Integrate ebarsoum/BSvsPython into master
This commit is contained in:
Коммит
1eeb899d9a
|
@ -22,6 +22,9 @@
|
|||
|
||||
%rename(momentum_as_time_constant_schedule) CNTK::MomentumAsTimeConstantSchedule;
|
||||
|
||||
%rename(l1_regularization_weight) CNTK::AdditionalLearningOptions::l1RegularizationWeight;
|
||||
%rename(l2_regularization_weight) CNTK::AdditionalLearningOptions::l2RegularizationWeight;
|
||||
|
||||
// if we don't except RandomUniform the corresponding template functions will not be generated
|
||||
%rename("%(utitle)s", %$isfunction, notregexmatch$name="RandomUniform") "";
|
||||
%rename("%(utitle)s", %$isvariable) "";
|
||||
|
|
|
@ -42,7 +42,7 @@ def run_distributed_trainer(tmpdir, quantized):
|
|||
momentum_time_constant = momentum_as_time_constant_schedule(1100)
|
||||
|
||||
trainer = Trainer(z, ce, errs, \
|
||||
sgd(z.parameters, 0.007, momentum_time_constant, 0.5, True),
|
||||
momentum_sgd(z.parameters, 0.007, momentum_time_constant),
|
||||
distributed_trainer=dist_trainer)
|
||||
in1_value = [[1],[2]]
|
||||
label_value = [[0], [1]]
|
||||
|
|
|
@ -23,7 +23,7 @@ def test_trainer(tmpdir):
|
|||
m_schedule = momentum_schedule(1100)
|
||||
|
||||
trainer = Trainer(z, ce, errs, \
|
||||
[sgd(z.parameters, 0.007, m_schedule, 0.5, True)])
|
||||
[momentum_sgd(z.parameters, 0.007, m_schedule)])
|
||||
in1_value = [[1],[2]]
|
||||
label_value = [[0], [1]]
|
||||
arguments = {in1: in1_value, labels: label_value}
|
||||
|
@ -52,7 +52,7 @@ def test_output_to_retain():
|
|||
m_schedule = momentum_schedule(1100)
|
||||
|
||||
trainer = Trainer(z, ce, errs, \
|
||||
[sgd(z.parameters, 0.007, m_schedule, 0.5, True)])
|
||||
[momentum_sgd(z.parameters, 0.007, m_schedule)])
|
||||
in1_value = [[1],[2]]
|
||||
label_value = [[0], [1]]
|
||||
arguments = {in1: in1_value, labels: label_value}
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright (c) Microsoft. All rights reserved.
|
||||
# Copyright (c) Microsoft. All rights reserved.
|
||||
|
||||
# Licensed under the MIT license. See LICENSE.md file in the project root
|
||||
# for full license information.
|
||||
|
@ -157,7 +157,10 @@ def sequence_to_sequence_translator(debug_output=False, run_test=False):
|
|||
momentum_time_constant = momentum_as_time_constant_schedule(1100)
|
||||
clipping_threshold_per_sample = 2.3
|
||||
gradient_clipping_with_truncation = True
|
||||
learner = momentum_sgd(z.parameters, lr_per_sample, momentum_time_constant, clipping_threshold_per_sample, gradient_clipping_with_truncation)
|
||||
learner = momentum_sgd(z.parameters,
|
||||
lr_per_sample, momentum_time_constant,
|
||||
gradient_clipping_threshold_per_sample=clipping_threshold_per_sample,
|
||||
gradient_clipping_with_truncation=gradient_clipping_with_truncation)
|
||||
trainer = Trainer(z, ce, errs, learner)
|
||||
|
||||
# setup data
|
||||
|
|
|
@ -44,7 +44,7 @@ def test_cifar_resnet_error(device_id):
|
|||
reader_test = create_reader(os.path.join(base_path, 'test_map.txt'), os.path.join(base_path, 'CIFAR-10_mean.xml'), False)
|
||||
|
||||
test_error = train_and_evaluate(reader_train, reader_test, max_epochs=5)
|
||||
expected_test_error = 0.384
|
||||
expected_test_error = 0.36
|
||||
|
||||
assert np.allclose(test_error, expected_test_error,
|
||||
atol=TOLERANCE_ABSOLUTE)
|
||||
|
|
Загрузка…
Ссылка в новой задаче