moved DiagTimes() to DeprecatedNodes.h, since it is redundant (ElementTimes) and should no longer be used;
removed a log message from SeqCla's required test patterns as they are no longer being generated
This commit is contained in:
Родитель
5d6785fdac
Коммит
0e34934f78
|
@ -346,11 +346,11 @@ CNTK2 = [
|
|||
Tanh(_, tag='') = new ComputationNode [ operation = 'Tanh' ; inputs = _ /*plus the function args*/ ]
|
||||
|
||||
// 6. Reductions
|
||||
ReduceSum (_, axis=None, tag='') = new ComputationNode [ operation = 'ReduceElements' ; inputs = _ ; axis = if BS.Constants.IsNone (axis) then 0 else axis reductionOp = "Sum" /*plus the function args*/ ]
|
||||
ReduceLogSum(_, axis=None, tag='') = new ComputationNode [ operation = 'ReduceElements' ; inputs = _ ; axis = if BS.Constants.IsNone (axis) then 0 else axis reductionOp = "LogSum" /*plus the function args*/ ]
|
||||
ReduceMin (_, axis=None, tag='') = new ComputationNode [ operation = 'ReduceElements' ; inputs = _ ; axis = if BS.Constants.IsNone (axis) then 0 else axis reductionOp = "Min" /*plus the function args*/ ]
|
||||
ReduceMax (_, axis=None, tag='') = new ComputationNode [ operation = 'ReduceElements' ; inputs = _ ; axis = if BS.Constants.IsNone (axis) then 0 else axis reductionOp = "Max" /*plus the function args*/ ]
|
||||
#ReduceMean (_, axis=None, tag='') = new ComputationNode [ operation = 'ReduceElements' ; inputs = _ ; axis = if BS.Constants.IsNone (axis) then 0 else axis reductionOp = "Mean" /*plus the function args*/ ]
|
||||
ReduceSum (_, axis=None, tag='') = new ComputationNode [ operation = 'ReduceElements' ; inputs = _ ; axis = if BS.Constants.IsNone (axis) then 0 else axis ; reductionOp = "Sum" /*plus the function args*/ ]
|
||||
ReduceLogSum(_, axis=None, tag='') = new ComputationNode [ operation = 'ReduceElements' ; inputs = _ ; axis = if BS.Constants.IsNone (axis) then 0 else axis ; reductionOp = "LogSum" /*plus the function args*/ ]
|
||||
ReduceMin (_, axis=None, tag='') = new ComputationNode [ operation = 'ReduceElements' ; inputs = _ ; axis = if BS.Constants.IsNone (axis) then 0 else axis ; reductionOp = "Min" /*plus the function args*/ ]
|
||||
ReduceMax (_, axis=None, tag='') = new ComputationNode [ operation = 'ReduceElements' ; inputs = _ ; axis = if BS.Constants.IsNone (axis) then 0 else axis ; reductionOp = "Max" /*plus the function args*/ ]
|
||||
#ReduceMean (_, axis=None, tag='') = new ComputationNode [ operation = 'ReduceElements' ; inputs = _ ; axis = if BS.Constants.IsNone (axis) then 0 else axis ; reductionOp = "Mean" /*plus the function args*/ ]
|
||||
|
||||
// 7. Control flow (if, composite etc.)
|
||||
// None so far
|
||||
|
|
|
@ -166,4 +166,128 @@ public:
|
|||
template class PerDimMeanVarNormalizationNode<float>;
|
||||
template class PerDimMeanVarNormalizationNode<double>;
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
// DiagTimesNode (vector representing the diagonal of a square matrix, data)
|
||||
// Deprecated because can be implemented with ElementTimes.
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
template <class ElemType>
|
||||
class DiagTimesNode : public ComputationNode<ElemType>, public NumInputs<2>
|
||||
{
|
||||
typedef ComputationNode<ElemType> Base; UsingComputationNodeMembersBoilerplate;
|
||||
static const std::wstring TypeName() { return L"DiagTimes"; }
|
||||
|
||||
public:
|
||||
DeclareConstructorFromConfigWithNumInputs(DiagTimesNode);
|
||||
DiagTimesNode(DEVICEID_TYPE deviceId, const wstring& name)
|
||||
: Base(deviceId, name)
|
||||
{
|
||||
}
|
||||
|
||||
virtual void /*ComputationNode::*/ BackpropTo(const size_t inputIndex, const FrameRange& fr) override
|
||||
{
|
||||
if (inputIndex == 0) // left derivative
|
||||
{
|
||||
Matrix<ElemType> sliceOutputGrad = MaskedGradientFor(fr); // use Masked- version since this is reducing over frames
|
||||
Matrix<ElemType> sliceInput1Value = Input(1)->MaskedValueFor(fr);
|
||||
m_innerproduct->AssignInnerProductOf(sliceOutputGrad, sliceInput1Value, false);
|
||||
Input(0)->GradientAsMatrix() += *m_innerproduct;
|
||||
}
|
||||
else // right derivative
|
||||
{
|
||||
Matrix<ElemType> sliceOutputGrad = GradientFor(fr);
|
||||
Matrix<ElemType> sliceInput1Grad = Input(1)->GradientFor(fr);
|
||||
m_rightGradient->SetValue(sliceOutputGrad);
|
||||
m_rightGradient->ColumnElementMultiplyWith(Input(0)->ValueAsMatrix());
|
||||
sliceInput1Grad += *m_rightGradient;
|
||||
}
|
||||
}
|
||||
|
||||
virtual bool OutputUsedInComputingInputNodesGradients() const override
|
||||
{
|
||||
// The DiagTimesNode does not require its output value for computing
|
||||
// the gradients of its input nodes
|
||||
return false;
|
||||
}
|
||||
|
||||
virtual void /*ComputationNode::*/ ForwardProp(const FrameRange& fr) override
|
||||
{
|
||||
Matrix<ElemType> sliceInput1Value = Input(1)->ValueFor(fr);
|
||||
Matrix<ElemType> sliceOutputValue = ValueFor(fr);
|
||||
|
||||
sliceOutputValue.AssignValuesOf(sliceInput1Value);
|
||||
sliceOutputValue.ColumnElementMultiplyWith(Input(0)->ValueAsMatrix());
|
||||
}
|
||||
|
||||
virtual void /*ComputationNodeBase::*/ Validate(bool isFinalValidationPass) override
|
||||
{
|
||||
Base::Validate(isFinalValidationPass);
|
||||
InferMBLayoutFromInputsForStandardCase(isFinalValidationPass);
|
||||
|
||||
size_t rows0 = Input(0)->GetAsMatrixNumRows();
|
||||
size_t rows1 = Input(1)->HasMBLayout() ? Input(1)->GetSampleMatrixNumRows() : Input(1)->GetAsMatrixNumRows();
|
||||
|
||||
// if dimension not specified we assume two operands' dimensions should match
|
||||
Input(0)->ValidateInferInputDimsFrom(TensorShape(rows1));
|
||||
|
||||
if (Input(1)->HasMBLayout())
|
||||
{
|
||||
// infer rows1 as rows0
|
||||
Input(1)->ValidateInferInputDimsFrom(TensorShape(rows0));
|
||||
SetDims(TensorShape(rows0), true);
|
||||
}
|
||||
else // multiplying two straight matrices
|
||||
{
|
||||
size_t cols1 = Input(1)->GetAsMatrixNumCols();
|
||||
// infer rows1 as rows0
|
||||
Input(1)->ValidateInferInputDimsFrom(TensorShape(rows0, cols1));
|
||||
SetDims(TensorShape(rows0, cols1), false);
|
||||
}
|
||||
|
||||
// update after inference
|
||||
rows0 = Input(0)->GetAsMatrixNumRows();
|
||||
rows1 = Input(1)->HasMBLayout() ? Input(1)->GetSampleMatrixNumRows() : Input(1)->GetAsMatrixNumRows();
|
||||
if (isFinalValidationPass && rows0 != rows1)
|
||||
InvalidArgument("The inner matrix dimension in the %ls %ls operation does not match (%d vs. %d).", NodeName().c_str(), OperationName().c_str(), (int) rows1, (int) rows0);
|
||||
size_t cols0 = Input(0)->GetAsMatrixNumCols();
|
||||
if (isFinalValidationPass && cols0 != 1)
|
||||
InvalidArgument("The first matrix should be a column vector representing the diagonal of a square matrix in the DiagTimes operation.");
|
||||
|
||||
SetDims(Input(1));
|
||||
}
|
||||
|
||||
virtual void CopyTo(ComputationNodeBasePtr nodeP, const std::wstring& newName, const CopyNodeFlags flags) const override
|
||||
{
|
||||
Base::CopyTo(nodeP, newName, flags);
|
||||
if (flags & CopyNodeFlags::copyNodeValue)
|
||||
{
|
||||
auto node = dynamic_pointer_cast<DiagTimesNode<ElemType>>(nodeP);
|
||||
node->m_innerproduct->SetValue(*m_innerproduct);
|
||||
node->m_rightGradient->SetValue(*m_rightGradient);
|
||||
}
|
||||
}
|
||||
// request matrices that are needed for gradient computation
|
||||
virtual void RequestMatricesBeforeBackprop(MatrixPool& matrixPool)
|
||||
{
|
||||
Base::RequestMatricesBeforeBackprop(matrixPool);
|
||||
RequestMatrixFromPool(m_innerproduct, matrixPool);
|
||||
RequestMatrixFromPool(m_rightGradient, matrixPool);
|
||||
}
|
||||
|
||||
// release gradient and temp matrices that no longer needed after all the children's gradients are computed.
|
||||
virtual void ReleaseMatricesAfterBackprop(MatrixPool& matrixPool)
|
||||
{
|
||||
Base::ReleaseMatricesAfterBackprop(matrixPool);
|
||||
ReleaseMatrixToPool(m_innerproduct, matrixPool);
|
||||
ReleaseMatrixToPool(m_rightGradient, matrixPool);
|
||||
}
|
||||
|
||||
private:
|
||||
shared_ptr<Matrix<ElemType>> m_innerproduct;
|
||||
shared_ptr<Matrix<ElemType>> m_rightGradient;
|
||||
};
|
||||
|
||||
template class DiagTimesNode<float>;
|
||||
template class DiagTimesNode<double>;
|
||||
|
||||
}}}
|
||||
|
|
|
@ -570,130 +570,6 @@ public:
|
|||
template class TransposeTimesNode<float>;
|
||||
template class TransposeTimesNode<double>;
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
// DiagTimesNode (vector representing the diagonal of a square matrix, data)
|
||||
// TODO: Deprecate and move to DeprecatedNodes.h. (Can be implemented with ElementTimes.)
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
template <class ElemType>
|
||||
class DiagTimesNode : public ComputationNode<ElemType>, public NumInputs<2>
|
||||
{
|
||||
typedef ComputationNode<ElemType> Base; UsingComputationNodeMembersBoilerplate;
|
||||
static const std::wstring TypeName() { return L"DiagTimes"; }
|
||||
|
||||
public:
|
||||
DeclareConstructorFromConfigWithNumInputs(DiagTimesNode);
|
||||
DiagTimesNode(DEVICEID_TYPE deviceId, const wstring& name)
|
||||
: Base(deviceId, name)
|
||||
{
|
||||
}
|
||||
|
||||
virtual void /*ComputationNode::*/ BackpropTo(const size_t inputIndex, const FrameRange& fr) override
|
||||
{
|
||||
if (inputIndex == 0) // left derivative
|
||||
{
|
||||
Matrix<ElemType> sliceOutputGrad = MaskedGradientFor(fr); // use Masked- version since this is reducing over frames
|
||||
Matrix<ElemType> sliceInput1Value = Input(1)->MaskedValueFor(fr);
|
||||
m_innerproduct->AssignInnerProductOf(sliceOutputGrad, sliceInput1Value, false);
|
||||
Input(0)->GradientAsMatrix() += *m_innerproduct;
|
||||
}
|
||||
else // right derivative
|
||||
{
|
||||
Matrix<ElemType> sliceOutputGrad = GradientFor(fr);
|
||||
Matrix<ElemType> sliceInput1Grad = Input(1)->GradientFor(fr);
|
||||
m_rightGradient->SetValue(sliceOutputGrad);
|
||||
m_rightGradient->ColumnElementMultiplyWith(Input(0)->ValueAsMatrix());
|
||||
sliceInput1Grad += *m_rightGradient;
|
||||
}
|
||||
}
|
||||
|
||||
virtual bool OutputUsedInComputingInputNodesGradients() const override
|
||||
{
|
||||
// The DiagTimesNode does not require its output value for computing
|
||||
// the gradients of its input nodes
|
||||
return false;
|
||||
}
|
||||
|
||||
virtual void /*ComputationNode::*/ ForwardProp(const FrameRange& fr) override
|
||||
{
|
||||
Matrix<ElemType> sliceInput1Value = Input(1)->ValueFor(fr);
|
||||
Matrix<ElemType> sliceOutputValue = ValueFor(fr);
|
||||
|
||||
sliceOutputValue.AssignValuesOf(sliceInput1Value);
|
||||
sliceOutputValue.ColumnElementMultiplyWith(Input(0)->ValueAsMatrix());
|
||||
}
|
||||
|
||||
virtual void /*ComputationNodeBase::*/ Validate(bool isFinalValidationPass) override
|
||||
{
|
||||
Base::Validate(isFinalValidationPass);
|
||||
InferMBLayoutFromInputsForStandardCase(isFinalValidationPass);
|
||||
|
||||
size_t rows0 = Input(0)->GetAsMatrixNumRows();
|
||||
size_t rows1 = Input(1)->HasMBLayout() ? Input(1)->GetSampleMatrixNumRows() : Input(1)->GetAsMatrixNumRows();
|
||||
|
||||
// if dimension not specified we assume two operands' dimensions should match
|
||||
Input(0)->ValidateInferInputDimsFrom(TensorShape(rows1));
|
||||
|
||||
if (Input(1)->HasMBLayout())
|
||||
{
|
||||
// infer rows1 as rows0
|
||||
Input(1)->ValidateInferInputDimsFrom(TensorShape(rows0));
|
||||
SetDims(TensorShape(rows0), true);
|
||||
}
|
||||
else // multiplying two straight matrices
|
||||
{
|
||||
size_t cols1 = Input(1)->GetAsMatrixNumCols();
|
||||
// infer rows1 as rows0
|
||||
Input(1)->ValidateInferInputDimsFrom(TensorShape(rows0, cols1));
|
||||
SetDims(TensorShape(rows0, cols1), false);
|
||||
}
|
||||
|
||||
// update after inference
|
||||
rows0 = Input(0)->GetAsMatrixNumRows();
|
||||
rows1 = Input(1)->HasMBLayout() ? Input(1)->GetSampleMatrixNumRows() : Input(1)->GetAsMatrixNumRows();
|
||||
if (isFinalValidationPass && rows0 != rows1)
|
||||
InvalidArgument("The inner matrix dimension in the %ls %ls operation does not match (%d vs. %d).", NodeName().c_str(), OperationName().c_str(), (int) rows1, (int) rows0);
|
||||
size_t cols0 = Input(0)->GetAsMatrixNumCols();
|
||||
if (isFinalValidationPass && cols0 != 1)
|
||||
InvalidArgument("The first matrix should be a column vector representing the diagonal of a square matrix in the DiagTimes operation.");
|
||||
|
||||
SetDims(Input(1));
|
||||
}
|
||||
|
||||
virtual void CopyTo(ComputationNodeBasePtr nodeP, const std::wstring& newName, const CopyNodeFlags flags) const override
|
||||
{
|
||||
Base::CopyTo(nodeP, newName, flags);
|
||||
if (flags & CopyNodeFlags::copyNodeValue)
|
||||
{
|
||||
auto node = dynamic_pointer_cast<DiagTimesNode<ElemType>>(nodeP);
|
||||
node->m_innerproduct->SetValue(*m_innerproduct);
|
||||
node->m_rightGradient->SetValue(*m_rightGradient);
|
||||
}
|
||||
}
|
||||
// request matrices that are needed for gradient computation
|
||||
virtual void RequestMatricesBeforeBackprop(MatrixPool& matrixPool)
|
||||
{
|
||||
Base::RequestMatricesBeforeBackprop(matrixPool);
|
||||
RequestMatrixFromPool(m_innerproduct, matrixPool);
|
||||
RequestMatrixFromPool(m_rightGradient, matrixPool);
|
||||
}
|
||||
|
||||
// release gradient and temp matrices that no longer needed after all the children's gradients are computed.
|
||||
virtual void ReleaseMatricesAfterBackprop(MatrixPool& matrixPool)
|
||||
{
|
||||
Base::ReleaseMatricesAfterBackprop(matrixPool);
|
||||
ReleaseMatrixToPool(m_innerproduct, matrixPool);
|
||||
ReleaseMatrixToPool(m_rightGradient, matrixPool);
|
||||
}
|
||||
|
||||
private:
|
||||
shared_ptr<Matrix<ElemType>> m_innerproduct;
|
||||
shared_ptr<Matrix<ElemType>> m_rightGradient;
|
||||
};
|
||||
|
||||
template class DiagTimesNode<float>;
|
||||
template class DiagTimesNode<double>;
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
// SumElementsNode (input)
|
||||
// Sums up all elements in the input across all samples into a single scalar.
|
||||
|
|
|
@ -10,11 +10,12 @@ testCases:
|
|||
patterns:
|
||||
- __COMPLETED__
|
||||
|
||||
Must train epochs in exactly same order and parameters:
|
||||
patterns:
|
||||
- Starting Epoch {{integer}}
|
||||
- learning rate per sample = {{float}}
|
||||
- momentum = {{float}}
|
||||
# Note: These log messages have been removed.
|
||||
# Must train epochs in exactly same order and parameters:
|
||||
# patterns:
|
||||
# - Starting Epoch {{integer}}
|
||||
# - learning rate per sample = {{float}}
|
||||
# - momentum = {{float}}
|
||||
|
||||
Epochs must be finished with expected results:
|
||||
patterns:
|
||||
|
|
Загрузка…
Ссылка в новой задаче