Fix Tutorial 201B for convergence issue.
This commit is contained in:
Родитель
aa7447e764
Коммит
206db8c601
|
@ -18,3 +18,6 @@ C.debugging.stop_profiler()
|
|||
## CPU inference performance improvements using MKL
|
||||
- Accelerates some common tensor ops in Intel CPU inference for float32, especially for fully connected networks
|
||||
- Can be turned on/off by cntk.cntk_py.enable_cpueval_optimization()/cntk.cntk_py.disable_cpueval_optimization()
|
||||
|
||||
## Bug fixes
|
||||
- Fixed convergence issue in Tutorial 201B
|
|
@ -17,3 +17,18 @@ def test_cntk_201B_cifar_10_imagehandson_noErrors(nb):
|
|||
errors = [output for cell in nb.cells if 'outputs' in cell
|
||||
for output in cell['outputs'] if output.output_type == "error"]
|
||||
assert errors == []
|
||||
|
||||
metrics = []
|
||||
for cell in nb.cells:
|
||||
try:
|
||||
if cell.cell_type == 'code':
|
||||
m = re.search('Final Results: .* errs = (?P<metric>\d+\.\d+)%', cell.outputs[0]['text'])
|
||||
if m:
|
||||
metrics.append(float(m.group('metric')))
|
||||
break
|
||||
except IndexError:
|
||||
pass
|
||||
except KeyError:
|
||||
pass
|
||||
# TODO tighten tolerances
|
||||
assert np.allclose([43.3], metrics, atol=0.5)
|
||||
|
|
|
@ -521,8 +521,8 @@
|
|||
"\n",
|
||||
" # Set training parameters\n",
|
||||
" lr_per_minibatch = C.learning_parameter_schedule([0.01]*10 + [0.003]*10 + [0.001], \n",
|
||||
" epoch_size)\n",
|
||||
" momentums = C.momentum_schedule(0.9, minibatch_size)\n",
|
||||
" epoch_size = epoch_size)\n",
|
||||
" momentums = C.momentum_schedule(0.9, minibatch_size = minibatch_size)\n",
|
||||
" l2_reg_weight = 0.001\n",
|
||||
" \n",
|
||||
" # trainer object\n",
|
||||
|
|
Загрузка…
Ссылка в новой задаче