address cr comments
This commit is contained in:
Родитель
3b2f8ed56d
Коммит
21d90a7331
|
@ -49,7 +49,7 @@ def test_op_reshape(input_shape, output_shape, expected_output_shape, device_id,
|
|||
# Backward pass test
|
||||
# ==================
|
||||
# Reshaping is just moving the input values to different indexes of the result tensor.
|
||||
# If we would compute the gradients on the unmodified tensor, reshape would get 1 for all inputs.
|
||||
# If we compute the gradients on the unmodified tensor, reshape would get 1 for all inputs.
|
||||
# For testing the gradients we want to have different gradients for each input index otherwise we can't
|
||||
# test if they get wrongly permuted during test. To this end we multiply the reshaping result with itself.
|
||||
# The expected gradient is identical to the input tensor.
|
||||
|
@ -224,7 +224,7 @@ def test_op_transpose_dimensions(input_shape, axis1, axis2, expected_output_shap
|
|||
# Backward pass test
|
||||
# ==================
|
||||
# Reshaping is just moving the input values to different indexes of the result tensor.
|
||||
# If we would compute the gradients on the unmodified tensor, reshape would get 1 for all inputs.
|
||||
# If we compute the gradients on the unmodified tensor, reshape would get 1 for all inputs.
|
||||
# For testing the gradients we want to have different gradients for each input index otherwise we can't
|
||||
# test if they get wrongly permuted during test. To this end we multiply the reshaping result with itself.
|
||||
# The expected gradient is identical to the input tensor.
|
||||
|
|
|
@ -38,19 +38,19 @@ def test_eval_plus_two_inputs():
|
|||
result = cntk.eval(cntk.plus(cntk.input_numpy([_LEFT]), cntk.input_numpy([_RIGHT])))
|
||||
TOLERANCE_ABSOLUTE = 1E-06
|
||||
assert np.allclose(result, _EXPECTED, atol=TOLERANCE_ABSOLUTE)
|
||||
|
||||
|
||||
def test_eval_plus_one_constant():
|
||||
result = cntk.eval(cntk.plus(cntk.constant(_LEFT), _RIGHT))
|
||||
TOLERANCE_ABSOLUTE = 1E-06
|
||||
assert np.allclose(result, _EXPECTED, atol=TOLERANCE_ABSOLUTE)
|
||||
|
||||
assert np.allclose(result, _EXPECTED, atol=TOLERANCE_ABSOLUTE)
|
||||
|
||||
def test_eval_plus_one_constant_last():
|
||||
result = cntk.eval(cntk.plus(_LEFT, cntk.constant(_RIGHT)))
|
||||
TOLERANCE_ABSOLUTE = 1E-06
|
||||
assert np.allclose(result, _EXPECTED, atol=TOLERANCE_ABSOLUTE)
|
||||
assert np.allclose(result, _EXPECTED, atol=TOLERANCE_ABSOLUTE)
|
||||
|
||||
# this is dis-activated for now because we cannot have a netowrk without inputs
|
||||
# this is dis-activated for now because we cannot have a netowrk without inputs
|
||||
def _test_eval_plus_two_constants():
|
||||
result = cntk.eval(cntk.plus(cntk.constant(_LEFT), cntk.constant(_RIGHT)))
|
||||
TOLERANCE_ABSOLUTE = 1E-06
|
||||
assert np.allclose(result, _EXPECTED, atol=TOLERANCE_ABSOLUTE)
|
||||
assert np.allclose(result, _EXPECTED, atol=TOLERANCE_ABSOLUTE)
|
Загрузка…
Ссылка в новой задаче