3 100644 --- a/Tests/EndToEndTests/Speech/DNN/WriteCommand/baseline.cpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/WriteCommand/baseline.cpu.txt @@ -575,4 +575,4 @@ Total Samples Evaluated = 3250 Action "write" complete. -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/DNN/WriteCommand/baseline.gpu.txt b/Tests/EndToEndTests/Speech/DNN/WriteCommand/baseline.gpu.txt index c891f1383..cb9b5dcf6 100644 --- a/Tests/EndToEndTests/Speech/DNN/WriteCommand/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/WriteCommand/baseline.gpu.txt @@ -577,4 +577,4 @@ Total Samples Evaluated = 3250 Action "write" complete. -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/DNN/WriteCommand/baseline.windows.cpu.txt b/Tests/EndToEndTests/Speech/DNN/WriteCommand/baseline.windows.cpu.txt index 77614bfaf..ada98134d 100644 --- a/Tests/EndToEndTests/Speech/DNN/WriteCommand/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/WriteCommand/baseline.windows.cpu.txt @@ -663,4 +663,4 @@ Total Samples Evaluated = 3250 Action "write" complete. -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/DNN/WriteCommand/baseline.windows.gpu.txt b/Tests/EndToEndTests/Speech/DNN/WriteCommand/baseline.windows.gpu.txt index 6922ba02d..1ac38654d 100644 --- a/Tests/EndToEndTests/Speech/DNN/WriteCommand/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Speech/DNN/WriteCommand/baseline.windows.gpu.txt @@ -665,4 +665,4 @@ Total Samples Evaluated = 3250 Action "write" complete. -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/DNN/WriteCommand/testcases.yml b/Tests/EndToEndTests/Speech/DNN/WriteCommand/testcases.yml index 4af43587a..d42e2d2df 100644 --- a/Tests/EndToEndTests/Speech/DNN/WriteCommand/testcases.yml +++ b/Tests/EndToEndTests/Speech/DNN/WriteCommand/testcases.yml @@ -8,24 +8,24 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ Must train epochs in exactly same order and parameters: patterns: - - ^Starting Epoch {{integer}} + - Starting Epoch {{integer}} - learning rate per sample = {{float}} - momentum = {{float}} Epochs must be finished with expected results: patterns: - - ^Finished Epoch[{{integer}} of {{integer}}] + - Finished Epoch[{{integer}} of {{integer}}] - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErrPerSample = {{float,tolerance=.1%}} - AvgLearningRatePerSample = {{float,tolerance=0.001%}} Per-minibatch training results must match: patterns: - - ^ Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} + - Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} - SamplesSeen = {{integer}} - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErr[0]PerSample = {{float,tolerance=.1%}} diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/baseline.cpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/baseline.cpu.txt index 82fdb6138..dfea1ce77 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/baseline.cpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/baseline.cpu.txt @@ -3265,4 +3265,4 @@ Starting minibatch loop. Epoch[ 4 of 4]-Minibatch[ 151- 160 of 160]: SamplesSeen = 5120; TrainLossPerSample = 0.97683563; EvalErr[0]PerSample = 0.30175781; TotalTime = 1.78603s; TotalTimePerSample = 0.34883ms; SamplesPerSecond = 2866 Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.0043954; EvalErrPerSample = 0.31276855; AvgLearningRatePerSample = 0.003125000047; EpochTime=28.984064 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/baseline.gpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/baseline.gpu.txt index 17e8f4da6..7513c4dc6 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/baseline.gpu.txt @@ -3872,4 +3872,4 @@ WARNING: The same matrix with dim [1, 1] has been transferred between different Epoch[ 4 of 4]-Minibatch[ 151- 160 of 160]: SamplesSeen = 5120; TrainLossPerSample = 0.97961731; EvalErr[0]PerSample = 0.29921875; TotalTime = 0.15761s; TotalTimePerSample = 0.03078ms; SamplesPerSecond = 32486 Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.0073979; EvalErrPerSample = 0.31477052; AvgLearningRatePerSample = 0.003125000047; EpochTime=2.874394 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/baseline.windows.cpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/baseline.windows.cpu.txt index e02d21617..7d2d64b1a 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/baseline.windows.cpu.txt @@ -3274,4 +3274,4 @@ Starting minibatch loop. Epoch[ 4 of 4]-Minibatch[ 151- 160 of 160]: SamplesSeen = 5120; TrainLossPerSample = 0.96573181; EvalErr[0]PerSample = 0.30156250; TotalTime = 2.77351s; TotalTimePerSample = 0.54170ms; SamplesPerSecond = 1846 Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.9992947; EvalErrPerSample = 0.31165773; AvgLearningRatePerSample = 0.003125000047; EpochTime=48.032169 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/baseline.windows.gpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/baseline.windows.gpu.txt index 656d76c98..5bcdfa56a 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/baseline.windows.gpu.txt @@ -3880,4 +3880,4 @@ WARNING: The same matrix with dim [1, 1] has been transferred between different Epoch[ 4 of 4]-Minibatch[ 151- 160 of 160]: SamplesSeen = 5120; TrainLossPerSample = 0.96711578; EvalErr[0]PerSample = 0.30175781; TotalTime = 0.49045s; TotalTimePerSample = 0.09579ms; SamplesPerSecond = 10439 Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 0.99611807; EvalErrPerSample = 0.31303713; AvgLearningRatePerSample = 0.003125000047; EpochTime=10.396508 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/run-test b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/run-test index 77d70c60d..48ebc1ec5 100755 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/run-test +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/run-test @@ -5,11 +5,5 @@ OriginalTestDir=../../../DNN/DiscriminativePreTraining ConfigDir=$TEST_DIR/$OriginalTestDir -(cd $TEST_DIR/$OriginalTestDir && md5sum baseline*) | (cd $TEST_DIR && md5sum --status -c -) -if [ $? != 0 ]; then - echo Error: Baselines must match original test. - exit 1 -fi - # cntkrun cntkrun cntk_dpt.cntk 'reader=[readerType=ExperimentalHTKMLFReader] reader=[prefetch=true]' || exit $? diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/testcases.yml b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/testcases.yml index d62ac95d2..b07812a1a 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/testcases.yml +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/DiscriminativePreTraining/testcases.yml @@ -19,24 +19,24 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ Must train epochs in exactly same order and parameters: patterns: - - ^Starting Epoch {{integer}} + - Starting Epoch {{integer}} - learning rate per sample = {{float}} - momentum = {{float}} Epochs must be finished with expected results: patterns: - - ^Finished Epoch[{{integer}} of {{integer}}] + - Finished Epoch[{{integer}} of {{integer}}] - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErrPerSample = {{float,tolerance=.25%}} - AvgLearningRatePerSample = {{float,tolerance=0.001%}} Per-minibatch training results must match: patterns: - - ^ Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} + - Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} - SamplesSeen = {{integer}} - TrainLossPerSample = {{float,tolerance=.2%}} diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/Parallel1BitQuantization/baseline.cpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/Parallel1BitQuantization/baseline.cpu.txt index 265ecc04f..8046aaf2f 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/Parallel1BitQuantization/baseline.cpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/Parallel1BitQuantization/baseline.cpu.txt @@ -493,7 +493,7 @@ MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.93975925; EvalErr[0]PerSample = 0.53330078; TotalTime = 4.26964s; TotalTimePerSample = 0.41696ms; SamplesPerSecond = 2398 MPI Rank 0: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9483618; EvalErrPerSample = 0.53447266; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=8.545751 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: running on localhost at 2015/10/06 11:38:28 MPI Rank 1: command line options: @@ -959,7 +959,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.93975925; EvalErr[0]PerSample = 0.53330078; TotalTime = 4.25975s; TotalTimePerSample = 0.41599ms; SamplesPerSecond = 2403 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9483618; EvalErrPerSample = 0.53447266; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=8.529597 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: running on localhost at 2015/10/06 11:38:29 MPI Rank 2: command line options: @@ -1425,5 +1425,5 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.93975925; EvalErr[0]PerSample = 0.53330078; TotalTime = 4.27664s; TotalTimePerSample = 0.41764ms; SamplesPerSecond = 2394 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9483618; EvalErrPerSample = 0.53447266; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=8.524726 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/Parallel1BitQuantization/baseline.gpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/Parallel1BitQuantization/baseline.gpu.txt index 58af59e47..ebe66f7ad 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/Parallel1BitQuantization/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/Parallel1BitQuantization/baseline.gpu.txt @@ -494,7 +494,7 @@ MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.94366837; EvalErr[0]PerSample = 0.53730469; TotalTime = 0.55136s; TotalTimePerSample = 0.05384ms; SamplesPerSecond = 18572 MPI Rank 0: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9596503; EvalErrPerSample = 0.53989258; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=1.14466 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: running on localhost at 2015/10/06 11:42:51 MPI Rank 1: command line options: @@ -961,7 +961,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.94366837; EvalErr[0]PerSample = 0.53730469; TotalTime = 0.55136s; TotalTimePerSample = 0.05384ms; SamplesPerSecond = 18572 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9596503; EvalErrPerSample = 0.53989258; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=1.144913 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: running on localhost at 2015/10/06 11:42:51 MPI Rank 2: command line options: @@ -1428,5 +1428,5 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.94366837; EvalErr[0]PerSample = 0.53730469; TotalTime = 0.55136s; TotalTimePerSample = 0.05384ms; SamplesPerSecond = 18572 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9596503; EvalErrPerSample = 0.53989258; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=1.145159 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/Parallel1BitQuantization/baseline.windows.cpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/Parallel1BitQuantization/baseline.windows.cpu.txt index 45c74451f..88e717fe8 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/Parallel1BitQuantization/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/Parallel1BitQuantization/baseline.windows.cpu.txt @@ -500,7 +500,7 @@ MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.90745194; EvalErr[0]PerSample = 0.52822266; TotalTime = 5.33597s; TotalTimePerSample = 0.52109ms; SamplesPerSecond = 1919 MPI Rank 0: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9172556; EvalErrPerSample = 0.53793945; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=10.70695 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151006095637.485670\Speech\DNN_Parallel1BitQuantization@debug_cpu/stderr_speechTrain.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -976,7 +976,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.90745194; EvalErr[0]PerSample = 0.52822266; TotalTime = 5.33601s; TotalTimePerSample = 0.52110ms; SamplesPerSecond = 1919 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9172556; EvalErrPerSample = 0.53793945; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=10.706864 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151006095637.485670\Speech\DNN_Parallel1BitQuantization@debug_cpu/stderr_speechTrain.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -1452,5 +1452,5 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.90745194; EvalErr[0]PerSample = 0.52822266; TotalTime = 5.33578s; TotalTimePerSample = 0.52107ms; SamplesPerSecond = 1919 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9172556; EvalErrPerSample = 0.53793945; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=10.706562 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/Parallel1BitQuantization/baseline.windows.gpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/Parallel1BitQuantization/baseline.windows.gpu.txt index d982cd975..02b6bc0ce 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/Parallel1BitQuantization/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/Parallel1BitQuantization/baseline.windows.gpu.txt @@ -501,7 +501,7 @@ MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.90162239; EvalErr[0]PerSample = 0.52011719; TotalTime = 1.36215s; TotalTimePerSample = 0.13302ms; SamplesPerSecond = 7517 MPI Rank 0: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.904514; EvalErrPerSample = 0.52109375; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=2.921597 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151006095145.884402\Speech\DNN_Parallel1BitQuantization@debug_gpu/stderr_speechTrain.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -978,7 +978,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.90162239; EvalErr[0]PerSample = 0.52011719; TotalTime = 1.36219s; TotalTimePerSample = 0.13303ms; SamplesPerSecond = 7517 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.904514; EvalErrPerSample = 0.52109375; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=2.921277 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151006095145.884402\Speech\DNN_Parallel1BitQuantization@debug_gpu/stderr_speechTrain.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -1455,5 +1455,5 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.90162239; EvalErr[0]PerSample = 0.52011719; TotalTime = 1.36172s; TotalTimePerSample = 0.13298ms; SamplesPerSecond = 7519 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.904514; EvalErrPerSample = 0.52109375; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=2.92187 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/Parallel1BitQuantization/run-test b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/Parallel1BitQuantization/run-test index d10215d15..86de681dd 100755 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/Parallel1BitQuantization/run-test +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/Parallel1BitQuantization/run-test @@ -8,12 +8,6 @@ LogFileName=stderr Instances=3 NumCPUThreads=$(threadsPerInstance $Instances) -(cd $TEST_DIR/$OriginalTestDir && md5sum baseline*) | (cd $TEST_DIR && md5sum --status -c -) -if [ $? != 0 ]; then - echo Error: Baselines must match original test. - exit 1 -fi - # cntkmpirun cntkmpirun "-n $Instances" cntk.cntk "speechTrain=[reader=[readerType=ExperimentalHTKMLFReader]] speechTrain=[reader=[prefetch=true]] numCPUThreads=$NumCPUThreads precision=double speechTrain=[SGD=[ParallelTrain=[DataParallelSGD=[gradientBits=1]]]] speechTrain=[SGD=[ParallelTrain=[parallelizationStartEpoch=2]]]" ExitCode=$? diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelBufferedAsyncGradientAggregation/baseline.cpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelBufferedAsyncGradientAggregation/baseline.cpu.txt index 87cf5264b..0db984cfc 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelBufferedAsyncGradientAggregation/baseline.cpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelBufferedAsyncGradientAggregation/baseline.cpu.txt @@ -968,7 +968,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 2.03252134; EvalErr[0]PerSample = 0.54667969; TotalTime = 2.64420s; TotalTimePerSample = 0.25822ms; SamplesPerSecond = 3872 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 2.0474117; EvalErrPerSample = 0.546875; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=5.515902 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: ------------------------------------------------------------------- MPI Rank 1: Build info: @@ -1909,7 +1909,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 2.03252134; EvalErr[0]PerSample = 0.54667969; TotalTime = 2.73810s; TotalTimePerSample = 0.26739ms; SamplesPerSecond = 3739 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 2.0474117; EvalErrPerSample = 0.546875; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=5.515901 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: ------------------------------------------------------------------- MPI Rank 2: Build info: @@ -2850,5 +2850,5 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 2.03252134; EvalErr[0]PerSample = 0.54667969; TotalTime = 2.76024s; TotalTimePerSample = 0.26955ms; SamplesPerSecond = 3709 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 2.0474117; EvalErrPerSample = 0.546875; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=5.51589 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelBufferedAsyncGradientAggregation/baseline.gpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelBufferedAsyncGradientAggregation/baseline.gpu.txt index 8402d3f32..6e7ffef56 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelBufferedAsyncGradientAggregation/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelBufferedAsyncGradientAggregation/baseline.gpu.txt @@ -970,7 +970,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.96679954; EvalErr[0]PerSample = 0.54326172; TotalTime = 0.74867s; TotalTimePerSample = 0.07311ms; SamplesPerSecond = 13677 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.9829983; EvalErrPerSample = 0.54199219; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=1.628572 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: ------------------------------------------------------------------- MPI Rank 1: Build info: @@ -1913,7 +1913,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.96679954; EvalErr[0]PerSample = 0.54326172; TotalTime = 0.73508s; TotalTimePerSample = 0.07179ms; SamplesPerSecond = 13930 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.9829983; EvalErrPerSample = 0.54199219; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=1.632037 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: ------------------------------------------------------------------- MPI Rank 2: Build info: @@ -2856,5 +2856,5 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.96679954; EvalErr[0]PerSample = 0.54326172; TotalTime = 0.73439s; TotalTimePerSample = 0.07172ms; SamplesPerSecond = 13943 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.9829983; EvalErrPerSample = 0.54199219; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=1.632004 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelBufferedAsyncGradientAggregation/baseline.windows.cpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelBufferedAsyncGradientAggregation/baseline.windows.cpu.txt index 28e525b45..6d34c8ffd 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelBufferedAsyncGradientAggregation/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelBufferedAsyncGradientAggregation/baseline.windows.cpu.txt @@ -959,7 +959,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.90311195; EvalErr[0]PerSample = 0.51884766; TotalTime = 10.16914s; TotalTimePerSample = 0.99308ms; SamplesPerSecond = 1006 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.916061; EvalErrPerSample = 0.52392578; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=18.802169 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151129190328.957292\Speech\DNN_ParallelBufferedAsyncGradientAggregation@debug_cpu/stderr_speechTrain.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -1894,7 +1894,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.90311195; EvalErr[0]PerSample = 0.51884766; TotalTime = 10.57049s; TotalTimePerSample = 1.03227ms; SamplesPerSecond = 968 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.916061; EvalErrPerSample = 0.52392578; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=18.802116 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151129190328.957292\Speech\DNN_ParallelBufferedAsyncGradientAggregation@debug_cpu/stderr_speechTrain.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -2829,5 +2829,5 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.90311195; EvalErr[0]PerSample = 0.51884766; TotalTime = 10.02738s; TotalTimePerSample = 0.97924ms; SamplesPerSecond = 1021 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.916061; EvalErrPerSample = 0.52392578; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=18.802161 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelBufferedAsyncGradientAggregation/baseline.windows.gpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelBufferedAsyncGradientAggregation/baseline.windows.gpu.txt index 0a8246adf..ff073cba5 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelBufferedAsyncGradientAggregation/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelBufferedAsyncGradientAggregation/baseline.windows.gpu.txt @@ -961,7 +961,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.91243517; EvalErr[0]PerSample = 0.52392578; TotalTime = 1.19099s; TotalTimePerSample = 0.11631ms; SamplesPerSecond = 8597 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.9294785; EvalErrPerSample = 0.53051758; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=2.665546 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151129190035.845361\Speech\DNN_ParallelBufferedAsyncGradientAggregation@debug_gpu/stderr_speechTrain.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -1898,7 +1898,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.91243517; EvalErr[0]PerSample = 0.52392578; TotalTime = 1.18460s; TotalTimePerSample = 0.11568ms; SamplesPerSecond = 8644 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.9294785; EvalErrPerSample = 0.53051758; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=2.665537 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151129190035.845361\Speech\DNN_ParallelBufferedAsyncGradientAggregation@debug_gpu/stderr_speechTrain.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -2835,5 +2835,5 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 1- 10 of 20]: SamplesSeen = 9216; Trai MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.91243517; EvalErr[0]PerSample = 0.52392578; TotalTime = 1.20963s; TotalTimePerSample = 0.11813ms; SamplesPerSecond = 8465 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.9294785; EvalErrPerSample = 0.53051758; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=2.665575 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelBufferedAsyncGradientAggregation/run-test b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelBufferedAsyncGradientAggregation/run-test index 8396be527..a981eabf3 100755 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelBufferedAsyncGradientAggregation/run-test +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelBufferedAsyncGradientAggregation/run-test @@ -8,12 +8,6 @@ LogFileName=stderr Instances=3 NumCPUThreads=$(threadsPerInstance $Instances) -(cd $TEST_DIR/$OriginalTestDir && md5sum baseline*) | (cd $TEST_DIR && md5sum --status -c -) -if [ $? != 0 ]; then - echo Error: Baselines must match original test. - exit 1 -fi - # cntkmpirun cntkmpirun "-n $Instances" cntk.cntk "speechTrain=[reader=[readerType=ExperimentalHTKMLFReader]] speechTrain=[reader=[prefetch=true]] numCPUThreads=$NumCPUThreads precision=double speechTrain=[SGD=[ParallelTrain=[DataParallelSGD=[gradientBits=1]]]] speechTrain=[SGD=[ParallelTrain=[DataParallelSGD=[useBufferedAsyncGradientAggregation=true]]]] speechTrain=[SGD=[ParallelTrain=[parallelizationStartEpoch=2]]] speechTrain=[SGD=[maxEpochs=4]] speechTrain=[SGD=[ParallelTrain=[syncPerfStats=5]]]" ExitCode=$? diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantization/baseline.cpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantization/baseline.cpu.txt index af204e6c1..1adf6bf05 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantization/baseline.cpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantization/baseline.cpu.txt @@ -494,7 +494,7 @@ MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.91062447; EvalErr[0]PerSample = 0.52783203; TotalTime = 3.92841s; TotalTimePerSample = 0.38363ms; SamplesPerSecond = 2606 MPI Rank 0: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9150216; EvalErrPerSample = 0.52836914; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=7.722059 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: running on localhost at 2015/10/02 13:34:22 MPI Rank 1: command line options: @@ -958,7 +958,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.91062447; EvalErr[0]PerSample = 0.52783203; TotalTime = 3.91134s; TotalTimePerSample = 0.38197ms; SamplesPerSecond = 2618 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9150216; EvalErrPerSample = 0.52836914; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=7.721915 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: running on localhost at 2015/10/02 13:34:22 MPI Rank 2: command line options: @@ -1422,5 +1422,5 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.91062447; EvalErr[0]PerSample = 0.52783203; TotalTime = 3.89837s; TotalTimePerSample = 0.38070ms; SamplesPerSecond = 2626 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9150216; EvalErrPerSample = 0.52836914; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=7.712128 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantization/baseline.gpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantization/baseline.gpu.txt index 359606b26..0c4334e0c 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantization/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantization/baseline.gpu.txt @@ -606,7 +606,7 @@ MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.86656271; EvalErr[0]PerSample = 0.51748047; TotalTime = 0.34559s; TotalTimePerSample = 0.03375ms; SamplesPerSecond = 29630 MPI Rank 0: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8700806; EvalErrPerSample = 0.5184082; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=0.728516 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: running on localhost at 2015/10/24 12:56:12 MPI Rank 1: command line: @@ -1185,7 +1185,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.86656271; EvalErr[0]PerSample = 0.51748047; TotalTime = 0.34559s; TotalTimePerSample = 0.03375ms; SamplesPerSecond = 29630 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8700806; EvalErrPerSample = 0.5184082; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=0.728446 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: running on localhost at 2015/10/24 12:56:12 MPI Rank 2: command line: @@ -1764,5 +1764,5 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.86656271; EvalErr[0]PerSample = 0.51748047; TotalTime = 0.34556s; TotalTimePerSample = 0.03375ms; SamplesPerSecond = 29632 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8700806; EvalErrPerSample = 0.5184082; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=0.728405 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantization/baseline.windows.cpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantization/baseline.windows.cpu.txt index c0207fc32..0044448e0 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantization/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantization/baseline.windows.cpu.txt @@ -501,7 +501,7 @@ MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.89380105; EvalErr[0]PerSample = 0.51816406; TotalTime = 5.32609s; TotalTimePerSample = 0.52013ms; SamplesPerSecond = 1922 MPI Rank 0: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8898486; EvalErrPerSample = 0.52172852; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=11.273566 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151002132240.147218\Speech\DNN_ParallelNoQuantization@debug_cpu/stderr_speechTrain.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -975,7 +975,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.89380105; EvalErr[0]PerSample = 0.51816406; TotalTime = 5.32607s; TotalTimePerSample = 0.52012ms; SamplesPerSecond = 1922 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8898486; EvalErrPerSample = 0.52172852; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=11.27354 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151002132240.147218\Speech\DNN_ParallelNoQuantization@debug_cpu/stderr_speechTrain.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -1449,5 +1449,5 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.89380105; EvalErr[0]PerSample = 0.51816406; TotalTime = 5.32607s; TotalTimePerSample = 0.52012ms; SamplesPerSecond = 1922 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8898486; EvalErrPerSample = 0.52172852; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=11.27344 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantization/baseline.windows.gpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantization/baseline.windows.gpu.txt index 2c04b9eea..b22105956 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantization/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantization/baseline.windows.gpu.txt @@ -612,7 +612,7 @@ MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 0: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.87358831; EvalErr[0]PerSample = 0.51542969; TotalTime = 0.82689s; TotalTimePerSample = 0.08075ms; SamplesPerSecond = 12383 MPI Rank 0: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8705584; EvalErrPerSample = 0.51860352; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=1.909274 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151024141411.953694\Speech\DNN_ParallelNoQuantization@debug_gpu/stderr_speechTrain.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -1200,7 +1200,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.87358831; EvalErr[0]PerSample = 0.51542969; TotalTime = 0.82899s; TotalTimePerSample = 0.08096ms; SamplesPerSecond = 12352 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8705584; EvalErrPerSample = 0.51860352; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=1.90997 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20151024141411.953694\Speech\DNN_ParallelNoQuantization@debug_gpu/stderr_speechTrain.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -1788,5 +1788,5 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; Tra MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.87358831; EvalErr[0]PerSample = 0.51542969; TotalTime = 0.82561s; TotalTimePerSample = 0.08063ms; SamplesPerSecond = 12402 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8705584; EvalErrPerSample = 0.51860352; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=1.906446 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantization/run-test b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantization/run-test index 23ee8cdda..de5b2af69 100755 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantization/run-test +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantization/run-test @@ -8,12 +8,6 @@ LogFileName=stderr Instances=3 NumCPUThreads=$(threadsPerInstance $Instances) -(cd $TEST_DIR/$OriginalTestDir && md5sum baseline*) | (cd $TEST_DIR && md5sum --status -c -) -if [ $? != 0 ]; then - echo Error: Baselines must match original test. - exit 1 -fi - # cntkmpirun cntkmpirun "-n $Instances" cntk.cntk "speechTrain=[reader=[readerType=ExperimentalHTKMLFReader]] speechTrain=[reader=[prefetch=true]] numCPUThreads=$NumCPUThreads" ExitCode=$? diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.cpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.cpu.txt index 5c0259ff4..2c131b576 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.cpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.cpu.txt @@ -877,7 +877,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 0: Async gradient aggregation wait time: 0.006704 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.9047436; EvalErrPerSample = 0.52290039; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=6.84798 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: ------------------------------------------------------------------- MPI Rank 1: Build info: @@ -1727,7 +1727,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 1: Async gradient aggregation wait time: 1.3e-05 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.9047436; EvalErrPerSample = 0.52290039; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=6.8934 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: ------------------------------------------------------------------- MPI Rank 2: Build info: @@ -2577,5 +2577,5 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 2: Async gradient aggregation wait time: 0.004703 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.9047436; EvalErrPerSample = 0.52290039; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=6.84798 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.gpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.gpu.txt index d9019ff9c..fb0d7fb87 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.gpu.txt @@ -883,7 +883,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 0: Async gradient aggregation wait time: 0.004648 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.8924891; EvalErrPerSample = 0.51933594; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=1.10761 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: ------------------------------------------------------------------- MPI Rank 1: Build info: @@ -1739,7 +1739,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 1: Async gradient aggregation wait time: 0.004311 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.8924891; EvalErrPerSample = 0.51933594; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=1.10764 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: ------------------------------------------------------------------- MPI Rank 2: Build info: @@ -2595,5 +2595,5 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 2: Async gradient aggregation wait time: 0.005346 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.8924891; EvalErrPerSample = 0.51933594; AvgLearningRatePerSample = 9.7656251e-05; EpochTime=1.10805 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.windows.cpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.windows.cpu.txt index 56262d3f4..46839332c 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.windows.cpu.txt @@ -864,7 +864,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 0: Async gradient aggregation wait time: 9e-006 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.8894112; EvalErrPerSample = 0.51376953; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=22.561 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160106231018.691457\Speech\DNN_ParallelNoQuantizationBufferedAsyncGradientAggregation@debug_cpu/stderr_speechTrain.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -1699,7 +1699,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 1: Async gradient aggregation wait time: 8e-006 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.8894112; EvalErrPerSample = 0.51376953; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=22.7997 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160106231018.691457\Speech\DNN_ParallelNoQuantizationBufferedAsyncGradientAggregation@debug_cpu/stderr_speechTrain.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -2534,5 +2534,5 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 2: Async gradient aggregation wait time: 0.00373 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.8894112; EvalErrPerSample = 0.51376953; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=22.5056 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.windows.gpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.windows.gpu.txt index 6618371ea..fb027ae62 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/baseline.windows.gpu.txt @@ -879,7 +879,7 @@ MPI Rank 0: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 0: Async gradient aggregation wait time: 0.002651 MPI Rank 0: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.882856; EvalErrPerSample = 0.51445312; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=2.10527 MPI Rank 0: CNTKCommandTrainEnd: speechTrain -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160106230707.566663\Speech\DNN_ParallelNoQuantizationBufferedAsyncGradientAggregation@debug_gpu/stderr_speechTrain.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -1729,7 +1729,7 @@ MPI Rank 1: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 1: Async gradient aggregation wait time: 0.003634 MPI Rank 1: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.882856; EvalErrPerSample = 0.51445312; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=2.10546 MPI Rank 1: CNTKCommandTrainEnd: speechTrain -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160106230707.566663\Speech\DNN_ParallelNoQuantizationBufferedAsyncGradientAggregation@debug_gpu/stderr_speechTrain.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -2584,5 +2584,5 @@ MPI Rank 2: Epoch[ 4 of 4]-Minibatch[ 11- 20, 100.00%]: SamplesSeen = 10240; MPI Rank 2: Async gradient aggregation wait time: 0.001318 MPI Rank 2: Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 1.882856; EvalErrPerSample = 0.51445312; AvgLearningRatePerSample = 9.7656251e-005; EpochTime=2.10527 MPI Rank 2: CNTKCommandTrainEnd: speechTrain -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/run-test b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/run-test index ec4faa876..3d7d8c5d4 100755 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/run-test +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/DNN/ParallelNoQuantizationBufferedAsyncGradientAggregation/run-test @@ -8,12 +8,6 @@ LogFileName=stderr Instances=3 NumCPUThreads=$(threadsPerInstance $Instances) -(cd $TEST_DIR/$OriginalTestDir && md5sum baseline*) | (cd $TEST_DIR && md5sum --status -c -) -if [ $? != 0 ]; then - echo Error: Baselines must match original test. - exit 1 -fi - # cntkmpirun cntkmpirun "-n $Instances" cntk.cntk "speechTrain=[reader=[readerType=ExperimentalHTKMLFReader]] speechTrain=[reader=[prefetch=true]] numCPUThreads=$NumCPUThreads precision=double speechTrain=[SGD=[ParallelTrain=[DataParallelSGD=[gradientBits=64]]]] speechTrain=[SGD=[ParallelTrain=[DataParallelSGD=[useBufferedAsyncGradientAggregation=true]]]] speechTrain=[SGD=[ParallelTrain=[parallelizationStartEpoch=2]]] speechTrain=[SGD=[maxEpochs=4]] speechTrain=[SGD=[ParallelTrain=[syncPerfStats=5]]]" ExitCode=$? diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/baseline.cpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/baseline.cpu.txt index 74268f0c3..1ffd26847 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/baseline.cpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/baseline.cpu.txt @@ -340,7 +340,7 @@ Starting minibatch loop. Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.91941869; EvalErr[0]PerSample = 0.52890623; TotalTime = 1.86784s; TotalTimePerSample = 0.18241ms; SamplesPerSecond = 5482 Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.91062427; EvalErr[0]PerSample = 0.52783203; TotalTime = 1.84987s; TotalTimePerSample = 0.18065ms; SamplesPerSecond = 5535 Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9150215; EvalErrPerSample = 0.52836913; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=3.736133 -COMPLETED +__COMPLETED__ === Deleting last epoch data ==== Re-running from checkpoint running on localhost at 2015/08/25 20:26:31 @@ -710,4 +710,4 @@ Validating --> EvalErrorPrediction = ErrorPrediction(labels[132, 1024], HLast[13 Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.91941869; EvalErr[0]PerSample = 0.52890623; TotalTime = 1.88723s; TotalTimePerSample = 0.18430ms; SamplesPerSecond = 5425 Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.91062427; EvalErr[0]PerSample = 0.52783203; TotalTime = 1.84469s; TotalTimePerSample = 0.18015ms; SamplesPerSecond = 5551 Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9150215; EvalErrPerSample = 0.52836913; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=5.315324 -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/baseline.gpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/baseline.gpu.txt index d71d3eac2..b2076d6f4 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/baseline.gpu.txt @@ -553,7 +553,7 @@ Starting minibatch loop. Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.86656265; EvalErr[0]PerSample = 0.51748047; TotalTime = 0.21814s; TotalTimePerSample = 0.02130ms; SamplesPerSecond = 46943 Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8700806; EvalErrPerSample = 0.51840824; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=0.493964 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ === Deleting last epoch data ==== Re-running from checkpoint === Running /home/mluser/src/cplx_master/build/debug/bin/cntk configFile=/home/mluser/src/cplx_master/Tests/Speech/QuickE2E/cntk.config RunDir=/tmp/cntk-test-20151024124900.548963/Speech_QuickE2E@debug_gpu DataDir=/home/mluser/src/cplx_master/Tests/Speech/Data ConfigDir=/home/mluser/src/cplx_master/Tests/Speech/QuickE2E DeviceId=0 @@ -1331,4 +1331,4 @@ EnforceOneGPUOnly: WARNING: Ignored attempt to change GPU choice from 0 now 1. T Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.86656265; EvalErr[0]PerSample = 0.51748047; TotalTime = 0.21717s; TotalTimePerSample = 0.02121ms; SamplesPerSecond = 47152 Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8700806; EvalErrPerSample = 0.51840824; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=1.439589 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/baseline.windows.cpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/baseline.windows.cpu.txt index ff037b498..f899e6ae1 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/baseline.windows.cpu.txt @@ -349,7 +349,7 @@ Starting minibatch loop, distributed reading is: DISABLED Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.88589633; EvalErr[0]PerSample = 0.52529299; TotalTime = 0.59385s; TotalTimePerSample = 0.05799ms; SamplesPerSecond = 17243 Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.89380074; EvalErr[0]PerSample = 0.51816404; TotalTime = 0.51284s; TotalTimePerSample = 0.05008ms; SamplesPerSecond = 19967 Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8898486; EvalErrPerSample = 0.52172852; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=1.109687 -COMPLETED +__COMPLETED__ === Deleting last epoch data ==== Re-running from checkpoint ------------------------------------------------------------------- @@ -728,4 +728,4 @@ Validating --> EvalErrorPrediction = ErrorPrediction(labels[132, 1024], HLast[13 Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.88589633; EvalErr[0]PerSample = 0.52529299; TotalTime = 0.86012s; TotalTimePerSample = 0.08400ms; SamplesPerSecond = 11905 Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.89380074; EvalErr[0]PerSample = 0.51816404; TotalTime = 0.60616s; TotalTimePerSample = 0.05919ms; SamplesPerSecond = 16893 Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8898486; EvalErrPerSample = 0.52172852; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=2.711551 -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/baseline.windows.gpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/baseline.windows.gpu.txt index 0e9622b78..759d87b54 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/baseline.windows.gpu.txt @@ -561,7 +561,7 @@ Starting minibatch loop. Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.87358818; EvalErr[0]PerSample = 0.51542969; TotalTime = 0.60551s; TotalTimePerSample = 0.05913ms; SamplesPerSecond = 16911 Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8705584; EvalErrPerSample = 0.5186035; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=1.428405 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ === Deleting last epoch data ==== Re-running from checkpoint === Running /cygdrive/e/NetScale/CNTK/git_repos/cplx_master2/x64/debug/cntk.exe configFile=E:\NetScale\CNTK\git_repos\cplx_master2\Tests\Speech\QuickE2E/cntk.config RunDir=C:\cygwin64\tmp\cntk-test-20151024140721.927553\Speech_QuickE2E@debug_gpu DataDir=E:\NetScale\CNTK\git_repos\cplx_master2\Tests\Speech\Data ConfigDir=E:\NetScale\CNTK\git_repos\cplx_master2\Tests\Speech\QuickE2E DeviceId=0 @@ -1347,4 +1347,4 @@ Starting minibatch loop. Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.87358818; EvalErr[0]PerSample = 0.51542969; TotalTime = 0.86938s; TotalTimePerSample = 0.08490ms; SamplesPerSecond = 11778 Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8705584; EvalErrPerSample = 0.5186035; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=6.283729 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/run-test b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/run-test index a59930676..5b2f6432b 100755 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/run-test +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/run-test @@ -5,12 +5,6 @@ OriginalTestDir=../../QuickE2E ConfigDir=$TEST_DIR/$OriginalTestDir -(cd $TEST_DIR/$OriginalTestDir && md5sum baseline*) | (cd $TEST_DIR && md5sum --status -c -) -if [ $? != 0 ]; then - echo Error: Baselines must match original test. - exit 1 -fi - # cntkrun DeleteModelsAfterTest=0 cntkrun cntk.cntk 'speechTrain=[reader=[readerType=ExperimentalHTKMLFReader]]' || exit $? diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/testcases.yml b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/testcases.yml index b95982f44..46ddcfdfc 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/testcases.yml +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/QuickE2E/testcases.yml @@ -8,24 +8,24 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ Must train epochs in exactly same order and parameters: patterns: - - ^Starting Epoch {{integer}} + - Starting Epoch {{integer}} - learning rate per sample = {{float}} - momentum = {{float}} Epochs must be finished with expected results: patterns: - - ^Finished Epoch[{{integer}} of {{integer}}] + - Finished Epoch[{{integer}} of {{integer}}] - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErrPerSample = {{float,tolerance=.1%}} - AvgLearningRatePerSample = {{float,tolerance=0.001%}} Per-minibatch training results must match: patterns: - - ^ Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} + - Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} - SamplesSeen = {{integer}} - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErr[0]PerSample = {{float,tolerance=.1%}} diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/baseline.cpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/baseline.cpu.txt index 5c035c099..0dc1812cc 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/baseline.cpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/baseline.cpu.txt @@ -2064,4 +2064,4 @@ Starting minibatch loop. Epoch[ 2 of 2]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.85902176; EvalErr[0]PerSample = 0.51396484; TotalTime = 1.48188s; TotalTimePerSample = 0.14471ms; SamplesPerSecond = 6910 Finished Epoch[ 2 of 2]: [Training Set] TrainLossPerSample = 1.8499603; EvalErrPerSample = 0.5126465; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=3.049746 CNTKCommandTrainEnd: SVDTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/baseline.gpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/baseline.gpu.txt index 779884461..e5315f319 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/baseline.gpu.txt @@ -2067,4 +2067,4 @@ Starting minibatch loop. Epoch[ 2 of 2]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.81663570; EvalErr[0]PerSample = 0.50869141; TotalTime = 0.23803s; TotalTimePerSample = 0.02325ms; SamplesPerSecond = 43019 Finished Epoch[ 2 of 2]: [Training Set] TrainLossPerSample = 1.8090889; EvalErrPerSample = 0.504834; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=0.528531 CNTKCommandTrainEnd: SVDTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/baseline.windows.cpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/baseline.windows.cpu.txt index 3dc50ea83..d6751a433 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/baseline.windows.cpu.txt @@ -2073,4 +2073,4 @@ Starting minibatch loop. Epoch[ 2 of 2]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.80246696; EvalErr[0]PerSample = 0.50654297; TotalTime = 3.29585s; TotalTimePerSample = 0.32186ms; SamplesPerSecond = 3106 Finished Epoch[ 2 of 2]: [Training Set] TrainLossPerSample = 1.8185977; EvalErrPerSample = 0.50717777; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=7.151551 CNTKCommandTrainEnd: SVDTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/baseline.windows.gpu.txt b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/baseline.windows.gpu.txt index 31c006e0c..7a0b10c09 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/baseline.windows.gpu.txt @@ -2075,4 +2075,4 @@ Starting minibatch loop. Epoch[ 2 of 2]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.78207207; EvalErr[0]PerSample = 0.50322266; TotalTime = 0.63083s; TotalTimePerSample = 0.06160ms; SamplesPerSecond = 16232 Finished Epoch[ 2 of 2]: [Training Set] TrainLossPerSample = 1.7974522; EvalErrPerSample = 0.50405276; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=1.447972 CNTKCommandTrainEnd: SVDTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/run-test b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/run-test index a93f288e5..69ec7918a 100755 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/run-test +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/run-test @@ -5,11 +5,5 @@ OriginalTestDir=../../SVD ConfigDir=$TEST_DIR/$OriginalTestDir -(cd $TEST_DIR/$OriginalTestDir && md5sum baseline*) | (cd $TEST_DIR && md5sum --status -c -) -if [ $? != 0 ]; then - echo Error: Baselines must match original test. - exit 1 -fi - # cntkrun cntkrun cntk.cntk 'reader=[readerType=ExperimentalHTKMLFReader] reader=[prefetch=true]' || exit $? diff --git a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/testcases.yml b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/testcases.yml index 2ce992112..6ff18c8ef 100644 --- a/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/testcases.yml +++ b/Tests/EndToEndTests/Speech/ExperimentalHtkmlfReader/SVD/testcases.yml @@ -8,28 +8,28 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ Must train epochs in exactly same order and parameters: patterns: - - ^Starting Epoch {{integer}} + - Starting Epoch {{integer}} - learning rate per sample = {{float}} - momentum = {{float}} Epochs must be finished with expected results: patterns: - - ^Finished Epoch[{{integer}} of {{integer}}] + - Finished Epoch[{{integer}} of {{integer}}] - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErrPerSample = {{float,tolerance=.1%}} - AvgLearningRatePerSample = {{float,tolerance=0.001%}} Per-minibatch training results must match: patterns: - - ^ Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} + - Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} - SamplesSeen = {{integer}} - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErr[0]PerSample = {{float,tolerance=.1%}} SVD decomposition output messages should match: patterns: - - ^Performing SVD for a {{integer}}-by-{{integer}} + - Performing SVD for a {{integer}}-by-{{integer}} diff --git a/Tests/EndToEndTests/Speech/LSTM/FullUtterance/baseline.cpu.txt b/Tests/EndToEndTests/Speech/LSTM/FullUtterance/baseline.cpu.txt index 823d4f2ae..731afee10 100644 --- a/Tests/EndToEndTests/Speech/LSTM/FullUtterance/baseline.cpu.txt +++ b/Tests/EndToEndTests/Speech/LSTM/FullUtterance/baseline.cpu.txt @@ -8698,4 +8698,4 @@ Starting minibatch loop. Epoch[ 2 of 2]-Minibatch[ 5- 5 of 128]: SamplesSeen = 596; TrainLossPerSample = 4.22185009; EvalErr[0]PerSample = 0.91778523; TotalTime = 6.30986s; TotalTimePerSample = 10.58701ms; SamplesPerSecond = 94 Finished Epoch[ 2 of 2]: [Training Set] TrainLossPerSample = 4.159039; EvalErrPerSample = 0.89682537; AvgLearningRatePerSample = 0.02500000037; EpochTime=32.210996 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/LSTM/FullUtterance/baseline.gpu.txt b/Tests/EndToEndTests/Speech/LSTM/FullUtterance/baseline.gpu.txt index e1eda5cfa..dd4f11701 100644 --- a/Tests/EndToEndTests/Speech/LSTM/FullUtterance/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/LSTM/FullUtterance/baseline.gpu.txt @@ -8699,4 +8699,4 @@ Starting minibatch loop. Epoch[ 2 of 2]-Minibatch[ 5- 5 of 128]: SamplesSeen = 596; TrainLossPerSample = 4.22185009; EvalErr[0]PerSample = 0.91778523; TotalTime = 4.28988s; TotalTimePerSample = 7.19778ms; SamplesPerSecond = 138 Finished Epoch[ 2 of 2]: [Training Set] TrainLossPerSample = 4.1590457; EvalErrPerSample = 0.89682537; AvgLearningRatePerSample = 0.02500000037; EpochTime=22.958186 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/LSTM/FullUtterance/baseline.windows.cpu.txt b/Tests/EndToEndTests/Speech/LSTM/FullUtterance/baseline.windows.cpu.txt index d8208d2e1..f7b959387 100644 --- a/Tests/EndToEndTests/Speech/LSTM/FullUtterance/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/Speech/LSTM/FullUtterance/baseline.windows.cpu.txt @@ -8706,4 +8706,4 @@ Starting minibatch loop. Epoch[ 2 of 2]-Minibatch[ 5- 5 of 128]: SamplesSeen = 486; TrainLossPerSample = 4.26283798; EvalErr[0]PerSample = 0.87448560; TotalTime = 19.23765s; TotalTimePerSample = 39.58364ms; SamplesPerSecond = 25 Finished Epoch[ 2 of 2]: [Training Set] TrainLossPerSample = 4.2592373; EvalErrPerSample = 0.87673128; AvgLearningRatePerSample = 0.02500000037; EpochTime=154.44309 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/LSTM/FullUtterance/baseline.windows.gpu.txt b/Tests/EndToEndTests/Speech/LSTM/FullUtterance/baseline.windows.gpu.txt index cfc696f43..178df4ec7 100644 --- a/Tests/EndToEndTests/Speech/LSTM/FullUtterance/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Speech/LSTM/FullUtterance/baseline.windows.gpu.txt @@ -8706,4 +8706,4 @@ Starting minibatch loop. Epoch[ 2 of 2]-Minibatch[ 5- 5 of 128]: SamplesSeen = 486; TrainLossPerSample = 4.26283999; EvalErr[0]PerSample = 0.87448560; TotalTime = 21.40957s; TotalTimePerSample = 44.05262ms; SamplesPerSecond = 22 Finished Epoch[ 2 of 2]: [Training Set] TrainLossPerSample = 4.2592301; EvalErrPerSample = 0.87673128; AvgLearningRatePerSample = 0.02500000037; EpochTime=181.15261 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/LSTM/FullUtterance/testcases.yml b/Tests/EndToEndTests/Speech/LSTM/FullUtterance/testcases.yml index ace281b41..6ae858e17 100644 --- a/Tests/EndToEndTests/Speech/LSTM/FullUtterance/testcases.yml +++ b/Tests/EndToEndTests/Speech/LSTM/FullUtterance/testcases.yml @@ -8,24 +8,24 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ Must train epochs in exactly same order and parameters: patterns: - - ^Starting Epoch {{integer}} + - Starting Epoch {{integer}} - learning rate per sample = {{float}} - momentum = {{float}} Epochs must be finished with expected results: patterns: - - ^Finished Epoch[{{integer}} of {{integer}}] + - Finished Epoch[{{integer}} of {{integer}}] - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErrPerSample = {{float,tolerance=.1%}} - AvgLearningRatePerSample = {{float,tolerance=0.001%}} Per-minibatch training results must match: patterns: - - ^ Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} + - Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} - SamplesSeen = {{integer}} - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErr[0]PerSample = {{float,tolerance=.1%}} diff --git a/Tests/EndToEndTests/Speech/LSTM/Truncated-Kaldi/baseline.cpu.txt b/Tests/EndToEndTests/Speech/LSTM/Truncated-Kaldi/baseline.cpu.txt index 5f0e62efe..50a0ac824 100644 --- a/Tests/EndToEndTests/Speech/LSTM/Truncated-Kaldi/baseline.cpu.txt +++ b/Tests/EndToEndTests/Speech/LSTM/Truncated-Kaldi/baseline.cpu.txt @@ -2965,4 +2965,4 @@ CNTKCommandTrainEnd: speechTrain Action "train" complete. -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/LSTM/Truncated-Kaldi/baseline.gpu.txt b/Tests/EndToEndTests/Speech/LSTM/Truncated-Kaldi/baseline.gpu.txt index 95dafc219..25d790bae 100644 --- a/Tests/EndToEndTests/Speech/LSTM/Truncated-Kaldi/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/LSTM/Truncated-Kaldi/baseline.gpu.txt @@ -2965,4 +2965,4 @@ CNTKCommandTrainEnd: speechTrain Action "train" complete. -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/LSTM/Truncated-Kaldi/testcases.yml b/Tests/EndToEndTests/Speech/LSTM/Truncated-Kaldi/testcases.yml index 066f8d88a..aa7fdd30f 100644 --- a/Tests/EndToEndTests/Speech/LSTM/Truncated-Kaldi/testcases.yml +++ b/Tests/EndToEndTests/Speech/LSTM/Truncated-Kaldi/testcases.yml @@ -8,24 +8,24 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ Must train epochs in exactly same order and parameters: patterns: - - ^Starting Epoch {{integer}} + - Starting Epoch {{integer}} - learning rate per sample = {{float}} - momentum = {{float,tolerance=.01%}} Epochs must be finished with expected results: patterns: - - ^Finished Epoch[{{integer}} of {{integer}}] + - Finished Epoch[{{integer}} of {{integer}}] - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErrPerSample = {{float,tolerance=.1%}} - AvgLearningRatePerSample = {{float,tolerance=0.001%}} Per-minibatch training results must match: patterns: - - ^ Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} + - Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} - SamplesSeen = {{integer}} - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErr[0]PerSample = {{float,tolerance=.1%}} diff --git a/Tests/EndToEndTests/Speech/LSTM/Truncated/baseline.cpu.txt b/Tests/EndToEndTests/Speech/LSTM/Truncated/baseline.cpu.txt index 4a0909832..8924465d1 100644 --- a/Tests/EndToEndTests/Speech/LSTM/Truncated/baseline.cpu.txt +++ b/Tests/EndToEndTests/Speech/LSTM/Truncated/baseline.cpu.txt @@ -9212,4 +9212,4 @@ Starting minibatch loop. Epoch[ 4 of 4]-Minibatch[ 31- 40 of 1024]: SamplesSeen = 1630; TrainLossPerSample = 4.05378643; EvalErr[0]PerSample = 0.89018405; TotalTime = 37.74493s; TotalTimePerSample = 23.15640ms; SamplesPerSecond = 43 Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 4.0972614; EvalErrPerSample = 0.86727881; AvgLearningRatePerSample = 0.0007812500116; EpochTime=156.30584 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/LSTM/Truncated/baseline.gpu.txt b/Tests/EndToEndTests/Speech/LSTM/Truncated/baseline.gpu.txt index 6e9f63c84..cc0d85a0e 100644 --- a/Tests/EndToEndTests/Speech/LSTM/Truncated/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/LSTM/Truncated/baseline.gpu.txt @@ -9213,4 +9213,4 @@ Starting minibatch loop. Epoch[ 4 of 4]-Minibatch[ 31- 40 of 1024]: SamplesSeen = 1630; TrainLossPerSample = 4.05378643; EvalErr[0]PerSample = 0.89018405; TotalTime = 3.63035s; TotalTimePerSample = 2.22721ms; SamplesPerSecond = 448 Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 4.097261; EvalErrPerSample = 0.86727881; AvgLearningRatePerSample = 0.0007812500116; EpochTime=16.609371 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/LSTM/Truncated/baseline.windows.cpu.txt b/Tests/EndToEndTests/Speech/LSTM/Truncated/baseline.windows.cpu.txt index 731e45434..6b8a258f1 100644 --- a/Tests/EndToEndTests/Speech/LSTM/Truncated/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/Speech/LSTM/Truncated/baseline.windows.cpu.txt @@ -9221,4 +9221,4 @@ Starting minibatch loop. Epoch[ 4 of 4]-Minibatch[ 31- 40 of 1024]: SamplesSeen = 1856; TrainLossPerSample = 4.20807937; EvalErr[0]PerSample = 0.90948276; TotalTime = 57.52875s; TotalTimePerSample = 30.99609ms; SamplesPerSecond = 32 Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 4.1010361; EvalErrPerSample = 0.86705089; AvgLearningRatePerSample = 0.0007812500116; EpochTime=225.56328 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/LSTM/Truncated/baseline.windows.gpu.txt b/Tests/EndToEndTests/Speech/LSTM/Truncated/baseline.windows.gpu.txt index 102ea6e0c..71cb2f74f 100644 --- a/Tests/EndToEndTests/Speech/LSTM/Truncated/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Speech/LSTM/Truncated/baseline.windows.gpu.txt @@ -9221,4 +9221,4 @@ Starting minibatch loop. Epoch[ 4 of 4]-Minibatch[ 31- 40 of 1024]: SamplesSeen = 1856; TrainLossPerSample = 4.20807937; EvalErr[0]PerSample = 0.90948276; TotalTime = 9.90009s; TotalTimePerSample = 5.33410ms; SamplesPerSecond = 187 Finished Epoch[ 4 of 4]: [Training Set] TrainLossPerSample = 4.1010361; EvalErrPerSample = 0.86705089; AvgLearningRatePerSample = 0.0007812500116; EpochTime=41.549931 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/LSTM/Truncated/testcases.yml b/Tests/EndToEndTests/Speech/LSTM/Truncated/testcases.yml index aac59c35f..e56c116ed 100644 --- a/Tests/EndToEndTests/Speech/LSTM/Truncated/testcases.yml +++ b/Tests/EndToEndTests/Speech/LSTM/Truncated/testcases.yml @@ -8,24 +8,24 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ Must train epochs in exactly same order and parameters: patterns: - - ^Starting Epoch {{integer}} + - Starting Epoch {{integer}} - learning rate per sample = {{float}} - momentum = {{float,tolerance=.01%}} Epochs must be finished with expected results: patterns: - - ^Finished Epoch[{{integer}} of {{integer}}] + - Finished Epoch[{{integer}} of {{integer}}] - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErrPerSample = {{float,tolerance=.1%}} - AvgLearningRatePerSample = {{float,tolerance=0.001%}} Per-minibatch training results must match: patterns: - - ^ Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} + - Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} - SamplesSeen = {{integer}} - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErr[0]PerSample = {{float,tolerance=.1%}} diff --git a/Tests/EndToEndTests/Speech/QuickE2E/baseline.cpu.txt b/Tests/EndToEndTests/Speech/QuickE2E/baseline.cpu.txt index 74268f0c3..1ffd26847 100644 --- a/Tests/EndToEndTests/Speech/QuickE2E/baseline.cpu.txt +++ b/Tests/EndToEndTests/Speech/QuickE2E/baseline.cpu.txt @@ -340,7 +340,7 @@ Starting minibatch loop. Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.91941869; EvalErr[0]PerSample = 0.52890623; TotalTime = 1.86784s; TotalTimePerSample = 0.18241ms; SamplesPerSecond = 5482 Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.91062427; EvalErr[0]PerSample = 0.52783203; TotalTime = 1.84987s; TotalTimePerSample = 0.18065ms; SamplesPerSecond = 5535 Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9150215; EvalErrPerSample = 0.52836913; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=3.736133 -COMPLETED +__COMPLETED__ === Deleting last epoch data ==== Re-running from checkpoint running on localhost at 2015/08/25 20:26:31 @@ -710,4 +710,4 @@ Validating --> EvalErrorPrediction = ErrorPrediction(labels[132, 1024], HLast[13 Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.91941869; EvalErr[0]PerSample = 0.52890623; TotalTime = 1.88723s; TotalTimePerSample = 0.18430ms; SamplesPerSecond = 5425 Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.91062427; EvalErr[0]PerSample = 0.52783203; TotalTime = 1.84469s; TotalTimePerSample = 0.18015ms; SamplesPerSecond = 5551 Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9150215; EvalErrPerSample = 0.52836913; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=5.315324 -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/QuickE2E/baseline.gpu.txt b/Tests/EndToEndTests/Speech/QuickE2E/baseline.gpu.txt index d71d3eac2..b2076d6f4 100644 --- a/Tests/EndToEndTests/Speech/QuickE2E/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/QuickE2E/baseline.gpu.txt @@ -553,7 +553,7 @@ Starting minibatch loop. Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.86656265; EvalErr[0]PerSample = 0.51748047; TotalTime = 0.21814s; TotalTimePerSample = 0.02130ms; SamplesPerSecond = 46943 Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8700806; EvalErrPerSample = 0.51840824; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=0.493964 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ === Deleting last epoch data ==== Re-running from checkpoint === Running /home/mluser/src/cplx_master/build/debug/bin/cntk configFile=/home/mluser/src/cplx_master/Tests/Speech/QuickE2E/cntk.config RunDir=/tmp/cntk-test-20151024124900.548963/Speech_QuickE2E@debug_gpu DataDir=/home/mluser/src/cplx_master/Tests/Speech/Data ConfigDir=/home/mluser/src/cplx_master/Tests/Speech/QuickE2E DeviceId=0 @@ -1331,4 +1331,4 @@ EnforceOneGPUOnly: WARNING: Ignored attempt to change GPU choice from 0 now 1. T Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.86656265; EvalErr[0]PerSample = 0.51748047; TotalTime = 0.21717s; TotalTimePerSample = 0.02121ms; SamplesPerSecond = 47152 Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8700806; EvalErrPerSample = 0.51840824; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=1.439589 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/QuickE2E/baseline.windows.cpu.txt b/Tests/EndToEndTests/Speech/QuickE2E/baseline.windows.cpu.txt index ff037b498..f899e6ae1 100644 --- a/Tests/EndToEndTests/Speech/QuickE2E/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/Speech/QuickE2E/baseline.windows.cpu.txt @@ -349,7 +349,7 @@ Starting minibatch loop, distributed reading is: DISABLED Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.88589633; EvalErr[0]PerSample = 0.52529299; TotalTime = 0.59385s; TotalTimePerSample = 0.05799ms; SamplesPerSecond = 17243 Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.89380074; EvalErr[0]PerSample = 0.51816404; TotalTime = 0.51284s; TotalTimePerSample = 0.05008ms; SamplesPerSecond = 19967 Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8898486; EvalErrPerSample = 0.52172852; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=1.109687 -COMPLETED +__COMPLETED__ === Deleting last epoch data ==== Re-running from checkpoint ------------------------------------------------------------------- @@ -728,4 +728,4 @@ Validating --> EvalErrorPrediction = ErrorPrediction(labels[132, 1024], HLast[13 Epoch[ 3 of 3]-Minibatch[ 1- 10 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.88589633; EvalErr[0]PerSample = 0.52529299; TotalTime = 0.86012s; TotalTimePerSample = 0.08400ms; SamplesPerSecond = 11905 Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.89380074; EvalErr[0]PerSample = 0.51816404; TotalTime = 0.60616s; TotalTimePerSample = 0.05919ms; SamplesPerSecond = 16893 Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8898486; EvalErrPerSample = 0.52172852; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=2.711551 -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/QuickE2E/baseline.windows.gpu.txt b/Tests/EndToEndTests/Speech/QuickE2E/baseline.windows.gpu.txt index 0e9622b78..759d87b54 100644 --- a/Tests/EndToEndTests/Speech/QuickE2E/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Speech/QuickE2E/baseline.windows.gpu.txt @@ -561,7 +561,7 @@ Starting minibatch loop. Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.87358818; EvalErr[0]PerSample = 0.51542969; TotalTime = 0.60551s; TotalTimePerSample = 0.05913ms; SamplesPerSecond = 16911 Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8705584; EvalErrPerSample = 0.5186035; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=1.428405 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ === Deleting last epoch data ==== Re-running from checkpoint === Running /cygdrive/e/NetScale/CNTK/git_repos/cplx_master2/x64/debug/cntk.exe configFile=E:\NetScale\CNTK\git_repos\cplx_master2\Tests\Speech\QuickE2E/cntk.config RunDir=C:\cygwin64\tmp\cntk-test-20151024140721.927553\Speech_QuickE2E@debug_gpu DataDir=E:\NetScale\CNTK\git_repos\cplx_master2\Tests\Speech\Data ConfigDir=E:\NetScale\CNTK\git_repos\cplx_master2\Tests\Speech\QuickE2E DeviceId=0 @@ -1347,4 +1347,4 @@ Starting minibatch loop. Epoch[ 3 of 3]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.87358818; EvalErr[0]PerSample = 0.51542969; TotalTime = 0.86938s; TotalTimePerSample = 0.08490ms; SamplesPerSecond = 11778 Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8705584; EvalErrPerSample = 0.5186035; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=6.283729 CNTKCommandTrainEnd: speechTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/QuickE2E/testcases.yml b/Tests/EndToEndTests/Speech/QuickE2E/testcases.yml index 7d2602bb6..3ffaaa6be 100644 --- a/Tests/EndToEndTests/Speech/QuickE2E/testcases.yml +++ b/Tests/EndToEndTests/Speech/QuickE2E/testcases.yml @@ -8,24 +8,24 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ Must train epochs in exactly same order and parameters: patterns: - - ^Starting Epoch {{integer}} + - Starting Epoch {{integer}} - learning rate per sample = {{float}} - momentum = {{float}} Epochs must be finished with expected results: patterns: - - ^Finished Epoch[{{integer}} of {{integer}}] + - Finished Epoch[{{integer}} of {{integer}}] - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErrPerSample = {{float,tolerance=.1%}} - AvgLearningRatePerSample = {{float,tolerance=0.001%}} Per-minibatch training results must match: patterns: - - ^ Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} + - Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} - SamplesSeen = {{integer}} - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErr[0]PerSample = {{float,tolerance=.1%}} diff --git a/Tests/EndToEndTests/Speech/SVD/baseline.cpu.txt b/Tests/EndToEndTests/Speech/SVD/baseline.cpu.txt index 5c035c099..0dc1812cc 100644 --- a/Tests/EndToEndTests/Speech/SVD/baseline.cpu.txt +++ b/Tests/EndToEndTests/Speech/SVD/baseline.cpu.txt @@ -2064,4 +2064,4 @@ Starting minibatch loop. Epoch[ 2 of 2]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.85902176; EvalErr[0]PerSample = 0.51396484; TotalTime = 1.48188s; TotalTimePerSample = 0.14471ms; SamplesPerSecond = 6910 Finished Epoch[ 2 of 2]: [Training Set] TrainLossPerSample = 1.8499603; EvalErrPerSample = 0.5126465; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=3.049746 CNTKCommandTrainEnd: SVDTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/SVD/baseline.gpu.txt b/Tests/EndToEndTests/Speech/SVD/baseline.gpu.txt index 779884461..e5315f319 100644 --- a/Tests/EndToEndTests/Speech/SVD/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/SVD/baseline.gpu.txt @@ -2067,4 +2067,4 @@ Starting minibatch loop. Epoch[ 2 of 2]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.81663570; EvalErr[0]PerSample = 0.50869141; TotalTime = 0.23803s; TotalTimePerSample = 0.02325ms; SamplesPerSecond = 43019 Finished Epoch[ 2 of 2]: [Training Set] TrainLossPerSample = 1.8090889; EvalErrPerSample = 0.504834; AvgLearningRatePerSample = 9.765625146e-05; EpochTime=0.528531 CNTKCommandTrainEnd: SVDTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/SVD/baseline.windows.cpu.txt b/Tests/EndToEndTests/Speech/SVD/baseline.windows.cpu.txt index 3dc50ea83..d6751a433 100644 --- a/Tests/EndToEndTests/Speech/SVD/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/Speech/SVD/baseline.windows.cpu.txt @@ -2073,4 +2073,4 @@ Starting minibatch loop. Epoch[ 2 of 2]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.80246696; EvalErr[0]PerSample = 0.50654297; TotalTime = 3.29585s; TotalTimePerSample = 0.32186ms; SamplesPerSecond = 3106 Finished Epoch[ 2 of 2]: [Training Set] TrainLossPerSample = 1.8185977; EvalErrPerSample = 0.50717777; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=7.151551 CNTKCommandTrainEnd: SVDTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/SVD/baseline.windows.gpu.txt b/Tests/EndToEndTests/Speech/SVD/baseline.windows.gpu.txt index 31c006e0c..7a0b10c09 100644 --- a/Tests/EndToEndTests/Speech/SVD/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Speech/SVD/baseline.windows.gpu.txt @@ -2075,4 +2075,4 @@ Starting minibatch loop. Epoch[ 2 of 2]-Minibatch[ 11- 20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.78207207; EvalErr[0]PerSample = 0.50322266; TotalTime = 0.63083s; TotalTimePerSample = 0.06160ms; SamplesPerSecond = 16232 Finished Epoch[ 2 of 2]: [Training Set] TrainLossPerSample = 1.7974522; EvalErrPerSample = 0.50405276; AvgLearningRatePerSample = 9.765625146e-005; EpochTime=1.447972 CNTKCommandTrainEnd: SVDTrain -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/SVD/testcases.yml b/Tests/EndToEndTests/Speech/SVD/testcases.yml index 26ce6957c..bc462cdb7 100644 --- a/Tests/EndToEndTests/Speech/SVD/testcases.yml +++ b/Tests/EndToEndTests/Speech/SVD/testcases.yml @@ -8,28 +8,28 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ Must train epochs in exactly same order and parameters: patterns: - - ^Starting Epoch {{integer}} + - Starting Epoch {{integer}} - learning rate per sample = {{float}} - momentum = {{float}} Epochs must be finished with expected results: patterns: - - ^Finished Epoch[{{integer}} of {{integer}}] + - Finished Epoch[{{integer}} of {{integer}}] - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErrPerSample = {{float,tolerance=.1%}} - AvgLearningRatePerSample = {{float,tolerance=0.001%}} Per-minibatch training results must match: patterns: - - ^ Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} + - Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} - SamplesSeen = {{integer}} - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErr[0]PerSample = {{float,tolerance=.1%}} SVD decomposition output messages should match: patterns: - - ^Performing SVD for a {{integer}}-by-{{integer}} + - Performing SVD for a {{integer}}-by-{{integer}} diff --git a/Tests/EndToEndTests/Speech/Simple/baseline.cpu.txt b/Tests/EndToEndTests/Speech/Simple/baseline.cpu.txt index 995d6f9b0..9f28cd11d 100644 --- a/Tests/EndToEndTests/Speech/Simple/baseline.cpu.txt +++ b/Tests/EndToEndTests/Speech/Simple/baseline.cpu.txt @@ -3602,7 +3602,7 @@ starting epoch 0 at record count 0, and file position 0 already there from last epoch Minibatch[1]: ActualMBSize = 603 Total Samples Evaluated = 603 -COMPLETED +__COMPLETED__ === Deleting last epoch data ==== Re-running from checkpoint === Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/Speech/Simple/cntk.config RunDir=/tmp/cntk-test-20151119184420.414180/Speech_Simple@release_cpu DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/Speech/Data ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/Speech/Simple DeviceId=-1 makeMode=true @@ -4808,4 +4808,4 @@ starting epoch 0 at record count 0, and file position 0 already there from last epoch Minibatch[1]: ActualMBSize = 603 Total Samples Evaluated = 603 -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/Simple/baseline.gpu.txt b/Tests/EndToEndTests/Speech/Simple/baseline.gpu.txt index e29dbb303..1c16c780f 100644 --- a/Tests/EndToEndTests/Speech/Simple/baseline.gpu.txt +++ b/Tests/EndToEndTests/Speech/Simple/baseline.gpu.txt @@ -3699,7 +3699,7 @@ starting epoch 0 at record count 0, and file position 0 already there from last epoch Minibatch[1]: ActualMBSize = 603 Total Samples Evaluated = 603 -COMPLETED +__COMPLETED__ === Deleting last epoch data ==== Re-running from checkpoint === Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/debug/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/Speech/Simple/cntk.config RunDir=/tmp/cntk-test-20151119193939.119454/Speech_Simple@debug_gpu DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/Speech/Data ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/Speech/Simple DeviceId=0 makeMode=true @@ -4952,4 +4952,4 @@ starting epoch 0 at record count 0, and file position 0 already there from last epoch Minibatch[1]: ActualMBSize = 603 Total Samples Evaluated = 603 -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/Simple/baseline.windows.cpu.txt b/Tests/EndToEndTests/Speech/Simple/baseline.windows.cpu.txt index 6c931cea2..92fcc4b2b 100644 --- a/Tests/EndToEndTests/Speech/Simple/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/Speech/Simple/baseline.windows.cpu.txt @@ -3613,7 +3613,7 @@ starting epoch 0 at record count 0, and file position 0 already there from last epoch Minibatch[1]: ActualMBSize = 603 Total Samples Evaluated = 603 -COMPLETED +__COMPLETED__ === Deleting last epoch data ==== Re-running from checkpoint === Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\Speech\Simple/cntk.config RunDir=C:\windows\TEMP\cntk-test-20151119141632.280376\Speech_Simple@release_cpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\Speech\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\Speech\Simple DeviceId=-1 makeMode=true @@ -4830,4 +4830,4 @@ starting epoch 0 at record count 0, and file position 0 already there from last epoch Minibatch[1]: ActualMBSize = 603 Total Samples Evaluated = 603 -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/Simple/baseline.windows.gpu.txt b/Tests/EndToEndTests/Speech/Simple/baseline.windows.gpu.txt index 2134a6b93..ef09aa2d2 100644 --- a/Tests/EndToEndTests/Speech/Simple/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Speech/Simple/baseline.windows.gpu.txt @@ -3710,7 +3710,7 @@ starting epoch 0 at record count 0, and file position 0 already there from last epoch Minibatch[1]: ActualMBSize = 603 Total Samples Evaluated = 603 -COMPLETED +__COMPLETED__ === Deleting last epoch data ==== Re-running from checkpoint === Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/debug/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\Speech\Simple/cntk.config RunDir=C:\Windows\TEMP\cntk-test-20151119120636.543625\Speech_Simple@debug_gpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\Speech\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\Speech\Simple DeviceId=0 makeMode=true @@ -4974,4 +4974,4 @@ starting epoch 0 at record count 0, and file position 0 already there from last epoch Minibatch[1]: ActualMBSize = 603 Total Samples Evaluated = 603 -COMPLETED +__COMPLETED__ diff --git a/Tests/EndToEndTests/Speech/Simple/testcases.yml b/Tests/EndToEndTests/Speech/Simple/testcases.yml index 7d2602bb6..3ffaaa6be 100644 --- a/Tests/EndToEndTests/Speech/Simple/testcases.yml +++ b/Tests/EndToEndTests/Speech/Simple/testcases.yml @@ -8,24 +8,24 @@ tags: testCases: CNTK Run must be completed: patterns: - - ^COMPLETED + - __COMPLETED__ Must train epochs in exactly same order and parameters: patterns: - - ^Starting Epoch {{integer}} + - Starting Epoch {{integer}} - learning rate per sample = {{float}} - momentum = {{float}} Epochs must be finished with expected results: patterns: - - ^Finished Epoch[{{integer}} of {{integer}}] + - Finished Epoch[{{integer}} of {{integer}}] - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErrPerSample = {{float,tolerance=.1%}} - AvgLearningRatePerSample = {{float,tolerance=0.001%}} Per-minibatch training results must match: patterns: - - ^ Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} + - Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} - SamplesSeen = {{integer}} - TrainLossPerSample = {{float,tolerance=.1%}} - EvalErr[0]PerSample = {{float,tolerance=.1%}} diff --git a/Tests/EndToEndTests/Text/SparseDSSM/baseline.cpu.txt b/Tests/EndToEndTests/Text/SparseDSSM/baseline.cpu.txt index ba8e90eb8..0498a9f5e 100755 --- a/Tests/EndToEndTests/Text/SparseDSSM/baseline.cpu.txt +++ b/Tests/EndToEndTests/Text/SparseDSSM/baseline.cpu.txt @@ -471,7 +471,7 @@ MPI Rank 0: Allocating matrices for forward and/or backward propagation. MPI Rank 0: Final Results: Minibatch[1-25]: Samples Seen = 102399 CE: CrossEntropyWithSoftmax/Sample = 1.6991001 Perplexity = 5.4690235 MPI Rank 0: Finished Epoch[ 3 of 3]: [Validation Set] TrainLossPerSample = 1.6991001 MPI Rank 0: CNTKCommandTrainEnd: train -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: ------------------------------------------------------------------- MPI Rank 1: Build info: @@ -850,7 +850,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.74922504; TotalTime = 7.2778s; SamplesPerSecond = 1407.0 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.7563989; AvgLearningRatePerSample = 9.9999997e-05; EpochTime=18.6685 MPI Rank 1: CNTKCommandTrainEnd: train -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: ------------------------------------------------------------------- MPI Rank 2: Build info: @@ -1229,7 +1229,7 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.76783981; TotalTime = 7.2778s; SamplesPerSecond = 1407.0 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.7563989; AvgLearningRatePerSample = 9.9999997e-05; EpochTime=18.6685 MPI Rank 2: CNTKCommandTrainEnd: train -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: ------------------------------------------------------------------- MPI Rank 3: Build info: @@ -1608,7 +1608,7 @@ MPI Rank 3: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 3: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.73868065; TotalTime = 7.2778s; SamplesPerSecond = 1407.0 MPI Rank 3: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.7563989; AvgLearningRatePerSample = 9.9999997e-05; EpochTime=18.6685 MPI Rank 3: CNTKCommandTrainEnd: train -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper === Deleting last epoch data ==== Re-running from checkpoint @@ -2065,7 +2065,7 @@ MPI Rank 0: Allocating matrices for forward and/or backward propagation. MPI Rank 0: Final Results: Minibatch[1-25]: Samples Seen = 102399 CE: CrossEntropyWithSoftmax/Sample = 1.7629802 Perplexity = 5.8297857 MPI Rank 0: Finished Epoch[ 3 of 3]: [Validation Set] TrainLossPerSample = 1.7629802 MPI Rank 0: CNTKCommandTrainEnd: train -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: ------------------------------------------------------------------- MPI Rank 1: Build info: @@ -2434,7 +2434,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.80574760; TotalTime = 6.4066s; SamplesPerSecond = 1598.4 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8025137; AvgLearningRatePerSample = 9.9999997e-05; EpochTime=18.3486 MPI Rank 1: CNTKCommandTrainEnd: train -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: ------------------------------------------------------------------- MPI Rank 2: Build info: @@ -2803,7 +2803,7 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.82326355; TotalTime = 6.4066s; SamplesPerSecond = 1598.4 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8025137; AvgLearningRatePerSample = 9.9999997e-05; EpochTime=18.3486 MPI Rank 2: CNTKCommandTrainEnd: train -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: ------------------------------------------------------------------- MPI Rank 3: Build info: @@ -3172,5 +3172,5 @@ MPI Rank 3: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 3: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.79679737; TotalTime = 6.4066s; SamplesPerSecond = 1598.4 MPI Rank 3: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8025137; AvgLearningRatePerSample = 9.9999997e-05; EpochTime=18.3486 MPI Rank 3: CNTKCommandTrainEnd: train -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper diff --git a/Tests/EndToEndTests/Text/SparseDSSM/baseline.gpu.txt b/Tests/EndToEndTests/Text/SparseDSSM/baseline.gpu.txt index b8d382b91..60cb26a35 100755 --- a/Tests/EndToEndTests/Text/SparseDSSM/baseline.gpu.txt +++ b/Tests/EndToEndTests/Text/SparseDSSM/baseline.gpu.txt @@ -472,7 +472,7 @@ MPI Rank 0: Allocating matrices for forward and/or backward propagation. MPI Rank 0: Final Results: Minibatch[1-25]: Samples Seen = 102399 CE: CrossEntropyWithSoftmax/Sample = 1.8091086 Perplexity = 6.1050027 MPI Rank 0: Finished Epoch[ 3 of 3]: [Validation Set] TrainLossPerSample = 1.8091086 MPI Rank 0: CNTKCommandTrainEnd: train -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: ------------------------------------------------------------------- MPI Rank 1: Build info: @@ -852,7 +852,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.86598778; TotalTime = 4.5356s; SamplesPerSecond = 2257.7 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8856394; AvgLearningRatePerSample = 9.9999997e-05; EpochTime=11.692 MPI Rank 1: CNTKCommandTrainEnd: train -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: ------------------------------------------------------------------- MPI Rank 2: Build info: @@ -1232,7 +1232,7 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.87902641; TotalTime = 4.5357s; SamplesPerSecond = 2257.7 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8856394; AvgLearningRatePerSample = 9.9999997e-05; EpochTime=11.692 MPI Rank 2: CNTKCommandTrainEnd: train -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: ------------------------------------------------------------------- MPI Rank 3: Build info: @@ -1612,7 +1612,7 @@ MPI Rank 3: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 3: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.88304176; TotalTime = 4.5357s; SamplesPerSecond = 2257.6 MPI Rank 3: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8856394; AvgLearningRatePerSample = 9.9999997e-05; EpochTime=11.692 MPI Rank 3: CNTKCommandTrainEnd: train -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper === Deleting last epoch data ==== Re-running from checkpoint @@ -2069,7 +2069,7 @@ MPI Rank 0: Allocating matrices for forward and/or backward propagation. MPI Rank 0: Final Results: Minibatch[1-25]: Samples Seen = 102399 CE: CrossEntropyWithSoftmax/Sample = 1.8982234 Perplexity = 6.6740266 MPI Rank 0: Finished Epoch[ 3 of 3]: [Validation Set] TrainLossPerSample = 1.8982234 MPI Rank 0: CNTKCommandTrainEnd: train -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: ------------------------------------------------------------------- MPI Rank 1: Build info: @@ -2438,7 +2438,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.94722424; TotalTime = 4.5333s; SamplesPerSecond = 2258.9 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9504802; AvgLearningRatePerSample = 9.9999997e-05; EpochTime=12.2322 MPI Rank 1: CNTKCommandTrainEnd: train -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: ------------------------------------------------------------------- MPI Rank 2: Build info: @@ -2807,7 +2807,7 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.95635300; TotalTime = 4.5332s; SamplesPerSecond = 2258.9 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9504802; AvgLearningRatePerSample = 9.9999997e-05; EpochTime=12.2322 MPI Rank 2: CNTKCommandTrainEnd: train -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: ------------------------------------------------------------------- MPI Rank 3: Build info: @@ -3176,5 +3176,5 @@ MPI Rank 3: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 3: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.95965519; TotalTime = 4.5333s; SamplesPerSecond = 2258.9 MPI Rank 3: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9504802; AvgLearningRatePerSample = 9.9999997e-05; EpochTime=12.2322 MPI Rank 3: CNTKCommandTrainEnd: train -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper diff --git a/Tests/EndToEndTests/Text/SparseDSSM/baseline.windows.cpu.txt b/Tests/EndToEndTests/Text/SparseDSSM/baseline.windows.cpu.txt index c0d0efb12..34aa4ff23 100755 --- a/Tests/EndToEndTests/Text/SparseDSSM/baseline.windows.cpu.txt +++ b/Tests/EndToEndTests/Text/SparseDSSM/baseline.windows.cpu.txt @@ -483,7 +483,7 @@ MPI Rank 0: Allocating matrices for forward and/or backward propagation. MPI Rank 0: Final Results: Minibatch[1-25]: Samples Seen = 102399 CE: CrossEntropyWithSoftmax/Sample = 1.8119593 Perplexity = 6.1224311 MPI Rank 0: Finished Epoch[ 3 of 3]: [Validation Set] TrainLossPerSample = 1.8119593 MPI Rank 0: CNTKCommandTrainEnd: train -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160303160843.247203\Text_SparseDSSM@release_cpu/stderr_train.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -866,7 +866,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.86772957; TotalTime = 16.2062s; SamplesPerSecond = 631.9 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8883394; AvgLearningRatePerSample = 9.9999997e-005; EpochTime=40.2826 MPI Rank 1: CNTKCommandTrainEnd: train -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160303160843.247203\Text_SparseDSSM@release_cpu/stderr_train.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -1249,7 +1249,7 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.88702583; TotalTime = 15.9308s; SamplesPerSecond = 642.8 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8883394; AvgLearningRatePerSample = 9.9999997e-005; EpochTime=40.2866 MPI Rank 2: CNTKCommandTrainEnd: train -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160303160843.247203\Text_SparseDSSM@release_cpu/stderr_train.logrank3 MPI Rank 3: ------------------------------------------------------------------- @@ -1632,7 +1632,7 @@ MPI Rank 3: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 3: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.87299423; TotalTime = 16.2062s; SamplesPerSecond = 631.9 MPI Rank 3: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8883394; AvgLearningRatePerSample = 9.9999997e-005; EpochTime=40.2823 MPI Rank 3: CNTKCommandTrainEnd: train -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper === Deleting last epoch data ==== Re-running from checkpoint @@ -2101,7 +2101,7 @@ MPI Rank 0: Allocating matrices for forward and/or backward propagation. MPI Rank 0: Final Results: Minibatch[1-25]: Samples Seen = 102399 CE: CrossEntropyWithSoftmax/Sample = 1.8993035 Perplexity = 6.6812396 MPI Rank 0: Finished Epoch[ 3 of 3]: [Validation Set] TrainLossPerSample = 1.8993035 MPI Rank 0: CNTKCommandTrainEnd: train -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160303160843.247203\Text_SparseDSSM@release_cpu/stderr_train.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -2474,7 +2474,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.94770432; TotalTime = 17.5215s; SamplesPerSecond = 584.4 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9528804; AvgLearningRatePerSample = 9.9999997e-005; EpochTime=46.4912 MPI Rank 1: CNTKCommandTrainEnd: train -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160303160843.247203\Text_SparseDSSM@release_cpu/stderr_train.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -2847,7 +2847,7 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.96577854; TotalTime = 17.2169s; SamplesPerSecond = 594.8 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9528804; AvgLearningRatePerSample = 9.9999997e-005; EpochTime=46.4944 MPI Rank 2: CNTKCommandTrainEnd: train -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160303160843.247203\Text_SparseDSSM@release_cpu/stderr_train.logrank3 MPI Rank 3: ------------------------------------------------------------------- @@ -3220,5 +3220,5 @@ MPI Rank 3: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 3: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.95135975; TotalTime = 17.5215s; SamplesPerSecond = 584.4 MPI Rank 3: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9528804; AvgLearningRatePerSample = 9.9999997e-005; EpochTime=46.4913 MPI Rank 3: CNTKCommandTrainEnd: train -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper diff --git a/Tests/EndToEndTests/Text/SparseDSSM/baseline.windows.gpu.txt b/Tests/EndToEndTests/Text/SparseDSSM/baseline.windows.gpu.txt index cc2c98ca8..974a065a1 100755 --- a/Tests/EndToEndTests/Text/SparseDSSM/baseline.windows.gpu.txt +++ b/Tests/EndToEndTests/Text/SparseDSSM/baseline.windows.gpu.txt @@ -484,7 +484,7 @@ MPI Rank 0: Allocating matrices for forward and/or backward propagation. MPI Rank 0: Final Results: Minibatch[1-25]: Samples Seen = 102399 CE: CrossEntropyWithSoftmax/Sample = 1.8091086 Perplexity = 6.1050028 MPI Rank 0: Finished Epoch[ 3 of 3]: [Validation Set] TrainLossPerSample = 1.8091086 MPI Rank 0: CNTKCommandTrainEnd: train -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160303154710.317558\Text_SparseDSSM@release_gpu/stderr_train.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -868,7 +868,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.86598778; TotalTime = 8.0798s; SamplesPerSecond = 1267.4 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8856394; AvgLearningRatePerSample = 9.9999997e-005; EpochTime=20.8703 MPI Rank 1: CNTKCommandTrainEnd: train -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160303154710.317558\Text_SparseDSSM@release_gpu/stderr_train.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -1252,7 +1252,7 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.87902641; TotalTime = 8.0798s; SamplesPerSecond = 1267.4 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8856394; AvgLearningRatePerSample = 9.9999997e-005; EpochTime=20.8703 MPI Rank 2: CNTKCommandTrainEnd: train -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160303154710.317558\Text_SparseDSSM@release_gpu/stderr_train.logrank3 MPI Rank 3: ------------------------------------------------------------------- @@ -1636,7 +1636,7 @@ MPI Rank 3: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 3: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.88304138; TotalTime = 8.0823s; SamplesPerSecond = 1267.0 MPI Rank 3: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.8856394; AvgLearningRatePerSample = 9.9999997e-005; EpochTime=20.8703 MPI Rank 3: CNTKCommandTrainEnd: train -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper === Deleting last epoch data ==== Re-running from checkpoint @@ -2105,7 +2105,7 @@ MPI Rank 0: Allocating matrices for forward and/or backward propagation. MPI Rank 0: Final Results: Minibatch[1-25]: Samples Seen = 102399 CE: CrossEntropyWithSoftmax/Sample = 1.8982234 Perplexity = 6.6740265 MPI Rank 0: Finished Epoch[ 3 of 3]: [Validation Set] TrainLossPerSample = 1.8982234 MPI Rank 0: CNTKCommandTrainEnd: train -MPI Rank 0: COMPLETED +MPI Rank 0: __COMPLETED__ MPI Rank 0: ~MPIWrapper MPI Rank 1: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160303154710.317558\Text_SparseDSSM@release_gpu/stderr_train.logrank1 MPI Rank 1: ------------------------------------------------------------------- @@ -2478,7 +2478,7 @@ MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 1: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.94722424; TotalTime = 8.1200s; SamplesPerSecond = 1261.1 MPI Rank 1: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9504802; AvgLearningRatePerSample = 9.9999997e-005; EpochTime=22.065 MPI Rank 1: CNTKCommandTrainEnd: train -MPI Rank 1: COMPLETED +MPI Rank 1: __COMPLETED__ MPI Rank 1: ~MPIWrapper MPI Rank 2: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160303154710.317558\Text_SparseDSSM@release_gpu/stderr_train.logrank2 MPI Rank 2: ------------------------------------------------------------------- @@ -2851,7 +2851,7 @@ MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 2: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.95635300; TotalTime = 8.1200s; SamplesPerSecond = 1261.1 MPI Rank 2: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9504802; AvgLearningRatePerSample = 9.9999997e-005; EpochTime=22.0648 MPI Rank 2: CNTKCommandTrainEnd: train -MPI Rank 2: COMPLETED +MPI Rank 2: __COMPLETED__ MPI Rank 2: ~MPIWrapper MPI Rank 3: Redirecting stderr to file C:\cygwin64\tmp\cntk-test-20160303154710.317558\Text_SparseDSSM@release_gpu/stderr_train.logrank3 MPI Rank 3: ------------------------------------------------------------------- @@ -3224,5 +3224,5 @@ MPI Rank 3: Epoch[ 3 of 3]-Minibatch[ 1- 10, 40.00%]: SamplesSeen = 10240; T MPI Rank 3: Epoch[ 3 of 3]-Minibatch[ 11- 20, 80.00%]: SamplesSeen = 10240; TrainLossPerSample = 1.95965519; TotalTime = 8.1200s; SamplesPerSecond = 1261.1 MPI Rank 3: Finished Epoch[ 3 of 3]: [Training Set] TrainLossPerSample = 1.9504802; AvgLearningRatePerSample = 9.9999997e-005; EpochTime=22.065 MPI Rank 3: CNTKCommandTrainEnd: train -MPI Rank 3: COMPLETED +MPI Rank 3: __COMPLETED__ MPI Rank 3: ~MPIWrapper diff --git a/Tests/EndToEndTests/run-test-common b/Tests/EndToEndTests/run-test-common index 93047823c..c4fe0a5c0 100755 --- a/Tests/EndToEndTests/run-test-common +++ b/Tests/EndToEndTests/run-test-common @@ -71,7 +71,7 @@ cntkrun() OutputDir=$(cygpath -aw $OutputDir) fi - CNTKArgs="configFile=$ConfigDir/$configFileName currentDirectory=$DataDir RunDir=$RunDir DataDir=$DataDir ConfigDir=$ConfigDir OutputDir=$OutputDir DeviceId=$CNTKDeviceId $additionalCNTKArgs" + CNTKArgs="configFile=$ConfigDir/$configFileName currentDirectory=$DataDir RunDir=$RunDir DataDir=$DataDir ConfigDir=$ConfigDir OutputDir=$OutputDir DeviceId=$CNTKDeviceId timestamping=true $additionalCNTKArgs" if [ "$LogFileName" != "" ]; then CNTKArgs="$CNTKArgs stderr=$RunDir/$LogFileName" fi