diff --git a/Source/ComputationNetworkLib/LinearAlgebraNodes.h b/Source/ComputationNetworkLib/LinearAlgebraNodes.h index 573cca8cd..13c16d65b 100644 --- a/Source/ComputationNetworkLib/LinearAlgebraNodes.h +++ b/Source/ComputationNetworkLib/LinearAlgebraNodes.h @@ -143,7 +143,7 @@ public: virtual void /*ComputationNode::*/ ForwardProp(const FrameRange& fr) override { size_t rank = DetermineElementwiseTensorRank(); - auto result = ValueTensorFor(rank, fr); + auto result = ValueTensorFor(rank, fr); auto input0 = InputRef(0).ValueTensorFor(rank, fr.AllowBroadcast()); auto input1 = InputRef(1).ValueTensorFor(rank, fr.AllowBroadcast()); result.AssignDifferenceOf(input0, input1); @@ -193,7 +193,7 @@ public: virtual void /*ComputationNode::*/ ForwardProp(const FrameRange& fr) override { size_t rank = DetermineElementwiseTensorRank(); - auto result = ValueTensorFor(rank, fr); + auto result = ValueTensorFor(rank, fr); auto input0 = InputRef(0).ValueTensorFor(rank, fr.AllowBroadcast()); auto input1 = InputRef(1).ValueTensorFor(rank, fr.AllowBroadcast()); result.AssignElementwiseProductOf(input0, input1); @@ -203,7 +203,7 @@ public: { size_t rank = DetermineElementwiseTensorRank(); auto gradient = GradientTensorFor(rank, fr); - auto inputGradient = Input(inputIndex)->GradientTensorFor(rank, fr.AllowBroadcast()); + auto inputGradient = Input(inputIndex)->GradientTensorFor(rank, fr.AllowBroadcast()); auto otherInputValue = Input(1 - inputIndex)->ValueTensorFor(rank, fr.AllowBroadcast()); // if reduction then mask the respective input(s) (zero out the gaps) @@ -689,7 +689,7 @@ public: virtual void /*ComputationNode::*/ ForwardProp(const FrameRange& fr) override { size_t rank = DetermineElementwiseTensorRank(); - auto output = ValueTensorFor( rank, fr); + auto output = ValueTensorFor( rank, fr); auto input = TensorView(InputRef(0).ValuePtr(), GetTransposedTensorSliceFor(rank, fr)); output.AssignCopyOf(input); } @@ -697,7 +697,7 @@ public: virtual void /*ComputationNode::*/ BackpropTo(const size_t inputIndex, const FrameRange& fr) override { size_t rank = DetermineElementwiseTensorRank(); - auto outputGradient = GradientTensorFor( rank, fr); + auto outputGradient = GradientTensorFor( rank, fr); auto inputGradient = TensorView(InputRef(0).GradientPtr(), GetTransposedTensorSliceFor(rank, fr)); inputGradient.AddCopyOf(outputGradient); } diff --git a/Source/ComputationNetworkLib/NonlinearityNodes.h b/Source/ComputationNetworkLib/NonlinearityNodes.h index 213b65416..e0f960fbc 100644 --- a/Source/ComputationNetworkLib/NonlinearityNodes.h +++ b/Source/ComputationNetworkLib/NonlinearityNodes.h @@ -50,7 +50,7 @@ public: virtual void /*ComputationNode::*/ ForwardProp(const FrameRange& fr) override { size_t rank = DetermineElementwiseTensorRank(); - auto result = ValueTensorFor(rank, fr); + auto result = ValueTensorFor(rank, fr); auto input = InputRef(0).ValueTensorFor(rank, fr); result.DoUnaryOpOf(0, input, 1, opForward, opSum); } @@ -61,7 +61,7 @@ public: // get the args size_t rank = DetermineElementwiseTensorRank(); - auto sliceOutputGrad = GradientTensorFor(rank, fr); // propagate from this one... + auto sliceOutputGrad = GradientTensorFor(rank, fr); // propagate from this one... auto sliceInputGrad = InputRef(0).GradientTensorFor(rank, fr); // ...to this one GradientOperationType opTypeHolder = opType; // preventing pragma warning C4127 @@ -544,10 +544,10 @@ public: if (inputIndex == 2) { size_t rank = DetermineElementwiseTensorRank(); - auto gradient = GradientTensorFor(rank, fr); + auto gradient = GradientTensorFor(rank, fr); auto inputGradient = InputRef(inputIndex).GradientTensorFor(rank, fr.AllowBroadcast()); auto input = InputRef(inputIndex).ValueTensorFor(rank, fr.AllowBroadcast()); - auto output = ValueTensorFor(rank, fr.AllowBroadcast()); + auto output = ValueTensorFor(rank, fr.AllowBroadcast()); inputGradient.AddCopyIfEqualOf(input, output, gradient); } diff --git a/Source/ComputationNetworkLib/SpecialPurposeNodes.cpp b/Source/ComputationNetworkLib/SpecialPurposeNodes.cpp index 55dd5c176..1b315ec97 100644 --- a/Source/ComputationNetworkLib/SpecialPurposeNodes.cpp +++ b/Source/ComputationNetworkLib/SpecialPurposeNodes.cpp @@ -126,7 +126,7 @@ template fprintf(stderr, "] %ls %s--> %s\n", m_message.c_str(), logGradientInstead ? "(gradient) " : "", InputRef(0).FormatOperationPrototype("").c_str()); InputRef(0).WriteMinibatchWithFormatting(stderr, fr, m_onlyUpToRow, m_onlyUpToT, m_formattingOptions.transpose, m_formattingOptions.isCategoryLabel, m_formattingOptions.isSparse, m_labelMapping, sequenceSeparator, sequencePrologue, sequenceEpilogue, elementSeparator, sampleSeparator, - valueFormatString, logGradientInstead); + valueFormatString, logGradientInstead); } }