moved DiagTimes() to DeprecatedNodes.h, since it is redundant (ElementTimes) and should no longer be used;

removed a log message from SeqCla's required test patterns as they are no longer being generated
This commit is contained in:
Frank Seide 2016-08-19 21:58:13 -07:00
Родитель 5d6785fdac
Коммит 0e34934f78
4 изменённых файлов: 135 добавлений и 134 удалений

Просмотреть файл

@ -346,11 +346,11 @@ CNTK2 = [
Tanh(_, tag='') = new ComputationNode [ operation = 'Tanh' ; inputs = _ /*plus the function args*/ ]
// 6. Reductions
ReduceSum (_, axis=None, tag='') = new ComputationNode [ operation = 'ReduceElements' ; inputs = _ ; axis = if BS.Constants.IsNone (axis) then 0 else axis reductionOp = "Sum" /*plus the function args*/ ]
ReduceLogSum(_, axis=None, tag='') = new ComputationNode [ operation = 'ReduceElements' ; inputs = _ ; axis = if BS.Constants.IsNone (axis) then 0 else axis reductionOp = "LogSum" /*plus the function args*/ ]
ReduceMin (_, axis=None, tag='') = new ComputationNode [ operation = 'ReduceElements' ; inputs = _ ; axis = if BS.Constants.IsNone (axis) then 0 else axis reductionOp = "Min" /*plus the function args*/ ]
ReduceMax (_, axis=None, tag='') = new ComputationNode [ operation = 'ReduceElements' ; inputs = _ ; axis = if BS.Constants.IsNone (axis) then 0 else axis reductionOp = "Max" /*plus the function args*/ ]
#ReduceMean (_, axis=None, tag='') = new ComputationNode [ operation = 'ReduceElements' ; inputs = _ ; axis = if BS.Constants.IsNone (axis) then 0 else axis reductionOp = "Mean" /*plus the function args*/ ]
ReduceSum (_, axis=None, tag='') = new ComputationNode [ operation = 'ReduceElements' ; inputs = _ ; axis = if BS.Constants.IsNone (axis) then 0 else axis ; reductionOp = "Sum" /*plus the function args*/ ]
ReduceLogSum(_, axis=None, tag='') = new ComputationNode [ operation = 'ReduceElements' ; inputs = _ ; axis = if BS.Constants.IsNone (axis) then 0 else axis ; reductionOp = "LogSum" /*plus the function args*/ ]
ReduceMin (_, axis=None, tag='') = new ComputationNode [ operation = 'ReduceElements' ; inputs = _ ; axis = if BS.Constants.IsNone (axis) then 0 else axis ; reductionOp = "Min" /*plus the function args*/ ]
ReduceMax (_, axis=None, tag='') = new ComputationNode [ operation = 'ReduceElements' ; inputs = _ ; axis = if BS.Constants.IsNone (axis) then 0 else axis ; reductionOp = "Max" /*plus the function args*/ ]
#ReduceMean (_, axis=None, tag='') = new ComputationNode [ operation = 'ReduceElements' ; inputs = _ ; axis = if BS.Constants.IsNone (axis) then 0 else axis ; reductionOp = "Mean" /*plus the function args*/ ]
// 7. Control flow (if, composite etc.)
// None so far

Просмотреть файл

@ -166,4 +166,128 @@ public:
template class PerDimMeanVarNormalizationNode<float>;
template class PerDimMeanVarNormalizationNode<double>;
// -----------------------------------------------------------------------
// DiagTimesNode (vector representing the diagonal of a square matrix, data)
// Deprecated because can be implemented with ElementTimes.
// -----------------------------------------------------------------------
template <class ElemType>
class DiagTimesNode : public ComputationNode<ElemType>, public NumInputs<2>
{
typedef ComputationNode<ElemType> Base; UsingComputationNodeMembersBoilerplate;
static const std::wstring TypeName() { return L"DiagTimes"; }
public:
DeclareConstructorFromConfigWithNumInputs(DiagTimesNode);
DiagTimesNode(DEVICEID_TYPE deviceId, const wstring& name)
: Base(deviceId, name)
{
}
virtual void /*ComputationNode::*/ BackpropTo(const size_t inputIndex, const FrameRange& fr) override
{
if (inputIndex == 0) // left derivative
{
Matrix<ElemType> sliceOutputGrad = MaskedGradientFor(fr); // use Masked- version since this is reducing over frames
Matrix<ElemType> sliceInput1Value = Input(1)->MaskedValueFor(fr);
m_innerproduct->AssignInnerProductOf(sliceOutputGrad, sliceInput1Value, false);
Input(0)->GradientAsMatrix() += *m_innerproduct;
}
else // right derivative
{
Matrix<ElemType> sliceOutputGrad = GradientFor(fr);
Matrix<ElemType> sliceInput1Grad = Input(1)->GradientFor(fr);
m_rightGradient->SetValue(sliceOutputGrad);
m_rightGradient->ColumnElementMultiplyWith(Input(0)->ValueAsMatrix());
sliceInput1Grad += *m_rightGradient;
}
}
virtual bool OutputUsedInComputingInputNodesGradients() const override
{
// The DiagTimesNode does not require its output value for computing
// the gradients of its input nodes
return false;
}
virtual void /*ComputationNode::*/ ForwardProp(const FrameRange& fr) override
{
Matrix<ElemType> sliceInput1Value = Input(1)->ValueFor(fr);
Matrix<ElemType> sliceOutputValue = ValueFor(fr);
sliceOutputValue.AssignValuesOf(sliceInput1Value);
sliceOutputValue.ColumnElementMultiplyWith(Input(0)->ValueAsMatrix());
}
virtual void /*ComputationNodeBase::*/ Validate(bool isFinalValidationPass) override
{
Base::Validate(isFinalValidationPass);
InferMBLayoutFromInputsForStandardCase(isFinalValidationPass);
size_t rows0 = Input(0)->GetAsMatrixNumRows();
size_t rows1 = Input(1)->HasMBLayout() ? Input(1)->GetSampleMatrixNumRows() : Input(1)->GetAsMatrixNumRows();
// if dimension not specified we assume two operands' dimensions should match
Input(0)->ValidateInferInputDimsFrom(TensorShape(rows1));
if (Input(1)->HasMBLayout())
{
// infer rows1 as rows0
Input(1)->ValidateInferInputDimsFrom(TensorShape(rows0));
SetDims(TensorShape(rows0), true);
}
else // multiplying two straight matrices
{
size_t cols1 = Input(1)->GetAsMatrixNumCols();
// infer rows1 as rows0
Input(1)->ValidateInferInputDimsFrom(TensorShape(rows0, cols1));
SetDims(TensorShape(rows0, cols1), false);
}
// update after inference
rows0 = Input(0)->GetAsMatrixNumRows();
rows1 = Input(1)->HasMBLayout() ? Input(1)->GetSampleMatrixNumRows() : Input(1)->GetAsMatrixNumRows();
if (isFinalValidationPass && rows0 != rows1)
InvalidArgument("The inner matrix dimension in the %ls %ls operation does not match (%d vs. %d).", NodeName().c_str(), OperationName().c_str(), (int) rows1, (int) rows0);
size_t cols0 = Input(0)->GetAsMatrixNumCols();
if (isFinalValidationPass && cols0 != 1)
InvalidArgument("The first matrix should be a column vector representing the diagonal of a square matrix in the DiagTimes operation.");
SetDims(Input(1));
}
virtual void CopyTo(ComputationNodeBasePtr nodeP, const std::wstring& newName, const CopyNodeFlags flags) const override
{
Base::CopyTo(nodeP, newName, flags);
if (flags & CopyNodeFlags::copyNodeValue)
{
auto node = dynamic_pointer_cast<DiagTimesNode<ElemType>>(nodeP);
node->m_innerproduct->SetValue(*m_innerproduct);
node->m_rightGradient->SetValue(*m_rightGradient);
}
}
// request matrices that are needed for gradient computation
virtual void RequestMatricesBeforeBackprop(MatrixPool& matrixPool)
{
Base::RequestMatricesBeforeBackprop(matrixPool);
RequestMatrixFromPool(m_innerproduct, matrixPool);
RequestMatrixFromPool(m_rightGradient, matrixPool);
}
// release gradient and temp matrices that no longer needed after all the children's gradients are computed.
virtual void ReleaseMatricesAfterBackprop(MatrixPool& matrixPool)
{
Base::ReleaseMatricesAfterBackprop(matrixPool);
ReleaseMatrixToPool(m_innerproduct, matrixPool);
ReleaseMatrixToPool(m_rightGradient, matrixPool);
}
private:
shared_ptr<Matrix<ElemType>> m_innerproduct;
shared_ptr<Matrix<ElemType>> m_rightGradient;
};
template class DiagTimesNode<float>;
template class DiagTimesNode<double>;
}}}

Просмотреть файл

@ -570,130 +570,6 @@ public:
template class TransposeTimesNode<float>;
template class TransposeTimesNode<double>;
// -----------------------------------------------------------------------
// DiagTimesNode (vector representing the diagonal of a square matrix, data)
// TODO: Deprecate and move to DeprecatedNodes.h. (Can be implemented with ElementTimes.)
// -----------------------------------------------------------------------
template <class ElemType>
class DiagTimesNode : public ComputationNode<ElemType>, public NumInputs<2>
{
typedef ComputationNode<ElemType> Base; UsingComputationNodeMembersBoilerplate;
static const std::wstring TypeName() { return L"DiagTimes"; }
public:
DeclareConstructorFromConfigWithNumInputs(DiagTimesNode);
DiagTimesNode(DEVICEID_TYPE deviceId, const wstring& name)
: Base(deviceId, name)
{
}
virtual void /*ComputationNode::*/ BackpropTo(const size_t inputIndex, const FrameRange& fr) override
{
if (inputIndex == 0) // left derivative
{
Matrix<ElemType> sliceOutputGrad = MaskedGradientFor(fr); // use Masked- version since this is reducing over frames
Matrix<ElemType> sliceInput1Value = Input(1)->MaskedValueFor(fr);
m_innerproduct->AssignInnerProductOf(sliceOutputGrad, sliceInput1Value, false);
Input(0)->GradientAsMatrix() += *m_innerproduct;
}
else // right derivative
{
Matrix<ElemType> sliceOutputGrad = GradientFor(fr);
Matrix<ElemType> sliceInput1Grad = Input(1)->GradientFor(fr);
m_rightGradient->SetValue(sliceOutputGrad);
m_rightGradient->ColumnElementMultiplyWith(Input(0)->ValueAsMatrix());
sliceInput1Grad += *m_rightGradient;
}
}
virtual bool OutputUsedInComputingInputNodesGradients() const override
{
// The DiagTimesNode does not require its output value for computing
// the gradients of its input nodes
return false;
}
virtual void /*ComputationNode::*/ ForwardProp(const FrameRange& fr) override
{
Matrix<ElemType> sliceInput1Value = Input(1)->ValueFor(fr);
Matrix<ElemType> sliceOutputValue = ValueFor(fr);
sliceOutputValue.AssignValuesOf(sliceInput1Value);
sliceOutputValue.ColumnElementMultiplyWith(Input(0)->ValueAsMatrix());
}
virtual void /*ComputationNodeBase::*/ Validate(bool isFinalValidationPass) override
{
Base::Validate(isFinalValidationPass);
InferMBLayoutFromInputsForStandardCase(isFinalValidationPass);
size_t rows0 = Input(0)->GetAsMatrixNumRows();
size_t rows1 = Input(1)->HasMBLayout() ? Input(1)->GetSampleMatrixNumRows() : Input(1)->GetAsMatrixNumRows();
// if dimension not specified we assume two operands' dimensions should match
Input(0)->ValidateInferInputDimsFrom(TensorShape(rows1));
if (Input(1)->HasMBLayout())
{
// infer rows1 as rows0
Input(1)->ValidateInferInputDimsFrom(TensorShape(rows0));
SetDims(TensorShape(rows0), true);
}
else // multiplying two straight matrices
{
size_t cols1 = Input(1)->GetAsMatrixNumCols();
// infer rows1 as rows0
Input(1)->ValidateInferInputDimsFrom(TensorShape(rows0, cols1));
SetDims(TensorShape(rows0, cols1), false);
}
// update after inference
rows0 = Input(0)->GetAsMatrixNumRows();
rows1 = Input(1)->HasMBLayout() ? Input(1)->GetSampleMatrixNumRows() : Input(1)->GetAsMatrixNumRows();
if (isFinalValidationPass && rows0 != rows1)
InvalidArgument("The inner matrix dimension in the %ls %ls operation does not match (%d vs. %d).", NodeName().c_str(), OperationName().c_str(), (int) rows1, (int) rows0);
size_t cols0 = Input(0)->GetAsMatrixNumCols();
if (isFinalValidationPass && cols0 != 1)
InvalidArgument("The first matrix should be a column vector representing the diagonal of a square matrix in the DiagTimes operation.");
SetDims(Input(1));
}
virtual void CopyTo(ComputationNodeBasePtr nodeP, const std::wstring& newName, const CopyNodeFlags flags) const override
{
Base::CopyTo(nodeP, newName, flags);
if (flags & CopyNodeFlags::copyNodeValue)
{
auto node = dynamic_pointer_cast<DiagTimesNode<ElemType>>(nodeP);
node->m_innerproduct->SetValue(*m_innerproduct);
node->m_rightGradient->SetValue(*m_rightGradient);
}
}
// request matrices that are needed for gradient computation
virtual void RequestMatricesBeforeBackprop(MatrixPool& matrixPool)
{
Base::RequestMatricesBeforeBackprop(matrixPool);
RequestMatrixFromPool(m_innerproduct, matrixPool);
RequestMatrixFromPool(m_rightGradient, matrixPool);
}
// release gradient and temp matrices that no longer needed after all the children's gradients are computed.
virtual void ReleaseMatricesAfterBackprop(MatrixPool& matrixPool)
{
Base::ReleaseMatricesAfterBackprop(matrixPool);
ReleaseMatrixToPool(m_innerproduct, matrixPool);
ReleaseMatrixToPool(m_rightGradient, matrixPool);
}
private:
shared_ptr<Matrix<ElemType>> m_innerproduct;
shared_ptr<Matrix<ElemType>> m_rightGradient;
};
template class DiagTimesNode<float>;
template class DiagTimesNode<double>;
// -----------------------------------------------------------------------
// SumElementsNode (input)
// Sums up all elements in the input across all samples into a single scalar.

Просмотреть файл

@ -10,11 +10,12 @@ testCases:
patterns:
- __COMPLETED__
Must train epochs in exactly same order and parameters:
patterns:
- Starting Epoch {{integer}}
- learning rate per sample = {{float}}
- momentum = {{float}}
# Note: These log messages have been removed.
# Must train epochs in exactly same order and parameters:
# patterns:
# - Starting Epoch {{integer}}
# - learning rate per sample = {{float}}
# - momentum = {{float}}
Epochs must be finished with expected results:
patterns: