Merge branch 'master' of https://github.com/Microsoft/CNTK into amitaga/cntkv2Library

This commit is contained in:
Amit Agarwal 2016-08-22 10:48:54 -07:00
Родитель 45f4cbb115 4e174f2a30
Коммит 37b6897e94
262 изменённых файлов: 313366 добавлений и 1855933 удалений

Просмотреть файл

@ -11,6 +11,13 @@
#define __UNIX__
#endif
#ifdef _MSC_VER
// TODO: thread_local is supported in VS2015. Remove this macro when we uprade to VS2015
#define THREAD_LOCAL __declspec(thread)
#else
#define THREAD_LOCAL thread_local
#endif
// ===========================================================================
// compiler differences
// ===========================================================================

Просмотреть файл

@ -11,6 +11,7 @@
#include <stdio.h>
#include <vector>
#include <algorithm>
#include <random>
namespace Microsoft { namespace MSR { namespace CNTK {
@ -24,6 +25,31 @@ static inline size_t rand(const size_t begin, const size_t end)
return begin + randno % (end - begin);
}
// Rand based on Mersenne Twister.
// We use our own distribution in order to match baselines between different operating systems,
// because uniform_distribution is not guranteed to provide the same numbers on different platforms.
// TODO: Switching to Boost would eliminate this problem.
static inline size_t RandMT(const size_t begin, const size_t end, std::mt19937_64& rng)
{
const size_t randomNumber = rng();
return begin + randomNumber % (end - begin);
}
// Rand based on Mersenne Twister.
// We use our own distribution in order to match baselines between different operating systems,
// instead of using std::shuffle which uses unitform_distribution internally.
// TODO: Switching to Boost would eliminate this problem.
template <typename TVector>
inline void RandomShuffleMT(TVector& v, std::mt19937_64& rng)
{
foreach_index(currentLocation, v)
{
// Pick a random location a location and swap with current
const size_t randomLocation = RandMT(0, v.size(), rng);
std::swap(v[currentLocation], v[randomLocation]);
}
}
class RandomOrdering // note: NOT thread-safe at all
{
// constants for randomization

Просмотреть файл

@ -237,7 +237,7 @@ std::pair<size_t, size_t> TracingGPUMemoryAllocator::GetFreeAndTotalMemoryInMBs(
// deviceId - the device on which the operation will take place
void PrepareDevice(DEVICEID_TYPE deviceId)
{
static DEVICEID_TYPE currentDevice = DEVICEID_NOTYETDETERMINED;
THREAD_LOCAL static DEVICEID_TYPE currentDevice = DEVICEID_NOTYETDETERMINED;
// and if we last set the device to be this device we are good
if (deviceId == currentDevice)
return;

Просмотреть файл

@ -517,11 +517,11 @@ void HTKMLFReader<ElemType>::PrepareForTrainingOrTesting(const ConfigRecordType&
m_lattices->setverbosity(m_verbosity);
// now get the frame source. This has better randomization and doesn't create temp files
bool minimizeReaderMemoryFootprint = readerConfig(L"minimizeReaderMemoryFootprint", true);
m_frameSource.reset(new msra::dbn::minibatchutterancesourcemulti(infilesmulti, labelsmulti, m_featDims, m_labelDims,
bool useMersenneTwisterRand = readerConfig(L"useMersenneTwisterRand", false);
m_frameSource.reset(new msra::dbn::minibatchutterancesourcemulti(useMersenneTwisterRand, infilesmulti, labelsmulti, m_featDims, m_labelDims,
numContextLeft, numContextRight, randomize,
*m_lattices, m_latticeMap, m_frameMode,
minimizeReaderMemoryFootprint, m_expandToUtt));
m_expandToUtt));
m_frameSource->setverbosity(m_verbosity);
}
else if (EqualCI(readMethod, L"rollingWindow"))

Просмотреть файл

@ -12,7 +12,8 @@
#include "latticearchive.h" // for reading HTK phoneme lattices (MMI training)
#include "minibatchsourcehelpers.h"
#include "minibatchiterator.h"
#include "unordered_set"
#include <unordered_set>
#include <random>
namespace msra { namespace dbn {
@ -38,6 +39,10 @@ class minibatchutterancesourcemulti : public minibatchsource
// const std::vector<unique_ptr<latticesource>> &lattices;
const latticesource &lattices;
// Flag indicating whether to use Mersenne Twister random generator.
bool m_useMersenneTwister;
std::mt19937_64 m_rng;
// std::vector<latticesource> lattices;
// word-level transcripts (for MMI mode when adding best path to lattices)
const map<wstring, msra::lattices::lattice::htkmlfwordsequence> &allwordtranscripts; // (used for getting word-level transcripts)
@ -413,6 +418,7 @@ class minibatchutterancesourcemulti : public minibatchsource
// When true we use a rolling window of randomized framerefs to minimize memory
// footprint, instead of using a large vector listing all frames in the training corpus
// Functionally, the 2 methods are identical.
// When it is true, we also use Mersenne Twister random generator for randomization.
const bool m_minimizeMemoryFootprint;
// [globalt-sweepts] -> (chunk, utt, frame) lookup table for randomized frames --this can be REALLY big!
@ -429,6 +435,10 @@ class minibatchutterancesourcemulti : public minibatchsource
size_t m_currentRangeEndChunkIdx;
size_t m_nextFramePosNotYetRandomized;
// If m_minimizeMemoryFootprint is true, Mersenne Twister is used for randomization
// because rand has problems in distributed case.
std::mt19937_64 m_rng;
public:
framerandomizer(const std::vector<std::vector<chunk>>& randomizedChunks, bool minimizeMemoryFootprint)
: m_randomizedChunks(randomizedChunks), m_minimizeMemoryFootprint(minimizeMemoryFootprint), m_currentRangeBeginChunkIdx(0), m_currentRangeEndChunkIdx(0), m_nextFramePosNotYetRandomized(0)
@ -496,7 +506,9 @@ class minibatchutterancesourcemulti : public minibatchsource
for (;;) // (randomization retry loop)
{
size_t tswap = Microsoft::MSR::CNTK::rand(postbegin, postend); // random frame position within allowed range
size_t tswap = m_minimizeMemoryFootprint ?
Microsoft::MSR::CNTK::RandMT(postbegin, postend, m_rng) :
Microsoft::MSR::CNTK::rand(postbegin, postend); // random frame position within allowed range
// We want to swap 't' to 'tswap' and 'tswap' to 't'.
// - Both may have been swapped before.
// - Both must stay within the randomization window of their respective position.
@ -542,11 +554,11 @@ class minibatchutterancesourcemulti : public minibatchsource
void reset(unsigned int randSeed)
{
srand(randSeed);
size_t sweepts = m_randomizedChunks[0][0].globalts;
size_t totalFrames = m_randomizedChunks[0].back().globalte() - sweepts;
if (m_minimizeMemoryFootprint)
{
m_rng.seed(randSeed);
m_randomizedframerefsWindow.clear();
m_currentRangeBeginChunkIdx = m_randomizedChunks[0][0].windowbegin;
m_currentRangeEndChunkIdx = m_currentRangeBeginChunkIdx;
@ -554,6 +566,7 @@ class minibatchutterancesourcemulti : public minibatchsource
}
else
{
srand(randSeed + 1);
if (m_randomizedframerefs.size() != totalFrames)
m_randomizedframerefs.resize(totalFrames);
@ -866,10 +879,11 @@ public:
// constructor
// Pass empty labels to denote unsupervised training (so getbatch() will not return uids).
// This mode requires utterances with time stamps.
minibatchutterancesourcemulti(const std::vector<std::vector<wstring>> &infiles, const std::vector<map<wstring, std::vector<msra::asr::htkmlfentry>>> &labels,
minibatchutterancesourcemulti(bool useMersenneTwister, const std::vector<std::vector<wstring>> &infiles, const std::vector<map<wstring, std::vector<msra::asr::htkmlfentry>>> &labels,
std::vector<size_t> vdim, std::vector<size_t> udim, std::vector<size_t> leftcontext, std::vector<size_t> rightcontext, size_t randomizationrange,
const latticesource &lattices, const map<wstring, msra::lattices::lattice::htkmlfwordsequence> &allwordtranscripts, const bool framemode, bool minimizeMemoryFootprint, std::vector<bool> expandToUtt)
: vdim(vdim), leftcontext(leftcontext), rightcontext(rightcontext), sampperiod(0), featdim(0), randomizationrange(randomizationrange), currentsweep(SIZE_MAX), lattices(lattices), allwordtranscripts(allwordtranscripts), framemode(framemode), chunksinram(0), timegetbatch(0), verbosity(2), m_generatePhoneBoundaries(!lattices.empty()), m_frameRandomizer(randomizedchunks, minimizeMemoryFootprint), expandToUtt(expandToUtt)
const latticesource &lattices, const map<wstring, msra::lattices::lattice::htkmlfwordsequence> &allwordtranscripts, const bool framemode, std::vector<bool> expandToUtt)
: vdim(vdim), leftcontext(leftcontext), rightcontext(rightcontext), sampperiod(0), featdim(0), randomizationrange(randomizationrange), currentsweep(SIZE_MAX), lattices(lattices), allwordtranscripts(allwordtranscripts), framemode(framemode), chunksinram(0), timegetbatch(0), verbosity(2), m_generatePhoneBoundaries(!lattices.empty()), m_frameRandomizer(randomizedchunks, useMersenneTwister), expandToUtt(expandToUtt),
m_useMersenneTwister(useMersenneTwister)
// [v-hansu] change framemode (lattices.empty()) into framemode (false) to run utterance mode without lattice
// you also need to change another line, search : [v-hansu] comment out to run utterance mode without lattice
{
@ -1251,8 +1265,16 @@ private:
randomizedchunkrefs[i].push_back(allchunks[i].begin() + j);
assert(randomizedchunkrefs[i].size() == allchunks[i].size());
// note that sincew randomshuffle() uses sweep as seed, this will keep the randomization common across all feature streams
randomshuffle(randomizedchunkrefs[i], sweep); // bring into random order (with random seed depending on sweep)
if (m_useMersenneTwister)
{
m_rng.seed((unsigned long)sweep);
Microsoft::MSR::CNTK::RandomShuffleMT(randomizedchunkrefs[i], m_rng); // bring into random order (with random seed depending on sweep)
}
else
{
// note that sincew randomshuffle() uses sweep as seed, this will keep the randomization common across all feature streams
randomshuffle(randomizedchunkrefs[i], sweep); // bring into random order (with random seed depending on sweep)
}
}
// place them onto the global timeline -> randomizedchunks[]
@ -1348,7 +1370,7 @@ private:
// check we got those setup right
// we now randomly shuffle randomizedutterancerefs[pos], while considering the constraints of what chunk range needs to be in memory
srand((unsigned int) sweep + 1);
m_useMersenneTwister ? m_rng.seed((unsigned long)sweep) : srand((unsigned int)sweep + 1);
for (size_t i = 0; i < randomizedutterancerefs.size(); i++)
{
// get valid randomization range, expressed in chunks
@ -1364,7 +1386,9 @@ private:
for (;;)
{
// pick a random location
const size_t j = Microsoft::MSR::CNTK::rand(posbegin, posend); // a random number within the window
const size_t j = m_useMersenneTwister ?
Microsoft::MSR::CNTK::RandMT(posbegin, posend, m_rng) :
Microsoft::MSR::CNTK::rand(posbegin, posend); // a random number within the window
if (i == j)
break; // the random gods say "this one points to its original position"... nothing wrong about that, but better not try to swap
@ -1416,7 +1440,7 @@ private:
}
else // frame mode
{
m_frameRandomizer.reset((unsigned int)sweep + 1);
m_frameRandomizer.reset((unsigned int)sweep);
}
return sweep;

Просмотреть файл

@ -105,7 +105,7 @@ void BlockRandomizer::PrepareNewSweepIfNeeded(size_t samplePosition)
m_chunkRandomizer->Randomize((unsigned int)m_sweep);
// Resetting sequence randomizer.
m_sequenceRandomizer->Reset(m_sweep + 1);
m_sequenceRandomizer->Reset(m_sweep);
m_lastSeenChunkId = CHUNKID_MAX;
}
}

Просмотреть файл

@ -10,25 +10,6 @@
namespace Microsoft { namespace MSR { namespace CNTK {
// NOTE: This is an old code, used for legacy randomization to make sure we preserve the same behavior for the tests.
// TODO: Deprecate when the new randomizer is in place.
template <typename TVector>
void RandomShuffle(TVector& v, size_t randomSeed)
{
if (v.size() > RAND_MAX * static_cast<size_t>(RAND_MAX))
{
RuntimeError("RandomShuffle: too large set: need to change to different random generator!");
}
srand(static_cast<unsigned int>(randomSeed));
foreach_index(currentLocation, v)
{
// Pick a random location a location and swap with current
const size_t randomLocation = rand(0, v.size());
std::swap(v[currentLocation], v[randomLocation]);
}
}
ChunkRandomizer::ChunkRandomizer(IDataDeserializerPtr deserializer, size_t randomizationRangeInSamples, bool legacy) :
m_deserializer(deserializer), m_legacy(legacy), m_randomizationRangeInSamples(randomizationRangeInSamples)
{
@ -52,15 +33,8 @@ namespace Microsoft { namespace MSR { namespace CNTK {
randomizedChunkIndices.push_back(i);
}
if (m_legacy)
{
RandomShuffle(randomizedChunkIndices, seed);
}
else
{
std::mt19937 m_rng(static_cast<int>(seed));
std::shuffle(randomizedChunkIndices.begin(), randomizedChunkIndices.end(), m_rng);
}
m_rng.seed(seed);
RandomShuffleMT(randomizedChunkIndices, m_rng);
// Place randomized chunks on the timeline
m_randomizedChunks.clear();

Просмотреть файл

@ -7,6 +7,7 @@
#include <vector>
#include "DataDeserializer.h"
#include <random>
namespace Microsoft { namespace MSR { namespace CNTK {
@ -68,6 +69,8 @@ namespace Microsoft { namespace MSR { namespace CNTK {
bool m_legacy;
// Randomization range in samples.
size_t m_randomizationRangeInSamples;
std::mt19937_64 m_rng;
};
typedef std::shared_ptr<ChunkRandomizer> ChunkRandomizerPtr;

Просмотреть файл

@ -45,7 +45,7 @@ namespace Microsoft { namespace MSR { namespace CNTK {
// Resets the current sweep according to the randomization seed provided.
void SequenceRandomizer::Reset(size_t randSeed)
{
srand((unsigned int)randSeed);
m_rng.seed((unsigned long)randSeed);
m_sequenceWindow.clear();
m_chunkWindow.clear();
@ -197,7 +197,7 @@ namespace Microsoft { namespace MSR { namespace CNTK {
for (;;)
{
// Pick a sequence position from [posBegin, posEnd)
const size_t j = rand(posBegin, posEnd);
const size_t j = RandMT(posBegin, posEnd, m_rng);
// Pick up j sequence.
ChunkIdType jChunkIndex = GetChunkIndexForSequencePosition(j);

Просмотреть файл

@ -11,6 +11,7 @@
#include "DataDeserializer.h"
#include "ChunkRandomizer.h"
#include <deque>
#include <random>
namespace Microsoft { namespace MSR { namespace CNTK {
@ -164,6 +165,8 @@ private:
// General configuration
int m_verbosity;
std::mt19937_64 m_rng;
};
typedef std::shared_ptr<SequenceRandomizer> SequenceRandomizerPtr;

Просмотреть файл

@ -1,71 +1,103 @@
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/01_OneHidden/../../../../../../../Examples/Image/MNIST/Config/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/Config/01_OneHidden.cntk currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/01_OneHidden/../../../../../../../Examples/Image/MNIST/Config OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 264172964 kB
-------------------------------------------------------------------
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/../../../../../../Examples/Image/MNIST/Config/01_OneHidden.cntk currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/../../../../../../Examples/Image/MNIST/Config OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
-------------------------------------------------------------------
Build info:
Built time: May 13 2016 14:50:25
Last modified date: Thu May 12 14:00:37 2016
Built time: Aug 16 2016 09:41:56
Last modified date: Fri Aug 12 07:32:43 2016
Build type: release
Build target: GPU
With 1bit-SGD: no
Math lib: acml
Math lib: mkl
CUDA_PATH: /usr/local/cuda-7.5
CUB_PATH: /usr/local/cub-1.4.1
CUDNN_PATH: /usr/local/cudnn-4.0
Build Branch: HEAD
Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
Built by philly on d8dc82703b0f
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by philly on f67b30a647de
Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
-------------------------------------------------------------------
Changed current directory to /tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData
05/13/2016 15:10:02: -------------------------------------------------------------------
05/13/2016 15:10:02: Build info:
Changed current directory to /tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData
08/16/2016 10:49:43: -------------------------------------------------------------------
08/16/2016 10:49:43: Build info:
05/13/2016 15:10:02: Built time: May 13 2016 14:50:25
05/13/2016 15:10:02: Last modified date: Thu May 12 14:00:37 2016
05/13/2016 15:10:02: Build type: release
05/13/2016 15:10:02: Build target: GPU
05/13/2016 15:10:02: With 1bit-SGD: no
05/13/2016 15:10:02: Math lib: acml
05/13/2016 15:10:02: CUDA_PATH: /usr/local/cuda-7.5
05/13/2016 15:10:02: CUB_PATH: /usr/local/cub-1.4.1
05/13/2016 15:10:02: CUDNN_PATH: /usr/local/cudnn-4.0
05/13/2016 15:10:02: Build Branch: HEAD
05/13/2016 15:10:02: Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
05/13/2016 15:10:02: Built by philly on d8dc82703b0f
05/13/2016 15:10:02: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
05/13/2016 15:10:02: -------------------------------------------------------------------
08/16/2016 10:49:43: Built time: Aug 16 2016 09:41:56
08/16/2016 10:49:43: Last modified date: Fri Aug 12 07:32:43 2016
08/16/2016 10:49:43: Build type: release
08/16/2016 10:49:43: Build target: GPU
08/16/2016 10:49:43: With 1bit-SGD: no
08/16/2016 10:49:43: Math lib: mkl
08/16/2016 10:49:43: CUDA_PATH: /usr/local/cuda-7.5
08/16/2016 10:49:43: CUB_PATH: /usr/local/cub-1.4.1
08/16/2016 10:49:43: CUDNN_PATH: /usr/local/cudnn-4.0
08/16/2016 10:49:43: Build Branch: HEAD
08/16/2016 10:49:43: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 10:49:43: Built by philly on f67b30a647de
08/16/2016 10:49:43: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
08/16/2016 10:49:43: -------------------------------------------------------------------
08/16/2016 10:49:43: -------------------------------------------------------------------
08/16/2016 10:49:43: GPU info:
05/13/2016 15:10:02: Running on localhost at 2016/05/13 15:10:02
05/13/2016 15:10:02: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/01_OneHidden/../../../../../../../Examples/Image/MNIST/Config/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/Config/01_OneHidden.cntk currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/01_OneHidden/../../../../../../../Examples/Image/MNIST/Config OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
08/16/2016 10:49:43: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:49:43: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:49:43: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:49:43: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:49:43: -------------------------------------------------------------------
08/16/2016 10:49:43: Running on localhost at 2016/08/16 10:49:43
08/16/2016 10:49:43: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/../../../../../../Examples/Image/MNIST/Config/01_OneHidden.cntk currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/../../../../../../Examples/Image/MNIST/Config OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
05/13/2016 15:10:02: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/13/2016 15:10:02: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
ModelDir = "$OutputDir$/Models"
08/16/2016 10:49:43: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:49:43: rootDir = ".."
configDir = "$rootDir$/Config"
dataDir = "$rootDir$/Data"
outputDir = "$rootDir$/Output"
modelDir = "$outputDir$/Models"
deviceId = 0
imageLayout = "cudnn"
command = train:test
precision = "float"
modelPath = "$ModelDir$/01_OneHidden"
ndlMacros = "$ConfigDir$/Macros.ndl"
traceLevel=1
numMBsToShowResult=500
initOnCPUOnly=true
modelPath = "$modelDir$/01_OneHidden"
traceLevel = 1
numMBsToShowResult = 500
train = [
action = "train"
BrainScriptNetworkBuilder_disabled = [
include "Shared.bs"
featDim = 28 * 28
labelDim = 10
features = Input (featDim)
featScaled = Constant (1.0 / 256.0) .* features
labels = Input (labelDim)
hiddenDim = 200
h1 = DNNSigmoidLayer (featDim, hiddenDim, featScaled, 1)
z = DNNLayer (hiddenDim, labelDim, h1, 1)
ce = CrossEntropyWithSoftmax (labels, z)
errs = ErrorPrediction (labels, z)
top5Errs = ErrorPrediction (labels, z, topN=5)
featureNodes = (features)
labelNodes = (labels)
criterionNodes = (ce)
evaluationNodes = (errs)
outputNodes = (z)
]
NDLNetworkBuilder = [
imageLayout = "cudnn"
initOnCPUOnly = true
ndlMacros = "$configDir$/Macros.ndl"
networkDescription = "$ConfigDir$/01_OneHidden.ndl"
]
SGD = [
epochSize = 60000
minibatchSize = 32
learningRatesPerMB = 0.1
momentumPerMB = 0
learningRatesPerSample = 0.003125
momentumAsTimeConstant = 0
maxEpochs = 30
]
reader = [
@ -85,7 +117,8 @@ train = [
]
test = [
action = "test"
minibatchSize = 16
minibatchSize = 1024
evalNodeNames = ce:errs:top5Errs
reader = [
readerType = "CNTKTextFormatReader"
file = "$DataDir$/Test-28x28_cntk_text.txt"
@ -101,48 +134,67 @@ test = [
]
]
]
currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData
RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu
DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/01_OneHidden/../../../../../../../Examples/Image/MNIST/Config
OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu
currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData
RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu
DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/../../../../../../Examples/Image/MNIST/Config
OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu
DeviceId=0
timestamping=true
train=[SGD=[maxEpochs=3]]
imageLayout="cudnn"
05/13/2016 15:10:02: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:49:43: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/13/2016 15:10:02: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/13/2016 15:10:02: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/Models"
08/16/2016 10:49:43: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:49:43: rootDir = ".."
configDir = "../Config"
dataDir = "../Data"
outputDir = "../Output"
modelDir = "/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/Models"
deviceId = 0
imageLayout = "cudnn"
command = train:test
precision = "float"
modelPath = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/Models/01_OneHidden"
ndlMacros = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/01_OneHidden/../../../../../../../Examples/Image/MNIST/Config/Macros.ndl"
traceLevel=1
numMBsToShowResult=500
initOnCPUOnly=true
modelPath = "/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/Models/01_OneHidden"
traceLevel = 1
numMBsToShowResult = 500
train = [
action = "train"
BrainScriptNetworkBuilder_disabled = [
include "Shared.bs"
featDim = 28 * 28
labelDim = 10
features = Input (featDim)
featScaled = Constant (1.0 / 256.0) .* features
labels = Input (labelDim)
hiddenDim = 200
h1 = DNNSigmoidLayer (featDim, hiddenDim, featScaled, 1)
z = DNNLayer (hiddenDim, labelDim, h1, 1)
ce = CrossEntropyWithSoftmax (labels, z)
errs = ErrorPrediction (labels, z)
top5Errs = ErrorPrediction (labels, z, topN=5)
featureNodes = (features)
labelNodes = (labels)
criterionNodes = (ce)
evaluationNodes = (errs)
outputNodes = (z)
]
NDLNetworkBuilder = [
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/01_OneHidden/../../../../../../../Examples/Image/MNIST/Config/01_OneHidden.ndl"
imageLayout = "cudnn"
initOnCPUOnly = true
ndlMacros = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/../../../../../../Examples/Image/MNIST/Config/Macros.ndl"
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/../../../../../../Examples/Image/MNIST/Config/01_OneHidden.ndl"
]
SGD = [
epochSize = 60000
minibatchSize = 32
learningRatesPerMB = 0.1
momentumPerMB = 0
learningRatesPerSample = 0.003125
momentumAsTimeConstant = 0
maxEpochs = 30
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData/Train-28x28_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData/Train-28x28_cntk_text.txt"
input = [
features = [
dim = 784
@ -157,10 +209,11 @@ train = [
]
test = [
action = "test"
minibatchSize = 16
minibatchSize = 1024
evalNodeNames = ce:errs:top5Errs
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData/Test-28x28_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData/Test-28x28_cntk_text.txt"
input = [
features = [
dim = 784
@ -173,40 +226,39 @@ test = [
]
]
]
currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData
RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu
DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/01_OneHidden/../../../../../../../Examples/Image/MNIST/Config
OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu
currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData
RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu
DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/../../../../../../Examples/Image/MNIST/Config
OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu
DeviceId=0
timestamping=true
train=[SGD=[maxEpochs=3]]
imageLayout="cudnn"
05/13/2016 15:10:02: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:49:43: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 15:10:02: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:49:43: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: 01_OneHidden.cntk:command=train:test
configparameters: 01_OneHidden.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/01_OneHidden/../../../../../../../Examples/Image/MNIST/Config
configparameters: 01_OneHidden.cntk:currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData
configparameters: 01_OneHidden.cntk:DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData
configparameters: 01_OneHidden.cntk:configDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/../../../../../../Examples/Image/MNIST/Config
configparameters: 01_OneHidden.cntk:currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData
configparameters: 01_OneHidden.cntk:dataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData
configparameters: 01_OneHidden.cntk:deviceId=0
configparameters: 01_OneHidden.cntk:imageLayout=cudnn
configparameters: 01_OneHidden.cntk:initOnCPUOnly=true
configparameters: 01_OneHidden.cntk:ModelDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/Models
configparameters: 01_OneHidden.cntk:modelPath=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/Models/01_OneHidden
configparameters: 01_OneHidden.cntk:ndlMacros=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/01_OneHidden/../../../../../../../Examples/Image/MNIST/Config/Macros.ndl
configparameters: 01_OneHidden.cntk:modelDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/Models
configparameters: 01_OneHidden.cntk:modelPath=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/Models/01_OneHidden
configparameters: 01_OneHidden.cntk:numMBsToShowResult=500
configparameters: 01_OneHidden.cntk:OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu
configparameters: 01_OneHidden.cntk:outputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu
configparameters: 01_OneHidden.cntk:precision=float
configparameters: 01_OneHidden.cntk:RootDir=..
configparameters: 01_OneHidden.cntk:RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu
configparameters: 01_OneHidden.cntk:rootDir=..
configparameters: 01_OneHidden.cntk:RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu
configparameters: 01_OneHidden.cntk:test=[
action = "test"
minibatchSize = 16
minibatchSize = 1024
evalNodeNames = ce:errs:top5Errs
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData/Test-28x28_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData/Test-28x28_cntk_text.txt"
input = [
features = [
dim = 784
@ -224,19 +276,41 @@ configparameters: 01_OneHidden.cntk:timestamping=true
configparameters: 01_OneHidden.cntk:traceLevel=1
configparameters: 01_OneHidden.cntk:train=[
action = "train"
BrainScriptNetworkBuilder_disabled = [
include "Shared.bs"
featDim = 28 * 28
labelDim = 10
features = Input (featDim)
featScaled = Constant (1.0 / 256.0) .* features
labels = Input (labelDim)
hiddenDim = 200
h1 = DNNSigmoidLayer (featDim, hiddenDim, featScaled, 1)
z = DNNLayer (hiddenDim, labelDim, h1, 1)
ce = CrossEntropyWithSoftmax (labels, z)
errs = ErrorPrediction (labels, z)
top5Errs = ErrorPrediction (labels, z, topN=5)
featureNodes = (features)
labelNodes = (labels)
criterionNodes = (ce)
evaluationNodes = (errs)
outputNodes = (z)
]
NDLNetworkBuilder = [
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/01_OneHidden/../../../../../../../Examples/Image/MNIST/Config/01_OneHidden.ndl"
imageLayout = "cudnn"
initOnCPUOnly = true
ndlMacros = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/../../../../../../Examples/Image/MNIST/Config/Macros.ndl"
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/01_OneHidden/../../../../../../Examples/Image/MNIST/Config/01_OneHidden.ndl"
]
SGD = [
epochSize = 60000
minibatchSize = 32
learningRatesPerMB = 0.1
momentumPerMB = 0
learningRatesPerSample = 0.003125
momentumAsTimeConstant = 0
maxEpochs = 30
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData/Train-28x28_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/TestData/Train-28x28_cntk_text.txt"
input = [
features = [
dim = 784
@ -250,31 +324,45 @@ configparameters: 01_OneHidden.cntk:train=[
]
] [SGD=[maxEpochs=3]]
05/13/2016 15:10:02: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 15:10:02: Commands: train test
05/13/2016 15:10:02: Precision = "float"
05/13/2016 15:10:02: CNTKModelPath: /tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/Models/01_OneHidden
05/13/2016 15:10:02: CNTKCommandTrainInfo: train : 3
05/13/2016 15:10:02: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
08/16/2016 10:49:43: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:49:43: Commands: train test
08/16/2016 10:49:43: Precision = "float"
08/16/2016 10:49:43: CNTKModelPath: /tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/Models/01_OneHidden
08/16/2016 10:49:43: CNTKCommandTrainInfo: train : 3
08/16/2016 10:49:43: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
05/13/2016 15:10:02: ##############################################################################
05/13/2016 15:10:02: # #
05/13/2016 15:10:02: # Action "train" #
05/13/2016 15:10:02: # #
05/13/2016 15:10:02: ##############################################################################
08/16/2016 10:49:43: ##############################################################################
08/16/2016 10:49:43: # #
08/16/2016 10:49:43: # Action "train" #
08/16/2016 10:49:43: # #
08/16/2016 10:49:43: ##############################################################################
05/13/2016 15:10:02: CNTKCommandTrainBegin: train
08/16/2016 10:49:43: CNTKCommandTrainBegin: train
NDLBuilder Using GPU 0
05/13/2016 15:10:02: Creating virgin network.
08/16/2016 10:49:44: Creating virgin network.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[200 x 784] <- 0.000000.
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[200 x 1] <- 0.000000.
Node 'ol.W' (LearnableParameter operation): Initializing Parameter[10 x 200] <- 0.000000.
Node 'ol.b' (LearnableParameter operation): Initializing Parameter[10 x 1] <- 0.000000.
Node 'unnamed89' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.000000.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.003906.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.003906.
Node 'unnamed89' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 5.000000.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.003906.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[200 x 784] <- uniform(seed=1, range=0.050000*1.000000, onCPU=true).
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[200 x 1] <- uniform(seed=2, range=0.050000*1.000000, onCPU=true).
Node 'ol.W' (LearnableParameter operation): Initializing Parameter[10 x 200] <- uniform(seed=3, range=0.050000*1.000000, onCPU=true).
Node 'ol.b' (LearnableParameter operation): Initializing Parameter[10 x 1] <- uniform(seed=4, range=0.050000*1.000000, onCPU=true).
Post-processing network...
4 roots:
ce = CrossEntropyWithSoftmax()
err = ErrorPrediction()
errTop1 = ErrorPrediction()
errs = ErrorPrediction()
ol.z = Plus()
top5Errs = ErrorPrediction()
Validating network. 17 nodes to process in pass 1.
@ -292,9 +380,9 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 200], [200 x 1 x *] -> [10 x 1
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x 1 x *], [10 x 1] -> [10 x 1 x *]
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
Validating --> unnamed81 = LearnableParameter() : -> [1 x 1]
Validating --> errTop1 = ErrorPrediction (labels, ol.z, unnamed81) : [10 x *], [10 x 1 x *], [1 x 1] -> [1]
Validating --> errs = ErrorPrediction (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
Validating --> unnamed89 = LearnableParameter() : -> [1 x 1]
Validating --> top5Errs = ErrorPrediction (labels, ol.z, unnamed89) : [10 x *], [10 x 1 x *], [1 x 1] -> [1]
Validating network. 9 nodes to process in pass 2.
@ -307,92 +395,88 @@ Validating network, final pass.
Post-processing network complete.
05/13/2016 15:10:02: Created model with 17 nodes on GPU 0.
08/16/2016 10:49:44: Created model with 17 nodes on GPU 0.
05/13/2016 15:10:02: Training criterion node(s):
05/13/2016 15:10:02: ce = CrossEntropyWithSoftmax
08/16/2016 10:49:44: Training criterion node(s):
08/16/2016 10:49:44: ce = CrossEntropyWithSoftmax
05/13/2016 15:10:02: Evaluation criterion node(s):
05/13/2016 15:10:02: errTop1 = ErrorPrediction
05/13/2016 15:10:02: err = ErrorPrediction
08/16/2016 10:49:44: Evaluation criterion node(s):
08/16/2016 10:49:44: top5Errs = ErrorPrediction
08/16/2016 10:49:44: errs = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 27 matrices, 10 are shared as 5, and 17 are not shared.
(nil): {[err Gradient[1]] [errTop1 Gradient[1]] [featScale Gradient[1 x 1]] [featScaled Gradient[784 x 1 x *]] [features Gradient[784 x *]] [labels Gradient[10 x *]] [unnamed81 Gradient[1 x 1]] }
0x1bde9d8: {[errTop1 Value[1]] }
0x1bdeb98: {[err Value[1]] }
0x1be1e38: {[features Value[784 x *]] }
0x2447ab8: {[featScale Value[1 x 1]] }
0x2448c28: {[labels Value[10 x *]] }
0x2449368: {[h1.W Value[200 x 784]] }
0x29577e8: {[h1.b Value[200 x 1]] }
0x2958938: {[ol.W Value[10 x 200]] }
0x2959808: {[ol.b Value[10 x 1]] }
0x295b198: {[unnamed81 Value[1 x 1]] }
0x295ece8: {[featScaled Value[784 x 1 x *]] }
0x295ef48: {[ol.z Value[10 x 1 x *]] }
0x295f108: {[ce Value[1]] }
0x29609d8: {[h1.t Value[200 x 1 x *]] }
0x2960d88: {[h1.W Gradient[200 x 784]] [h1.z Value[200 x 1 x *]] }
0x2960ee8: {[h1.t Gradient[200 x 1 x *]] [h1.y Value[200 x 1 x *]] }
0x2961048: {[h1.z Gradient[200 x 1 x *]] [ol.t Value[10 x 1 x *]] }
0x2961fa8: {[ce Gradient[1]] }
0x2962168: {[ol.W Gradient[10 x 200]] [ol.z Gradient[10 x 1 x *]] }
0x2962328: {[ol.t Gradient[10 x 1 x *]] }
0x29624e8: {[ol.b Gradient[10 x 1]] }
0x29626a8: {[h1.b Gradient[200 x 1]] [h1.y Gradient[200 x 1 x *]] }
05/13/2016 15:10:02: No PreCompute nodes found, skipping PreCompute step.
05/13/2016 15:10:02: Starting Epoch 1: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 15:10:02: Starting minibatch loop.
05/13/2016 15:10:03: Epoch[ 1 of 3]-Minibatch[1-500, 26.67%]: ce = 1.30072449 * 16000; errs = 38.4688% * 16000; err = 0.38468750 * 16000; time = 1.2825s; samplesPerSecond = 12475.2
05/13/2016 15:10:04: Epoch[ 1 of 3]-Minibatch[501-1000, 53.33%]: ce = 0.49017273 * 16000; errs = 13.0375% * 16000; err = 0.13037500 * 16000; time = 0.2861s; samplesPerSecond = 55923.1
05/13/2016 15:10:04: Epoch[ 1 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.39744922 * 16000; errs = 11.1687% * 16000; err = 0.11168750 * 16000; time = 0.2889s; samplesPerSecond = 55389.2
05/13/2016 15:10:04: Finished Epoch[ 1 of 3]: [Training] ce = 0.65501042 * 60000; errs = 18.685% * 60000; err = 0.18685000 * 60000; totalSamplesSeen = 60000; learningRatePerSample = 0.003125; epochTime=2.09125s
05/13/2016 15:10:04: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/Models/01_OneHidden.1'
05/13/2016 15:10:04: Starting Epoch 2: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 15:10:04: Starting minibatch loop.
05/13/2016 15:10:04: Epoch[ 2 of 3]-Minibatch[1-500, 26.67%]: ce = 0.32870679 * 16000; errs = 9.53125% * 16000; err = 0.09531250 * 16000; time = 0.2809s; samplesPerSecond = 56955.1
05/13/2016 15:10:05: Epoch[ 2 of 3]-Minibatch[501-1000, 53.33%]: ce = 0.31809930 * 16000; errs = 9.20625% * 16000; err = 0.09206250 * 16000; time = 0.2862s; samplesPerSecond = 55905.9
05/13/2016 15:10:05: Epoch[ 2 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.31002502 * 16000; errs = 8.7625% * 16000; err = 0.08762500 * 16000; time = 0.2946s; samplesPerSecond = 54305.4
05/13/2016 15:10:05: Finished Epoch[ 2 of 3]: [Training] ce = 0.31494245 * 60000; errs = 9.09% * 60000; err = 0.09090000 * 60000; totalSamplesSeen = 120000; learningRatePerSample = 0.003125; epochTime=1.08973s
05/13/2016 15:10:05: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/Models/01_OneHidden.2'
05/13/2016 15:10:06: Starting Epoch 3: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 15:10:06: Starting minibatch loop.
05/13/2016 15:10:06: Epoch[ 3 of 3]-Minibatch[1-500, 26.67%]: ce = 0.28016867 * 16000; errs = 8.1875% * 16000; err = 0.08187500 * 16000; time = 0.2894s; samplesPerSecond = 55283.2
05/13/2016 15:10:06: Epoch[ 3 of 3]-Minibatch[501-1000, 53.33%]: ce = 0.28037985 * 16000; errs = 8.09375% * 16000; err = 0.08093750 * 16000; time = 0.2860s; samplesPerSecond = 55935.8
05/13/2016 15:10:06: Epoch[ 3 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.27621069 * 16000; errs = 8.2375% * 16000; err = 0.08237500 * 16000; time = 0.2791s; samplesPerSecond = 57323.8
05/13/2016 15:10:07: Finished Epoch[ 3 of 3]: [Training] ce = 0.27476087 * 60000; errs = 8.01167% * 60000; err = 0.08011667 * 60000; totalSamplesSeen = 180000; learningRatePerSample = 0.003125; epochTime=1.07334s
05/13/2016 15:10:07: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_01_OneHidden@release_gpu/Models/01_OneHidden'
05/13/2016 15:10:07: CNTKCommandTrainEnd: train
05/13/2016 15:10:07: Action "train" complete.
{ h1.W : [200 x 784] (gradient)
h1.z : [200 x 1 x *] }
{ h1.t : [200 x 1 x *] (gradient)
h1.y : [200 x 1 x *] }
{ h1.z : [200 x 1 x *] (gradient)
ol.t : [10 x 1 x *] }
{ ol.W : [10 x 200] (gradient)
ol.z : [10 x 1 x *] (gradient) }
{ h1.b : [200 x 1] (gradient)
h1.y : [200 x 1 x *] (gradient) }
05/13/2016 15:10:07: ##############################################################################
05/13/2016 15:10:07: # #
05/13/2016 15:10:07: # Action "test" #
05/13/2016 15:10:07: # #
05/13/2016 15:10:07: ##############################################################################
08/16/2016 10:49:44: Training 159010 parameters in 4 out of 4 parameter tensors and 10 nodes with gradient:
08/16/2016 10:49:44: Node 'h1.W' (LearnableParameter operation) : [200 x 784]
08/16/2016 10:49:44: Node 'h1.b' (LearnableParameter operation) : [200 x 1]
08/16/2016 10:49:44: Node 'ol.W' (LearnableParameter operation) : [10 x 200]
08/16/2016 10:49:44: Node 'ol.b' (LearnableParameter operation) : [10 x 1]
08/16/2016 10:49:44: No PreCompute nodes found, or all already computed. Skipping pre-computation step.
08/16/2016 10:49:44: Starting Epoch 1: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..60000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 10:49:44: Starting minibatch loop.
08/16/2016 10:49:45: Epoch[ 1 of 3]-Minibatch[ 1- 500, 26.67%]: ce = 1.30363245 * 16000; top5Errs = 9.406% * 16000; errs = 38.738% * 16000; time = 1.3753s; samplesPerSecond = 11634.0
08/16/2016 10:49:45: Epoch[ 1 of 3]-Minibatch[ 501-1000, 53.33%]: ce = 0.50894336 * 16000; top5Errs = 1.012% * 16000; errs = 13.812% * 16000; time = 0.3462s; samplesPerSecond = 46222.2
08/16/2016 10:49:46: Epoch[ 1 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.38341980 * 16000; top5Errs = 0.831% * 16000; errs = 10.675% * 16000; time = 0.3682s; samplesPerSecond = 43448.9
08/16/2016 10:49:46: Finished Epoch[ 1 of 3]: [Training] ce = 0.65623809 * 60000; top5Errs = 3.097% * 60000; errs = 18.925% * 60000; totalSamplesSeen = 60000; learningRatePerSample = 0.003125; epochTime=2.3719s
08/16/2016 10:49:46: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/Models/01_OneHidden.1'
08/16/2016 10:49:46: Starting Epoch 2: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 1: frames [60000..120000] (first sequence at sample 60000), data subset 0 of 1
08/16/2016 10:49:46: Starting minibatch loop.
08/16/2016 10:49:46: Epoch[ 2 of 3]-Minibatch[ 1- 500, 26.67%]: ce = 0.33441489 * 16000; top5Errs = 0.544% * 16000; errs = 9.863% * 16000; time = 0.3524s; samplesPerSecond = 45406.7
08/16/2016 10:49:47: Epoch[ 2 of 3]-Minibatch[ 501-1000, 53.33%]: ce = 0.30540207 * 16000; top5Errs = 0.494% * 16000; errs = 8.906% * 16000; time = 0.3500s; samplesPerSecond = 45712.5
08/16/2016 10:49:47: Epoch[ 2 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.30959253 * 16000; top5Errs = 0.619% * 16000; errs = 9.137% * 16000; time = 0.3429s; samplesPerSecond = 46654.7
08/16/2016 10:49:47: Finished Epoch[ 2 of 3]: [Training] ce = 0.31571312 * 60000; top5Errs = 0.568% * 60000; errs = 9.238% * 60000; totalSamplesSeen = 120000; learningRatePerSample = 0.003125; epochTime=1.31573s
08/16/2016 10:49:47: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/Models/01_OneHidden.2'
08/16/2016 10:49:47: Starting Epoch 3: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 2: frames [120000..180000] (first sequence at sample 120000), data subset 0 of 1
08/16/2016 10:49:47: Starting minibatch loop.
08/16/2016 10:49:48: Epoch[ 3 of 3]-Minibatch[ 1- 500, 26.67%]: ce = 0.29071878 * 16000; top5Errs = 0.513% * 16000; errs = 8.588% * 16000; time = 0.3318s; samplesPerSecond = 48219.3
08/16/2016 10:49:48: Epoch[ 3 of 3]-Minibatch[ 501-1000, 53.33%]: ce = 0.27951419 * 16000; top5Errs = 0.494% * 16000; errs = 8.162% * 16000; time = 0.3306s; samplesPerSecond = 48394.7
08/16/2016 10:49:48: Epoch[ 3 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.27461359 * 16000; top5Errs = 0.500% * 16000; errs = 7.906% * 16000; time = 0.3387s; samplesPerSecond = 47232.8
08/16/2016 10:49:49: Finished Epoch[ 3 of 3]: [Training] ce = 0.27566595 * 60000; top5Errs = 0.467% * 60000; errs = 8.047% * 60000; totalSamplesSeen = 180000; learningRatePerSample = 0.003125; epochTime=1.26453s
08/16/2016 10:49:49: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_01_OneHidden@release_gpu/Models/01_OneHidden'
08/16/2016 10:49:49: CNTKCommandTrainEnd: train
08/16/2016 10:49:49: Action "train" complete.
08/16/2016 10:49:49: ##############################################################################
08/16/2016 10:49:49: # #
08/16/2016 10:49:49: # Action "test" #
08/16/2016 10:49:49: # #
08/16/2016 10:49:49: ##############################################################################
Post-processing network...
4 roots:
3 roots:
ce = CrossEntropyWithSoftmax()
err = ErrorPrediction()
errTop1 = ErrorPrediction()
ol.z = Plus()
errs = ErrorPrediction()
top5Errs = ErrorPrediction()
Validating network. 17 nodes to process in pass 1.
@ -410,9 +494,9 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 200], [200 x 1 x *1] -> [10 x 1
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x 1 x *1], [10 x 1] -> [10 x 1 x *1]
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
Validating --> unnamed81 = LearnableParameter() : -> [1 x 1]
Validating --> errTop1 = ErrorPrediction (labels, ol.z, unnamed81) : [10 x *1], [10 x 1 x *1], [1 x 1] -> [1]
Validating --> errs = ErrorPrediction (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
Validating --> unnamed89 = LearnableParameter() : -> [1 x 1]
Validating --> top5Errs = ErrorPrediction (labels, ol.z, unnamed89) : [10 x *1], [10 x 1 x *1], [1 x 1] -> [1]
Validating network. 9 nodes to process in pass 2.
@ -425,34 +509,17 @@ Validating network, final pass.
Post-processing network complete.
evalNodeNames are not specified, using all the default evalnodes and training criterion nodes.
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 17 matrices, 0 are shared as 0, and 17 are not shared.
(nil): {[ce Gradient[1]] [err Gradient[1]] [errTop1 Gradient[1]] [featScale Gradient[1 x 1]] [featScaled Gradient[784 x 1 x *1]] [features Gradient[784 x *1]] [h1.W Gradient[200 x 784]] [h1.b Gradient[200 x 1]] [h1.t Gradient[200 x 1 x *1]] [h1.y Gradient[200 x 1 x *1]] [h1.z Gradient[200 x 1 x *1]] [labels Gradient[10 x *1]] [ol.W Gradient[10 x 200]] [ol.b Gradient[10 x 1]] [ol.t Gradient[10 x 1 x *1]] [ol.z Gradient[10 x 1 x *1]] [unnamed81 Gradient[1 x 1]] }
0x7f0d2f269e18: {[labels Value[10 x *1]] }
0x7f0d2f26a4c8: {[ol.b Value[10 x 1]] }
0x7f0d2f26b578: {[ol.W Value[10 x 200]] }
0x7f0d2f26bd18: {[unnamed81 Value[1 x 1]] }
0x7f0d2f270658: {[errTop1 Value[1]] }
0x7f0d2f270818: {[err Value[1]] }
0x7f0d2f2709d8: {[ce Value[1]] }
0x7f0d2f270f28: {[h1.t Value[200 x 1 x *1]] }
0x7f0d2f2720b8: {[featScaled Value[784 x 1 x *1]] }
0x7f0d2f272588: {[h1.z Value[200 x 1 x *1]] }
0x7f0d2f272748: {[h1.y Value[200 x 1 x *1]] }
0x7f0d2f272908: {[ol.t Value[10 x 1 x *1]] }
0x7f0d2f272ac8: {[ol.z Value[10 x 1 x *1]] }
0x7f0d35693b68: {[featScale Value[1 x 1]] }
0x7f0d4bd02258: {[h1.b Value[200 x 1]] }
0x7f0d4bd02f98: {[features Value[784 x *1]] }
0x7f0d4bd03c78: {[h1.W Value[200 x 784]] }
05/13/2016 15:10:10: Final Results: Minibatch[1-10]: errs = 7.140% * 10000; top5Errs = 0.420% * 10000; ce = 0.25287636 * 10000; perplexity = 1.28772405
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 10:49:49: Minibatch[1-10]: ce = 0.24784377 * 10000; errs = 7.110% * 10000; top5Errs = 0.420% * 10000
08/16/2016 10:49:49: Final Results: Minibatch[1-10]: ce = 0.24784377 * 10000; perplexity = 1.28125974; errs = 7.110% * 10000; top5Errs = 0.420% * 10000
05/13/2016 15:10:10: Action "test" complete.
08/16/2016 10:49:49: Action "test" complete.
05/13/2016 15:10:10: __COMPLETED__
08/16/2016 10:49:49: __COMPLETED__

Просмотреть файл

@ -1,69 +1,103 @@
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/Config/01_OneHidden.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 268381192 kB
-------------------------------------------------------------------
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/01_OneHidden.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
-------------------------------------------------------------------
Build info:
Built time: May 13 2016 08:06:01
Last modified date: Thu May 12 07:31:50 2016
Built time: Aug 16 2016 02:54:53
Last modified date: Fri Aug 12 05:31:21 2016
Build type: Release
Build target: GPU
With 1bit-SGD: no
Math lib: mkl
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
CUB_PATH: c:\src\cub-1.4.1
CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
Build Branch: HEAD
Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by svcphil on Philly-Pool3
Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
-------------------------------------------------------------------
Changed current directory to C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData
05/13/2016 08:15:51: -------------------------------------------------------------------
05/13/2016 08:15:51: Build info:
Changed current directory to C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData
08/16/2016 03:00:44: -------------------------------------------------------------------
08/16/2016 03:00:44: Build info:
05/13/2016 08:15:51: Built time: May 13 2016 08:06:01
05/13/2016 08:15:51: Last modified date: Thu May 12 07:31:50 2016
05/13/2016 08:15:51: Build type: Release
05/13/2016 08:15:51: Build target: GPU
05/13/2016 08:15:51: With 1bit-SGD: no
05/13/2016 08:15:51: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
05/13/2016 08:15:51: CUB_PATH: c:\src\cub-1.4.1
05/13/2016 08:15:51: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
05/13/2016 08:15:51: Build Branch: HEAD
05/13/2016 08:15:51: Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
05/13/2016 08:15:51: Built by svcphil on Philly-Pool3
05/13/2016 08:15:51: Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
05/13/2016 08:15:51: -------------------------------------------------------------------
08/16/2016 03:00:44: Built time: Aug 16 2016 02:54:53
08/16/2016 03:00:44: Last modified date: Fri Aug 12 05:31:21 2016
08/16/2016 03:00:44: Build type: Release
08/16/2016 03:00:44: Build target: GPU
08/16/2016 03:00:44: With 1bit-SGD: no
08/16/2016 03:00:44: Math lib: mkl
08/16/2016 03:00:44: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
08/16/2016 03:00:44: CUB_PATH: c:\src\cub-1.4.1
08/16/2016 03:00:44: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
08/16/2016 03:00:44: Build Branch: HEAD
08/16/2016 03:00:44: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 03:00:44: Built by svcphil on Philly-Pool3
08/16/2016 03:00:44: Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
08/16/2016 03:00:44: -------------------------------------------------------------------
08/16/2016 03:00:46: -------------------------------------------------------------------
08/16/2016 03:00:46: GPU info:
05/13/2016 08:15:51: Running on Philly-Pool2 at 2016/05/13 08:15:51
05/13/2016 08:15:51: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/Config/01_OneHidden.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
08/16/2016 03:00:46: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:00:46: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:00:46: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:00:46: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:00:46: -------------------------------------------------------------------
08/16/2016 03:00:46: Running on DPHAIM-24 at 2016/08/16 03:00:46
08/16/2016 03:00:46: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/01_OneHidden.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
05/13/2016 08:15:51: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/13/2016 08:15:51: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
ModelDir = "$OutputDir$/Models"
08/16/2016 03:00:46: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:00:46: rootDir = ".."
configDir = "$rootDir$/Config"
dataDir = "$rootDir$/Data"
outputDir = "$rootDir$/Output"
modelDir = "$outputDir$/Models"
deviceId = 0
imageLayout = "cudnn"
command = train:test
precision = "float"
modelPath = "$ModelDir$/01_OneHidden"
ndlMacros = "$ConfigDir$/Macros.ndl"
traceLevel=1
numMBsToShowResult=500
initOnCPUOnly=true
modelPath = "$modelDir$/01_OneHidden"
traceLevel = 1
numMBsToShowResult = 500
train = [
action = "train"
BrainScriptNetworkBuilder_disabled = [
include "Shared.bs"
featDim = 28 * 28
labelDim = 10
features = Input (featDim)
featScaled = Constant (1.0 / 256.0) .* features
labels = Input (labelDim)
hiddenDim = 200
h1 = DNNSigmoidLayer (featDim, hiddenDim, featScaled, 1)
z = DNNLayer (hiddenDim, labelDim, h1, 1)
ce = CrossEntropyWithSoftmax (labels, z)
errs = ErrorPrediction (labels, z)
top5Errs = ErrorPrediction (labels, z, topN=5)
featureNodes = (features)
labelNodes = (labels)
criterionNodes = (ce)
evaluationNodes = (errs)
outputNodes = (z)
]
NDLNetworkBuilder = [
imageLayout = "cudnn"
initOnCPUOnly = true
ndlMacros = "$configDir$/Macros.ndl"
networkDescription = "$ConfigDir$/01_OneHidden.ndl"
]
SGD = [
epochSize = 60000
minibatchSize = 32
learningRatesPerMB = 0.1
momentumPerMB = 0
learningRatesPerSample = 0.003125
momentumAsTimeConstant = 0
maxEpochs = 30
]
reader = [
@ -83,7 +117,8 @@ train = [
]
test = [
action = "test"
minibatchSize = 16
minibatchSize = 1024
evalNodeNames = ce:errs:top5Errs
reader = [
readerType = "CNTKTextFormatReader"
file = "$DataDir$/Test-28x28_cntk_text.txt"
@ -99,48 +134,67 @@ test = [
]
]
]
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu
DeviceId=0
timestamping=true
train=[SGD=[maxEpochs=3]]
imageLayout="cudnn"
05/13/2016 08:15:51: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:00:46: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/13/2016 08:15:51: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/13/2016 08:15:51: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu/Models"
08/16/2016 03:00:46: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:00:46: rootDir = ".."
configDir = "../Config"
dataDir = "../Data"
outputDir = "../Output"
modelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu/Models"
deviceId = 0
imageLayout = "cudnn"
command = train:test
precision = "float"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu/Models/01_OneHidden"
ndlMacros = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/Macros.ndl"
traceLevel=1
numMBsToShowResult=500
initOnCPUOnly=true
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu/Models/01_OneHidden"
traceLevel = 1
numMBsToShowResult = 500
train = [
action = "train"
BrainScriptNetworkBuilder_disabled = [
include "Shared.bs"
featDim = 28 * 28
labelDim = 10
features = Input (featDim)
featScaled = Constant (1.0 / 256.0) .* features
labels = Input (labelDim)
hiddenDim = 200
h1 = DNNSigmoidLayer (featDim, hiddenDim, featScaled, 1)
z = DNNLayer (hiddenDim, labelDim, h1, 1)
ce = CrossEntropyWithSoftmax (labels, z)
errs = ErrorPrediction (labels, z)
top5Errs = ErrorPrediction (labels, z, topN=5)
featureNodes = (features)
labelNodes = (labels)
criterionNodes = (ce)
evaluationNodes = (errs)
outputNodes = (z)
]
NDLNetworkBuilder = [
imageLayout = "cudnn"
initOnCPUOnly = true
ndlMacros = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/Macros.ndl"
networkDescription = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/01_OneHidden.ndl"
]
SGD = [
epochSize = 60000
minibatchSize = 32
learningRatesPerMB = 0.1
momentumPerMB = 0
learningRatesPerSample = 0.003125
momentumAsTimeConstant = 0
maxEpochs = 30
]
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData/Train-28x28_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData/Train-28x28_cntk_text.txt"
input = [
features = [
dim = 784
@ -155,10 +209,11 @@ train = [
]
test = [
action = "test"
minibatchSize = 16
minibatchSize = 1024
evalNodeNames = ce:errs:top5Errs
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData/Test-28x28_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData/Test-28x28_cntk_text.txt"
input = [
features = [
dim = 784
@ -171,40 +226,39 @@ test = [
]
]
]
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu
DeviceId=0
timestamping=true
train=[SGD=[maxEpochs=3]]
imageLayout="cudnn"
05/13/2016 08:15:51: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:00:46: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 08:15:51: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:00:46: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: 01_OneHidden.cntk:command=train:test
configparameters: 01_OneHidden.cntk:ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config
configparameters: 01_OneHidden.cntk:currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData
configparameters: 01_OneHidden.cntk:DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData
configparameters: 01_OneHidden.cntk:configDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config
configparameters: 01_OneHidden.cntk:currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData
configparameters: 01_OneHidden.cntk:dataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData
configparameters: 01_OneHidden.cntk:deviceId=0
configparameters: 01_OneHidden.cntk:imageLayout=cudnn
configparameters: 01_OneHidden.cntk:initOnCPUOnly=true
configparameters: 01_OneHidden.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu/Models
configparameters: 01_OneHidden.cntk:modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu/Models/01_OneHidden
configparameters: 01_OneHidden.cntk:ndlMacros=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/Macros.ndl
configparameters: 01_OneHidden.cntk:modelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu/Models
configparameters: 01_OneHidden.cntk:modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu/Models/01_OneHidden
configparameters: 01_OneHidden.cntk:numMBsToShowResult=500
configparameters: 01_OneHidden.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu
configparameters: 01_OneHidden.cntk:outputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu
configparameters: 01_OneHidden.cntk:precision=float
configparameters: 01_OneHidden.cntk:RootDir=..
configparameters: 01_OneHidden.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu
configparameters: 01_OneHidden.cntk:rootDir=..
configparameters: 01_OneHidden.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu
configparameters: 01_OneHidden.cntk:test=[
action = "test"
minibatchSize = 16
minibatchSize = 1024
evalNodeNames = ce:errs:top5Errs
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData/Test-28x28_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData/Test-28x28_cntk_text.txt"
input = [
features = [
dim = 784
@ -222,19 +276,41 @@ configparameters: 01_OneHidden.cntk:timestamping=true
configparameters: 01_OneHidden.cntk:traceLevel=1
configparameters: 01_OneHidden.cntk:train=[
action = "train"
BrainScriptNetworkBuilder_disabled = [
include "Shared.bs"
featDim = 28 * 28
labelDim = 10
features = Input (featDim)
featScaled = Constant (1.0 / 256.0) .* features
labels = Input (labelDim)
hiddenDim = 200
h1 = DNNSigmoidLayer (featDim, hiddenDim, featScaled, 1)
z = DNNLayer (hiddenDim, labelDim, h1, 1)
ce = CrossEntropyWithSoftmax (labels, z)
errs = ErrorPrediction (labels, z)
top5Errs = ErrorPrediction (labels, z, topN=5)
featureNodes = (features)
labelNodes = (labels)
criterionNodes = (ce)
evaluationNodes = (errs)
outputNodes = (z)
]
NDLNetworkBuilder = [
imageLayout = "cudnn"
initOnCPUOnly = true
ndlMacros = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/Macros.ndl"
networkDescription = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/01_OneHidden.ndl"
]
SGD = [
epochSize = 60000
minibatchSize = 32
learningRatesPerMB = 0.1
momentumPerMB = 0
learningRatesPerSample = 0.003125
momentumAsTimeConstant = 0
maxEpochs = 30
]
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData/Train-28x28_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu\TestData/Train-28x28_cntk_text.txt"
input = [
features = [
dim = 784
@ -248,31 +324,45 @@ configparameters: 01_OneHidden.cntk:train=[
]
] [SGD=[maxEpochs=3]]
05/13/2016 08:15:51: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 08:15:51: Commands: train test
05/13/2016 08:15:51: Precision = "float"
05/13/2016 08:15:51: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu/Models/01_OneHidden
05/13/2016 08:15:51: CNTKCommandTrainInfo: train : 3
05/13/2016 08:15:51: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
08/16/2016 03:00:46: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:00:46: Commands: train test
08/16/2016 03:00:46: Precision = "float"
08/16/2016 03:00:46: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu/Models/01_OneHidden
08/16/2016 03:00:46: CNTKCommandTrainInfo: train : 3
08/16/2016 03:00:46: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
05/13/2016 08:15:51: ##############################################################################
05/13/2016 08:15:51: # #
05/13/2016 08:15:51: # Action "train" #
05/13/2016 08:15:51: # #
05/13/2016 08:15:51: ##############################################################################
08/16/2016 03:00:46: ##############################################################################
08/16/2016 03:00:46: # #
08/16/2016 03:00:46: # Action "train" #
08/16/2016 03:00:46: # #
08/16/2016 03:00:46: ##############################################################################
05/13/2016 08:15:51: CNTKCommandTrainBegin: train
08/16/2016 03:00:46: CNTKCommandTrainBegin: train
NDLBuilder Using GPU 0
05/13/2016 08:15:52: Creating virgin network.
08/16/2016 03:00:47: Creating virgin network.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[200 x 784] <- 0.000000.
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[200 x 1] <- 0.000000.
Node 'ol.W' (LearnableParameter operation): Initializing Parameter[10 x 200] <- 0.000000.
Node 'ol.b' (LearnableParameter operation): Initializing Parameter[10 x 1] <- 0.000000.
Node 'unnamed89' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.000000.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.003906.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.003906.
Node 'unnamed89' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 5.000000.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.003906.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[200 x 784] <- uniform(seed=1, range=0.050000*1.000000, onCPU=true).
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[200 x 1] <- uniform(seed=2, range=0.050000*1.000000, onCPU=true).
Node 'ol.W' (LearnableParameter operation): Initializing Parameter[10 x 200] <- uniform(seed=3, range=0.050000*1.000000, onCPU=true).
Node 'ol.b' (LearnableParameter operation): Initializing Parameter[10 x 1] <- uniform(seed=4, range=0.050000*1.000000, onCPU=true).
Post-processing network...
4 roots:
ce = CrossEntropyWithSoftmax()
err = ErrorPrediction()
errTop1 = ErrorPrediction()
errs = ErrorPrediction()
ol.z = Plus()
top5Errs = ErrorPrediction()
Validating network. 17 nodes to process in pass 1.
@ -290,9 +380,9 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 200], [200 x 1 x *] -> [10 x 1
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x 1 x *], [10 x 1] -> [10 x 1 x *]
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
Validating --> unnamed81 = LearnableParameter() : -> [1 x 1]
Validating --> errTop1 = ErrorPrediction (labels, ol.z, unnamed81) : [10 x *], [10 x 1 x *], [1 x 1] -> [1]
Validating --> errs = ErrorPrediction (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
Validating --> unnamed89 = LearnableParameter() : -> [1 x 1]
Validating --> top5Errs = ErrorPrediction (labels, ol.z, unnamed89) : [10 x *], [10 x 1 x *], [1 x 1] -> [1]
Validating network. 9 nodes to process in pass 2.
@ -305,92 +395,88 @@ Validating network, final pass.
Post-processing network complete.
05/13/2016 08:15:53: Created model with 17 nodes on GPU 0.
08/16/2016 03:00:47: Created model with 17 nodes on GPU 0.
05/13/2016 08:15:53: Training criterion node(s):
05/13/2016 08:15:53: ce = CrossEntropyWithSoftmax
08/16/2016 03:00:47: Training criterion node(s):
08/16/2016 03:00:47: ce = CrossEntropyWithSoftmax
05/13/2016 08:15:53: Evaluation criterion node(s):
05/13/2016 08:15:53: errTop1 = ErrorPrediction
05/13/2016 08:15:53: err = ErrorPrediction
08/16/2016 03:00:47: Evaluation criterion node(s):
08/16/2016 03:00:47: top5Errs = ErrorPrediction
08/16/2016 03:00:47: errs = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 27 matrices, 10 are shared as 5, and 17 are not shared.
0000000000000000: {[err Gradient[1]] [errTop1 Gradient[1]] [featScale Gradient[1 x 1]] [featScaled Gradient[784 x 1 x *]] [features Gradient[784 x *]] [labels Gradient[10 x *]] [unnamed81 Gradient[1 x 1]] }
000000780D2D93A0: {[unnamed81 Value[1 x 1]] }
000000780D2D9440: {[featScaled Value[784 x 1 x *]] }
000000780D2D94E0: {[h1.W Gradient[200 x 784]] [h1.z Value[200 x 1 x *]] }
000000780D2D9580: {[h1.t Gradient[200 x 1 x *]] [h1.y Value[200 x 1 x *]] }
000000780D2D9620: {[h1.z Gradient[200 x 1 x *]] [ol.t Value[10 x 1 x *]] }
000000780D2D96C0: {[ol.W Value[10 x 200]] }
000000780D2D9760: {[ol.b Value[10 x 1]] }
000000780D2D99E0: {[errTop1 Value[1]] }
000000780D2D9EE0: {[err Value[1]] }
000000780D2DA0C0: {[ol.z Value[10 x 1 x *]] }
000000780D2DA160: {[ce Value[1]] }
000000780D2DA2A0: {[h1.t Value[200 x 1 x *]] }
000000780D33AB50: {[ce Gradient[1]] }
000000780D33ABF0: {[ol.t Gradient[10 x 1 x *]] }
000000780D33AFB0: {[ol.b Gradient[10 x 1]] }
000000780D33C270: {[h1.b Gradient[200 x 1]] [h1.y Gradient[200 x 1 x *]] }
000000780D33C9F0: {[ol.W Gradient[10 x 200]] [ol.z Gradient[10 x 1 x *]] }
00000078767789E0: {[featScale Value[1 x 1]] }
0000007876778A80: {[labels Value[10 x *]] }
0000007876778B20: {[h1.W Value[200 x 784]] }
0000007876778BC0: {[h1.b Value[200 x 1]] }
000000787677A1A0: {[features Value[784 x *]] }
05/13/2016 08:15:53: No PreCompute nodes found, skipping PreCompute step.
05/13/2016 08:15:53: Starting Epoch 1: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 08:15:53: Starting minibatch loop.
05/13/2016 08:15:56: Epoch[ 1 of 3]-Minibatch[1-500, 26.67%]: ce = 1.29023352 * 16000; errs = 37.9813% * 16000; err = 0.37981250 * 16000; time = 3.1210s; samplesPerSecond = 5126.5
05/13/2016 08:15:57: Epoch[ 1 of 3]-Minibatch[501-1000, 53.33%]: ce = 0.50742346 * 16000; errs = 13.9% * 16000; err = 0.13900000 * 16000; time = 0.6202s; samplesPerSecond = 25796.5
05/13/2016 08:15:57: Epoch[ 1 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.39415479 * 16000; errs = 11.0812% * 16000; err = 0.11081250 * 16000; time = 0.6195s; samplesPerSecond = 25828.0
05/13/2016 08:15:58: Finished Epoch[ 1 of 3]: [Training] ce = 0.65521146 * 60000; errs = 18.8467% * 60000; err = 0.18846667 * 60000; totalSamplesSeen = 60000; learningRatePerSample = 0.003125; epochTime=4.86409s
05/13/2016 08:15:58: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu/Models/01_OneHidden.1'
05/13/2016 08:15:58: Starting Epoch 2: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 08:15:58: Starting minibatch loop.
05/13/2016 08:15:59: Epoch[ 2 of 3]-Minibatch[1-500, 26.67%]: ce = 0.33321408 * 16000; errs = 9.58125% * 16000; err = 0.09581250 * 16000; time = 0.6590s; samplesPerSecond = 24277.8
05/13/2016 08:15:59: Epoch[ 2 of 3]-Minibatch[501-1000, 53.33%]: ce = 0.31547781 * 16000; errs = 9.2875% * 16000; err = 0.09287500 * 16000; time = 0.6704s; samplesPerSecond = 23866.0
05/13/2016 08:16:00: Epoch[ 2 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.31882251 * 16000; errs = 9.21875% * 16000; err = 0.09218750 * 16000; time = 0.6720s; samplesPerSecond = 23808.7
05/13/2016 08:16:00: Finished Epoch[ 2 of 3]: [Training] ce = 0.31533239 * 60000; errs = 9.15833% * 60000; err = 0.09158333 * 60000; totalSamplesSeen = 120000; learningRatePerSample = 0.003125; epochTime=2.52448s
05/13/2016 08:16:00: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu/Models/01_OneHidden.2'
05/13/2016 08:16:00: Starting Epoch 3: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 08:16:00: Starting minibatch loop.
05/13/2016 08:16:01: Epoch[ 3 of 3]-Minibatch[1-500, 26.67%]: ce = 0.28751190 * 16000; errs = 8.39375% * 16000; err = 0.08393750 * 16000; time = 0.6195s; samplesPerSecond = 25825.2
05/13/2016 08:16:02: Epoch[ 3 of 3]-Minibatch[501-1000, 53.33%]: ce = 0.27455951 * 16000; errs = 7.95% * 16000; err = 0.07950000 * 16000; time = 0.6193s; samplesPerSecond = 25834.3
05/13/2016 08:16:02: Epoch[ 3 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.27693610 * 16000; errs = 7.9875% * 16000; err = 0.07987500 * 16000; time = 0.6192s; samplesPerSecond = 25839.8
05/13/2016 08:16:03: Finished Epoch[ 3 of 3]: [Training] ce = 0.27493141 * 60000; errs = 7.98333% * 60000; err = 0.07983333 * 60000; totalSamplesSeen = 180000; learningRatePerSample = 0.003125; epochTime=2.34147s
05/13/2016 08:16:03: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_01_OneHidden@release_gpu/Models/01_OneHidden'
05/13/2016 08:16:03: CNTKCommandTrainEnd: train
05/13/2016 08:16:03: Action "train" complete.
{ h1.W : [200 x 784] (gradient)
h1.z : [200 x 1 x *] }
{ ol.W : [10 x 200] (gradient)
ol.z : [10 x 1 x *] (gradient) }
{ h1.z : [200 x 1 x *] (gradient)
ol.t : [10 x 1 x *] }
{ h1.t : [200 x 1 x *] (gradient)
h1.y : [200 x 1 x *] }
{ h1.b : [200 x 1] (gradient)
h1.y : [200 x 1 x *] (gradient) }
05/13/2016 08:16:03: ##############################################################################
05/13/2016 08:16:03: # #
05/13/2016 08:16:03: # Action "test" #
05/13/2016 08:16:03: # #
05/13/2016 08:16:03: ##############################################################################
08/16/2016 03:00:47: Training 159010 parameters in 4 out of 4 parameter tensors and 10 nodes with gradient:
08/16/2016 03:00:47: Node 'h1.W' (LearnableParameter operation) : [200 x 784]
08/16/2016 03:00:47: Node 'h1.b' (LearnableParameter operation) : [200 x 1]
08/16/2016 03:00:47: Node 'ol.W' (LearnableParameter operation) : [10 x 200]
08/16/2016 03:00:47: Node 'ol.b' (LearnableParameter operation) : [10 x 1]
08/16/2016 03:00:47: No PreCompute nodes found, or all already computed. Skipping pre-computation step.
08/16/2016 03:00:47: Starting Epoch 1: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..60000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 03:00:47: Starting minibatch loop.
08/16/2016 03:00:50: Epoch[ 1 of 3]-Minibatch[ 1- 500, 26.67%]: ce = 1.29666760 * 16000; top5Errs = 9.300% * 16000; errs = 38.350% * 16000; time = 2.6226s; samplesPerSecond = 6100.9
08/16/2016 03:00:51: Epoch[ 1 of 3]-Minibatch[ 501-1000, 53.33%]: ce = 0.50958875 * 16000; top5Errs = 1.100% * 16000; errs = 13.856% * 16000; time = 0.9727s; samplesPerSecond = 16448.3
08/16/2016 03:00:52: Epoch[ 1 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.38464209 * 16000; top5Errs = 0.831% * 16000; errs = 10.700% * 16000; time = 0.9697s; samplesPerSecond = 16500.2
08/16/2016 03:00:53: Finished Epoch[ 1 of 3]: [Training] ce = 0.65508639 * 60000; top5Errs = 3.093% * 60000; errs = 18.835% * 60000; totalSamplesSeen = 60000; learningRatePerSample = 0.003125; epochTime=5.31129s
08/16/2016 03:00:53: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu/Models/01_OneHidden.1'
08/16/2016 03:00:53: Starting Epoch 2: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 1: frames [60000..120000] (first sequence at sample 60000), data subset 0 of 1
08/16/2016 03:00:53: Starting minibatch loop.
08/16/2016 03:00:54: Epoch[ 2 of 3]-Minibatch[ 1- 500, 26.67%]: ce = 0.33479074 * 16000; top5Errs = 0.563% * 16000; errs = 9.781% * 16000; time = 0.9692s; samplesPerSecond = 16508.2
08/16/2016 03:00:55: Epoch[ 2 of 3]-Minibatch[ 501-1000, 53.33%]: ce = 0.30564261 * 16000; top5Errs = 0.469% * 16000; errs = 8.906% * 16000; time = 0.9679s; samplesPerSecond = 16530.7
08/16/2016 03:00:55: Epoch[ 2 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.30993488 * 16000; top5Errs = 0.613% * 16000; errs = 9.063% * 16000; time = 0.9663s; samplesPerSecond = 16557.3
08/16/2016 03:00:56: Finished Epoch[ 2 of 3]: [Training] ce = 0.31617907 * 60000; top5Errs = 0.563% * 60000; errs = 9.202% * 60000; totalSamplesSeen = 120000; learningRatePerSample = 0.003125; epochTime=3.64141s
08/16/2016 03:00:56: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu/Models/01_OneHidden.2'
08/16/2016 03:00:56: Starting Epoch 3: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 2: frames [120000..180000] (first sequence at sample 120000), data subset 0 of 1
08/16/2016 03:00:56: Starting minibatch loop.
08/16/2016 03:00:57: Epoch[ 3 of 3]-Minibatch[ 1- 500, 26.67%]: ce = 0.29109534 * 16000; top5Errs = 0.531% * 16000; errs = 8.563% * 16000; time = 0.9705s; samplesPerSecond = 16486.0
08/16/2016 03:00:58: Epoch[ 3 of 3]-Minibatch[ 501-1000, 53.33%]: ce = 0.27885516 * 16000; top5Errs = 0.506% * 16000; errs = 8.194% * 16000; time = 0.9618s; samplesPerSecond = 16636.3
08/16/2016 03:00:59: Epoch[ 3 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.27411078 * 16000; top5Errs = 0.513% * 16000; errs = 7.775% * 16000; time = 0.9625s; samplesPerSecond = 16622.6
08/16/2016 03:01:00: Finished Epoch[ 3 of 3]: [Training] ce = 0.27539870 * 60000; top5Errs = 0.478% * 60000; errs = 8.005% * 60000; totalSamplesSeen = 180000; learningRatePerSample = 0.003125; epochTime=3.6287s
08/16/2016 03:01:00: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_01_OneHidden@release_gpu/Models/01_OneHidden'
08/16/2016 03:01:00: CNTKCommandTrainEnd: train
08/16/2016 03:01:00: Action "train" complete.
08/16/2016 03:01:00: ##############################################################################
08/16/2016 03:01:00: # #
08/16/2016 03:01:00: # Action "test" #
08/16/2016 03:01:00: # #
08/16/2016 03:01:00: ##############################################################################
Post-processing network...
4 roots:
3 roots:
ce = CrossEntropyWithSoftmax()
err = ErrorPrediction()
errTop1 = ErrorPrediction()
ol.z = Plus()
errs = ErrorPrediction()
top5Errs = ErrorPrediction()
Validating network. 17 nodes to process in pass 1.
@ -408,9 +494,9 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 200], [200 x 1 x *1] -> [10 x 1
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x 1 x *1], [10 x 1] -> [10 x 1 x *1]
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
Validating --> unnamed81 = LearnableParameter() : -> [1 x 1]
Validating --> errTop1 = ErrorPrediction (labels, ol.z, unnamed81) : [10 x *1], [10 x 1 x *1], [1 x 1] -> [1]
Validating --> errs = ErrorPrediction (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
Validating --> unnamed89 = LearnableParameter() : -> [1 x 1]
Validating --> top5Errs = ErrorPrediction (labels, ol.z, unnamed89) : [10 x *1], [10 x 1 x *1], [1 x 1] -> [1]
Validating network. 9 nodes to process in pass 2.
@ -423,34 +509,17 @@ Validating network, final pass.
Post-processing network complete.
evalNodeNames are not specified, using all the default evalnodes and training criterion nodes.
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 17 matrices, 0 are shared as 0, and 17 are not shared.
0000000000000000: {[ce Gradient[1]] [err Gradient[1]] [errTop1 Gradient[1]] [featScale Gradient[1 x 1]] [featScaled Gradient[784 x 1 x *1]] [features Gradient[784 x *1]] [h1.W Gradient[200 x 784]] [h1.b Gradient[200 x 1]] [h1.t Gradient[200 x 1 x *1]] [h1.y Gradient[200 x 1 x *1]] [h1.z Gradient[200 x 1 x *1]] [labels Gradient[10 x *1]] [ol.W Gradient[10 x 200]] [ol.b Gradient[10 x 1]] [ol.t Gradient[10 x 1 x *1]] [ol.z Gradient[10 x 1 x *1]] [unnamed81 Gradient[1 x 1]] }
000000780D33B230: {[labels Value[10 x *1]] }
000000780D33BA50: {[ol.b Value[10 x 1]] }
000000780D33BD70: {[featScale Value[1 x 1]] }
000000780D33BF50: {[h1.b Value[200 x 1]] }
000000780D33C6D0: {[features Value[784 x *1]] }
000000780D33C770: {[h1.W Value[200 x 784]] }
000000787673E350: {[ol.z Value[10 x 1 x *1]] }
000000787673E850: {[ol.t Value[10 x 1 x *1]] }
00000078767789E0: {[ol.W Value[10 x 200]] }
0000007876778A80: {[unnamed81 Value[1 x 1]] }
0000007876779020: {[errTop1 Value[1]] }
00000078767790C0: {[err Value[1]] }
0000007876779160: {[ce Value[1]] }
00000078767792A0: {[h1.t Value[200 x 1 x *1]] }
00000078767793E0: {[h1.z Value[200 x 1 x *1]] }
00000078767795C0: {[h1.y Value[200 x 1 x *1]] }
00000078767797A0: {[featScaled Value[784 x 1 x *1]] }
05/13/2016 08:16:11: Final Results: Minibatch[1-10]: errs = 7.460% * 10000; top5Errs = 0.440% * 10000; ce = 0.26425332 * 10000; perplexity = 1.30245809
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 03:01:00: Minibatch[1-10]: ce = 0.24924074 * 10000; errs = 7.140% * 10000; top5Errs = 0.420% * 10000
08/16/2016 03:01:00: Final Results: Minibatch[1-10]: ce = 0.24924074 * 10000; perplexity = 1.28305088; errs = 7.140% * 10000; top5Errs = 0.420% * 10000
05/13/2016 08:16:11: Action "test" complete.
08/16/2016 03:01:00: Action "test" complete.
05/13/2016 08:16:11: __COMPLETED__
08/16/2016 03:01:00: __COMPLETED__

Просмотреть файл

@ -1,65 +1,77 @@
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/02_Convolution/../../../../../../../Examples/Image/MNIST/Config/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/Config/02_Convolution.cntk currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/TestData RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/02_Convolution/../../../../../../../Examples/Image/MNIST/Config OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 264172964 kB
-------------------------------------------------------------------
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/../../../../../../Examples/Image/MNIST/Config/02_Convolution.cntk currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/TestData RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/../../../../../../Examples/Image/MNIST/Config OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
-------------------------------------------------------------------
Build info:
Built time: May 13 2016 14:50:25
Last modified date: Thu May 12 14:00:37 2016
Built time: Aug 16 2016 09:41:56
Last modified date: Fri Aug 12 07:32:43 2016
Build type: release
Build target: GPU
With 1bit-SGD: no
Math lib: acml
Math lib: mkl
CUDA_PATH: /usr/local/cuda-7.5
CUB_PATH: /usr/local/cub-1.4.1
CUDNN_PATH: /usr/local/cudnn-4.0
Build Branch: HEAD
Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
Built by philly on d8dc82703b0f
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by philly on f67b30a647de
Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
-------------------------------------------------------------------
Changed current directory to /tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/TestData
05/13/2016 15:10:11: -------------------------------------------------------------------
05/13/2016 15:10:11: Build info:
Changed current directory to /tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/TestData
08/16/2016 10:49:50: -------------------------------------------------------------------
08/16/2016 10:49:50: Build info:
05/13/2016 15:10:11: Built time: May 13 2016 14:50:25
05/13/2016 15:10:11: Last modified date: Thu May 12 14:00:37 2016
05/13/2016 15:10:11: Build type: release
05/13/2016 15:10:11: Build target: GPU
05/13/2016 15:10:11: With 1bit-SGD: no
05/13/2016 15:10:11: Math lib: acml
05/13/2016 15:10:11: CUDA_PATH: /usr/local/cuda-7.5
05/13/2016 15:10:11: CUB_PATH: /usr/local/cub-1.4.1
05/13/2016 15:10:11: CUDNN_PATH: /usr/local/cudnn-4.0
05/13/2016 15:10:11: Build Branch: HEAD
05/13/2016 15:10:11: Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
05/13/2016 15:10:11: Built by philly on d8dc82703b0f
05/13/2016 15:10:11: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
05/13/2016 15:10:11: -------------------------------------------------------------------
08/16/2016 10:49:50: Built time: Aug 16 2016 09:41:56
08/16/2016 10:49:50: Last modified date: Fri Aug 12 07:32:43 2016
08/16/2016 10:49:50: Build type: release
08/16/2016 10:49:50: Build target: GPU
08/16/2016 10:49:50: With 1bit-SGD: no
08/16/2016 10:49:50: Math lib: mkl
08/16/2016 10:49:50: CUDA_PATH: /usr/local/cuda-7.5
08/16/2016 10:49:50: CUB_PATH: /usr/local/cub-1.4.1
08/16/2016 10:49:50: CUDNN_PATH: /usr/local/cudnn-4.0
08/16/2016 10:49:50: Build Branch: HEAD
08/16/2016 10:49:50: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 10:49:50: Built by philly on f67b30a647de
08/16/2016 10:49:50: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
08/16/2016 10:49:50: -------------------------------------------------------------------
08/16/2016 10:49:51: -------------------------------------------------------------------
08/16/2016 10:49:51: GPU info:
05/13/2016 15:10:11: Running on localhost at 2016/05/13 15:10:11
05/13/2016 15:10:11: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/02_Convolution/../../../../../../../Examples/Image/MNIST/Config/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/Config/02_Convolution.cntk currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/TestData RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/02_Convolution/../../../../../../../Examples/Image/MNIST/Config OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
08/16/2016 10:49:51: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:49:51: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:49:51: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:49:51: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:49:51: -------------------------------------------------------------------
08/16/2016 10:49:51: Running on localhost at 2016/08/16 10:49:51
08/16/2016 10:49:51: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/../../../../../../Examples/Image/MNIST/Config/02_Convolution.cntk currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/TestData RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/../../../../../../Examples/Image/MNIST/Config OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
05/13/2016 15:10:11: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/13/2016 15:10:11: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
ModelDir = "$OutputDir$/Models"
08/16/2016 10:49:51: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:49:51: rootDir = ".."
configDir = "$rootDir$/Config"
dataDir = "$rootDir$/Data"
outputDir = "$rootDir$/Output"
modelDir = "$outputDir$/Models"
deviceId = 0
imageLayout = "cudnn"
command = train:test
precision = "float"
modelPath = "$ModelDir$/02_Convolution"
ndlMacros = "$ConfigDir$/Macros.ndl"
traceLevel=1
numMBsToShowResult=500
prefetch=true
initOnCPUOnly=true
modelPath = "$modelDir$/02_Convolution"
traceLevel = 1
numMBsToShowResult = 500
train = [
action = "train"
NDLNetworkBuilder = [
imageLayout = "cudnn"
initOnCPUOnly = true
ndlMacros = "$configDir$/Macros.ndl"
networkDescription = "$ConfigDir$/02_Convolution.ndl"
]
SGD = [
@ -82,21 +94,18 @@ train = [
format = "dense"
]
]
]
]
]
test = [
action = test
minibatchSize = 16
NDLNetworkBuilder = [
networkDescription = "$ConfigDir$/02_Convolution.ndl"
]
minibatchSize = 1024
reader = [
readerType = "CNTKTextFormatReader"
file = "$DataDir$/Test-28x28_cntk_text.txt"
input = [
features = [
dim = 784
format = "dense"
dim = 784
format = "dense"
]
labels = [
dim = 10
@ -105,38 +114,37 @@ test = [
]
]
]
currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/TestData
RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu
DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/02_Convolution/../../../../../../../Examples/Image/MNIST/Config
OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu
currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/TestData
RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu
DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/../../../../../../Examples/Image/MNIST/Config
OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu
DeviceId=0
timestamping=true
train=[SGD=[maxEpochs=3]]
imageLayout="cudnn"
05/13/2016 15:10:11: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:49:51: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/13/2016 15:10:11: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/13/2016 15:10:11: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/Models"
08/16/2016 10:49:51: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:49:51: rootDir = ".."
configDir = "../Config"
dataDir = "../Data"
outputDir = "../Output"
modelDir = "/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/Models"
deviceId = 0
imageLayout = "cudnn"
command = train:test
precision = "float"
modelPath = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/Models/02_Convolution"
ndlMacros = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/02_Convolution/../../../../../../../Examples/Image/MNIST/Config/Macros.ndl"
traceLevel=1
numMBsToShowResult=500
prefetch=true
initOnCPUOnly=true
modelPath = "/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/Models/02_Convolution"
traceLevel = 1
numMBsToShowResult = 500
train = [
action = "train"
NDLNetworkBuilder = [
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/02_Convolution/../../../../../../../Examples/Image/MNIST/Config/02_Convolution.ndl"
imageLayout = "cudnn"
initOnCPUOnly = true
ndlMacros = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/../../../../../../Examples/Image/MNIST/Config/Macros.ndl"
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/../../../../../../Examples/Image/MNIST/Config/02_Convolution.ndl"
]
SGD = [
epochSize = 60000
@ -147,7 +155,7 @@ train = [
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/TestData/Train-28x28_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/TestData/Train-28x28_cntk_text.txt"
input = [
features = [
dim = 784
@ -158,21 +166,18 @@ train = [
format = "dense"
]
]
]
]
]
test = [
action = test
minibatchSize = 16
NDLNetworkBuilder = [
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/02_Convolution/../../../../../../../Examples/Image/MNIST/Config/02_Convolution.ndl"
]
minibatchSize = 1024
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/TestData/Test-28x28_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/TestData/Test-28x28_cntk_text.txt"
input = [
features = [
dim = 784
format = "dense"
dim = 784
format = "dense"
]
labels = [
dim = 10
@ -181,48 +186,42 @@ test = [
]
]
]
currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/TestData
RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu
DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/02_Convolution/../../../../../../../Examples/Image/MNIST/Config
OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu
currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/TestData
RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu
DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/../../../../../../Examples/Image/MNIST/Config
OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu
DeviceId=0
timestamping=true
train=[SGD=[maxEpochs=3]]
imageLayout="cudnn"
05/13/2016 15:10:11: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:49:51: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 15:10:11: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:49:51: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: 02_Convolution.cntk:command=train:test
configparameters: 02_Convolution.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/02_Convolution/../../../../../../../Examples/Image/MNIST/Config
configparameters: 02_Convolution.cntk:currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/TestData
configparameters: 02_Convolution.cntk:DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/TestData
configparameters: 02_Convolution.cntk:configDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/../../../../../../Examples/Image/MNIST/Config
configparameters: 02_Convolution.cntk:currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/TestData
configparameters: 02_Convolution.cntk:dataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/TestData
configparameters: 02_Convolution.cntk:deviceId=0
configparameters: 02_Convolution.cntk:imageLayout=cudnn
configparameters: 02_Convolution.cntk:initOnCPUOnly=true
configparameters: 02_Convolution.cntk:ModelDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/Models
configparameters: 02_Convolution.cntk:modelPath=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/Models/02_Convolution
configparameters: 02_Convolution.cntk:ndlMacros=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/02_Convolution/../../../../../../../Examples/Image/MNIST/Config/Macros.ndl
configparameters: 02_Convolution.cntk:modelDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/Models
configparameters: 02_Convolution.cntk:modelPath=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/Models/02_Convolution
configparameters: 02_Convolution.cntk:numMBsToShowResult=500
configparameters: 02_Convolution.cntk:OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu
configparameters: 02_Convolution.cntk:outputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu
configparameters: 02_Convolution.cntk:precision=float
configparameters: 02_Convolution.cntk:prefetch=true
configparameters: 02_Convolution.cntk:RootDir=..
configparameters: 02_Convolution.cntk:RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu
configparameters: 02_Convolution.cntk:rootDir=..
configparameters: 02_Convolution.cntk:RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu
configparameters: 02_Convolution.cntk:test=[
action = test
minibatchSize = 16
NDLNetworkBuilder = [
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/02_Convolution/../../../../../../../Examples/Image/MNIST/Config/02_Convolution.ndl"
]
minibatchSize = 1024
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/TestData/Test-28x28_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/TestData/Test-28x28_cntk_text.txt"
input = [
features = [
dim = 784
format = "dense"
dim = 784
format = "dense"
]
labels = [
dim = 10
@ -237,7 +236,10 @@ configparameters: 02_Convolution.cntk:traceLevel=1
configparameters: 02_Convolution.cntk:train=[
action = "train"
NDLNetworkBuilder = [
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/02_Convolution/../../../../../../../Examples/Image/MNIST/Config/02_Convolution.ndl"
imageLayout = "cudnn"
initOnCPUOnly = true
ndlMacros = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/../../../../../../Examples/Image/MNIST/Config/Macros.ndl"
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/02_Convolution/../../../../../../Examples/Image/MNIST/Config/02_Convolution.ndl"
]
SGD = [
epochSize = 60000
@ -248,7 +250,7 @@ configparameters: 02_Convolution.cntk:train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/TestData/Train-28x28_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/TestData/Train-28x28_cntk_text.txt"
input = [
features = [
dim = 784
@ -259,32 +261,52 @@ configparameters: 02_Convolution.cntk:train=[
format = "dense"
]
]
]
]
] [SGD=[maxEpochs=3]]
05/13/2016 15:10:11: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 15:10:11: Commands: train test
05/13/2016 15:10:11: Precision = "float"
05/13/2016 15:10:11: CNTKModelPath: /tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/Models/02_Convolution
05/13/2016 15:10:11: CNTKCommandTrainInfo: train : 3
05/13/2016 15:10:11: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
08/16/2016 10:49:51: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:49:51: Commands: train test
08/16/2016 10:49:51: Precision = "float"
08/16/2016 10:49:51: CNTKModelPath: /tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/Models/02_Convolution
08/16/2016 10:49:51: CNTKCommandTrainInfo: train : 3
08/16/2016 10:49:51: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
05/13/2016 15:10:11: ##############################################################################
05/13/2016 15:10:11: # #
05/13/2016 15:10:11: # Action "train" #
05/13/2016 15:10:11: # #
05/13/2016 15:10:11: ##############################################################################
08/16/2016 10:49:51: ##############################################################################
08/16/2016 10:49:51: # #
08/16/2016 10:49:51: # Action "train" #
08/16/2016 10:49:51: # #
08/16/2016 10:49:51: ##############################################################################
05/13/2016 15:10:11: CNTKCommandTrainBegin: train
08/16/2016 10:49:51: CNTKCommandTrainBegin: train
NDLBuilder Using GPU 0
05/13/2016 15:10:11: Creating virgin network.
08/16/2016 10:49:51: Creating virgin network.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.000000.
Node 'conv1.w.W' (LearnableParameter operation): Initializing Parameter[16 x 25] <- 0.000000.
Node 'conv1.b.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 16] <- 0.000000.
Node 'conv2.w.W' (LearnableParameter operation): Initializing Parameter[32 x 400] <- 0.000000.
Node 'conv2.b.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 32] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[128 x 7 x 7 x 32] <- 0.000000.
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[128 x 1] <- 0.000000.
Node 'ol.W' (LearnableParameter operation): Initializing Parameter[10 x 128] <- 0.000000.
Node 'ol.b' (LearnableParameter operation): Initializing Parameter[10 x 1] <- 0.000000.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.003906.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.003906.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.003906.
Node 'conv1.w.W' (LearnableParameter operation): Initializing Parameter[16 x 25] <- uniform(seed=1, range=0.050000*10.000000, onCPU=true).
Node 'conv1.b.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 16] <- 1.000000.
Node 'conv2.w.W' (LearnableParameter operation): Initializing Parameter[32 x 400] <- uniform(seed=2, range=0.050000*10.000000, onCPU=true).
Node 'conv2.b.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 32] <- 1.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[128 x 7 x 7 x 32] <- uniform(seed=3, range=0.050000*1.000000, onCPU=true).
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[128 x 1] <- uniform(seed=4, range=0.050000*1.000000, onCPU=true).
Node 'ol.W' (LearnableParameter operation): Initializing Parameter[10 x 128] <- uniform(seed=5, range=0.050000*1.000000, onCPU=true).
Node 'ol.b' (LearnableParameter operation): Initializing Parameter[10 x 1] <- uniform(seed=6, range=0.050000*1.000000, onCPU=true).
Post-processing network...
3 roots:
ce = CrossEntropyWithSoftmax()
err = ErrorPrediction()
errs = ErrorPrediction()
ol.z = Plus()
Validating network. 27 nodes to process in pass 1.
@ -315,7 +337,7 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 128], [128 x 1 x *] -> [10 x 1
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x 1 x *], [10 x 1] -> [10 x 1 x *]
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
Validating --> errs = ErrorPrediction (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
Validating network. 16 nodes to process in pass 2.
@ -323,113 +345,122 @@ Validating network. 16 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 28 x 28 x 1, Output: 28 x 28 x 16, Kernel: 5 x 5 x 1, Map: 1 x 1 x 16, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c.c: using cuDNN convolution engine for geometry: Input: 28 x 28 x 1, Output: 28 x 28 x 16, Kernel: 5 x 5 x 1, Map: 1 x 1 x 16, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 28 x 28 x 16, Output: 14 x 14 x 16, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 28 x 28 x 16, Output: 14 x 14 x 16, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 14 x 14 x 16, Output: 14 x 14 x 32, Kernel: 5 x 5 x 16, Map: 32, Stride: 1 x 1 x 16, Sharing: (1, 1, 1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0.
conv2.c.c: using cuDNN convolution engine for geometry: Input: 14 x 14 x 16, Output: 14 x 14 x 32, Kernel: 5 x 5 x 16, Map: 32, Stride: 1 x 1 x 16, Sharing: (1, 1, 1), AutoPad: (1, 1, 0), LowerPad: 0 x 0 x 0, UpperPad: 0 x 0 x 0.
Using cuDNN convolution engine for geometry: Input: 14 x 14 x 32, Output: 7 x 7 x 32, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0.
pool2.p: using cuDNN convolution engine for geometry: Input: 14 x 14 x 32, Output: 7 x 7 x 32, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1, 1, 1), AutoPad: (1, 1, 0), LowerPad: 0 x 0 x 0, UpperPad: 0 x 0 x 0.
11 out of 27 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
05/13/2016 15:10:11: Created model with 27 nodes on GPU 0.
08/16/2016 10:49:52: Created model with 27 nodes on GPU 0.
05/13/2016 15:10:11: Training criterion node(s):
05/13/2016 15:10:11: ce = CrossEntropyWithSoftmax
08/16/2016 10:49:52: Training criterion node(s):
08/16/2016 10:49:52: ce = CrossEntropyWithSoftmax
05/13/2016 15:10:11: Evaluation criterion node(s):
05/13/2016 15:10:11: err = ErrorPrediction
08/16/2016 10:49:52: Evaluation criterion node(s):
08/16/2016 10:49:52: errs = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 49 matrices, 29 are shared as 13, and 20 are not shared.
(nil): {[err Gradient[1]] [featScale Gradient[1 x 1]] [featScaled Gradient[28 x 28 x 1 x *]] [features Gradient[28 x 28 x 1 x *]] [labels Gradient[10 x *]] }
0x132d628: {[features Value[28 x 28 x 1 x *]] }
0x1854138: {[featScale Value[1 x 1]] }
0x1ca8388: {[labels Value[10 x *]] }
0x1ca8b18: {[conv1.w.W Value[16 x 25]] }
0x1ca9778: {[conv1.b.b Value[1 x 1 x 16]] }
0x1caaa88: {[conv2.w.W Value[32 x 400]] }
0x1cac278: {[conv2.b.b Value[1 x 1 x 32]] }
0x1cb04f8: {[h1.W Value[128 x 7 x 7 x 32]] }
0x1cb1728: {[h1.b Value[128 x 1]] }
0x1cb2318: {[ol.W Value[10 x 128]] }
0x1cb3468: {[ol.b Value[10 x 1]] }
0x7f427f204c08: {[conv1.c.c Value[28 x 28 x 16 x *]] }
0x7f427f20bd48: {[h1.b Gradient[128 x 1]] [h1.y Gradient[128 x 1 x *]] }
0x7f427f4d3118: {[err Value[1]] }
0x7f427f4e3b08: {[featScaled Value[28 x 28 x 1 x *]] }
0x7f427f4e3db8: {[conv1.cpb Value[28 x 28 x 16 x *]] [conv1.w.W Gradient[16 x 25]] }
0x7f427f4e42d8: {[conv1.c.c Gradient[28 x 28 x 16 x *]] [conv1.out Value[28 x 28 x 16 x *]] }
0x7f427f4e4498: {[conv1.cpb Gradient[28 x 28 x 16 x *]] [pool1 Value[14 x 14 x 16 x *]] }
0x7f427f4e4658: {[conv2.c.c Value[14 x 14 x 32 x *]] }
0x7f427f4e4818: {[conv1.b.b Gradient[1 x 1 x 16]] [conv1.out Gradient[28 x 28 x 16 x *]] }
0x7f427f4e49d8: {[conv2.cpb Value[14 x 14 x 32 x *]] [conv2.w.W Gradient[32 x 400]] }
0x7f427f4e4b98: {[conv2.c.c Gradient[14 x 14 x 32 x *]] [conv2.out Value[14 x 14 x 32 x *]] }
0x7f427f4e4d58: {[conv2.cpb Gradient[14 x 14 x 32 x *]] [pool1 Gradient[14 x 14 x 16 x *]] [pool2.p Value[7 x 7 x 32 x *]] }
0x7f427f4e4f18: {[conv2.b.b Gradient[1 x 1 x 32]] [conv2.out Gradient[14 x 14 x 32 x *]] [h1.t Value[128 x *]] }
0x7f427f4e50d8: {[h1.W Gradient[128 x 7 x 7 x 32]] [h1.z Value[128 x 1 x *]] }
0x7f427f4e5298: {[h1.t Gradient[128 x *]] [h1.y Value[128 x 1 x *]] }
0x7f427f4e5458: {[h1.z Gradient[128 x 1 x *]] [ol.t Value[10 x 1 x *]] [pool2.p Gradient[7 x 7 x 32 x *]] }
0x7f427f4e5f38: {[ce Gradient[1]] }
0x7f427f4e60f8: {[ol.W Gradient[10 x 128]] [ol.z Gradient[10 x 1 x *]] }
0x7f427f4e62b8: {[ol.t Gradient[10 x 1 x *]] }
0x7f427f4e6478: {[ol.b Gradient[10 x 1]] }
0x7f427f4ff658: {[ce Value[1]] }
0x7f427f4ffea8: {[ol.z Value[10 x 1 x *]] }
05/13/2016 15:10:11: No PreCompute nodes found, skipping PreCompute step.
05/13/2016 15:10:11: Starting Epoch 1: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 15:10:11: Starting minibatch loop.
05/13/2016 15:10:13: Epoch[ 1 of 3]-Minibatch[1-500, 26.67%]: ce = 1.05460791 * 16000; errs = 35.2563% * 16000; time = 2.0377s; samplesPerSecond = 7852.2
05/13/2016 15:10:14: Epoch[ 1 of 3]-Minibatch[501-1000, 53.33%]: ce = 0.16176135 * 16000; errs = 4.425% * 16000; time = 0.9884s; samplesPerSecond = 16187.9
05/13/2016 15:10:15: Epoch[ 1 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.10889783 * 16000; errs = 3.04375% * 16000; time = 0.9868s; samplesPerSecond = 16214.2
05/13/2016 15:10:16: Finished Epoch[ 1 of 3]: [Training] ce = 0.37214827 * 60000; errs = 11.9817% * 60000; totalSamplesSeen = 60000; learningRatePerSample = 0.003125; epochTime=4.77593s
05/13/2016 15:10:16: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/Models/02_Convolution.1'
05/13/2016 15:10:16: Starting Epoch 2: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 15:10:16: Starting minibatch loop.
05/13/2016 15:10:17: Epoch[ 2 of 3]-Minibatch[1-500, 26.67%]: ce = 0.07178102 * 16000; errs = 2.20625% * 16000; time = 0.9982s; samplesPerSecond = 16029.6
05/13/2016 15:10:18: Epoch[ 2 of 3]-Minibatch[501-1000, 53.33%]: ce = 0.06225394 * 16000; errs = 1.8% * 16000; time = 0.9949s; samplesPerSecond = 16082.6
05/13/2016 15:10:19: Epoch[ 2 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.06624252 * 16000; errs = 2.025% * 16000; time = 0.9961s; samplesPerSecond = 16062.5
05/13/2016 15:10:19: Finished Epoch[ 2 of 3]: [Training] ce = 0.06652122 * 60000; errs = 1.995% * 60000; totalSamplesSeen = 120000; learningRatePerSample = 0.003125; epochTime=3.74643s
05/13/2016 15:10:20: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/Models/02_Convolution.2'
05/13/2016 15:10:20: Starting Epoch 3: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 15:10:20: Starting minibatch loop.
05/13/2016 15:10:21: Epoch[ 3 of 3]-Minibatch[1-500, 26.67%]: ce = 0.04257084 * 16000; errs = 1.25625% * 16000; time = 0.9942s; samplesPerSecond = 16093.1
05/13/2016 15:10:21: Epoch[ 3 of 3]-Minibatch[501-1000, 53.33%]: ce = 0.04675156 * 16000; errs = 1.41875% * 16000; time = 0.9927s; samplesPerSecond = 16118.2
05/13/2016 15:10:22: Epoch[ 3 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.04904524 * 16000; errs = 1.475% * 16000; time = 0.9901s; samplesPerSecond = 16160.8
05/13/2016 15:10:23: Finished Epoch[ 3 of 3]: [Training] ce = 0.04529028 * 60000; errs = 1.36667% * 60000; totalSamplesSeen = 180000; learningRatePerSample = 0.003125; epochTime=3.73418s
05/13/2016 15:10:23: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_02_Convolution@release_gpu/Models/02_Convolution'
05/13/2016 15:10:23: CNTKCommandTrainEnd: train
05/13/2016 15:10:23: Action "train" complete.
{ conv1.cpb : [28 x 28 x 16 x *]
conv1.w.W : [16 x 25] (gradient) }
{ conv1.c.c : [28 x 28 x 16 x *] (gradient)
conv1.out : [28 x 28 x 16 x *] }
{ conv1.cpb : [28 x 28 x 16 x *] (gradient)
pool1 : [14 x 14 x 16 x *] }
{ conv1.b.b : [1 x 1 x 16] (gradient)
conv1.out : [28 x 28 x 16 x *] (gradient) }
{ conv2.cpb : [14 x 14 x 32 x *]
conv2.w.W : [32 x 400] (gradient) }
{ conv2.c.c : [14 x 14 x 32 x *] (gradient)
conv2.out : [14 x 14 x 32 x *] }
{ conv2.cpb : [14 x 14 x 32 x *] (gradient)
pool1 : [14 x 14 x 16 x *] (gradient)
pool2.p : [7 x 7 x 32 x *] }
{ conv2.b.b : [1 x 1 x 32] (gradient)
conv2.out : [14 x 14 x 32 x *] (gradient)
h1.t : [128 x *] }
{ h1.W : [128 x 7 x 7 x 32] (gradient)
h1.z : [128 x 1 x *] }
{ h1.t : [128 x *] (gradient)
h1.y : [128 x 1 x *] }
{ h1.z : [128 x 1 x *] (gradient)
ol.t : [10 x 1 x *]
pool2.p : [7 x 7 x 32 x *] (gradient) }
{ ol.W : [10 x 128] (gradient)
ol.z : [10 x 1 x *] (gradient) }
{ h1.b : [128 x 1] (gradient)
h1.y : [128 x 1 x *] (gradient) }
05/13/2016 15:10:23: ##############################################################################
05/13/2016 15:10:23: # #
05/13/2016 15:10:23: # Action "test" #
05/13/2016 15:10:23: # #
05/13/2016 15:10:23: ##############################################################################
08/16/2016 10:49:52: Training 215370 parameters in 8 out of 8 parameter tensors and 22 nodes with gradient:
08/16/2016 10:49:52: Node 'conv1.b.b' (LearnableParameter operation) : [1 x 1 x 16]
08/16/2016 10:49:52: Node 'conv1.w.W' (LearnableParameter operation) : [16 x 25]
08/16/2016 10:49:52: Node 'conv2.b.b' (LearnableParameter operation) : [1 x 1 x 32]
08/16/2016 10:49:52: Node 'conv2.w.W' (LearnableParameter operation) : [32 x 400]
08/16/2016 10:49:52: Node 'h1.W' (LearnableParameter operation) : [128 x 7 x 7 x 32]
08/16/2016 10:49:52: Node 'h1.b' (LearnableParameter operation) : [128 x 1]
08/16/2016 10:49:52: Node 'ol.W' (LearnableParameter operation) : [10 x 128]
08/16/2016 10:49:52: Node 'ol.b' (LearnableParameter operation) : [10 x 1]
08/16/2016 10:49:52: No PreCompute nodes found, or all already computed. Skipping pre-computation step.
08/16/2016 10:49:52: Starting Epoch 1: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..60000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 10:49:52: Starting minibatch loop.
08/16/2016 10:49:54: Epoch[ 1 of 3]-Minibatch[ 1- 500, 26.67%]: ce = 1.04692261 * 16000; errs = 35.156% * 16000; time = 2.0092s; samplesPerSecond = 7963.4
08/16/2016 10:49:55: Epoch[ 1 of 3]-Minibatch[ 501-1000, 53.33%]: ce = 0.17001367 * 16000; errs = 4.913% * 16000; time = 0.9653s; samplesPerSecond = 16575.7
08/16/2016 10:49:56: Epoch[ 1 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.10910559 * 16000; errs = 3.169% * 16000; time = 0.9622s; samplesPerSecond = 16627.8
08/16/2016 10:49:56: Finished Epoch[ 1 of 3]: [Training] ce = 0.37089482 * 60000; errs = 12.038% * 60000; totalSamplesSeen = 60000; learningRatePerSample = 0.003125; epochTime=4.67495s
08/16/2016 10:49:56: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/Models/02_Convolution.1'
08/16/2016 10:49:56: Starting Epoch 2: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 1: frames [60000..120000] (first sequence at sample 60000), data subset 0 of 1
08/16/2016 10:49:56: Starting minibatch loop.
08/16/2016 10:49:57: Epoch[ 2 of 3]-Minibatch[ 1- 500, 26.67%]: ce = 0.07433912 * 16000; errs = 2.369% * 16000; time = 0.9731s; samplesPerSecond = 16442.2
08/16/2016 10:49:58: Epoch[ 2 of 3]-Minibatch[ 501-1000, 53.33%]: ce = 0.06223948 * 16000; errs = 1.875% * 16000; time = 0.9738s; samplesPerSecond = 16430.7
08/16/2016 10:49:59: Epoch[ 2 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.06269952 * 16000; errs = 1.812% * 16000; time = 0.9724s; samplesPerSecond = 16453.8
08/16/2016 10:50:00: Finished Epoch[ 2 of 3]: [Training] ce = 0.06625302 * 60000; errs = 2.018% * 60000; totalSamplesSeen = 120000; learningRatePerSample = 0.003125; epochTime=3.6549s
08/16/2016 10:50:00: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/Models/02_Convolution.2'
08/16/2016 10:50:00: Starting Epoch 3: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 2: frames [120000..180000] (first sequence at sample 120000), data subset 0 of 1
08/16/2016 10:50:00: Starting minibatch loop.
08/16/2016 10:50:01: Epoch[ 3 of 3]-Minibatch[ 1- 500, 26.67%]: ce = 0.04532548 * 16000; errs = 1.319% * 16000; time = 0.9745s; samplesPerSecond = 16419.1
08/16/2016 10:50:02: Epoch[ 3 of 3]-Minibatch[ 501-1000, 53.33%]: ce = 0.04296139 * 16000; errs = 1.256% * 16000; time = 0.9719s; samplesPerSecond = 16463.3
08/16/2016 10:50:03: Epoch[ 3 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.04916875 * 16000; errs = 1.456% * 16000; time = 0.9710s; samplesPerSecond = 16477.7
08/16/2016 10:50:04: Finished Epoch[ 3 of 3]: [Training] ce = 0.04531107 * 60000; errs = 1.337% * 60000; totalSamplesSeen = 180000; learningRatePerSample = 0.003125; epochTime=3.65691s
08/16/2016 10:50:04: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_02_Convolution@release_gpu/Models/02_Convolution'
08/16/2016 10:50:04: CNTKCommandTrainEnd: train
08/16/2016 10:50:04: Action "train" complete.
08/16/2016 10:50:04: ##############################################################################
08/16/2016 10:50:04: # #
08/16/2016 10:50:04: # Action "test" #
08/16/2016 10:50:04: # #
08/16/2016 10:50:04: ##############################################################################
Post-processing network...
3 roots:
ce = CrossEntropyWithSoftmax()
err = ErrorPrediction()
errs = ErrorPrediction()
ol.z = Plus()
Validating network. 27 nodes to process in pass 1.
@ -460,7 +491,7 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 128], [128 x 1 x *1] -> [10 x 1
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x 1 x *1], [10 x 1] -> [10 x 1 x *1]
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
Validating --> errs = ErrorPrediction (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
Validating network. 16 nodes to process in pass 2.
@ -468,13 +499,13 @@ Validating network. 16 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 28 x 28 x 1, Output: 28 x 28 x 16, Kernel: 5 x 5 x 1, Map: 1 x 1 x 16, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c.c: using cuDNN convolution engine for geometry: Input: 28 x 28 x 1, Output: 28 x 28 x 16, Kernel: 5 x 5 x 1, Map: 1 x 1 x 16, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 28 x 28 x 16, Output: 14 x 14 x 16, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 28 x 28 x 16, Output: 14 x 14 x 16, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 14 x 14 x 16, Output: 14 x 14 x 32, Kernel: 5 x 5 x 16, Map: 32, Stride: 1 x 1 x 16, Sharing: (1, 1, 1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0.
conv2.c.c: using cuDNN convolution engine for geometry: Input: 14 x 14 x 16, Output: 14 x 14 x 32, Kernel: 5 x 5 x 16, Map: 32, Stride: 1 x 1 x 16, Sharing: (1, 1, 1), AutoPad: (1, 1, 0), LowerPad: 0 x 0 x 0, UpperPad: 0 x 0 x 0.
Using cuDNN convolution engine for geometry: Input: 14 x 14 x 32, Output: 7 x 7 x 32, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0.
pool2.p: using cuDNN convolution engine for geometry: Input: 14 x 14 x 32, Output: 7 x 7 x 32, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1, 1, 1), AutoPad: (1, 1, 0), LowerPad: 0 x 0 x 0, UpperPad: 0 x 0 x 0.
11 out of 27 nodes do not share the minibatch layout with the input data.
@ -486,39 +517,13 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 27 matrices, 0 are shared as 0, and 27 are not shared.
(nil): {[ce Gradient[1]] [conv1.b.b Gradient[1 x 1 x 16]] [conv1.c.c Gradient[28 x 28 x 16 x *1]] [conv1.cpb Gradient[28 x 28 x 16 x *1]] [conv1.out Gradient[28 x 28 x 16 x *1]] [conv1.w.W Gradient[16 x 25]] [conv2.b.b Gradient[1 x 1 x 32]] [conv2.c.c Gradient[14 x 14 x 32 x *1]] [conv2.cpb Gradient[14 x 14 x 32 x *1]] [conv2.out Gradient[14 x 14 x 32 x *1]] [conv2.w.W Gradient[32 x 400]] [err Gradient[1]] [featScale Gradient[1 x 1]] [featScaled Gradient[28 x 28 x 1 x *1]] [features Gradient[28 x 28 x 1 x *1]] [h1.W Gradient[128 x 7 x 7 x 32]] [h1.b Gradient[128 x 1]] [h1.t Gradient[128 x *1]] [h1.y Gradient[128 x 1 x *1]] [h1.z Gradient[128 x 1 x *1]] [labels Gradient[10 x *1]] [ol.W Gradient[10 x 128]] [ol.b Gradient[10 x 1]] [ol.t Gradient[10 x 1 x *1]] [ol.z Gradient[10 x 1 x *1]] [pool1 Gradient[14 x 14 x 16 x *1]] [pool2.p Gradient[7 x 7 x 32 x *1]] }
0x7f4274adf028: {[conv1.b.b Value[1 x 1 x 16]] }
0x7f4274adfe98: {[h1.b Value[128 x 1]] }
0x7f427ae42308: {[err Value[1]] }
0x7f427ae62498: {[featScaled Value[28 x 28 x 1 x *1]] }
0x7f427ae62748: {[conv1.c.c Value[28 x 28 x 16 x *1]] }
0x7f427ae62c08: {[conv1.cpb Value[28 x 28 x 16 x *1]] }
0x7f427ae62dc8: {[conv1.out Value[28 x 28 x 16 x *1]] }
0x7f427ae62f88: {[pool1 Value[14 x 14 x 16 x *1]] }
0x7f427ae63148: {[conv2.c.c Value[14 x 14 x 32 x *1]] }
0x7f427ae634c8: {[conv2.cpb Value[14 x 14 x 32 x *1]] }
0x7f427ae63688: {[conv2.out Value[14 x 14 x 32 x *1]] }
0x7f427ae63848: {[pool2.p Value[7 x 7 x 32 x *1]] }
0x7f427ae646a8: {[labels Value[10 x *1]] }
0x7f427ae64b18: {[ol.b Value[10 x 1]] }
0x7f427ae668a8: {[conv2.w.W Value[32 x 400]] }
0x7f427ae72368: {[h1.W Value[128 x 7 x 7 x 32]] }
0x7f427f20cb08: {[ol.W Value[10 x 128]] }
0x7f427f20e888: {[featScale Value[1 x 1]] }
0x7f427f20ea48: {[features Value[28 x 28 x 1 x *1]] }
0x7f427f4d37a8: {[conv1.w.W Value[16 x 25]] }
0x7f427f4d3968: {[conv2.b.b Value[1 x 1 x 32]] }
0x7f427f4e2108: {[ce Value[1]] }
0x7f427f4fcea8: {[h1.t Value[128 x *1]] }
0x7f427f4fd068: {[h1.z Value[128 x 1 x *1]] }
0x7f427f4fd228: {[h1.y Value[128 x 1 x *1]] }
0x7f427f4fd3e8: {[ol.t Value[10 x 1 x *1]] }
0x7f427f4fd5a8: {[ol.z Value[10 x 1 x *1]] }
05/13/2016 15:10:28: Final Results: Minibatch[1-10]: errs = 1.46% * 10000; ce = 0.04549626 * 10000; perplexity = 1.04654709
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 10:50:04: Minibatch[1-10]: errs = 1.580% * 10000; ce = 0.05054137 * 10000
08/16/2016 10:50:04: Final Results: Minibatch[1-10]: errs = 1.580% * 10000; ce = 0.05054137 * 10000; perplexity = 1.05184038
05/13/2016 15:10:28: Action "test" complete.
08/16/2016 10:50:04: Action "test" complete.
05/13/2016 15:10:28: __COMPLETED__
08/16/2016 10:50:04: __COMPLETED__

Просмотреть файл

@ -1,63 +1,77 @@
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/Config/02_Convolution.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 268381192 kB
-------------------------------------------------------------------
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/02_Convolution.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
-------------------------------------------------------------------
Build info:
Built time: May 13 2016 08:06:01
Last modified date: Thu May 12 07:31:50 2016
Built time: Aug 16 2016 02:54:53
Last modified date: Fri Aug 12 05:31:21 2016
Build type: Release
Build target: GPU
With 1bit-SGD: no
Math lib: mkl
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
CUB_PATH: c:\src\cub-1.4.1
CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
Build Branch: HEAD
Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by svcphil on Philly-Pool3
Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
-------------------------------------------------------------------
Changed current directory to C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu\TestData
05/13/2016 08:16:16: -------------------------------------------------------------------
05/13/2016 08:16:16: Build info:
Changed current directory to C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu\TestData
08/16/2016 03:01:04: -------------------------------------------------------------------
08/16/2016 03:01:04: Build info:
05/13/2016 08:16:16: Built time: May 13 2016 08:06:01
05/13/2016 08:16:16: Last modified date: Thu May 12 07:31:50 2016
05/13/2016 08:16:16: Build type: Release
05/13/2016 08:16:16: Build target: GPU
05/13/2016 08:16:16: With 1bit-SGD: no
05/13/2016 08:16:16: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
05/13/2016 08:16:16: CUB_PATH: c:\src\cub-1.4.1
05/13/2016 08:16:16: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
05/13/2016 08:16:16: Build Branch: HEAD
05/13/2016 08:16:16: Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
05/13/2016 08:16:16: Built by svcphil on Philly-Pool3
05/13/2016 08:16:16: Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
05/13/2016 08:16:16: -------------------------------------------------------------------
08/16/2016 03:01:04: Built time: Aug 16 2016 02:54:53
08/16/2016 03:01:04: Last modified date: Fri Aug 12 05:31:21 2016
08/16/2016 03:01:04: Build type: Release
08/16/2016 03:01:04: Build target: GPU
08/16/2016 03:01:04: With 1bit-SGD: no
08/16/2016 03:01:04: Math lib: mkl
08/16/2016 03:01:04: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
08/16/2016 03:01:04: CUB_PATH: c:\src\cub-1.4.1
08/16/2016 03:01:04: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
08/16/2016 03:01:04: Build Branch: HEAD
08/16/2016 03:01:04: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 03:01:04: Built by svcphil on Philly-Pool3
08/16/2016 03:01:04: Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
08/16/2016 03:01:04: -------------------------------------------------------------------
08/16/2016 03:01:07: -------------------------------------------------------------------
08/16/2016 03:01:07: GPU info:
05/13/2016 08:16:16: Running on Philly-Pool2 at 2016/05/13 08:16:16
05/13/2016 08:16:16: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/Config/02_Convolution.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
08/16/2016 03:01:07: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:01:07: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:01:07: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:01:07: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:01:07: -------------------------------------------------------------------
08/16/2016 03:01:07: Running on DPHAIM-24 at 2016/08/16 03:01:07
08/16/2016 03:01:07: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/02_Convolution.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
05/13/2016 08:16:16: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/13/2016 08:16:16: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
ModelDir = "$OutputDir$/Models"
08/16/2016 03:01:07: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:01:07: rootDir = ".."
configDir = "$rootDir$/Config"
dataDir = "$rootDir$/Data"
outputDir = "$rootDir$/Output"
modelDir = "$outputDir$/Models"
deviceId = 0
imageLayout = "cudnn"
command = train:test
precision = "float"
modelPath = "$ModelDir$/02_Convolution"
ndlMacros = "$ConfigDir$/Macros.ndl"
traceLevel=1
numMBsToShowResult=500
prefetch=true
initOnCPUOnly=true
modelPath = "$modelDir$/02_Convolution"
traceLevel = 1
numMBsToShowResult = 500
train = [
action = "train"
NDLNetworkBuilder = [
imageLayout = "cudnn"
initOnCPUOnly = true
ndlMacros = "$configDir$/Macros.ndl"
networkDescription = "$ConfigDir$/02_Convolution.ndl"
]
SGD = [
@ -80,21 +94,18 @@ train = [
format = "dense"
]
]
]
]
]
test = [
action = test
minibatchSize = 16
NDLNetworkBuilder = [
networkDescription = "$ConfigDir$/02_Convolution.ndl"
]
minibatchSize = 1024
reader = [
readerType = "CNTKTextFormatReader"
file = "$DataDir$/Test-28x28_cntk_text.txt"
input = [
features = [
dim = 784
format = "dense"
dim = 784
format = "dense"
]
labels = [
dim = 10
@ -103,37 +114,36 @@ test = [
]
]
]
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu\TestData
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu\TestData
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu
DeviceId=0
timestamping=true
train=[SGD=[maxEpochs=3]]
imageLayout="cudnn"
05/13/2016 08:16:16: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:01:07: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/13/2016 08:16:16: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/13/2016 08:16:16: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu/Models"
08/16/2016 03:01:07: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:01:07: rootDir = ".."
configDir = "../Config"
dataDir = "../Data"
outputDir = "../Output"
modelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu/Models"
deviceId = 0
imageLayout = "cudnn"
command = train:test
precision = "float"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu/Models/02_Convolution"
ndlMacros = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/Macros.ndl"
traceLevel=1
numMBsToShowResult=500
prefetch=true
initOnCPUOnly=true
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu/Models/02_Convolution"
traceLevel = 1
numMBsToShowResult = 500
train = [
action = "train"
NDLNetworkBuilder = [
imageLayout = "cudnn"
initOnCPUOnly = true
ndlMacros = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/Macros.ndl"
networkDescription = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/02_Convolution.ndl"
]
SGD = [
@ -145,7 +155,7 @@ train = [
]
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu\TestData/Train-28x28_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu\TestData/Train-28x28_cntk_text.txt"
input = [
features = [
dim = 784
@ -156,21 +166,18 @@ train = [
format = "dense"
]
]
]
]
]
test = [
action = test
minibatchSize = 16
NDLNetworkBuilder = [
networkDescription = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/02_Convolution.ndl"
]
minibatchSize = 1024
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu\TestData/Test-28x28_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu\TestData/Test-28x28_cntk_text.txt"
input = [
features = [
dim = 784
format = "dense"
dim = 784
format = "dense"
]
labels = [
dim = 10
@ -179,48 +186,42 @@ test = [
]
]
]
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu\TestData
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu\TestData
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu
DeviceId=0
timestamping=true
train=[SGD=[maxEpochs=3]]
imageLayout="cudnn"
05/13/2016 08:16:16: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:01:07: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 08:16:16: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:01:07: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: 02_Convolution.cntk:command=train:test
configparameters: 02_Convolution.cntk:ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config
configparameters: 02_Convolution.cntk:currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu\TestData
configparameters: 02_Convolution.cntk:DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu\TestData
configparameters: 02_Convolution.cntk:configDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config
configparameters: 02_Convolution.cntk:currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu\TestData
configparameters: 02_Convolution.cntk:dataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu\TestData
configparameters: 02_Convolution.cntk:deviceId=0
configparameters: 02_Convolution.cntk:imageLayout=cudnn
configparameters: 02_Convolution.cntk:initOnCPUOnly=true
configparameters: 02_Convolution.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu/Models
configparameters: 02_Convolution.cntk:modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu/Models/02_Convolution
configparameters: 02_Convolution.cntk:ndlMacros=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/Macros.ndl
configparameters: 02_Convolution.cntk:modelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu/Models
configparameters: 02_Convolution.cntk:modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu/Models/02_Convolution
configparameters: 02_Convolution.cntk:numMBsToShowResult=500
configparameters: 02_Convolution.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu
configparameters: 02_Convolution.cntk:outputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu
configparameters: 02_Convolution.cntk:precision=float
configparameters: 02_Convolution.cntk:prefetch=true
configparameters: 02_Convolution.cntk:RootDir=..
configparameters: 02_Convolution.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu
configparameters: 02_Convolution.cntk:rootDir=..
configparameters: 02_Convolution.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu
configparameters: 02_Convolution.cntk:test=[
action = test
minibatchSize = 16
NDLNetworkBuilder = [
networkDescription = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/02_Convolution.ndl"
]
minibatchSize = 1024
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu\TestData/Test-28x28_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu\TestData/Test-28x28_cntk_text.txt"
input = [
features = [
dim = 784
format = "dense"
dim = 784
format = "dense"
]
labels = [
dim = 10
@ -235,6 +236,9 @@ configparameters: 02_Convolution.cntk:traceLevel=1
configparameters: 02_Convolution.cntk:train=[
action = "train"
NDLNetworkBuilder = [
imageLayout = "cudnn"
initOnCPUOnly = true
ndlMacros = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/Macros.ndl"
networkDescription = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/02_Convolution.ndl"
]
SGD = [
@ -246,7 +250,7 @@ configparameters: 02_Convolution.cntk:train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu\TestData/Train-28x28_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu\TestData/Train-28x28_cntk_text.txt"
input = [
features = [
dim = 784
@ -257,32 +261,52 @@ configparameters: 02_Convolution.cntk:train=[
format = "dense"
]
]
]
]
] [SGD=[maxEpochs=3]]
05/13/2016 08:16:16: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 08:16:16: Commands: train test
05/13/2016 08:16:16: Precision = "float"
05/13/2016 08:16:16: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu/Models/02_Convolution
05/13/2016 08:16:16: CNTKCommandTrainInfo: train : 3
05/13/2016 08:16:16: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
08/16/2016 03:01:07: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:01:07: Commands: train test
08/16/2016 03:01:07: Precision = "float"
08/16/2016 03:01:07: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu/Models/02_Convolution
08/16/2016 03:01:07: CNTKCommandTrainInfo: train : 3
08/16/2016 03:01:07: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
05/13/2016 08:16:16: ##############################################################################
05/13/2016 08:16:16: # #
05/13/2016 08:16:16: # Action "train" #
05/13/2016 08:16:16: # #
05/13/2016 08:16:16: ##############################################################################
08/16/2016 03:01:07: ##############################################################################
08/16/2016 03:01:07: # #
08/16/2016 03:01:07: # Action "train" #
08/16/2016 03:01:07: # #
08/16/2016 03:01:07: ##############################################################################
05/13/2016 08:16:16: CNTKCommandTrainBegin: train
08/16/2016 03:01:07: CNTKCommandTrainBegin: train
NDLBuilder Using GPU 0
05/13/2016 08:16:16: Creating virgin network.
08/16/2016 03:01:07: Creating virgin network.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.000000.
Node 'conv1.w.W' (LearnableParameter operation): Initializing Parameter[16 x 25] <- 0.000000.
Node 'conv1.b.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 16] <- 0.000000.
Node 'conv2.w.W' (LearnableParameter operation): Initializing Parameter[32 x 400] <- 0.000000.
Node 'conv2.b.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 32] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[128 x 7 x 7 x 32] <- 0.000000.
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[128 x 1] <- 0.000000.
Node 'ol.W' (LearnableParameter operation): Initializing Parameter[10 x 128] <- 0.000000.
Node 'ol.b' (LearnableParameter operation): Initializing Parameter[10 x 1] <- 0.000000.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.003906.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.003906.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.003906.
Node 'conv1.w.W' (LearnableParameter operation): Initializing Parameter[16 x 25] <- uniform(seed=1, range=0.050000*10.000000, onCPU=true).
Node 'conv1.b.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 16] <- 1.000000.
Node 'conv2.w.W' (LearnableParameter operation): Initializing Parameter[32 x 400] <- uniform(seed=2, range=0.050000*10.000000, onCPU=true).
Node 'conv2.b.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 32] <- 1.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[128 x 7 x 7 x 32] <- uniform(seed=3, range=0.050000*1.000000, onCPU=true).
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[128 x 1] <- uniform(seed=4, range=0.050000*1.000000, onCPU=true).
Node 'ol.W' (LearnableParameter operation): Initializing Parameter[10 x 128] <- uniform(seed=5, range=0.050000*1.000000, onCPU=true).
Node 'ol.b' (LearnableParameter operation): Initializing Parameter[10 x 1] <- uniform(seed=6, range=0.050000*1.000000, onCPU=true).
Post-processing network...
3 roots:
ce = CrossEntropyWithSoftmax()
err = ErrorPrediction()
errs = ErrorPrediction()
ol.z = Plus()
Validating network. 27 nodes to process in pass 1.
@ -313,7 +337,7 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 128], [128 x 1 x *] -> [10 x 1
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x 1 x *], [10 x 1] -> [10 x 1 x *]
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
Validating --> errs = ErrorPrediction (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
Validating network. 16 nodes to process in pass 2.
@ -321,113 +345,122 @@ Validating network. 16 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 28 x 28 x 1, Output: 28 x 28 x 16, Kernel: 5 x 5 x 1, Map: 1 x 1 x 16, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c.c: using cuDNN convolution engine for geometry: Input: 28 x 28 x 1, Output: 28 x 28 x 16, Kernel: 5 x 5 x 1, Map: 1 x 1 x 16, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 28 x 28 x 16, Output: 14 x 14 x 16, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 28 x 28 x 16, Output: 14 x 14 x 16, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 14 x 14 x 16, Output: 14 x 14 x 32, Kernel: 5 x 5 x 16, Map: 32, Stride: 1 x 1 x 16, Sharing: (1, 1, 1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0.
conv2.c.c: using cuDNN convolution engine for geometry: Input: 14 x 14 x 16, Output: 14 x 14 x 32, Kernel: 5 x 5 x 16, Map: 32, Stride: 1 x 1 x 16, Sharing: (1, 1, 1), AutoPad: (1, 1, 0), LowerPad: 0 x 0 x 0, UpperPad: 0 x 0 x 0.
Using cuDNN convolution engine for geometry: Input: 14 x 14 x 32, Output: 7 x 7 x 32, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0.
pool2.p: using cuDNN convolution engine for geometry: Input: 14 x 14 x 32, Output: 7 x 7 x 32, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1, 1, 1), AutoPad: (1, 1, 0), LowerPad: 0 x 0 x 0, UpperPad: 0 x 0 x 0.
11 out of 27 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
05/13/2016 08:16:18: Created model with 27 nodes on GPU 0.
08/16/2016 03:01:08: Created model with 27 nodes on GPU 0.
05/13/2016 08:16:18: Training criterion node(s):
05/13/2016 08:16:18: ce = CrossEntropyWithSoftmax
08/16/2016 03:01:08: Training criterion node(s):
08/16/2016 03:01:08: ce = CrossEntropyWithSoftmax
05/13/2016 08:16:18: Evaluation criterion node(s):
05/13/2016 08:16:18: err = ErrorPrediction
08/16/2016 03:01:08: Evaluation criterion node(s):
08/16/2016 03:01:08: errs = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 49 matrices, 29 are shared as 13, and 20 are not shared.
0000000000000000: {[err Gradient[1]] [featScale Gradient[1 x 1]] [featScaled Gradient[28 x 28 x 1 x *]] [features Gradient[28 x 28 x 1 x *]] [labels Gradient[10 x *]] }
000000CB919F83E0: {[features Value[28 x 28 x 1 x *]] }
000000CBAA188380: {[h1.W Value[128 x 7 x 7 x 32]] }
000000CBAA188560: {[ol.W Value[10 x 128]] }
000000CBAA1887E0: {[ol.b Value[10 x 1]] }
000000CBAA188A60: {[featScale Value[1 x 1]] }
000000CBAA188CE0: {[conv1.w.W Value[16 x 25]] }
000000CBAA1890A0: {[labels Value[10 x *]] }
000000CBAA189320: {[conv2.b.b Value[1 x 1 x 32]] }
000000CBAA1893C0: {[conv2.w.W Value[32 x 400]] }
000000CBAA189C80: {[conv1.b.b Value[1 x 1 x 16]] }
000000CBAA189DC0: {[h1.b Value[128 x 1]] }
000000CBB0834910: {[ol.z Value[10 x 1 x *]] }
000000CBB0834AF0: {[err Value[1]] }
000000CBB0834B90: {[ol.t Gradient[10 x 1 x *]] }
000000CBB0834F50: {[conv1.c.c Gradient[28 x 28 x 16 x *]] [conv1.out Value[28 x 28 x 16 x *]] }
000000CBB0834FF0: {[conv1.c.c Value[28 x 28 x 16 x *]] }
000000CBB08353B0: {[featScaled Value[28 x 28 x 1 x *]] }
000000CBB0835770: {[ce Value[1]] }
000000CBB0835950: {[conv2.c.c Value[14 x 14 x 32 x *]] }
000000CBB0835B30: {[conv2.b.b Gradient[1 x 1 x 32]] [conv2.out Gradient[14 x 14 x 32 x *]] [h1.t Value[128 x *]] }
000000CBB0835BD0: {[h1.W Gradient[128 x 7 x 7 x 32]] [h1.z Value[128 x 1 x *]] }
000000CBB0835C70: {[h1.t Gradient[128 x *]] [h1.y Value[128 x 1 x *]] }
000000CBB0835DB0: {[conv2.cpb Gradient[14 x 14 x 32 x *]] [pool1 Gradient[14 x 14 x 16 x *]] [pool2.p Value[7 x 7 x 32 x *]] }
000000CBB0835F90: {[ce Gradient[1]] }
000000CBB0836350: {[conv1.cpb Value[28 x 28 x 16 x *]] [conv1.w.W Gradient[16 x 25]] }
000000CBB08363F0: {[conv1.b.b Gradient[1 x 1 x 16]] [conv1.out Gradient[28 x 28 x 16 x *]] }
000000CBB0836490: {[h1.z Gradient[128 x 1 x *]] [ol.t Value[10 x 1 x *]] [pool2.p Gradient[7 x 7 x 32 x *]] }
000000CBB0836670: {[ol.b Gradient[10 x 1]] }
000000CBB0836990: {[conv2.c.c Gradient[14 x 14 x 32 x *]] [conv2.out Value[14 x 14 x 32 x *]] }
000000CBB0836A30: {[ol.W Gradient[10 x 128]] [ol.z Gradient[10 x 1 x *]] }
000000CBB0836B70: {[conv2.cpb Value[14 x 14 x 32 x *]] [conv2.w.W Gradient[32 x 400]] }
000000CBB0836CB0: {[h1.b Gradient[128 x 1]] [h1.y Gradient[128 x 1 x *]] }
000000CBB0836E90: {[conv1.cpb Gradient[28 x 28 x 16 x *]] [pool1 Value[14 x 14 x 16 x *]] }
05/13/2016 08:16:18: No PreCompute nodes found, skipping PreCompute step.
05/13/2016 08:16:18: Starting Epoch 1: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 08:16:18: Starting minibatch loop.
05/13/2016 08:16:22: Epoch[ 1 of 3]-Minibatch[1-500, 26.67%]: ce = 1.52245886 * 16000; errs = 53.5312% * 16000; time = 4.2213s; samplesPerSecond = 3790.3
05/13/2016 08:16:24: Epoch[ 1 of 3]-Minibatch[501-1000, 53.33%]: ce = 0.20213049 * 16000; errs = 5.7375% * 16000; time = 1.6650s; samplesPerSecond = 9609.8
05/13/2016 08:16:26: Epoch[ 1 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.11822998 * 16000; errs = 3.4% * 16000; time = 1.6662s; samplesPerSecond = 9602.5
05/13/2016 08:16:27: Finished Epoch[ 1 of 3]: [Training] ce = 0.51029333 * 60000; errs = 17.25% * 60000; totalSamplesSeen = 60000; learningRatePerSample = 0.003125; epochTime=8.83729s
05/13/2016 08:16:27: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu/Models/02_Convolution.1'
05/13/2016 08:16:27: Starting Epoch 2: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 08:16:27: Starting minibatch loop.
05/13/2016 08:16:29: Epoch[ 2 of 3]-Minibatch[1-500, 26.67%]: ce = 0.07765988 * 16000; errs = 2.28125% * 16000; time = 1.6655s; samplesPerSecond = 9606.6
05/13/2016 08:16:30: Epoch[ 2 of 3]-Minibatch[501-1000, 53.33%]: ce = 0.06650398 * 16000; errs = 1.94375% * 16000; time = 1.6661s; samplesPerSecond = 9603.4
05/13/2016 08:16:32: Epoch[ 2 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.06597272 * 16000; errs = 2.025% * 16000; time = 1.6655s; samplesPerSecond = 9607.0
05/13/2016 08:16:33: Finished Epoch[ 2 of 3]: [Training] ce = 0.06707618 * 60000; errs = 1.99333% * 60000; totalSamplesSeen = 120000; learningRatePerSample = 0.003125; epochTime=6.26303s
05/13/2016 08:16:33: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu/Models/02_Convolution.2'
05/13/2016 08:16:33: Starting Epoch 3: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 08:16:33: Starting minibatch loop.
05/13/2016 08:16:35: Epoch[ 3 of 3]-Minibatch[1-500, 26.67%]: ce = 0.04900096 * 16000; errs = 1.53125% * 16000; time = 1.6660s; samplesPerSecond = 9603.7
05/13/2016 08:16:37: Epoch[ 3 of 3]-Minibatch[501-1000, 53.33%]: ce = 0.04317124 * 16000; errs = 1.3% * 16000; time = 1.6655s; samplesPerSecond = 9606.5
05/13/2016 08:16:38: Epoch[ 3 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.04517576 * 16000; errs = 1.29375% * 16000; time = 1.6628s; samplesPerSecond = 9622.2
05/13/2016 08:16:40: Finished Epoch[ 3 of 3]: [Training] ce = 0.04463579 * 60000; errs = 1.335% * 60000; totalSamplesSeen = 180000; learningRatePerSample = 0.003125; epochTime=6.25721s
05/13/2016 08:16:40: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_02_Convolution@release_gpu/Models/02_Convolution'
05/13/2016 08:16:40: CNTKCommandTrainEnd: train
05/13/2016 08:16:40: Action "train" complete.
{ conv2.c.c : [14 x 14 x 32 x *] (gradient)
conv2.out : [14 x 14 x 32 x *] }
{ h1.W : [128 x 7 x 7 x 32] (gradient)
h1.z : [128 x 1 x *] }
{ h1.t : [128 x *] (gradient)
h1.y : [128 x 1 x *] }
{ h1.z : [128 x 1 x *] (gradient)
ol.t : [10 x 1 x *]
pool2.p : [7 x 7 x 32 x *] (gradient) }
{ ol.W : [10 x 128] (gradient)
ol.z : [10 x 1 x *] (gradient) }
{ conv1.b.b : [1 x 1 x 16] (gradient)
conv1.out : [28 x 28 x 16 x *] (gradient) }
{ conv2.b.b : [1 x 1 x 32] (gradient)
conv2.out : [14 x 14 x 32 x *] (gradient)
h1.t : [128 x *] }
{ conv2.cpb : [14 x 14 x 32 x *]
conv2.w.W : [32 x 400] (gradient) }
{ conv2.cpb : [14 x 14 x 32 x *] (gradient)
pool1 : [14 x 14 x 16 x *] (gradient)
pool2.p : [7 x 7 x 32 x *] }
{ conv1.c.c : [28 x 28 x 16 x *] (gradient)
conv1.out : [28 x 28 x 16 x *] }
{ h1.b : [128 x 1] (gradient)
h1.y : [128 x 1 x *] (gradient) }
{ conv1.cpb : [28 x 28 x 16 x *]
conv1.w.W : [16 x 25] (gradient) }
{ conv1.cpb : [28 x 28 x 16 x *] (gradient)
pool1 : [14 x 14 x 16 x *] }
05/13/2016 08:16:40: ##############################################################################
05/13/2016 08:16:40: # #
05/13/2016 08:16:40: # Action "test" #
05/13/2016 08:16:40: # #
05/13/2016 08:16:40: ##############################################################################
08/16/2016 03:01:08: Training 215370 parameters in 8 out of 8 parameter tensors and 22 nodes with gradient:
08/16/2016 03:01:08: Node 'conv1.b.b' (LearnableParameter operation) : [1 x 1 x 16]
08/16/2016 03:01:08: Node 'conv1.w.W' (LearnableParameter operation) : [16 x 25]
08/16/2016 03:01:08: Node 'conv2.b.b' (LearnableParameter operation) : [1 x 1 x 32]
08/16/2016 03:01:08: Node 'conv2.w.W' (LearnableParameter operation) : [32 x 400]
08/16/2016 03:01:08: Node 'h1.W' (LearnableParameter operation) : [128 x 7 x 7 x 32]
08/16/2016 03:01:08: Node 'h1.b' (LearnableParameter operation) : [128 x 1]
08/16/2016 03:01:08: Node 'ol.W' (LearnableParameter operation) : [10 x 128]
08/16/2016 03:01:08: Node 'ol.b' (LearnableParameter operation) : [10 x 1]
08/16/2016 03:01:08: No PreCompute nodes found, or all already computed. Skipping pre-computation step.
08/16/2016 03:01:08: Starting Epoch 1: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..60000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 03:01:08: Starting minibatch loop.
08/16/2016 03:01:12: Epoch[ 1 of 3]-Minibatch[ 1- 500, 26.67%]: ce = 1.27430457 * 16000; errs = 44.075% * 16000; time = 3.3942s; samplesPerSecond = 4714.0
08/16/2016 03:01:13: Epoch[ 1 of 3]-Minibatch[ 501-1000, 53.33%]: ce = 0.19224133 * 16000; errs = 5.400% * 16000; time = 1.7150s; samplesPerSecond = 9329.3
08/16/2016 03:01:15: Epoch[ 1 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.11038135 * 16000; errs = 3.231% * 16000; time = 1.7153s; samplesPerSecond = 9327.6
08/16/2016 03:01:16: Finished Epoch[ 1 of 3]: [Training] ce = 0.43859844 * 60000; errs = 14.615% * 60000; totalSamplesSeen = 60000; learningRatePerSample = 0.003125; epochTime=8.13585s
08/16/2016 03:01:16: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu/Models/02_Convolution.1'
08/16/2016 03:01:16: Starting Epoch 2: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 1: frames [60000..120000] (first sequence at sample 60000), data subset 0 of 1
08/16/2016 03:01:16: Starting minibatch loop.
08/16/2016 03:01:18: Epoch[ 2 of 3]-Minibatch[ 1- 500, 26.67%]: ce = 0.07473590 * 16000; errs = 2.250% * 16000; time = 1.7130s; samplesPerSecond = 9340.4
08/16/2016 03:01:20: Epoch[ 2 of 3]-Minibatch[ 501-1000, 53.33%]: ce = 0.06083897 * 16000; errs = 1.825% * 16000; time = 1.7090s; samplesPerSecond = 9362.3
08/16/2016 03:01:21: Epoch[ 2 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.06430908 * 16000; errs = 1.881% * 16000; time = 1.7094s; samplesPerSecond = 9359.8
08/16/2016 03:01:23: Finished Epoch[ 2 of 3]: [Training] ce = 0.06608532 * 60000; errs = 1.973% * 60000; totalSamplesSeen = 120000; learningRatePerSample = 0.003125; epochTime=6.42906s
08/16/2016 03:01:23: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu/Models/02_Convolution.2'
08/16/2016 03:01:23: Starting Epoch 3: learning rate per sample = 0.003125 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 2: frames [120000..180000] (first sequence at sample 120000), data subset 0 of 1
08/16/2016 03:01:23: Starting minibatch loop.
08/16/2016 03:01:25: Epoch[ 3 of 3]-Minibatch[ 1- 500, 26.67%]: ce = 0.04609646 * 16000; errs = 1.450% * 16000; time = 1.7107s; samplesPerSecond = 9352.7
08/16/2016 03:01:26: Epoch[ 3 of 3]-Minibatch[ 501-1000, 53.33%]: ce = 0.04193843 * 16000; errs = 1.256% * 16000; time = 1.7151s; samplesPerSecond = 9328.9
08/16/2016 03:01:28: Epoch[ 3 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.04465855 * 16000; errs = 1.300% * 16000; time = 1.6923s; samplesPerSecond = 9454.4
08/16/2016 03:01:29: Finished Epoch[ 3 of 3]: [Training] ce = 0.04399961 * 60000; errs = 1.310% * 60000; totalSamplesSeen = 180000; learningRatePerSample = 0.003125; epochTime=6.40462s
08/16/2016 03:01:29: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_02_Convolution@release_gpu/Models/02_Convolution'
08/16/2016 03:01:29: CNTKCommandTrainEnd: train
08/16/2016 03:01:29: Action "train" complete.
08/16/2016 03:01:29: ##############################################################################
08/16/2016 03:01:29: # #
08/16/2016 03:01:29: # Action "test" #
08/16/2016 03:01:29: # #
08/16/2016 03:01:29: ##############################################################################
Post-processing network...
3 roots:
ce = CrossEntropyWithSoftmax()
err = ErrorPrediction()
errs = ErrorPrediction()
ol.z = Plus()
Validating network. 27 nodes to process in pass 1.
@ -458,7 +491,7 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 128], [128 x 1 x *1] -> [10 x 1
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x 1 x *1], [10 x 1] -> [10 x 1 x *1]
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
Validating --> errs = ErrorPrediction (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
Validating network. 16 nodes to process in pass 2.
@ -466,13 +499,13 @@ Validating network. 16 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 28 x 28 x 1, Output: 28 x 28 x 16, Kernel: 5 x 5 x 1, Map: 1 x 1 x 16, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c.c: using cuDNN convolution engine for geometry: Input: 28 x 28 x 1, Output: 28 x 28 x 16, Kernel: 5 x 5 x 1, Map: 1 x 1 x 16, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 28 x 28 x 16, Output: 14 x 14 x 16, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 28 x 28 x 16, Output: 14 x 14 x 16, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 14 x 14 x 16, Output: 14 x 14 x 32, Kernel: 5 x 5 x 16, Map: 32, Stride: 1 x 1 x 16, Sharing: (1, 1, 1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0.
conv2.c.c: using cuDNN convolution engine for geometry: Input: 14 x 14 x 16, Output: 14 x 14 x 32, Kernel: 5 x 5 x 16, Map: 32, Stride: 1 x 1 x 16, Sharing: (1, 1, 1), AutoPad: (1, 1, 0), LowerPad: 0 x 0 x 0, UpperPad: 0 x 0 x 0.
Using cuDNN convolution engine for geometry: Input: 14 x 14 x 32, Output: 7 x 7 x 32, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (1, 1, 0), LowerPad: 0, UpperPad: 0.
pool2.p: using cuDNN convolution engine for geometry: Input: 14 x 14 x 32, Output: 7 x 7 x 32, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1, 1, 1), AutoPad: (1, 1, 0), LowerPad: 0 x 0 x 0, UpperPad: 0 x 0 x 0.
11 out of 27 nodes do not share the minibatch layout with the input data.
@ -484,39 +517,13 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 27 matrices, 0 are shared as 0, and 27 are not shared.
0000000000000000: {[ce Gradient[1]] [conv1.b.b Gradient[1 x 1 x 16]] [conv1.c.c Gradient[28 x 28 x 16 x *1]] [conv1.cpb Gradient[28 x 28 x 16 x *1]] [conv1.out Gradient[28 x 28 x 16 x *1]] [conv1.w.W Gradient[16 x 25]] [conv2.b.b Gradient[1 x 1 x 32]] [conv2.c.c Gradient[14 x 14 x 32 x *1]] [conv2.cpb Gradient[14 x 14 x 32 x *1]] [conv2.out Gradient[14 x 14 x 32 x *1]] [conv2.w.W Gradient[32 x 400]] [err Gradient[1]] [featScale Gradient[1 x 1]] [featScaled Gradient[28 x 28 x 1 x *1]] [features Gradient[28 x 28 x 1 x *1]] [h1.W Gradient[128 x 7 x 7 x 32]] [h1.b Gradient[128 x 1]] [h1.t Gradient[128 x *1]] [h1.y Gradient[128 x 1 x *1]] [h1.z Gradient[128 x 1 x *1]] [labels Gradient[10 x *1]] [ol.W Gradient[10 x 128]] [ol.b Gradient[10 x 1]] [ol.t Gradient[10 x 1 x *1]] [ol.z Gradient[10 x 1 x *1]] [pool1 Gradient[14 x 14 x 16 x *1]] [pool2.p Gradient[7 x 7 x 32 x *1]] }
000000CBAA188420: {[conv2.cpb Value[14 x 14 x 32 x *1]] }
000000CBAA188BA0: {[pool2.p Value[7 x 7 x 32 x *1]] }
000000CBAA1890A0: {[conv1.out Value[28 x 28 x 16 x *1]] }
000000CBAA189140: {[conv2.c.c Value[14 x 14 x 32 x *1]] }
000000CBAA1891E0: {[h1.t Value[128 x *1]] }
000000CBAA189320: {[h1.z Value[128 x 1 x *1]] }
000000CBAA1895A0: {[ol.t Value[10 x 1 x *1]] }
000000CBAA189780: {[pool1 Value[14 x 14 x 16 x *1]] }
000000CBAA189820: {[ol.z Value[10 x 1 x *1]] }
000000CBAA189DC0: {[h1.y Value[128 x 1 x *1]] }
000000CBAA18A0E0: {[conv2.out Value[14 x 14 x 32 x *1]] }
000000CBB0834AF0: {[ol.W Value[10 x 128]] }
000000CBB0834C30: {[h1.b Value[128 x 1]] }
000000CBB0834FF0: {[features Value[28 x 28 x 1 x *1]] }
000000CBB0835770: {[h1.W Value[128 x 7 x 7 x 32]] }
000000CBB08358B0: {[featScale Value[1 x 1]] }
000000CBB0835BD0: {[conv1.w.W Value[16 x 25]] }
000000CBB08360D0: {[labels Value[10 x *1]] }
000000CBB0836350: {[ol.b Value[10 x 1]] }
000000CBB0836490: {[conv2.b.b Value[1 x 1 x 32]] }
000000CBB0836A30: {[conv2.w.W Value[32 x 400]] }
000000CBB0836CB0: {[conv1.b.b Value[1 x 1 x 16]] }
000000CBB08371B0: {[err Value[1]] }
000000CBB08372F0: {[conv1.cpb Value[28 x 28 x 16 x *1]] }
000000CBB0837F70: {[featScaled Value[28 x 28 x 1 x *1]] }
000000CBB08381F0: {[ce Value[1]] }
000000CBB08383D0: {[conv1.c.c Value[28 x 28 x 16 x *1]] }
05/13/2016 08:16:51: Final Results: Minibatch[1-10]: errs = 1.52% * 10000; ce = 0.04488435 * 10000; perplexity = 1.04590689
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 03:01:30: Minibatch[1-10]: errs = 1.380% * 10000; ce = 0.04422099 * 10000
08/16/2016 03:01:30: Final Results: Minibatch[1-10]: errs = 1.380% * 10000; ce = 0.04422099 * 10000; perplexity = 1.04521331
05/13/2016 08:16:51: Action "test" complete.
08/16/2016 03:01:30: Action "test" complete.
05/13/2016 08:16:51: __COMPLETED__
08/16/2016 03:01:30: __COMPLETED__

Просмотреть файл

@ -1,64 +1,77 @@
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../../Examples/Image/MNIST/Config/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/Config/03_ConvBatchNorm.cntk currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../../Examples/Image/MNIST/Config OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 264172964 kB
-------------------------------------------------------------------
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../Examples/Image/MNIST/Config/03_ConvBatchNorm.cntk currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../Examples/Image/MNIST/Config OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
-------------------------------------------------------------------
Build info:
Built time: May 13 2016 14:50:25
Last modified date: Thu May 12 14:00:37 2016
Built time: Aug 16 2016 09:41:56
Last modified date: Fri Aug 12 07:32:43 2016
Build type: release
Build target: GPU
With 1bit-SGD: no
Math lib: acml
Math lib: mkl
CUDA_PATH: /usr/local/cuda-7.5
CUB_PATH: /usr/local/cub-1.4.1
CUDNN_PATH: /usr/local/cudnn-4.0
Build Branch: HEAD
Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
Built by philly on d8dc82703b0f
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by philly on f67b30a647de
Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
-------------------------------------------------------------------
Changed current directory to /tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData
05/13/2016 15:10:29: -------------------------------------------------------------------
05/13/2016 15:10:29: Build info:
Changed current directory to /tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData
08/16/2016 10:50:05: -------------------------------------------------------------------
08/16/2016 10:50:05: Build info:
05/13/2016 15:10:29: Built time: May 13 2016 14:50:25
05/13/2016 15:10:29: Last modified date: Thu May 12 14:00:37 2016
05/13/2016 15:10:29: Build type: release
05/13/2016 15:10:29: Build target: GPU
05/13/2016 15:10:29: With 1bit-SGD: no
05/13/2016 15:10:29: Math lib: acml
05/13/2016 15:10:29: CUDA_PATH: /usr/local/cuda-7.5
05/13/2016 15:10:29: CUB_PATH: /usr/local/cub-1.4.1
05/13/2016 15:10:29: CUDNN_PATH: /usr/local/cudnn-4.0
05/13/2016 15:10:29: Build Branch: HEAD
05/13/2016 15:10:29: Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
05/13/2016 15:10:29: Built by philly on d8dc82703b0f
05/13/2016 15:10:29: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
05/13/2016 15:10:29: -------------------------------------------------------------------
08/16/2016 10:50:05: Built time: Aug 16 2016 09:41:56
08/16/2016 10:50:05: Last modified date: Fri Aug 12 07:32:43 2016
08/16/2016 10:50:05: Build type: release
08/16/2016 10:50:05: Build target: GPU
08/16/2016 10:50:05: With 1bit-SGD: no
08/16/2016 10:50:05: Math lib: mkl
08/16/2016 10:50:05: CUDA_PATH: /usr/local/cuda-7.5
08/16/2016 10:50:05: CUB_PATH: /usr/local/cub-1.4.1
08/16/2016 10:50:05: CUDNN_PATH: /usr/local/cudnn-4.0
08/16/2016 10:50:05: Build Branch: HEAD
08/16/2016 10:50:05: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 10:50:05: Built by philly on f67b30a647de
08/16/2016 10:50:05: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
08/16/2016 10:50:05: -------------------------------------------------------------------
08/16/2016 10:50:06: -------------------------------------------------------------------
08/16/2016 10:50:06: GPU info:
05/13/2016 15:10:29: Running on localhost at 2016/05/13 15:10:29
05/13/2016 15:10:29: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../../Examples/Image/MNIST/Config/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/Config/03_ConvBatchNorm.cntk currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../../Examples/Image/MNIST/Config OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
08/16/2016 10:50:06: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:50:06: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:50:06: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:50:06: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:50:06: -------------------------------------------------------------------
08/16/2016 10:50:06: Running on localhost at 2016/08/16 10:50:06
08/16/2016 10:50:06: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../Examples/Image/MNIST/Config/03_ConvBatchNorm.cntk currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../Examples/Image/MNIST/Config OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
05/13/2016 15:10:29: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/13/2016 15:10:29: RootDir = ".."
08/16/2016 10:50:06: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:50:06: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
ModelDir = "$OutputDir$/Models"
deviceId = 0
imageLayout = "cudnn"
command = train:test
precision = "float"
modelPath = "$ModelDir$/03_ConvBatchNorm"
ndlMacros = "$ConfigDir$/Macros.ndl"
traceLevel=1
numMBsToShowResult=500
initOnCPUOnly=true
train = [
action = "train"
NDLNetworkBuilder = [
imageLayout = "cudnn"
initOnCPUOnly=true
ndlMacros = "$ConfigDir$/Macros.ndl"
networkDescription = "$ConfigDir$/03_ConvBatchNorm.ndl"
]
SGD = [
@ -86,11 +99,8 @@ train = [
]
test = [
action = "test"
minibatchSize = 32
minibatchSize = 1024
modelPath=$ModelDir$/03_ConvBatchNorm
NDLNetworkBuilder = [
networkDescription = "$ConfigDir$/03_ConvBatchNorm.ndl"
]
reader = [
readerType = "CNTKTextFormatReader"
file = "$DataDir$/Test-28x28_cntk_text.txt"
@ -106,37 +116,37 @@ test = [
]
]
]
currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData
RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu
DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../../Examples/Image/MNIST/Config
OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu
currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData
RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu
DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../Examples/Image/MNIST/Config
OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu
DeviceId=0
timestamping=true
train=[SGD=[maxEpochs=3]]
imageLayout="cudnn"
05/13/2016 15:10:29: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:50:06: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/13/2016 15:10:29: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/13/2016 15:10:29: RootDir = ".."
08/16/2016 10:50:06: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:50:06: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/Models"
ModelDir = "/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/Models"
deviceId = 0
imageLayout = "cudnn"
command = train:test
precision = "float"
modelPath = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm"
ndlMacros = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../../Examples/Image/MNIST/Config/Macros.ndl"
modelPath = "/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm"
traceLevel=1
numMBsToShowResult=500
initOnCPUOnly=true
train = [
action = "train"
NDLNetworkBuilder = [
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../../Examples/Image/MNIST/Config/03_ConvBatchNorm.ndl"
imageLayout = "cudnn"
initOnCPUOnly=true
ndlMacros = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../Examples/Image/MNIST/Config/Macros.ndl"
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../Examples/Image/MNIST/Config/03_ConvBatchNorm.ndl"
]
SGD = [
epochSize = 60000
@ -148,7 +158,7 @@ train = [
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData/Train-28x28_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData/Train-28x28_cntk_text.txt"
input = [
features = [
dim = 784
@ -163,14 +173,11 @@ train = [
]
test = [
action = "test"
minibatchSize = 32
modelPath=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm
NDLNetworkBuilder = [
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../../Examples/Image/MNIST/Config/03_ConvBatchNorm.ndl"
]
minibatchSize = 1024
modelPath=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData/Test-28x28_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData/Test-28x28_cntk_text.txt"
input = [
features = [
dim = 784
@ -183,44 +190,39 @@ test = [
]
]
]
currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData
RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu
DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../../Examples/Image/MNIST/Config
OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu
currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData
RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu
DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../Examples/Image/MNIST/Config
OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu
DeviceId=0
timestamping=true
train=[SGD=[maxEpochs=3]]
imageLayout="cudnn"
05/13/2016 15:10:29: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:50:06: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 15:10:29: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:50:06: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: 03_ConvBatchNorm.cntk:command=train:test
configparameters: 03_ConvBatchNorm.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../../Examples/Image/MNIST/Config
configparameters: 03_ConvBatchNorm.cntk:currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData
configparameters: 03_ConvBatchNorm.cntk:DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData
configparameters: 03_ConvBatchNorm.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../Examples/Image/MNIST/Config
configparameters: 03_ConvBatchNorm.cntk:currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData
configparameters: 03_ConvBatchNorm.cntk:DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData
configparameters: 03_ConvBatchNorm.cntk:deviceId=0
configparameters: 03_ConvBatchNorm.cntk:imageLayout=cudnn
configparameters: 03_ConvBatchNorm.cntk:initOnCPUOnly=true
configparameters: 03_ConvBatchNorm.cntk:ModelDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/Models
configparameters: 03_ConvBatchNorm.cntk:modelPath=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm
configparameters: 03_ConvBatchNorm.cntk:ndlMacros=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../../Examples/Image/MNIST/Config/Macros.ndl
configparameters: 03_ConvBatchNorm.cntk:ModelDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/Models
configparameters: 03_ConvBatchNorm.cntk:modelPath=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm
configparameters: 03_ConvBatchNorm.cntk:numMBsToShowResult=500
configparameters: 03_ConvBatchNorm.cntk:OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu
configparameters: 03_ConvBatchNorm.cntk:OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu
configparameters: 03_ConvBatchNorm.cntk:precision=float
configparameters: 03_ConvBatchNorm.cntk:RootDir=..
configparameters: 03_ConvBatchNorm.cntk:RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu
configparameters: 03_ConvBatchNorm.cntk:RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu
configparameters: 03_ConvBatchNorm.cntk:test=[
action = "test"
minibatchSize = 32
modelPath=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm
NDLNetworkBuilder = [
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../../Examples/Image/MNIST/Config/03_ConvBatchNorm.ndl"
]
minibatchSize = 1024
modelPath=/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData/Test-28x28_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData/Test-28x28_cntk_text.txt"
input = [
features = [
dim = 784
@ -239,7 +241,10 @@ configparameters: 03_ConvBatchNorm.cntk:traceLevel=1
configparameters: 03_ConvBatchNorm.cntk:train=[
action = "train"
NDLNetworkBuilder = [
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../../Examples/Image/MNIST/Config/03_ConvBatchNorm.ndl"
imageLayout = "cudnn"
initOnCPUOnly=true
ndlMacros = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../Examples/Image/MNIST/Config/Macros.ndl"
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/MNIST/03_ConvBatchNorm/../../../../../../Examples/Image/MNIST/Config/03_ConvBatchNorm.ndl"
]
SGD = [
epochSize = 60000
@ -251,7 +256,7 @@ configparameters: 03_ConvBatchNorm.cntk:train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData/Train-28x28_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/TestData/Train-28x28_cntk_text.txt"
input = [
features = [
dim = 784
@ -265,29 +270,67 @@ configparameters: 03_ConvBatchNorm.cntk:train=[
]
] [SGD=[maxEpochs=3]]
05/13/2016 15:10:29: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 15:10:29: Commands: train test
05/13/2016 15:10:29: Precision = "float"
05/13/2016 15:10:29: CNTKModelPath: /tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm
05/13/2016 15:10:29: CNTKCommandTrainInfo: train : 3
05/13/2016 15:10:29: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
08/16/2016 10:50:06: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:50:06: Commands: train test
08/16/2016 10:50:06: Precision = "float"
08/16/2016 10:50:06: CNTKModelPath: /tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm
08/16/2016 10:50:06: CNTKCommandTrainInfo: train : 3
08/16/2016 10:50:06: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
05/13/2016 15:10:29: ##############################################################################
05/13/2016 15:10:29: # #
05/13/2016 15:10:29: # Action "train" #
05/13/2016 15:10:29: # #
05/13/2016 15:10:29: ##############################################################################
08/16/2016 10:50:06: ##############################################################################
08/16/2016 10:50:06: # #
08/16/2016 10:50:06: # Action "train" #
08/16/2016 10:50:06: # #
08/16/2016 10:50:06: ##############################################################################
05/13/2016 15:10:29: CNTKCommandTrainBegin: train
08/16/2016 10:50:06: CNTKCommandTrainBegin: train
NDLBuilder Using GPU 0
05/13/2016 15:10:29: Creating virgin network.
08/16/2016 10:50:06: Creating virgin network.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.000000.
Node 'conv1.c.W' (LearnableParameter operation): Initializing Parameter[16 x 25] <- 0.000000.
Node 'conv1.c.c.b' (LearnableParameter operation): Initializing Parameter[16 x 1] <- 0.000000.
Node 'conv1.c.c.sc' (LearnableParameter operation): Initializing Parameter[16 x 1] <- 0.000000.
Node 'conv1.c.c.m' (LearnableParameter operation): Initializing Parameter[16 x 1] <- 0.000000.
Node 'conv1.c.c.isd' (LearnableParameter operation): Initializing Parameter[16 x 1] <- 0.000000.
Node 'conv2.c.W' (LearnableParameter operation): Initializing Parameter[32 x 400] <- 0.000000.
Node 'conv2.c.c.b' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.c.sc' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.c.m' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.c.isd' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[128 x 1568] <- 0.000000.
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[128 x 1] <- 0.000000.
Node 'h1.sc' (LearnableParameter operation): Initializing Parameter[128 x 1] <- 0.000000.
Node 'h1.m' (LearnableParameter operation): Initializing Parameter[128 x 1] <- 0.000000.
Node 'h1.isd' (LearnableParameter operation): Initializing Parameter[128 x 1] <- 0.000000.
Node 'ol.W' (LearnableParameter operation): Initializing Parameter[10 x 128] <- 0.000000.
Node 'ol.b' (LearnableParameter operation): Initializing Parameter[10 x 1] <- 0.000000.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.003906.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.003906.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.003906.
Node 'conv1.c.W' (LearnableParameter operation): Initializing Parameter[16 x 25] <- gaussian(seed=1, range=0.040000*10.000000, onCPU=true).
Node 'conv1.c.c.b' (LearnableParameter operation): Initializing Parameter[16 x 1] <- 0.000000.
Node 'conv1.c.c.sc' (LearnableParameter operation): Initializing Parameter[16 x 1] <- 1.000000.
Node 'conv1.c.c.m' (LearnableParameter operation): Initializing Parameter[16 x 1] <- 0.000000.
Node 'conv1.c.c.isd' (LearnableParameter operation): Initializing Parameter[16 x 1] <- 0.000000.
Node 'conv2.c.W' (LearnableParameter operation): Initializing Parameter[32 x 400] <- gaussian(seed=2, range=0.010000*10.000000, onCPU=true).
Node 'conv2.c.c.b' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.c.sc' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 1.000000.
Node 'conv2.c.c.m' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.c.isd' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[128 x 1568] <- gaussian(seed=3, range=0.005051*1.000000, onCPU=true).
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[128 x 1] <- 0.000000.
Node 'h1.sc' (LearnableParameter operation): Initializing Parameter[128 x 1] <- 1.000000.
Node 'h1.m' (LearnableParameter operation): Initializing Parameter[128 x 1] <- 0.000000.
Node 'h1.isd' (LearnableParameter operation): Initializing Parameter[128 x 1] <- 0.000000.
Node 'ol.W' (LearnableParameter operation): Initializing Parameter[10 x 128] <- uniform(seed=4, range=0.050000*1.000000, onCPU=true).
Node 'ol.b' (LearnableParameter operation): Initializing Parameter[10 x 1] <- uniform(seed=5, range=0.050000*1.000000, onCPU=true).
Post-processing network...
3 roots:
ce = CrossEntropyWithSoftmax()
err = ErrorPrediction()
errs = ErrorPrediction()
ol.z = Plus()
Validating network. 36 nodes to process in pass 1.
@ -329,7 +372,7 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 128], [128 x *] -> [10 x *]
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x *], [10 x 1] -> [10 x 1 x *]
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
Validating --> errs = ErrorPrediction (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
Validating network. 16 nodes to process in pass 2.
@ -337,17 +380,17 @@ Validating network. 16 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 28 x 28 x 1, Output: 28 x 28 x 16, Kernel: 5 x 5 x 1, Map: 1 x 1 x 16, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c.c.c: using cuDNN convolution engine for geometry: Input: 28 x 28 x 1, Output: 28 x 28 x 16, Kernel: 5 x 5 x 1, Map: 1 x 1 x 16, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
Using cuDNN convolution engine for geometry: Input: 28 x 28 x 16, Output: 14 x 14 x 16, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 28 x 28 x 16, Output: 14 x 14 x 16, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 14 x 14 x 16, Output: 14 x 14 x 32, Kernel: 5 x 5 x 16, Map: 1 x 1 x 32, Stride: 1 x 1 x 16, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c.c.c: using cuDNN convolution engine for geometry: Input: 14 x 14 x 16, Output: 14 x 14 x 32, Kernel: 5 x 5 x 16, Map: 1 x 1 x 32, Stride: 1 x 1 x 16, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
Using cuDNN convolution engine for geometry: Input: 14 x 14 x 32, Output: 7 x 7 x 32, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 14 x 14 x 32, Output: 7 x 7 x 32, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
@ -356,113 +399,112 @@ Using CNTK batch normalization engine.
Post-processing network complete.
05/13/2016 15:10:29: Created model with 36 nodes on GPU 0.
08/16/2016 10:50:07: Created model with 36 nodes on GPU 0.
05/13/2016 15:10:29: Training criterion node(s):
05/13/2016 15:10:29: ce = CrossEntropyWithSoftmax
08/16/2016 10:50:07: Training criterion node(s):
08/16/2016 10:50:07: ce = CrossEntropyWithSoftmax
05/13/2016 15:10:29: Evaluation criterion node(s):
05/13/2016 15:10:29: err = ErrorPrediction
08/16/2016 10:50:07: Evaluation criterion node(s):
08/16/2016 10:50:07: errs = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 61 matrices, 28 are shared as 12, and 33 are not shared.
(nil): {[conv1.c.c.isd Gradient[16 x 1]] [conv1.c.c.m Gradient[16 x 1]] [conv2.c.c.isd Gradient[32 x 1]] [conv2.c.c.m Gradient[32 x 1]] [err Gradient[1]] [featScale Gradient[1 x 1]] [featScaled Gradient[28 x 28 x 1 x *]] [features Gradient[28 x 28 x 1 x *]] [h1.isd Gradient[128 x 1]] [h1.m Gradient[128 x 1]] [labels Gradient[10 x *]] }
0x2643328: {[features Value[28 x 28 x 1 x *]] }
0x33a9468: {[featScale Value[1 x 1]] }
0x33aa5e8: {[labels Value[10 x *]] }
0x33ab128: {[conv1.c.W Value[16 x 25]] }
0x33ab818: {[conv1.c.c.b Value[16 x 1]] }
0x33ac238: {[conv1.c.c.sc Value[16 x 1]] }
0x33ad108: {[conv1.c.c.m Value[16 x 1]] }
0x33adbf8: {[conv1.c.c.isd Value[16 x 1]] }
0x33af968: {[conv2.c.W Value[32 x 400]] }
0x33b0878: {[conv2.c.c.b Value[32 x 1]] }
0x33b1258: {[conv2.c.c.sc Value[32 x 1]] }
0x33b1908: {[ol.b Value[10 x 1]] }
0x33b1e78: {[conv2.c.c.m Value[32 x 1]] }
0x33b29c8: {[conv2.c.c.isd Value[32 x 1]] }
0x33b3968: {[h1.W Value[128 x 7 x 7 x 32]] }
0x33b5408: {[h1.b Value[128 x 1]] }
0x33b5e38: {[h1.sc Value[128 x 1]] }
0x33b6738: {[h1.m Value[128 x 1]] }
0x33b70b8: {[h1.isd Value[128 x 1]] }
0x33b7618: {[ol.W Value[10 x 128]] }
0x33be778: {[ce Value[1]] }
0x33bfba8: {[ol.z Value[10 x 1 x *]] }
0x33ff558: {[err Value[1]] }
0x788fe48: {[conv1.c.c.c Value[28 x 28 x 16 x *]] }
0x7890188: {[featScaled Value[28 x 28 x 1 x *]] }
0x7890438: {[conv1.c.c.y Value[28 x 28 x 16 x *]] }
0x7891238: {[conv1.c.c.c Gradient[28 x 28 x 16 x *]] [conv1.y Value[28 x 28 x 16 x *]] }
0x78913f8: {[conv1.c.c.y Gradient[28 x 28 x 16 x *]] [pool1 Value[14 x 14 x 16 x *]] }
0x78915b8: {[conv1.c.W Gradient[16 x 25]] [conv2.c.c.c Value[14 x 14 x 32 x *]] }
0x7891778: {[conv1.c.c.sc Gradient[16 x 1]] [conv1.y Gradient[28 x 28 x 16 x *]] }
0x7891938: {[conv2.c.c.y Value[14 x 14 x 32 x *]] }
0x7891e78: {[conv1.c.c.b Gradient[16 x 1]] [conv2.c.c.c Gradient[14 x 14 x 32 x *]] [conv2.y Value[14 x 14 x 32 x *]] }
0x7892038: {[conv2.c.c.y Gradient[14 x 14 x 32 x *]] [pool2 Value[7 x 7 x 32 x *]] }
0x78921f8: {[conv2.c.c.sc Gradient[32 x 1]] [conv2.y Gradient[14 x 14 x 32 x *]] [h1.t Value[128 x *]] }
0x78923b8: {[h1.bn Value[128 x *]] }
0x7892738: {[conv2.c.c.b Gradient[32 x 1]] }
0x78928f8: {[conv2.c.W Gradient[32 x 400]] [h1.t Gradient[128 x *]] [h1.y Value[128 x *]] }
0x7892ab8: {[h1.bn Gradient[128 x *]] [ol.t Value[10 x *]] }
0x78999e8: {[ce Gradient[1]] }
0x7899ba8: {[ol.W Gradient[10 x 128]] [ol.z Gradient[10 x 1 x *]] }
0x7899d68: {[ol.t Gradient[10 x *]] [pool1 Gradient[14 x 14 x 16 x *]] [pool2 Gradient[7 x 7 x 32 x *]] }
0x7899f28: {[ol.b Gradient[10 x 1]] }
0x789a0e8: {[h1.sc Gradient[128 x 1]] [h1.y Gradient[128 x *]] }
0x789a2d8: {[h1.W Gradient[128 x 7 x 7 x 32]] }
0x789a498: {[h1.b Gradient[128 x 1]] }
{ conv1.c.c.c : [28 x 28 x 16 x *] (gradient)
conv1.y : [28 x 28 x 16 x *] }
{ conv1.c.c.y : [28 x 28 x 16 x *] (gradient)
pool1 : [14 x 14 x 16 x *] }
{ conv1.c.W : [16 x 25] (gradient)
conv2.c.c.c : [14 x 14 x 32 x *] }
{ conv1.c.c.sc : [16 x 1] (gradient)
conv1.y : [28 x 28 x 16 x *] (gradient) }
{ conv1.c.c.b : [16 x 1] (gradient)
conv2.c.c.c : [14 x 14 x 32 x *] (gradient)
conv2.y : [14 x 14 x 32 x *] }
{ conv2.c.c.y : [14 x 14 x 32 x *] (gradient)
pool2 : [7 x 7 x 32 x *] }
{ conv2.c.c.sc : [32 x 1] (gradient)
conv2.y : [14 x 14 x 32 x *] (gradient)
h1.t : [128 x *] }
{ conv2.c.W : [32 x 400] (gradient)
h1.t : [128 x *] (gradient)
h1.y : [128 x *] }
{ h1.bn : [128 x *] (gradient)
ol.t : [10 x *] }
{ ol.W : [10 x 128] (gradient)
ol.z : [10 x 1 x *] (gradient) }
{ ol.t : [10 x *] (gradient)
pool1 : [14 x 14 x 16 x *] (gradient)
pool2 : [7 x 7 x 32 x *] (gradient) }
{ h1.sc : [128 x 1] (gradient)
h1.y : [128 x *] (gradient) }
05/13/2016 15:10:29: No PreCompute nodes found, skipping PreCompute step.
05/13/2016 15:10:29: Starting Epoch 1: learning rate per sample = 0.015625 effective momentum = 0.900000 momentum as time constant = 303.7 samples
08/16/2016 10:50:07: Training 215546 parameters in 11 out of 11 parameter tensors and 25 nodes with gradient:
05/13/2016 15:10:29: Starting minibatch loop.
05/13/2016 15:10:31: Epoch[ 1 of 3]-Minibatch[1-500, 26.67%]: ce = 0.18369328 * 16000; errs = 5.75% * 16000; time = 2.0641s; samplesPerSecond = 7751.5
05/13/2016 15:10:32: Epoch[ 1 of 3]-Minibatch[501-1000, 53.33%]: ce = 0.08101009 * 16000; errs = 2.425% * 16000; time = 1.0283s; samplesPerSecond = 15560.4
05/13/2016 15:10:33: Epoch[ 1 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.06876743 * 16000; errs = 2.125% * 16000; time = 1.0403s; samplesPerSecond = 15380.9
05/13/2016 15:10:34: Finished Epoch[ 1 of 3]: [Training] ce = 0.09983698 * 60000; errs = 3.09833% * 60000; totalSamplesSeen = 60000; learningRatePerSample = 0.015625; epochTime=4.9337s
05/13/2016 15:10:34: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm.1'
08/16/2016 10:50:07: Node 'conv1.c.W' (LearnableParameter operation) : [16 x 25]
08/16/2016 10:50:07: Node 'conv1.c.c.b' (LearnableParameter operation) : [16 x 1]
08/16/2016 10:50:07: Node 'conv1.c.c.sc' (LearnableParameter operation) : [16 x 1]
08/16/2016 10:50:07: Node 'conv2.c.W' (LearnableParameter operation) : [32 x 400]
08/16/2016 10:50:07: Node 'conv2.c.c.b' (LearnableParameter operation) : [32 x 1]
08/16/2016 10:50:07: Node 'conv2.c.c.sc' (LearnableParameter operation) : [32 x 1]
08/16/2016 10:50:07: Node 'h1.W' (LearnableParameter operation) : [128 x 7 x 7 x 32]
08/16/2016 10:50:07: Node 'h1.b' (LearnableParameter operation) : [128 x 1]
08/16/2016 10:50:07: Node 'h1.sc' (LearnableParameter operation) : [128 x 1]
08/16/2016 10:50:07: Node 'ol.W' (LearnableParameter operation) : [10 x 128]
08/16/2016 10:50:07: Node 'ol.b' (LearnableParameter operation) : [10 x 1]
08/16/2016 10:50:07: No PreCompute nodes found, or all already computed. Skipping pre-computation step.
08/16/2016 10:50:07: Starting Epoch 1: learning rate per sample = 0.015625 effective momentum = 0.900000 momentum as time constant = 303.7 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..60000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 10:50:07: Starting minibatch loop.
08/16/2016 10:50:09: Epoch[ 1 of 3]-Minibatch[ 1- 500, 26.67%]: ce = 0.17854112 * 16000; errs = 5.475% * 16000; time = 2.0153s; samplesPerSecond = 7939.3
08/16/2016 10:50:10: Epoch[ 1 of 3]-Minibatch[ 501-1000, 53.33%]: ce = 0.08448637 * 16000; errs = 2.600% * 16000; time = 1.0438s; samplesPerSecond = 15328.0
08/16/2016 10:50:11: Epoch[ 1 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.06565906 * 16000; errs = 2.013% * 16000; time = 1.0288s; samplesPerSecond = 15551.8
08/16/2016 10:50:12: Finished Epoch[ 1 of 3]: [Training] ce = 0.09777317 * 60000; errs = 3.020% * 60000; totalSamplesSeen = 60000; learningRatePerSample = 0.015625; epochTime=4.87401s
08/16/2016 10:50:12: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm.1'
Setting batch normalization blend time constant to inf.
05/13/2016 15:10:34: Starting Epoch 2: learning rate per sample = 0.003125 effective momentum = 0.900000 momentum as time constant = 303.7 samples
08/16/2016 10:50:12: Starting Epoch 2: learning rate per sample = 0.003125 effective momentum = 0.900000 momentum as time constant = 303.7 samples
BlockRandomizer::StartEpoch: epoch 1: frames [60000..120000] (first sequence at sample 60000), data subset 0 of 1
05/13/2016 15:10:34: Starting minibatch loop.
05/13/2016 15:10:35: Epoch[ 2 of 3]-Minibatch[1-500, 26.67%]: ce = 0.02224222 * 16000; errs = 0.75625% * 16000; time = 1.0463s; samplesPerSecond = 15292.5
05/13/2016 15:10:36: Epoch[ 2 of 3]-Minibatch[501-1000, 53.33%]: ce = 0.01788928 * 16000; errs = 0.56875% * 16000; time = 1.0489s; samplesPerSecond = 15254.3
05/13/2016 15:10:37: Epoch[ 2 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.01989119 * 16000; errs = 0.54375% * 16000; time = 1.0414s; samplesPerSecond = 15363.9
05/13/2016 15:10:38: Finished Epoch[ 2 of 3]: [Training] ce = 0.02009503 * 60000; errs = 0.623333% * 60000; totalSamplesSeen = 120000; learningRatePerSample = 0.003125; epochTime=3.92922s
05/13/2016 15:10:38: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm.2'
08/16/2016 10:50:12: Starting minibatch loop.
08/16/2016 10:50:13: Epoch[ 2 of 3]-Minibatch[ 1- 500, 26.67%]: ce = 0.02472396 * 16000; errs = 0.831% * 16000; time = 1.0330s; samplesPerSecond = 15489.0
08/16/2016 10:50:14: Epoch[ 2 of 3]-Minibatch[ 501-1000, 53.33%]: ce = 0.01743382 * 16000; errs = 0.500% * 16000; time = 1.0313s; samplesPerSecond = 15514.5
08/16/2016 10:50:15: Epoch[ 2 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.02253625 * 16000; errs = 0.706% * 16000; time = 1.0300s; samplesPerSecond = 15534.0
08/16/2016 10:50:15: Finished Epoch[ 2 of 3]: [Training] ce = 0.02161322 * 60000; errs = 0.687% * 60000; totalSamplesSeen = 120000; learningRatePerSample = 0.003125; epochTime=3.87243s
08/16/2016 10:50:15: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm.2'
05/13/2016 15:10:38: Starting Epoch 3: learning rate per sample = 0.003125 effective momentum = 0.900000 momentum as time constant = 303.7 samples
08/16/2016 10:50:15: Starting Epoch 3: learning rate per sample = 0.003125 effective momentum = 0.900000 momentum as time constant = 303.7 samples
BlockRandomizer::StartEpoch: epoch 2: frames [120000..180000] (first sequence at sample 120000), data subset 0 of 1
05/13/2016 15:10:38: Starting minibatch loop.
05/13/2016 15:10:39: Epoch[ 3 of 3]-Minibatch[1-500, 26.67%]: ce = 0.01173781 * 16000; errs = 0.30625% * 16000; time = 1.0390s; samplesPerSecond = 15400.0
05/13/2016 15:10:40: Epoch[ 3 of 3]-Minibatch[501-1000, 53.33%]: ce = 0.01463517 * 16000; errs = 0.43125% * 16000; time = 1.0397s; samplesPerSecond = 15388.4
05/13/2016 15:10:41: Epoch[ 3 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.01582476 * 16000; errs = 0.49375% * 16000; time = 1.0373s; samplesPerSecond = 15425.2
05/13/2016 15:10:42: Finished Epoch[ 3 of 3]: [Training] ce = 0.01382984 * 60000; errs = 0.401667% * 60000; totalSamplesSeen = 180000; learningRatePerSample = 0.003125; epochTime=3.9054s
05/13/2016 15:10:42: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm'
05/13/2016 15:10:42: CNTKCommandTrainEnd: train
08/16/2016 10:50:15: Starting minibatch loop.
08/16/2016 10:50:16: Epoch[ 3 of 3]-Minibatch[ 1- 500, 26.67%]: ce = 0.01485439 * 16000; errs = 0.419% * 16000; time = 1.0289s; samplesPerSecond = 15551.0
08/16/2016 10:50:18: Epoch[ 3 of 3]-Minibatch[ 501-1000, 53.33%]: ce = 0.01477328 * 16000; errs = 0.419% * 16000; time = 1.0311s; samplesPerSecond = 15517.7
08/16/2016 10:50:19: Epoch[ 3 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.01663958 * 16000; errs = 0.519% * 16000; time = 1.0372s; samplesPerSecond = 15426.6
08/16/2016 10:50:19: Finished Epoch[ 3 of 3]: [Training] ce = 0.01594585 * 60000; errs = 0.482% * 60000; totalSamplesSeen = 180000; learningRatePerSample = 0.003125; epochTime=3.87525s
08/16/2016 10:50:19: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm'
08/16/2016 10:50:19: CNTKCommandTrainEnd: train
05/13/2016 15:10:42: Action "train" complete.
08/16/2016 10:50:19: Action "train" complete.
05/13/2016 15:10:42: ##############################################################################
05/13/2016 15:10:42: # #
05/13/2016 15:10:42: # Action "test" #
05/13/2016 15:10:42: # #
05/13/2016 15:10:42: ##############################################################################
08/16/2016 10:50:19: ##############################################################################
08/16/2016 10:50:19: # #
08/16/2016 10:50:19: # Action "test" #
08/16/2016 10:50:19: # #
08/16/2016 10:50:19: ##############################################################################
Post-processing network...
3 roots:
ce = CrossEntropyWithSoftmax()
err = ErrorPrediction()
errs = ErrorPrediction()
ol.z = Plus()
Validating network. 36 nodes to process in pass 1.
@ -502,7 +544,7 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 128], [128 x *1] -> [10 x *1]
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x *1], [10 x 1] -> [10 x 1 x *1]
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
Validating --> errs = ErrorPrediction (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
Validating network. 16 nodes to process in pass 2.
@ -510,17 +552,17 @@ Validating network. 16 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 28 x 28 x 1, Output: 28 x 28 x 16, Kernel: 5 x 5 x 1, Map: 1 x 1 x 16, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c.c.c: using cuDNN convolution engine for geometry: Input: 28 x 28 x 1, Output: 28 x 28 x 16, Kernel: 5 x 5 x 1, Map: 1 x 1 x 16, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
Using cuDNN convolution engine for geometry: Input: 28 x 28 x 16, Output: 14 x 14 x 16, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 28 x 28 x 16, Output: 14 x 14 x 16, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 14 x 14 x 16, Output: 14 x 14 x 32, Kernel: 5 x 5 x 16, Map: 1 x 1 x 32, Stride: 1 x 1 x 16, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c.c.c: using cuDNN convolution engine for geometry: Input: 14 x 14 x 16, Output: 14 x 14 x 32, Kernel: 5 x 5 x 16, Map: 1 x 1 x 32, Stride: 1 x 1 x 16, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
Using cuDNN convolution engine for geometry: Input: 14 x 14 x 32, Output: 7 x 7 x 32, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 14 x 14 x 32, Output: 7 x 7 x 32, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
@ -534,48 +576,13 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 36 matrices, 0 are shared as 0, and 36 are not shared.
(nil): {[ce Gradient[1]] [conv1.c.W Gradient[16 x 25]] [conv1.c.c.b Gradient[16 x 1]] [conv1.c.c.c Gradient[28 x 28 x 16 x *1]] [conv1.c.c.isd Gradient[16 x 1]] [conv1.c.c.m Gradient[16 x 1]] [conv1.c.c.sc Gradient[16 x 1]] [conv1.c.c.y Gradient[28 x 28 x 16 x *1]] [conv1.y Gradient[28 x 28 x 16 x *1]] [conv2.c.W Gradient[32 x 400]] [conv2.c.c.b Gradient[32 x 1]] [conv2.c.c.c Gradient[14 x 14 x 32 x *1]] [conv2.c.c.isd Gradient[32 x 1]] [conv2.c.c.m Gradient[32 x 1]] [conv2.c.c.sc Gradient[32 x 1]] [conv2.c.c.y Gradient[14 x 14 x 32 x *1]] [conv2.y Gradient[14 x 14 x 32 x *1]] [err Gradient[1]] [featScale Gradient[1 x 1]] [featScaled Gradient[28 x 28 x 1 x *1]] [features Gradient[28 x 28 x 1 x *1]] [h1.W Gradient[128 x 7 x 7 x 32]] [h1.b Gradient[128 x 1]] [h1.bn Gradient[128 x *1]] [h1.isd Gradient[128 x 1]] [h1.m Gradient[128 x 1]] [h1.sc Gradient[128 x 1]] [h1.t Gradient[128 x *1]] [h1.y Gradient[128 x *1]] [labels Gradient[10 x *1]] [ol.W Gradient[10 x 128]] [ol.b Gradient[10 x 1]] [ol.t Gradient[10 x *1]] [ol.z Gradient[10 x 1 x *1]] [pool1 Gradient[14 x 14 x 16 x *1]] [pool2 Gradient[7 x 7 x 32 x *1]] }
0x7f50cab10a28: {[h1.sc Value[128 x 1]] }
0x7f50cab11988: {[h1.W Value[128 x 7 x 7 x 32]] }
0x7f50cab132e8: {[labels Value[10 x *1]] }
0x7f50cab13968: {[ol.b Value[10 x 1]] }
0x7f50cab14c88: {[h1.b Value[128 x 1]] }
0x7f50cab15368: {[h1.isd Value[128 x 1]] }
0x7f50cab15da8: {[h1.m Value[128 x 1]] }
0x7f50cab160c8: {[conv1.c.c.isd Value[16 x 1]] }
0x7f50cab17e68: {[ol.W Value[10 x 128]] }
0x7f50cab1ac98: {[ce Value[1]] }
0x7f50cab1c4f8: {[err Value[1]] }
0x7f50cabd0b58: {[conv1.c.c.c Value[28 x 28 x 16 x *1]] }
0x7f50cabd0e98: {[featScaled Value[28 x 28 x 1 x *1]] }
0x7f50cabd1148: {[conv1.c.c.y Value[28 x 28 x 16 x *1]] }
0x7f50cabd1f48: {[conv1.y Value[28 x 28 x 16 x *1]] }
0x7f50cabd2108: {[pool1 Value[14 x 14 x 16 x *1]] }
0x7f50cabd22c8: {[conv2.c.c.c Value[14 x 14 x 32 x *1]] }
0x7f50cabd2648: {[conv2.c.c.y Value[14 x 14 x 32 x *1]] }
0x7f50cabd2b88: {[conv2.y Value[14 x 14 x 32 x *1]] }
0x7f50cabd2d48: {[pool2 Value[7 x 7 x 32 x *1]] }
0x7f50cabd2f08: {[h1.t Value[128 x *1]] }
0x7f50cabd9558: {[h1.bn Value[128 x *1]] }
0x7f50cabd9a98: {[h1.y Value[128 x *1]] }
0x7f50cabd9c58: {[ol.t Value[10 x *1]] }
0x7f50cabd9e18: {[ol.z Value[10 x 1 x *1]] }
0x7f50cad85a38: {[conv1.c.c.b Value[16 x 1]] }
0x7f50d5601148: {[conv2.c.c.sc Value[32 x 1]] }
0x7f50d5601ea8: {[conv2.c.W Value[32 x 400]] }
0x7f50d5602728: {[conv1.c.W Value[16 x 25]] }
0x7f50d5602e58: {[conv2.c.c.b Value[32 x 1]] }
0x7f50d5603b28: {[conv1.c.c.sc Value[16 x 1]] }
0x7f50d56045d8: {[conv1.c.c.m Value[16 x 1]] }
0x7f50d5606dd8: {[conv2.c.c.isd Value[32 x 1]] }
0x7f50d5608478: {[conv2.c.c.m Value[32 x 1]] }
0x7f50d5609d38: {[featScale Value[1 x 1]] }
0x7f50d560a658: {[features Value[28 x 28 x 1 x *1]] }
05/13/2016 15:10:47: Final Results: Minibatch[1-10]: errs = 0.66% * 10000; ce = 0.02083102 * 10000; perplexity = 1.02104950
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 10:50:20: Minibatch[1-10]: errs = 0.840% * 10000; ce = 0.02491569 * 10000
08/16/2016 10:50:20: Final Results: Minibatch[1-10]: errs = 0.840% * 10000; ce = 0.02491569 * 10000; perplexity = 1.02522868
05/13/2016 15:10:47: Action "test" complete.
08/16/2016 10:50:20: Action "test" complete.
05/13/2016 15:10:47: __COMPLETED__
08/16/2016 10:50:20: __COMPLETED__

Просмотреть файл

@ -1,62 +1,77 @@
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/Config/03_ConvBatchNorm.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 268381192 kB
-------------------------------------------------------------------
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/03_ConvBatchNorm.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
-------------------------------------------------------------------
Build info:
Built time: May 13 2016 08:06:01
Last modified date: Thu May 12 07:31:50 2016
Built time: Aug 16 2016 02:54:53
Last modified date: Fri Aug 12 05:31:21 2016
Build type: Release
Build target: GPU
With 1bit-SGD: no
Math lib: mkl
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
CUB_PATH: c:\src\cub-1.4.1
CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
Build Branch: HEAD
Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by svcphil on Philly-Pool3
Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
-------------------------------------------------------------------
Changed current directory to C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData
05/13/2016 08:16:56: -------------------------------------------------------------------
05/13/2016 08:16:56: Build info:
Changed current directory to C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData
08/16/2016 03:01:34: -------------------------------------------------------------------
08/16/2016 03:01:34: Build info:
05/13/2016 08:16:56: Built time: May 13 2016 08:06:01
05/13/2016 08:16:56: Last modified date: Thu May 12 07:31:50 2016
05/13/2016 08:16:56: Build type: Release
05/13/2016 08:16:56: Build target: GPU
05/13/2016 08:16:56: With 1bit-SGD: no
05/13/2016 08:16:56: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
05/13/2016 08:16:56: CUB_PATH: c:\src\cub-1.4.1
05/13/2016 08:16:56: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
05/13/2016 08:16:56: Build Branch: HEAD
05/13/2016 08:16:56: Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
05/13/2016 08:16:56: Built by svcphil on Philly-Pool3
05/13/2016 08:16:56: Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
05/13/2016 08:16:56: -------------------------------------------------------------------
08/16/2016 03:01:34: Built time: Aug 16 2016 02:54:53
08/16/2016 03:01:34: Last modified date: Fri Aug 12 05:31:21 2016
08/16/2016 03:01:34: Build type: Release
08/16/2016 03:01:34: Build target: GPU
08/16/2016 03:01:34: With 1bit-SGD: no
08/16/2016 03:01:34: Math lib: mkl
08/16/2016 03:01:34: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
08/16/2016 03:01:34: CUB_PATH: c:\src\cub-1.4.1
08/16/2016 03:01:34: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
08/16/2016 03:01:34: Build Branch: HEAD
08/16/2016 03:01:34: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 03:01:34: Built by svcphil on Philly-Pool3
08/16/2016 03:01:34: Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
08/16/2016 03:01:34: -------------------------------------------------------------------
08/16/2016 03:01:36: -------------------------------------------------------------------
08/16/2016 03:01:36: GPU info:
05/13/2016 08:16:56: Running on Philly-Pool2 at 2016/05/13 08:16:56
05/13/2016 08:16:56: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/MNIST/Config/03_ConvBatchNorm.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
08/16/2016 03:01:36: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:01:36: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:01:36: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:01:36: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:01:36: -------------------------------------------------------------------
08/16/2016 03:01:36: Running on DPHAIM-24 at 2016/08/16 03:01:36
08/16/2016 03:01:36: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/03_ConvBatchNorm.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu DeviceId=0 timestamping=true train=[SGD=[maxEpochs=3]] imageLayout="cudnn"
05/13/2016 08:16:56: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/13/2016 08:16:56: RootDir = ".."
08/16/2016 03:01:36: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:01:36: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
ModelDir = "$OutputDir$/Models"
deviceId = 0
imageLayout = "cudnn"
command = train:test
precision = "float"
modelPath = "$ModelDir$/03_ConvBatchNorm"
ndlMacros = "$ConfigDir$/Macros.ndl"
traceLevel=1
numMBsToShowResult=500
initOnCPUOnly=true
train = [
action = "train"
NDLNetworkBuilder = [
imageLayout = "cudnn"
initOnCPUOnly=true
ndlMacros = "$ConfigDir$/Macros.ndl"
networkDescription = "$ConfigDir$/03_ConvBatchNorm.ndl"
]
SGD = [
@ -84,11 +99,8 @@ train = [
]
test = [
action = "test"
minibatchSize = 32
minibatchSize = 1024
modelPath=$ModelDir$/03_ConvBatchNorm
NDLNetworkBuilder = [
networkDescription = "$ConfigDir$/03_ConvBatchNorm.ndl"
]
reader = [
readerType = "CNTKTextFormatReader"
file = "$DataDir$/Test-28x28_cntk_text.txt"
@ -104,36 +116,36 @@ test = [
]
]
]
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu
DeviceId=0
timestamping=true
train=[SGD=[maxEpochs=3]]
imageLayout="cudnn"
05/13/2016 08:16:56: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:01:36: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/13/2016 08:16:56: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/13/2016 08:16:56: RootDir = ".."
08/16/2016 03:01:36: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:01:36: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu/Models"
ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu/Models"
deviceId = 0
imageLayout = "cudnn"
command = train:test
precision = "float"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm"
ndlMacros = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/Macros.ndl"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm"
traceLevel=1
numMBsToShowResult=500
initOnCPUOnly=true
train = [
action = "train"
NDLNetworkBuilder = [
imageLayout = "cudnn"
initOnCPUOnly=true
ndlMacros = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/Macros.ndl"
networkDescription = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/03_ConvBatchNorm.ndl"
]
SGD = [
@ -146,7 +158,7 @@ train = [
]
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData/Train-28x28_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData/Train-28x28_cntk_text.txt"
input = [
features = [
dim = 784
@ -161,14 +173,11 @@ train = [
]
test = [
action = "test"
minibatchSize = 32
modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm
NDLNetworkBuilder = [
networkDescription = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/03_ConvBatchNorm.ndl"
]
minibatchSize = 1024
modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData/Test-28x28_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData/Test-28x28_cntk_text.txt"
input = [
features = [
dim = 784
@ -181,44 +190,39 @@ test = [
]
]
]
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu
DeviceId=0
timestamping=true
train=[SGD=[maxEpochs=3]]
imageLayout="cudnn"
05/13/2016 08:16:56: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:01:36: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 08:16:56: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:01:36: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: 03_ConvBatchNorm.cntk:command=train:test
configparameters: 03_ConvBatchNorm.cntk:ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config
configparameters: 03_ConvBatchNorm.cntk:currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData
configparameters: 03_ConvBatchNorm.cntk:DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData
configparameters: 03_ConvBatchNorm.cntk:currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData
configparameters: 03_ConvBatchNorm.cntk:DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData
configparameters: 03_ConvBatchNorm.cntk:deviceId=0
configparameters: 03_ConvBatchNorm.cntk:imageLayout=cudnn
configparameters: 03_ConvBatchNorm.cntk:initOnCPUOnly=true
configparameters: 03_ConvBatchNorm.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu/Models
configparameters: 03_ConvBatchNorm.cntk:modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm
configparameters: 03_ConvBatchNorm.cntk:ndlMacros=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/Macros.ndl
configparameters: 03_ConvBatchNorm.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu/Models
configparameters: 03_ConvBatchNorm.cntk:modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm
configparameters: 03_ConvBatchNorm.cntk:numMBsToShowResult=500
configparameters: 03_ConvBatchNorm.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu
configparameters: 03_ConvBatchNorm.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu
configparameters: 03_ConvBatchNorm.cntk:precision=float
configparameters: 03_ConvBatchNorm.cntk:RootDir=..
configparameters: 03_ConvBatchNorm.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu
configparameters: 03_ConvBatchNorm.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu
configparameters: 03_ConvBatchNorm.cntk:test=[
action = "test"
minibatchSize = 32
modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm
NDLNetworkBuilder = [
networkDescription = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/03_ConvBatchNorm.ndl"
]
minibatchSize = 1024
modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData/Test-28x28_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData/Test-28x28_cntk_text.txt"
input = [
features = [
dim = 784
@ -237,6 +241,9 @@ configparameters: 03_ConvBatchNorm.cntk:traceLevel=1
configparameters: 03_ConvBatchNorm.cntk:train=[
action = "train"
NDLNetworkBuilder = [
imageLayout = "cudnn"
initOnCPUOnly=true
ndlMacros = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/Macros.ndl"
networkDescription = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\MNIST\Config/03_ConvBatchNorm.ndl"
]
SGD = [
@ -249,7 +256,7 @@ configparameters: 03_ConvBatchNorm.cntk:train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData/Train-28x28_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu\TestData/Train-28x28_cntk_text.txt"
input = [
features = [
dim = 784
@ -263,29 +270,67 @@ configparameters: 03_ConvBatchNorm.cntk:train=[
]
] [SGD=[maxEpochs=3]]
05/13/2016 08:16:56: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 08:16:56: Commands: train test
05/13/2016 08:16:56: Precision = "float"
05/13/2016 08:16:56: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm
05/13/2016 08:16:56: CNTKCommandTrainInfo: train : 3
05/13/2016 08:16:56: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
08/16/2016 03:01:36: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:01:36: Commands: train test
08/16/2016 03:01:36: Precision = "float"
08/16/2016 03:01:36: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm
08/16/2016 03:01:36: CNTKCommandTrainInfo: train : 3
08/16/2016 03:01:36: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
05/13/2016 08:16:56: ##############################################################################
05/13/2016 08:16:56: # #
05/13/2016 08:16:56: # Action "train" #
05/13/2016 08:16:56: # #
05/13/2016 08:16:56: ##############################################################################
08/16/2016 03:01:36: ##############################################################################
08/16/2016 03:01:36: # #
08/16/2016 03:01:36: # Action "train" #
08/16/2016 03:01:36: # #
08/16/2016 03:01:36: ##############################################################################
05/13/2016 08:16:56: CNTKCommandTrainBegin: train
08/16/2016 03:01:36: CNTKCommandTrainBegin: train
NDLBuilder Using GPU 0
05/13/2016 08:16:57: Creating virgin network.
08/16/2016 03:01:37: Creating virgin network.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.000000.
Node 'conv1.c.W' (LearnableParameter operation): Initializing Parameter[16 x 25] <- 0.000000.
Node 'conv1.c.c.b' (LearnableParameter operation): Initializing Parameter[16 x 1] <- 0.000000.
Node 'conv1.c.c.sc' (LearnableParameter operation): Initializing Parameter[16 x 1] <- 0.000000.
Node 'conv1.c.c.m' (LearnableParameter operation): Initializing Parameter[16 x 1] <- 0.000000.
Node 'conv1.c.c.isd' (LearnableParameter operation): Initializing Parameter[16 x 1] <- 0.000000.
Node 'conv2.c.W' (LearnableParameter operation): Initializing Parameter[32 x 400] <- 0.000000.
Node 'conv2.c.c.b' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.c.sc' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.c.m' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.c.isd' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[128 x 1568] <- 0.000000.
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[128 x 1] <- 0.000000.
Node 'h1.sc' (LearnableParameter operation): Initializing Parameter[128 x 1] <- 0.000000.
Node 'h1.m' (LearnableParameter operation): Initializing Parameter[128 x 1] <- 0.000000.
Node 'h1.isd' (LearnableParameter operation): Initializing Parameter[128 x 1] <- 0.000000.
Node 'ol.W' (LearnableParameter operation): Initializing Parameter[10 x 128] <- 0.000000.
Node 'ol.b' (LearnableParameter operation): Initializing Parameter[10 x 1] <- 0.000000.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.003906.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.003906.
Node 'featScale' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.003906.
Node 'conv1.c.W' (LearnableParameter operation): Initializing Parameter[16 x 25] <- gaussian(seed=1, range=0.040000*10.000000, onCPU=true).
Node 'conv1.c.c.b' (LearnableParameter operation): Initializing Parameter[16 x 1] <- 0.000000.
Node 'conv1.c.c.sc' (LearnableParameter operation): Initializing Parameter[16 x 1] <- 1.000000.
Node 'conv1.c.c.m' (LearnableParameter operation): Initializing Parameter[16 x 1] <- 0.000000.
Node 'conv1.c.c.isd' (LearnableParameter operation): Initializing Parameter[16 x 1] <- 0.000000.
Node 'conv2.c.W' (LearnableParameter operation): Initializing Parameter[32 x 400] <- gaussian(seed=2, range=0.010000*10.000000, onCPU=true).
Node 'conv2.c.c.b' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.c.sc' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 1.000000.
Node 'conv2.c.c.m' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.c.isd' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[128 x 1568] <- gaussian(seed=3, range=0.005051*1.000000, onCPU=true).
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[128 x 1] <- 0.000000.
Node 'h1.sc' (LearnableParameter operation): Initializing Parameter[128 x 1] <- 1.000000.
Node 'h1.m' (LearnableParameter operation): Initializing Parameter[128 x 1] <- 0.000000.
Node 'h1.isd' (LearnableParameter operation): Initializing Parameter[128 x 1] <- 0.000000.
Node 'ol.W' (LearnableParameter operation): Initializing Parameter[10 x 128] <- uniform(seed=4, range=0.050000*1.000000, onCPU=true).
Node 'ol.b' (LearnableParameter operation): Initializing Parameter[10 x 1] <- uniform(seed=5, range=0.050000*1.000000, onCPU=true).
Post-processing network...
3 roots:
ce = CrossEntropyWithSoftmax()
err = ErrorPrediction()
errs = ErrorPrediction()
ol.z = Plus()
Validating network. 36 nodes to process in pass 1.
@ -327,7 +372,7 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 128], [128 x *] -> [10 x *]
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x *], [10 x 1] -> [10 x 1 x *]
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
Validating --> errs = ErrorPrediction (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
Validating network. 16 nodes to process in pass 2.
@ -335,17 +380,17 @@ Validating network. 16 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 28 x 28 x 1, Output: 28 x 28 x 16, Kernel: 5 x 5 x 1, Map: 1 x 1 x 16, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c.c.c: using cuDNN convolution engine for geometry: Input: 28 x 28 x 1, Output: 28 x 28 x 16, Kernel: 5 x 5 x 1, Map: 1 x 1 x 16, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
Using cuDNN convolution engine for geometry: Input: 28 x 28 x 16, Output: 14 x 14 x 16, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 28 x 28 x 16, Output: 14 x 14 x 16, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 14 x 14 x 16, Output: 14 x 14 x 32, Kernel: 5 x 5 x 16, Map: 1 x 1 x 32, Stride: 1 x 1 x 16, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c.c.c: using cuDNN convolution engine for geometry: Input: 14 x 14 x 16, Output: 14 x 14 x 32, Kernel: 5 x 5 x 16, Map: 1 x 1 x 32, Stride: 1 x 1 x 16, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
Using cuDNN convolution engine for geometry: Input: 14 x 14 x 32, Output: 7 x 7 x 32, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 14 x 14 x 32, Output: 7 x 7 x 32, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
@ -354,113 +399,112 @@ Using CNTK batch normalization engine.
Post-processing network complete.
05/13/2016 08:16:58: Created model with 36 nodes on GPU 0.
08/16/2016 03:01:37: Created model with 36 nodes on GPU 0.
05/13/2016 08:16:58: Training criterion node(s):
05/13/2016 08:16:58: ce = CrossEntropyWithSoftmax
08/16/2016 03:01:37: Training criterion node(s):
08/16/2016 03:01:37: ce = CrossEntropyWithSoftmax
05/13/2016 08:16:58: Evaluation criterion node(s):
05/13/2016 08:16:58: err = ErrorPrediction
08/16/2016 03:01:37: Evaluation criterion node(s):
08/16/2016 03:01:37: errs = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 61 matrices, 28 are shared as 12, and 33 are not shared.
0000000000000000: {[conv1.c.c.isd Gradient[16 x 1]] [conv1.c.c.m Gradient[16 x 1]] [conv2.c.c.isd Gradient[32 x 1]] [conv2.c.c.m Gradient[32 x 1]] [err Gradient[1]] [featScale Gradient[1 x 1]] [featScaled Gradient[28 x 28 x 1 x *]] [features Gradient[28 x 28 x 1 x *]] [h1.isd Gradient[128 x 1]] [h1.m Gradient[128 x 1]] [labels Gradient[10 x *]] }
00000093B2DC5E20: {[features Value[28 x 28 x 1 x *]] }
00000093CB445890: {[ol.W Value[10 x 128]] }
00000093CB446290: {[ol.b Value[10 x 1]] }
00000093CB5EF4D0: {[conv2.c.c.m Value[32 x 1]] }
00000093CB5EF570: {[conv1.c.W Value[16 x 25]] }
00000093CB5EF610: {[h1.sc Value[128 x 1]] }
00000093CB5EF9D0: {[conv2.c.c.b Value[32 x 1]] }
00000093CB5EFBB0: {[h1.b Value[128 x 1]] }
00000093CB5EFCF0: {[h1.isd Value[128 x 1]] }
00000093CB5EFD90: {[h1.m Value[128 x 1]] }
00000093CB5F03D0: {[conv1.c.c.b Value[16 x 1]] }
00000093CB5F0470: {[conv1.c.c.sc Value[16 x 1]] }
00000093CB5F05B0: {[conv1.c.c.isd Value[16 x 1]] }
00000093CB5F06F0: {[conv2.c.W Value[32 x 400]] }
00000093CB5F0830: {[conv2.c.c.sc Value[32 x 1]] }
00000093CB5F08D0: {[conv2.c.c.isd Value[32 x 1]] }
00000093CB5F0970: {[labels Value[10 x *]] }
00000093CB5F0BF0: {[conv1.c.c.m Value[16 x 1]] }
00000093CB5F0D30: {[featScale Value[1 x 1]] }
00000093CB5F0DD0: {[h1.W Value[128 x 7 x 7 x 32]] }
00000093D1AAE180: {[conv2.c.c.b Gradient[32 x 1]] }
00000093D1AAE360: {[ol.t Gradient[10 x *]] [pool1 Gradient[14 x 14 x 16 x *]] [pool2 Gradient[7 x 7 x 32 x *]] }
00000093D1AAE400: {[h1.W Gradient[128 x 7 x 7 x 32]] }
00000093D1AAE5E0: {[conv1.c.c.c Gradient[28 x 28 x 16 x *]] [conv1.y Value[28 x 28 x 16 x *]] }
00000093D1AAE680: {[h1.b Gradient[128 x 1]] }
00000093D1AAE9A0: {[err Value[1]] }
00000093D1AAED60: {[ol.z Value[10 x 1 x *]] }
00000093D1AAEE00: {[ce Value[1]] }
00000093D1AAEF40: {[conv1.c.c.y Value[28 x 28 x 16 x *]] }
00000093D1AAF080: {[ol.b Gradient[10 x 1]] }
00000093D1AAF120: {[conv1.c.W Gradient[16 x 25]] [conv2.c.c.c Value[14 x 14 x 32 x *]] }
00000093D1AAF1C0: {[h1.bn Gradient[128 x *]] [ol.t Value[10 x *]] }
00000093D1AAF260: {[conv1.c.c.y Gradient[28 x 28 x 16 x *]] [pool1 Value[14 x 14 x 16 x *]] }
00000093D1AAF440: {[ol.W Gradient[10 x 128]] [ol.z Gradient[10 x 1 x *]] }
00000093D1AAFB20: {[h1.bn Value[128 x *]] }
00000093D1AAFDA0: {[conv1.c.c.c Value[28 x 28 x 16 x *]] }
00000093D1AAFE40: {[conv2.c.c.y Value[14 x 14 x 32 x *]] }
00000093D1AAFF80: {[conv2.c.c.y Gradient[14 x 14 x 32 x *]] [pool2 Value[7 x 7 x 32 x *]] }
00000093D1AB0020: {[conv2.c.W Gradient[32 x 400]] [h1.t Gradient[128 x *]] [h1.y Value[128 x *]] }
00000093D1AB00C0: {[h1.sc Gradient[128 x 1]] [h1.y Gradient[128 x *]] }
00000093D1AB0200: {[ce Gradient[1]] }
00000093D1AB03E0: {[conv1.c.c.sc Gradient[16 x 1]] [conv1.y Gradient[28 x 28 x 16 x *]] }
00000093D1AB0480: {[conv1.c.c.b Gradient[16 x 1]] [conv2.c.c.c Gradient[14 x 14 x 32 x *]] [conv2.y Value[14 x 14 x 32 x *]] }
00000093D1AB0660: {[featScaled Value[28 x 28 x 1 x *]] }
00000093D1AB0700: {[conv2.c.c.sc Gradient[32 x 1]] [conv2.y Gradient[14 x 14 x 32 x *]] [h1.t Value[128 x *]] }
{ conv2.c.W : [32 x 400] (gradient)
h1.t : [128 x *] (gradient)
h1.y : [128 x *] }
{ conv1.c.c.b : [16 x 1] (gradient)
conv2.c.c.c : [14 x 14 x 32 x *] (gradient)
conv2.y : [14 x 14 x 32 x *] }
{ conv1.c.W : [16 x 25] (gradient)
conv2.c.c.c : [14 x 14 x 32 x *] }
{ conv1.c.c.sc : [16 x 1] (gradient)
conv1.y : [28 x 28 x 16 x *] (gradient) }
{ conv2.c.c.y : [14 x 14 x 32 x *] (gradient)
pool2 : [7 x 7 x 32 x *] }
{ ol.W : [10 x 128] (gradient)
ol.z : [10 x 1 x *] (gradient) }
{ conv2.c.c.sc : [32 x 1] (gradient)
conv2.y : [14 x 14 x 32 x *] (gradient)
h1.t : [128 x *] }
{ ol.t : [10 x *] (gradient)
pool1 : [14 x 14 x 16 x *] (gradient)
pool2 : [7 x 7 x 32 x *] (gradient) }
{ h1.sc : [128 x 1] (gradient)
h1.y : [128 x *] (gradient) }
{ h1.bn : [128 x *] (gradient)
ol.t : [10 x *] }
{ conv1.c.c.c : [28 x 28 x 16 x *] (gradient)
conv1.y : [28 x 28 x 16 x *] }
{ conv1.c.c.y : [28 x 28 x 16 x *] (gradient)
pool1 : [14 x 14 x 16 x *] }
05/13/2016 08:16:58: No PreCompute nodes found, skipping PreCompute step.
05/13/2016 08:16:58: Starting Epoch 1: learning rate per sample = 0.015625 effective momentum = 0.900000 momentum as time constant = 303.7 samples
08/16/2016 03:01:37: Training 215546 parameters in 11 out of 11 parameter tensors and 25 nodes with gradient:
05/13/2016 08:16:58: Starting minibatch loop.
05/13/2016 08:17:02: Epoch[ 1 of 3]-Minibatch[1-500, 26.67%]: ce = 0.17330922 * 16000; errs = 5.325% * 16000; time = 4.3656s; samplesPerSecond = 3665.0
05/13/2016 08:17:04: Epoch[ 1 of 3]-Minibatch[501-1000, 53.33%]: ce = 0.07897408 * 16000; errs = 2.45625% * 16000; time = 1.7980s; samplesPerSecond = 8899.0
05/13/2016 08:17:06: Epoch[ 1 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.06288062 * 16000; errs = 2.0125% * 16000; time = 1.7989s; samplesPerSecond = 8894.1
05/13/2016 08:17:07: Finished Epoch[ 1 of 3]: [Training] ce = 0.09585953 * 60000; errs = 2.95667% * 60000; totalSamplesSeen = 60000; learningRatePerSample = 0.015625; epochTime=9.34707s
05/13/2016 08:17:07: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm.1'
08/16/2016 03:01:37: Node 'conv1.c.W' (LearnableParameter operation) : [16 x 25]
08/16/2016 03:01:37: Node 'conv1.c.c.b' (LearnableParameter operation) : [16 x 1]
08/16/2016 03:01:37: Node 'conv1.c.c.sc' (LearnableParameter operation) : [16 x 1]
08/16/2016 03:01:37: Node 'conv2.c.W' (LearnableParameter operation) : [32 x 400]
08/16/2016 03:01:37: Node 'conv2.c.c.b' (LearnableParameter operation) : [32 x 1]
08/16/2016 03:01:37: Node 'conv2.c.c.sc' (LearnableParameter operation) : [32 x 1]
08/16/2016 03:01:37: Node 'h1.W' (LearnableParameter operation) : [128 x 7 x 7 x 32]
08/16/2016 03:01:37: Node 'h1.b' (LearnableParameter operation) : [128 x 1]
08/16/2016 03:01:37: Node 'h1.sc' (LearnableParameter operation) : [128 x 1]
08/16/2016 03:01:37: Node 'ol.W' (LearnableParameter operation) : [10 x 128]
08/16/2016 03:01:37: Node 'ol.b' (LearnableParameter operation) : [10 x 1]
08/16/2016 03:01:37: No PreCompute nodes found, or all already computed. Skipping pre-computation step.
08/16/2016 03:01:37: Starting Epoch 1: learning rate per sample = 0.015625 effective momentum = 0.900000 momentum as time constant = 303.7 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..60000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 03:01:37: Starting minibatch loop.
08/16/2016 03:01:41: Epoch[ 1 of 3]-Minibatch[ 1- 500, 26.67%]: ce = 0.17254086 * 16000; errs = 5.425% * 16000; time = 3.5089s; samplesPerSecond = 4559.8
08/16/2016 03:01:43: Epoch[ 1 of 3]-Minibatch[ 501-1000, 53.33%]: ce = 0.08539883 * 16000; errs = 2.644% * 16000; time = 1.8509s; samplesPerSecond = 8644.2
08/16/2016 03:01:45: Epoch[ 1 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.06454272 * 16000; errs = 1.994% * 16000; time = 1.8515s; samplesPerSecond = 8641.7
08/16/2016 03:01:46: Finished Epoch[ 1 of 3]: [Training] ce = 0.09637989 * 60000; errs = 3.007% * 60000; totalSamplesSeen = 60000; learningRatePerSample = 0.015625; epochTime=8.6331s
08/16/2016 03:01:46: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm.1'
Setting batch normalization blend time constant to 1.#INF.
05/13/2016 08:17:07: Starting Epoch 2: learning rate per sample = 0.003125 effective momentum = 0.900000 momentum as time constant = 303.7 samples
08/16/2016 03:01:46: Starting Epoch 2: learning rate per sample = 0.003125 effective momentum = 0.900000 momentum as time constant = 303.7 samples
BlockRandomizer::StartEpoch: epoch 1: frames [60000..120000] (first sequence at sample 60000), data subset 0 of 1
05/13/2016 08:17:07: Starting minibatch loop.
05/13/2016 08:17:09: Epoch[ 2 of 3]-Minibatch[1-500, 26.67%]: ce = 0.02381749 * 16000; errs = 0.7% * 16000; time = 1.7975s; samplesPerSecond = 8901.2
05/13/2016 08:17:11: Epoch[ 2 of 3]-Minibatch[501-1000, 53.33%]: ce = 0.02147904 * 16000; errs = 0.6875% * 16000; time = 1.7971s; samplesPerSecond = 8903.3
05/13/2016 08:17:13: Epoch[ 2 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.01875302 * 16000; errs = 0.58125% * 16000; time = 1.7965s; samplesPerSecond = 8906.1
05/13/2016 08:17:14: Finished Epoch[ 2 of 3]: [Training] ce = 0.02042361 * 60000; errs = 0.626667% * 60000; totalSamplesSeen = 120000; learningRatePerSample = 0.003125; epochTime=6.7551s
05/13/2016 08:17:14: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm.2'
08/16/2016 03:01:46: Starting minibatch loop.
08/16/2016 03:01:48: Epoch[ 2 of 3]-Minibatch[ 1- 500, 26.67%]: ce = 0.02438868 * 16000; errs = 0.813% * 16000; time = 1.8523s; samplesPerSecond = 8637.8
08/16/2016 03:01:50: Epoch[ 2 of 3]-Minibatch[ 501-1000, 53.33%]: ce = 0.01921910 * 16000; errs = 0.619% * 16000; time = 1.8499s; samplesPerSecond = 8649.0
08/16/2016 03:01:52: Epoch[ 2 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.02277288 * 16000; errs = 0.681% * 16000; time = 1.8499s; samplesPerSecond = 8649.0
08/16/2016 03:01:53: Finished Epoch[ 2 of 3]: [Training] ce = 0.02211336 * 60000; errs = 0.702% * 60000; totalSamplesSeen = 120000; learningRatePerSample = 0.003125; epochTime=6.95395s
08/16/2016 03:01:53: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm.2'
05/13/2016 08:17:14: Starting Epoch 3: learning rate per sample = 0.003125 effective momentum = 0.900000 momentum as time constant = 303.7 samples
08/16/2016 03:01:53: Starting Epoch 3: learning rate per sample = 0.003125 effective momentum = 0.900000 momentum as time constant = 303.7 samples
BlockRandomizer::StartEpoch: epoch 2: frames [120000..180000] (first sequence at sample 120000), data subset 0 of 1
05/13/2016 08:17:14: Starting minibatch loop.
05/13/2016 08:17:16: Epoch[ 3 of 3]-Minibatch[1-500, 26.67%]: ce = 0.01552748 * 16000; errs = 0.4% * 16000; time = 1.7980s; samplesPerSecond = 8899.0
05/13/2016 08:17:18: Epoch[ 3 of 3]-Minibatch[501-1000, 53.33%]: ce = 0.01295741 * 16000; errs = 0.35625% * 16000; time = 1.7961s; samplesPerSecond = 8908.2
05/13/2016 08:17:20: Epoch[ 3 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.01382423 * 16000; errs = 0.39375% * 16000; time = 1.7964s; samplesPerSecond = 8906.7
05/13/2016 08:17:21: Finished Epoch[ 3 of 3]: [Training] ce = 0.01415997 * 60000; errs = 0.391667% * 60000; totalSamplesSeen = 180000; learningRatePerSample = 0.003125; epochTime=6.75556s
05/13/2016 08:17:21: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm'
05/13/2016 08:17:21: CNTKCommandTrainEnd: train
08/16/2016 03:01:53: Starting minibatch loop.
08/16/2016 03:01:55: Epoch[ 3 of 3]-Minibatch[ 1- 500, 26.67%]: ce = 0.01539427 * 16000; errs = 0.444% * 16000; time = 1.8502s; samplesPerSecond = 8647.8
08/16/2016 03:01:57: Epoch[ 3 of 3]-Minibatch[ 501-1000, 53.33%]: ce = 0.01512400 * 16000; errs = 0.419% * 16000; time = 1.8489s; samplesPerSecond = 8653.8
08/16/2016 03:01:59: Epoch[ 3 of 3]-Minibatch[1001-1500, 80.00%]: ce = 0.01669427 * 16000; errs = 0.487% * 16000; time = 1.8506s; samplesPerSecond = 8645.8
08/16/2016 03:02:00: Finished Epoch[ 3 of 3]: [Training] ce = 0.01622233 * 60000; errs = 0.478% * 60000; totalSamplesSeen = 180000; learningRatePerSample = 0.003125; epochTime=6.94912s
08/16/2016 03:02:00: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\MNIST_03_ConvBatchNorm@release_gpu/Models/03_ConvBatchNorm'
08/16/2016 03:02:00: CNTKCommandTrainEnd: train
05/13/2016 08:17:21: Action "train" complete.
08/16/2016 03:02:00: Action "train" complete.
05/13/2016 08:17:21: ##############################################################################
05/13/2016 08:17:21: # #
05/13/2016 08:17:21: # Action "test" #
05/13/2016 08:17:21: # #
05/13/2016 08:17:21: ##############################################################################
08/16/2016 03:02:00: ##############################################################################
08/16/2016 03:02:00: # #
08/16/2016 03:02:00: # Action "test" #
08/16/2016 03:02:00: # #
08/16/2016 03:02:00: ##############################################################################
Post-processing network...
3 roots:
ce = CrossEntropyWithSoftmax()
err = ErrorPrediction()
errs = ErrorPrediction()
ol.z = Plus()
Validating network. 36 nodes to process in pass 1.
@ -500,7 +544,7 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 128], [128 x *1] -> [10 x *1]
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x *1], [10 x 1] -> [10 x 1 x *1]
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
Validating --> errs = ErrorPrediction (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
Validating network. 16 nodes to process in pass 2.
@ -508,17 +552,17 @@ Validating network. 16 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 28 x 28 x 1, Output: 28 x 28 x 16, Kernel: 5 x 5 x 1, Map: 1 x 1 x 16, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c.c.c: using cuDNN convolution engine for geometry: Input: 28 x 28 x 1, Output: 28 x 28 x 16, Kernel: 5 x 5 x 1, Map: 1 x 1 x 16, Stride: 1 x 1 x 1, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
Using cuDNN convolution engine for geometry: Input: 28 x 28 x 16, Output: 14 x 14 x 16, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 28 x 28 x 16, Output: 14 x 14 x 16, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 14 x 14 x 16, Output: 14 x 14 x 32, Kernel: 5 x 5 x 16, Map: 1 x 1 x 32, Stride: 1 x 1 x 16, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c.c.c: using cuDNN convolution engine for geometry: Input: 14 x 14 x 16, Output: 14 x 14 x 32, Kernel: 5 x 5 x 16, Map: 1 x 1 x 32, Stride: 1 x 1 x 16, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
Using cuDNN convolution engine for geometry: Input: 14 x 14 x 32, Output: 7 x 7 x 32, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 14 x 14 x 32, Output: 7 x 7 x 32, Kernel: 2 x 2 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
@ -532,48 +576,13 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 36 matrices, 0 are shared as 0, and 36 are not shared.
0000000000000000: {[ce Gradient[1]] [conv1.c.W Gradient[16 x 25]] [conv1.c.c.b Gradient[16 x 1]] [conv1.c.c.c Gradient[28 x 28 x 16 x *1]] [conv1.c.c.isd Gradient[16 x 1]] [conv1.c.c.m Gradient[16 x 1]] [conv1.c.c.sc Gradient[16 x 1]] [conv1.c.c.y Gradient[28 x 28 x 16 x *1]] [conv1.y Gradient[28 x 28 x 16 x *1]] [conv2.c.W Gradient[32 x 400]] [conv2.c.c.b Gradient[32 x 1]] [conv2.c.c.c Gradient[14 x 14 x 32 x *1]] [conv2.c.c.isd Gradient[32 x 1]] [conv2.c.c.m Gradient[32 x 1]] [conv2.c.c.sc Gradient[32 x 1]] [conv2.c.c.y Gradient[14 x 14 x 32 x *1]] [conv2.y Gradient[14 x 14 x 32 x *1]] [err Gradient[1]] [featScale Gradient[1 x 1]] [featScaled Gradient[28 x 28 x 1 x *1]] [features Gradient[28 x 28 x 1 x *1]] [h1.W Gradient[128 x 7 x 7 x 32]] [h1.b Gradient[128 x 1]] [h1.bn Gradient[128 x *1]] [h1.isd Gradient[128 x 1]] [h1.m Gradient[128 x 1]] [h1.sc Gradient[128 x 1]] [h1.t Gradient[128 x *1]] [h1.y Gradient[128 x *1]] [labels Gradient[10 x *1]] [ol.W Gradient[10 x 128]] [ol.b Gradient[10 x 1]] [ol.t Gradient[10 x *1]] [ol.z Gradient[10 x 1 x *1]] [pool1 Gradient[14 x 14 x 16 x *1]] [pool2 Gradient[7 x 7 x 32 x *1]] }
00000093D1AAEE00: {[pool2 Value[7 x 7 x 32 x *1]] }
00000093D1AAEEA0: {[conv2.c.c.y Value[14 x 14 x 32 x *1]] }
00000093D1AAF300: {[h1.y Value[128 x *1]] }
00000093D1AAF580: {[conv2.y Value[14 x 14 x 32 x *1]] }
00000093D1AAF760: {[h1.bn Value[128 x *1]] }
00000093D1AAF940: {[ol.t Value[10 x *1]] }
00000093D1AB0200: {[h1.t Value[128 x *1]] }
00000093D1AB0700: {[ol.z Value[10 x 1 x *1]] }
00000093D1CA31E0: {[conv2.c.c.sc Value[32 x 1]] }
00000093D1CA3320: {[conv2.c.c.isd Value[32 x 1]] }
00000093D1CA35A0: {[conv2.c.W Value[32 x 400]] }
00000093D1CA3BE0: {[conv2.c.c.m Value[32 x 1]] }
00000093D1CA3FA0: {[conv2.c.c.b Value[32 x 1]] }
00000093D1CA40E0: {[featScale Value[1 x 1]] }
00000093D1CA4720: {[features Value[28 x 28 x 1 x *1]] }
00000093D1CA4C20: {[conv1.c.c.isd Value[16 x 1]] }
00000093D1CA5440: {[conv1.c.c.m Value[16 x 1]] }
00000093D1CA54E0: {[conv1.c.c.b Value[16 x 1]] }
00000093D1CA5580: {[conv1.c.c.sc Value[16 x 1]] }
00000093D1CA5620: {[conv1.c.W Value[16 x 25]] }
00000093D1CA5A80: {[ol.b Value[10 x 1]] }
00000093D1CA5B20: {[ol.W Value[10 x 128]] }
00000093D1CA60C0: {[err Value[1]] }
00000093D1CA6160: {[h1.W Value[128 x 7 x 7 x 32]] }
00000093D1CA6200: {[conv1.c.c.c Value[28 x 28 x 16 x *1]] }
00000093D1CA62A0: {[h1.isd Value[128 x 1]] }
00000093D1CA6340: {[ce Value[1]] }
00000093D1CA6480: {[h1.b Value[128 x 1]] }
00000093D1CA6660: {[conv1.c.c.y Value[28 x 28 x 16 x *1]] }
00000093D1CA6700: {[featScaled Value[28 x 28 x 1 x *1]] }
00000093D1CA68E0: {[h1.sc Value[128 x 1]] }
00000093D1CA6980: {[conv1.y Value[28 x 28 x 16 x *1]] }
00000093D1CA6AC0: {[pool1 Value[14 x 14 x 16 x *1]] }
00000093D1CA6B60: {[conv2.c.c.c Value[14 x 14 x 32 x *1]] }
00000093D1CA6D40: {[h1.m Value[128 x 1]] }
00000093D1CA6DE0: {[labels Value[10 x *1]] }
05/13/2016 08:17:32: Final Results: Minibatch[1-10]: errs = 0.71% * 10000; ce = 0.02063067 * 10000; perplexity = 1.02084496
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 03:02:01: Minibatch[1-10]: errs = 0.770% * 10000; ce = 0.02265451 * 10000
08/16/2016 03:02:01: Final Results: Minibatch[1-10]: errs = 0.770% * 10000; ce = 0.02265451 * 10000; perplexity = 1.02291308
05/13/2016 08:17:32: Action "test" complete.
08/16/2016 03:02:01: Action "test" complete.
05/13/2016 08:17:32: __COMPLETED__
08/16/2016 03:02:01: __COMPLETED__

Просмотреть файл

@ -1,49 +1,62 @@
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/Config/01_Conv.cntk currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10 OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=10]] Train=[SGD=[epochSize=100]] stderr=-
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 264172964 kB
-------------------------------------------------------------------
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/01_Conv.cntk currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10 OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=10]] Train=[SGD=[epochSize=100]] stderr=-
-------------------------------------------------------------------
Build info:
Built time: May 13 2016 14:50:25
Last modified date: Thu May 12 14:00:37 2016
Built time: Aug 16 2016 09:41:56
Last modified date: Fri Aug 12 07:32:43 2016
Build type: release
Build target: GPU
With 1bit-SGD: no
Math lib: acml
Math lib: mkl
CUDA_PATH: /usr/local/cuda-7.5
CUB_PATH: /usr/local/cub-1.4.1
CUDNN_PATH: /usr/local/cudnn-4.0
Build Branch: HEAD
Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
Built by philly on d8dc82703b0f
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by philly on f67b30a647de
Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
-------------------------------------------------------------------
Changed current directory to /tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData
05/13/2016 15:10:47: Redirecting stderr to file -_Train_Test.log
05/13/2016 15:10:47: -------------------------------------------------------------------
05/13/2016 15:10:47: Build info:
Changed current directory to /tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData
08/16/2016 10:50:36: Redirecting stderr to file -_Train_Test.log
08/16/2016 10:50:36: -------------------------------------------------------------------
08/16/2016 10:50:36: Build info:
05/13/2016 15:10:47: Built time: May 13 2016 14:50:25
05/13/2016 15:10:47: Last modified date: Thu May 12 14:00:37 2016
05/13/2016 15:10:47: Build type: release
05/13/2016 15:10:47: Build target: GPU
05/13/2016 15:10:47: With 1bit-SGD: no
05/13/2016 15:10:47: Math lib: acml
05/13/2016 15:10:47: CUDA_PATH: /usr/local/cuda-7.5
05/13/2016 15:10:47: CUB_PATH: /usr/local/cub-1.4.1
05/13/2016 15:10:47: CUDNN_PATH: /usr/local/cudnn-4.0
05/13/2016 15:10:47: Build Branch: HEAD
05/13/2016 15:10:47: Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
05/13/2016 15:10:47: Built by philly on d8dc82703b0f
05/13/2016 15:10:47: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
05/13/2016 15:10:47: -------------------------------------------------------------------
08/16/2016 10:50:36: Built time: Aug 16 2016 09:41:56
08/16/2016 10:50:36: Last modified date: Fri Aug 12 07:32:43 2016
08/16/2016 10:50:36: Build type: release
08/16/2016 10:50:36: Build target: GPU
08/16/2016 10:50:36: With 1bit-SGD: no
08/16/2016 10:50:36: Math lib: mkl
08/16/2016 10:50:36: CUDA_PATH: /usr/local/cuda-7.5
08/16/2016 10:50:36: CUB_PATH: /usr/local/cub-1.4.1
08/16/2016 10:50:36: CUDNN_PATH: /usr/local/cudnn-4.0
08/16/2016 10:50:36: Build Branch: HEAD
08/16/2016 10:50:36: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 10:50:36: Built by philly on f67b30a647de
08/16/2016 10:50:36: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
08/16/2016 10:50:36: -------------------------------------------------------------------
08/16/2016 10:50:37: -------------------------------------------------------------------
08/16/2016 10:50:37: GPU info:
05/13/2016 15:10:47: Running on localhost at 2016/05/13 15:10:47
05/13/2016 15:10:47: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/Config/01_Conv.cntk currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10 OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=10]] Train=[SGD=[epochSize=100]] stderr=-
08/16/2016 10:50:37: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:50:37: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:50:37: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:50:37: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:50:37: -------------------------------------------------------------------
08/16/2016 10:50:37: Running on localhost at 2016/08/16 10:50:37
08/16/2016 10:50:37: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/01_Conv.cntk currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10 OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=10]] Train=[SGD=[epochSize=100]] stderr=-
05/13/2016 15:10:47: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/13/2016 15:10:47: RootDir = "."
08/16/2016 10:50:37: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:50:37: RootDir = "."
ConfigDir = "$RootDir$"
DataDir = "$RootDir$"
OutputDir = "$RootDir$/Output"
@ -53,7 +66,6 @@ precision = "float"
deviceId = 0
imageLayout = "cudnn"
initOnCPUOnly=true
prefetch = "true"
command = Train:Test
modelPath = "$ModelDir$/01_Convolution"
stderr = "$OutputDir$/01_Conv"
@ -86,7 +98,7 @@ Train = [
format = "dense"
]
]
]
]
]
Test = [
action = "test"
@ -104,42 +116,41 @@ Test = [
format = "dense"
]
]
]
]
]
currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData
RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu
DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10
OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu
currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData
RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu
DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10
OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu
DeviceId=0
timestamping=true
Train=[SGD=[maxEpochs=10]]
Train=[SGD=[epochSize=100]]
stderr=-
05/13/2016 15:10:47: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:50:37: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/13/2016 15:10:47: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/13/2016 15:10:47: RootDir = "."
08/16/2016 10:50:37: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:50:37: RootDir = "."
ConfigDir = "."
DataDir = "."
OutputDir = "./Output"
ModelDir = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models"
ndlMacros = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/Macros.ndl"
ModelDir = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models"
ndlMacros = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/Macros.ndl"
precision = "float"
deviceId = 0
imageLayout = "cudnn"
initOnCPUOnly=true
prefetch = "true"
command = Train:Test
modelPath = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution"
stderr = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/01_Conv"
modelPath = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution"
stderr = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/01_Conv"
traceLevel = 1
numMBsToShowResult = 500
Train = [
action = "train"
NDLNetworkBuilder = [
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/01_Convolution.ndl"
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/01_Convolution.ndl"
]
SGD = [
epochSize = 49984
@ -152,7 +163,7 @@ Train = [
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData/Train_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData/Train_cntk_text.txt"
input = [
features = [
dim = 3072
@ -163,14 +174,14 @@ Train = [
format = "dense"
]
]
]
]
]
Test = [
action = "test"
minibatchSize = 16
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData/Test_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData/Test_cntk_text.txt"
input = [
features = [
dim = 3072
@ -181,45 +192,44 @@ Test = [
format = "dense"
]
]
]
]
]
currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData
RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu
DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10
OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu
currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData
RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu
DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10
OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu
DeviceId=0
timestamping=true
Train=[SGD=[maxEpochs=10]]
Train=[SGD=[epochSize=100]]
stderr=-
05/13/2016 15:10:47: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:50:37: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 15:10:47: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:50:37: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: 01_Conv.cntk:command=Train:Test
configparameters: 01_Conv.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10
configparameters: 01_Conv.cntk:currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData
configparameters: 01_Conv.cntk:DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData
configparameters: 01_Conv.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10
configparameters: 01_Conv.cntk:currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData
configparameters: 01_Conv.cntk:DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData
configparameters: 01_Conv.cntk:deviceId=0
configparameters: 01_Conv.cntk:imageLayout=cudnn
configparameters: 01_Conv.cntk:initOnCPUOnly=true
configparameters: 01_Conv.cntk:ModelDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models
configparameters: 01_Conv.cntk:modelPath=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution
configparameters: 01_Conv.cntk:ndlMacros=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/Macros.ndl
configparameters: 01_Conv.cntk:ModelDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models
configparameters: 01_Conv.cntk:modelPath=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution
configparameters: 01_Conv.cntk:ndlMacros=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/Macros.ndl
configparameters: 01_Conv.cntk:numMBsToShowResult=500
configparameters: 01_Conv.cntk:OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu
configparameters: 01_Conv.cntk:OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu
configparameters: 01_Conv.cntk:precision=float
configparameters: 01_Conv.cntk:prefetch=true
configparameters: 01_Conv.cntk:RootDir=.
configparameters: 01_Conv.cntk:RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu
configparameters: 01_Conv.cntk:RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu
configparameters: 01_Conv.cntk:stderr=-
configparameters: 01_Conv.cntk:Test=[
action = "test"
minibatchSize = 16
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData/Test_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData/Test_cntk_text.txt"
input = [
features = [
dim = 3072
@ -230,7 +240,7 @@ configparameters: 01_Conv.cntk:Test=[
format = "dense"
]
]
]
]
]
configparameters: 01_Conv.cntk:timestamping=true
@ -238,7 +248,7 @@ configparameters: 01_Conv.cntk:traceLevel=1
configparameters: 01_Conv.cntk:Train=[
action = "train"
NDLNetworkBuilder = [
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/01_Convolution.ndl"
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/01_Convolution/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/01_Convolution.ndl"
]
SGD = [
epochSize = 49984
@ -251,7 +261,7 @@ configparameters: 01_Conv.cntk:Train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData/Train_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/TestData/Train_cntk_text.txt"
input = [
features = [
dim = 3072
@ -262,27 +272,51 @@ configparameters: 01_Conv.cntk:Train=[
format = "dense"
]
]
]
]
] [SGD=[maxEpochs=10]] [SGD=[epochSize=100]]
05/13/2016 15:10:47: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 15:10:47: Commands: Train Test
05/13/2016 15:10:47: Precision = "float"
05/13/2016 15:10:47: CNTKModelPath: /tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution
05/13/2016 15:10:47: CNTKCommandTrainInfo: Train : 10
05/13/2016 15:10:47: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 10
08/16/2016 10:50:37: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:50:37: Commands: Train Test
08/16/2016 10:50:37: Precision = "float"
08/16/2016 10:50:37: CNTKModelPath: /tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution
08/16/2016 10:50:37: CNTKCommandTrainInfo: Train : 10
08/16/2016 10:50:37: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 10
05/13/2016 15:10:47: ##############################################################################
05/13/2016 15:10:47: # #
05/13/2016 15:10:47: # Action "train" #
05/13/2016 15:10:47: # #
05/13/2016 15:10:47: ##############################################################################
08/16/2016 10:50:37: ##############################################################################
08/16/2016 10:50:37: # #
08/16/2016 10:50:37: # Action "train" #
08/16/2016 10:50:37: # #
08/16/2016 10:50:37: ##############################################################################
05/13/2016 15:10:47: CNTKCommandTrainBegin: Train
08/16/2016 10:50:37: CNTKCommandTrainBegin: Train
NDLBuilder Using GPU 0
05/13/2016 15:10:47: Creating virgin network.
08/16/2016 10:50:37: Creating virgin network.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.000000.
Node 'conv1_act.W' (LearnableParameter operation): Initializing Parameter[32 x 75] <- 0.000000.
Node 'conv1_act.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 32] <- 0.000000.
Node 'conv2_act.W' (LearnableParameter operation): Initializing Parameter[32 x 800] <- 0.000000.
Node 'conv2_act.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 32] <- 0.000000.
Node 'conv3_act.W' (LearnableParameter operation): Initializing Parameter[64 x 800] <- 0.000000.
Node 'conv3_act.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[64 x 3 x 3 x 64] <- 0.000000.
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'OutputNodes.W' (LearnableParameter operation): Initializing Parameter[10 x 64] <- 0.000000.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[10] <- 0.000000.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 128.000000.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 128.000000.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 128.000000.
Node 'conv1_act.W' (LearnableParameter operation): Initializing Parameter[32 x 75] <- gaussian(seed=1, range=0.023094*0.004300, onCPU=false).
SetGaussianRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4
Node 'conv1_act.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 32] <- 0.000000.
Node 'conv2_act.W' (LearnableParameter operation): Initializing Parameter[32 x 800] <- gaussian(seed=2, range=0.007071*1.414000, onCPU=false).
Node 'conv2_act.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 32] <- 0.000000.
Node 'conv3_act.W' (LearnableParameter operation): Initializing Parameter[64 x 800] <- gaussian(seed=3, range=0.007071*1.414000, onCPU=false).
Node 'conv3_act.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[64 x 3 x 3 x 64] <- gaussian(seed=4, range=0.008333*12.000000, onCPU=false).
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'OutputNodes.W' (LearnableParameter operation): Initializing Parameter[10 x 64] <- gaussian(seed=5, range=0.025000*1.500000, onCPU=false).
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[10] <- 0.000000.
Post-processing network...
@ -334,158 +368,176 @@ Validating network. 21 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 32, Kernel: 5 x 5 x 3, Map: 1 x 1 x 32, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1_act.c: using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 32, Kernel: 5 x 5 x 3, Map: 1 x 1 x 32, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 32, Output: 15 x 15 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 32 x 32 x 32, Output: 15 x 15 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 15 x 15 x 32, Kernel: 5 x 5 x 32, Map: 1 x 1 x 32, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2_act.c: using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 15 x 15 x 32, Kernel: 5 x 5 x 32, Map: 1 x 1 x 32, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 7 x 7 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 7 x 7 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 7 x 7 x 32, Output: 7 x 7 x 64, Kernel: 5 x 5 x 32, Map: 1 x 1 x 64, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3_act.c: using cuDNN convolution engine for geometry: Input: 7 x 7 x 32, Output: 7 x 7 x 64, Kernel: 5 x 5 x 32, Map: 1 x 1 x 64, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 7 x 7 x 64, Output: 3 x 3 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool3: using cuDNN convolution engine for geometry: Input: 7 x 7 x 64, Output: 3 x 3 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
13 out of 34 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
05/13/2016 15:10:48: Created model with 34 nodes on GPU 0.
08/16/2016 10:50:38: Created model with 34 nodes on GPU 0.
05/13/2016 15:10:48: Training criterion node(s):
05/13/2016 15:10:48: CE = CrossEntropyWithSoftmax
08/16/2016 10:50:38: Training criterion node(s):
08/16/2016 10:50:38: CE = CrossEntropyWithSoftmax
05/13/2016 15:10:48: Evaluation criterion node(s):
05/13/2016 15:10:48: Err = ErrorPrediction
08/16/2016 10:50:38: Evaluation criterion node(s):
08/16/2016 10:50:38: Err = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 63 matrices, 38 are shared as 17, and 25 are not shared.
(nil): {[Err Gradient[1]] [featOffs Gradient[1 x 1]] [featScaled Gradient[32 x 32 x 3 x *]] [features Gradient[32 x 32 x 3 x *]] [labels Gradient[10 x *]] }
0x2485d28: {[OutputNodes.z Value[10 x 1 x *]] }
0x2485ee8: {[CE Value[1]] }
0x2486168: {[conv1_act.W Gradient[32 x 75]] [conv1_act.p Value[32 x 32 x 32 x *]] }
0x2486328: {[conv1_act.c Gradient[32 x 32 x 32 x *]] [conv1_act.y Value[32 x 32 x 32 x *]] }
0x24864e8: {[conv1_act.p Gradient[32 x 32 x 32 x *]] [pool1 Value[15 x 15 x 32 x *]] }
0x249a638: {[features Value[32 x 32 x 3 x *]] }
0x2975298: {[conv1_act.b Value[1 x 1 x 32]] }
0x2976b48: {[conv2_act.W Value[32 x 800]] }
0x2977ae8: {[conv2_act.b Value[1 x 1 x 32]] }
0x2979668: {[conv3_act.W Value[64 x 800]] }
0x2979f08: {[conv3_act.b Value[1 x 1 x 64]] }
0x297bae8: {[h1.W Value[64 x 3 x 3 x 64]] }
0x297c538: {[h1.b Value[64 x 1]] }
0x297d5c8: {[OutputNodes.W Value[10 x 64]] }
0x297ea98: {[OutputNodes.b Value[10]] }
0x2dd1458: {[featOffs Value[1 x 1]] }
0x2dd2678: {[labels Value[10 x *]] }
0x2dd2eb8: {[conv1_act.W Value[32 x 75]] }
0x7a59dd8: {[Err Value[1]] }
0x7a5d378: {[featScaled Value[32 x 32 x 3 x *]] }
0x7a5d6d8: {[conv1_act.c Value[32 x 32 x 32 x *]] }
0x7a5e478: {[conv2_act.c Value[15 x 15 x 32 x *]] }
0x7a5e638: {[conv1_act.b Gradient[1 x 1 x 32]] [conv1_act.y Gradient[32 x 32 x 32 x *]] }
0x7a5e7f8: {[conv2_act.W Gradient[32 x 800]] [conv2_act.p Value[15 x 15 x 32 x *]] }
0x7a7ade8: {[conv2_act.c Gradient[15 x 15 x 32 x *]] [conv2_act.y Value[15 x 15 x 32 x *]] }
0x7a7afa8: {[conv2_act.p Gradient[15 x 15 x 32 x *]] [pool1 Gradient[15 x 15 x 32 x *]] [pool2 Value[7 x 7 x 32 x *]] }
0x7a7b168: {[conv3_act.c Value[7 x 7 x 64 x *]] }
0x7a7b328: {[conv2_act.b Gradient[1 x 1 x 32]] [conv2_act.y Gradient[15 x 15 x 32 x *]] }
0x7a7b4e8: {[conv3_act.W Gradient[64 x 800]] [conv3_act.p Value[7 x 7 x 64 x *]] }
0x7a7b6a8: {[conv3_act.c Gradient[7 x 7 x 64 x *]] [conv3_act.y Value[7 x 7 x 64 x *]] }
0x7a7b868: {[conv3_act.p Gradient[7 x 7 x 64 x *]] [pool2 Gradient[7 x 7 x 32 x *]] [pool3 Value[3 x 3 x 64 x *]] }
0x7a7ba28: {[conv3_act.b Gradient[1 x 1 x 64]] [conv3_act.y Gradient[7 x 7 x 64 x *]] [h1.t Value[64 x *]] }
0x7a7bbe8: {[h1.W Gradient[64 x 3 x 3 x 64]] [h1.z Value[64 x 1 x *]] }
0x7a7bda8: {[h1.t Gradient[64 x *]] [h1.y Value[64 x 1 x *]] }
0x7a7bf68: {[h1_d Value[64 x 1 x *]] }
0x7a7c128: {[h1.z Gradient[64 x 1 x *]] [pool3 Gradient[3 x 3 x 64 x *]] }
0x7a7c2e8: {[OutputNodes.t Value[10 x 1 x *]] [h1.b Gradient[64 x 1]] [h1.y Gradient[64 x 1 x *]] }
0x7a7cdc8: {[CE Gradient[1]] }
0x7a7cf88: {[OutputNodes.W Gradient[10 x 64]] [OutputNodes.z Gradient[10 x 1 x *]] }
0x7a7d148: {[OutputNodes.t Gradient[10 x 1 x *]] }
0x7a7d308: {[OutputNodes.b Gradient[10]] }
0x7a7d4c8: {[h1_d Gradient[64 x 1 x *]] }
{ conv1_act.W : [32 x 75] (gradient)
conv1_act.p : [32 x 32 x 32 x *] }
{ conv1_act.c : [32 x 32 x 32 x *] (gradient)
conv1_act.y : [32 x 32 x 32 x *] }
{ conv1_act.p : [32 x 32 x 32 x *] (gradient)
pool1 : [15 x 15 x 32 x *] }
{ conv1_act.b : [1 x 1 x 32] (gradient)
conv1_act.y : [32 x 32 x 32 x *] (gradient) }
{ conv2_act.W : [32 x 800] (gradient)
conv2_act.p : [15 x 15 x 32 x *] }
{ conv2_act.c : [15 x 15 x 32 x *] (gradient)
conv2_act.y : [15 x 15 x 32 x *] }
{ conv2_act.p : [15 x 15 x 32 x *] (gradient)
pool1 : [15 x 15 x 32 x *] (gradient)
pool2 : [7 x 7 x 32 x *] }
{ conv2_act.b : [1 x 1 x 32] (gradient)
conv2_act.y : [15 x 15 x 32 x *] (gradient) }
{ conv3_act.W : [64 x 800] (gradient)
conv3_act.p : [7 x 7 x 64 x *] }
{ conv3_act.c : [7 x 7 x 64 x *] (gradient)
conv3_act.y : [7 x 7 x 64 x *] }
{ conv3_act.p : [7 x 7 x 64 x *] (gradient)
pool2 : [7 x 7 x 32 x *] (gradient)
pool3 : [3 x 3 x 64 x *] }
{ conv3_act.b : [1 x 1 x 64] (gradient)
conv3_act.y : [7 x 7 x 64 x *] (gradient)
h1.t : [64 x *] }
{ h1.W : [64 x 3 x 3 x 64] (gradient)
h1.z : [64 x 1 x *] }
{ h1.t : [64 x *] (gradient)
h1.y : [64 x 1 x *] }
{ h1.z : [64 x 1 x *] (gradient)
pool3 : [3 x 3 x 64 x *] (gradient) }
{ OutputNodes.t : [10 x 1 x *]
h1.b : [64 x 1] (gradient)
h1.y : [64 x 1 x *] (gradient) }
{ OutputNodes.W : [10 x 64] (gradient)
OutputNodes.z : [10 x 1 x *] (gradient) }
05/13/2016 15:10:48: No PreCompute nodes found, skipping PreCompute step.
05/13/2016 15:10:48: Starting Epoch 1: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
08/16/2016 10:50:38: Training 116906 parameters in 10 out of 10 parameter tensors and 29 nodes with gradient:
05/13/2016 15:10:48: Starting minibatch loop.
05/13/2016 15:10:51: Finished Epoch[ 1 of 10]: [Training] CE = 2.30242050 * 100; Err = 0.88000000 * 100; totalSamplesSeen = 100; learningRatePerSample = 0.00015625; epochTime=3.55904s
05/13/2016 15:10:51: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.1'
08/16/2016 10:50:38: Node 'OutputNodes.W' (LearnableParameter operation) : [10 x 64]
08/16/2016 10:50:38: Node 'OutputNodes.b' (LearnableParameter operation) : [10]
08/16/2016 10:50:38: Node 'conv1_act.W' (LearnableParameter operation) : [32 x 75]
08/16/2016 10:50:38: Node 'conv1_act.b' (LearnableParameter operation) : [1 x 1 x 32]
08/16/2016 10:50:38: Node 'conv2_act.W' (LearnableParameter operation) : [32 x 800]
08/16/2016 10:50:38: Node 'conv2_act.b' (LearnableParameter operation) : [1 x 1 x 32]
08/16/2016 10:50:38: Node 'conv3_act.W' (LearnableParameter operation) : [64 x 800]
08/16/2016 10:50:38: Node 'conv3_act.b' (LearnableParameter operation) : [1 x 1 x 64]
08/16/2016 10:50:38: Node 'h1.W' (LearnableParameter operation) : [64 x 3 x 3 x 64]
08/16/2016 10:50:38: Node 'h1.b' (LearnableParameter operation) : [64 x 1]
05/13/2016 15:10:51: Starting Epoch 2: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
08/16/2016 10:50:38: No PreCompute nodes found, or all already computed. Skipping pre-computation step.
05/13/2016 15:10:51: Starting minibatch loop.
05/13/2016 15:10:51: Finished Epoch[ 2 of 10]: [Training] CE = 2.30175842 * 100; Err = 0.94000000 * 100; totalSamplesSeen = 200; learningRatePerSample = 0.00015625; epochTime=0.011903s
05/13/2016 15:10:51: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.2'
08/16/2016 10:50:38: Starting Epoch 1: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..100] (first sequence at sample 0), data subset 0 of 1
05/13/2016 15:10:51: Starting Epoch 3: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
08/16/2016 10:50:38: Starting minibatch loop.
08/16/2016 10:50:41: Finished Epoch[ 1 of 10]: [Training] CE = 2.30223602 * 100; Err = 0.90000000 * 100; totalSamplesSeen = 100; learningRatePerSample = 0.00015625; epochTime=3.51082s
08/16/2016 10:50:41: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.1'
05/13/2016 15:10:51: Starting minibatch loop.
05/13/2016 15:10:51: Finished Epoch[ 3 of 10]: [Training] CE = 2.30054413 * 100; Err = 0.90000000 * 100; totalSamplesSeen = 300; learningRatePerSample = 0.00015625; epochTime=0.012701s
05/13/2016 15:10:51: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.3'
08/16/2016 10:50:41: Starting Epoch 2: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 1: frames [100..200] (first sequence at sample 100), data subset 0 of 1
05/13/2016 15:10:51: Starting Epoch 4: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
08/16/2016 10:50:41: Starting minibatch loop.
08/16/2016 10:50:41: Finished Epoch[ 2 of 10]: [Training] CE = 2.30189240 * 100; Err = 0.87000000 * 100; totalSamplesSeen = 200; learningRatePerSample = 0.00015625; epochTime=0.012555s
08/16/2016 10:50:41: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.2'
05/13/2016 15:10:51: Starting minibatch loop.
05/13/2016 15:10:51: Finished Epoch[ 4 of 10]: [Training] CE = 2.30022812 * 100; Err = 0.88000000 * 100; totalSamplesSeen = 400; learningRatePerSample = 0.00015625; epochTime=0.01144s
05/13/2016 15:10:51: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.4'
08/16/2016 10:50:41: Starting Epoch 3: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 2: frames [200..300] (first sequence at sample 200), data subset 0 of 1
05/13/2016 15:10:51: Starting Epoch 5: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
08/16/2016 10:50:41: Starting minibatch loop.
08/16/2016 10:50:41: Finished Epoch[ 3 of 10]: [Training] CE = 2.29965256 * 100; Err = 0.86000000 * 100; totalSamplesSeen = 300; learningRatePerSample = 0.00015625; epochTime=0.012394s
08/16/2016 10:50:41: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.3'
05/13/2016 15:10:51: Starting minibatch loop.
05/13/2016 15:10:51: Finished Epoch[ 5 of 10]: [Training] CE = 2.29579636 * 100; Err = 0.87000000 * 100; totalSamplesSeen = 500; learningRatePerSample = 0.00015625; epochTime=0.011529s
05/13/2016 15:10:51: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.5'
08/16/2016 10:50:41: Starting Epoch 4: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 3: frames [300..400] (first sequence at sample 300), data subset 0 of 1
08/16/2016 10:50:41: Starting minibatch loop.
08/16/2016 10:50:41: Finished Epoch[ 4 of 10]: [Training] CE = 2.29966064 * 100; Err = 0.91000000 * 100; totalSamplesSeen = 400; learningRatePerSample = 0.00015625; epochTime=0.0124s
08/16/2016 10:50:41: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.4'
08/16/2016 10:50:41: Starting Epoch 5: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 4: frames [400..500] (first sequence at sample 400), data subset 0 of 1
08/16/2016 10:50:41: Starting minibatch loop.
08/16/2016 10:50:41: Finished Epoch[ 5 of 10]: [Training] CE = 2.30450394 * 100; Err = 0.94000000 * 100; totalSamplesSeen = 500; learningRatePerSample = 0.00015625; epochTime=0.012302s
08/16/2016 10:50:41: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.5'
Setting dropout rate to 0.5.
05/13/2016 15:10:51: Starting Epoch 6: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
08/16/2016 10:50:41: Starting Epoch 6: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 5: frames [500..600] (first sequence at sample 500), data subset 0 of 1
05/13/2016 15:10:51: Starting minibatch loop.
08/16/2016 10:50:41: Starting minibatch loop.
(GPU): creating curand object with seed 5
05/13/2016 15:10:51: Finished Epoch[ 6 of 10]: [Training] CE = 2.30121231 * 100; Err = 0.84000000 * 100; totalSamplesSeen = 600; learningRatePerSample = 0.00015625; epochTime=0.012276s
05/13/2016 15:10:51: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.6'
08/16/2016 10:50:41: Finished Epoch[ 6 of 10]: [Training] CE = 2.29013916 * 100; Err = 0.81000000 * 100; totalSamplesSeen = 600; learningRatePerSample = 0.00015625; epochTime=0.012412s
08/16/2016 10:50:41: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.6'
05/13/2016 15:10:51: Starting Epoch 7: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
08/16/2016 10:50:41: Starting Epoch 7: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 6: frames [600..700] (first sequence at sample 600), data subset 0 of 1
05/13/2016 15:10:51: Starting minibatch loop.
08/16/2016 10:50:41: Starting minibatch loop.
(GPU): creating curand object with seed 6
05/13/2016 15:10:52: Finished Epoch[ 7 of 10]: [Training] CE = 2.28975647 * 100; Err = 0.93000000 * 100; totalSamplesSeen = 700; learningRatePerSample = 0.00015625; epochTime=0.011495s
05/13/2016 15:10:52: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.7'
08/16/2016 10:50:41: Finished Epoch[ 7 of 10]: [Training] CE = 2.29815765 * 100; Err = 0.93000000 * 100; totalSamplesSeen = 700; learningRatePerSample = 0.00015625; epochTime=0.012303s
08/16/2016 10:50:41: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.7'
05/13/2016 15:10:52: Starting Epoch 8: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
08/16/2016 10:50:41: Starting Epoch 8: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 7: frames [700..800] (first sequence at sample 700), data subset 0 of 1
05/13/2016 15:10:52: Starting minibatch loop.
08/16/2016 10:50:41: Starting minibatch loop.
(GPU): creating curand object with seed 7
05/13/2016 15:10:52: Finished Epoch[ 8 of 10]: [Training] CE = 2.29035095 * 100; Err = 0.91000000 * 100; totalSamplesSeen = 800; learningRatePerSample = 0.00015625; epochTime=0.012157s
05/13/2016 15:10:52: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.8'
08/16/2016 10:50:41: Finished Epoch[ 8 of 10]: [Training] CE = 2.28805603 * 100; Err = 0.89000000 * 100; totalSamplesSeen = 800; learningRatePerSample = 0.00015625; epochTime=0.012517s
08/16/2016 10:50:41: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.8'
05/13/2016 15:10:52: Starting Epoch 9: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
08/16/2016 10:50:41: Starting Epoch 9: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 8: frames [800..900] (first sequence at sample 800), data subset 0 of 1
05/13/2016 15:10:52: Starting minibatch loop.
08/16/2016 10:50:41: Starting minibatch loop.
(GPU): creating curand object with seed 8
05/13/2016 15:10:52: Finished Epoch[ 9 of 10]: [Training] CE = 2.29797729 * 100; Err = 0.87000000 * 100; totalSamplesSeen = 900; learningRatePerSample = 0.00015625; epochTime=0.011451s
05/13/2016 15:10:52: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.9'
08/16/2016 10:50:41: Finished Epoch[ 9 of 10]: [Training] CE = 2.29380524 * 100; Err = 0.88000000 * 100; totalSamplesSeen = 900; learningRatePerSample = 0.00015625; epochTime=0.012463s
08/16/2016 10:50:41: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.9'
05/13/2016 15:10:52: Starting Epoch 10: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
08/16/2016 10:50:41: Starting Epoch 10: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 9: frames [900..1000] (first sequence at sample 900), data subset 0 of 1
05/13/2016 15:10:52: Starting minibatch loop.
08/16/2016 10:50:41: Starting minibatch loop.
(GPU): creating curand object with seed 9
05/13/2016 15:10:52: Finished Epoch[10 of 10]: [Training] CE = 2.29764435 * 100; Err = 0.87000000 * 100; totalSamplesSeen = 1000; learningRatePerSample = 0.00015625; epochTime=0.012689s
05/13/2016 15:10:52: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution'
05/13/2016 15:10:52: CNTKCommandTrainEnd: Train
08/16/2016 10:50:41: Finished Epoch[10 of 10]: [Training] CE = 2.27814423 * 100; Err = 0.87000000 * 100; totalSamplesSeen = 1000; learningRatePerSample = 0.00015625; epochTime=0.012432s
08/16/2016 10:50:41: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution'
08/16/2016 10:50:41: CNTKCommandTrainEnd: Train
05/13/2016 15:10:52: Action "train" complete.
08/16/2016 10:50:41: Action "train" complete.
05/13/2016 15:10:52: ##############################################################################
05/13/2016 15:10:52: # #
05/13/2016 15:10:52: # Action "test" #
05/13/2016 15:10:52: # #
05/13/2016 15:10:52: ##############################################################################
08/16/2016 10:50:41: ##############################################################################
08/16/2016 10:50:41: # #
08/16/2016 10:50:41: # Action "test" #
08/16/2016 10:50:41: # #
08/16/2016 10:50:41: ##############################################################################
Post-processing network...
@ -538,17 +590,17 @@ Validating network. 21 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 32, Kernel: 5 x 5 x 3, Map: 1 x 1 x 32, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1_act.c: using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 32, Kernel: 5 x 5 x 3, Map: 1 x 1 x 32, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 32, Output: 15 x 15 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 32 x 32 x 32, Output: 15 x 15 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 15 x 15 x 32, Kernel: 5 x 5 x 32, Map: 1 x 1 x 32, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2_act.c: using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 15 x 15 x 32, Kernel: 5 x 5 x 32, Map: 1 x 1 x 32, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 7 x 7 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 7 x 7 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 7 x 7 x 32, Output: 7 x 7 x 64, Kernel: 5 x 5 x 32, Map: 1 x 1 x 64, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3_act.c: using cuDNN convolution engine for geometry: Input: 7 x 7 x 32, Output: 7 x 7 x 64, Kernel: 5 x 5 x 32, Map: 1 x 1 x 64, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 7 x 7 x 64, Output: 3 x 3 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool3: using cuDNN convolution engine for geometry: Input: 7 x 7 x 64, Output: 3 x 3 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
13 out of 34 nodes do not share the minibatch layout with the input data.
@ -560,46 +612,14 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 34 matrices, 0 are shared as 0, and 34 are not shared.
(nil): {[CE Gradient[1]] [Err Gradient[1]] [OutputNodes.W Gradient[10 x 64]] [OutputNodes.b Gradient[10]] [OutputNodes.t Gradient[10 x 1 x *1]] [OutputNodes.z Gradient[10 x 1 x *1]] [conv1_act.W Gradient[32 x 75]] [conv1_act.b Gradient[1 x 1 x 32]] [conv1_act.c Gradient[32 x 32 x 32 x *1]] [conv1_act.p Gradient[32 x 32 x 32 x *1]] [conv1_act.y Gradient[32 x 32 x 32 x *1]] [conv2_act.W Gradient[32 x 800]] [conv2_act.b Gradient[1 x 1 x 32]] [conv2_act.c Gradient[15 x 15 x 32 x *1]] [conv2_act.p Gradient[15 x 15 x 32 x *1]] [conv2_act.y Gradient[15 x 15 x 32 x *1]] [conv3_act.W Gradient[64 x 800]] [conv3_act.b Gradient[1 x 1 x 64]] [conv3_act.c Gradient[7 x 7 x 64 x *1]] [conv3_act.p Gradient[7 x 7 x 64 x *1]] [conv3_act.y Gradient[7 x 7 x 64 x *1]] [featOffs Gradient[1 x 1]] [featScaled Gradient[32 x 32 x 3 x *1]] [features Gradient[32 x 32 x 3 x *1]] [h1.W Gradient[64 x 3 x 3 x 64]] [h1.b Gradient[64 x 1]] [h1.t Gradient[64 x *1]] [h1.y Gradient[64 x 1 x *1]] [h1.z Gradient[64 x 1 x *1]] [h1_d Gradient[64 x 1 x *1]] [labels Gradient[10 x *1]] [pool1 Gradient[15 x 15 x 32 x *1]] [pool2 Gradient[7 x 7 x 32 x *1]] [pool3 Gradient[3 x 3 x 64 x *1]] }
0x7fc883e04ba8: {[conv1_act.b Value[1 x 1 x 32]] }
0x7fc883e05fc8: {[conv1_act.W Value[32 x 75]] }
0x7fc883e06768: {[conv2_act.b Value[1 x 1 x 32]] }
0x7fc883e06928: {[conv2_act.W Value[32 x 800]] }
0x7fc883e085b8: {[conv3_act.b Value[1 x 1 x 64]] }
0x7fc883e09528: {[conv3_act.W Value[64 x 800]] }
0x7fc883e0b568: {[featOffs Value[1 x 1]] }
0x7fc883e0c1e8: {[features Value[32 x 32 x 3 x *1]] }
0x7fc883e0cc38: {[h1.b Value[64 x 1]] }
0x7fc883e0cf08: {[h1.W Value[64 x 3 x 3 x 64]] }
0x7fc883e0eb48: {[labels Value[10 x *1]] }
0x7fc883e0f558: {[OutputNodes.b Value[10]] }
0x7fc883e10068: {[OutputNodes.W Value[10 x 64]] }
0x7fc883e286b8: {[Err Value[1]] }
0x7fc883e2bd28: {[CE Value[1]] }
0x7fc883e2bfa8: {[conv1_act.y Value[32 x 32 x 32 x *1]] }
0x7fc883e54728: {[conv1_act.c Value[32 x 32 x 32 x *1]] }
0x7fc883e54a88: {[featScaled Value[32 x 32 x 3 x *1]] }
0x7fc883e54c18: {[conv1_act.p Value[32 x 32 x 32 x *1]] }
0x7fc883e71a78: {[pool1 Value[15 x 15 x 32 x *1]] }
0x7fc883e71c38: {[conv2_act.c Value[15 x 15 x 32 x *1]] }
0x7fc883e71fb8: {[conv2_act.p Value[15 x 15 x 32 x *1]] }
0x7fc883e72178: {[conv2_act.y Value[15 x 15 x 32 x *1]] }
0x7fc883e72338: {[pool2 Value[7 x 7 x 32 x *1]] }
0x7fc883e724f8: {[conv3_act.c Value[7 x 7 x 64 x *1]] }
0x7fc883e72878: {[conv3_act.p Value[7 x 7 x 64 x *1]] }
0x7fc883e72a38: {[conv3_act.y Value[7 x 7 x 64 x *1]] }
0x7fc883e72bf8: {[pool3 Value[3 x 3 x 64 x *1]] }
0x7fc883e72db8: {[h1.t Value[64 x *1]] }
0x7fc883e72f78: {[h1.z Value[64 x 1 x *1]] }
0x7fc883e73138: {[h1.y Value[64 x 1 x *1]] }
0x7fc883e732f8: {[h1_d Value[64 x 1 x *1]] }
0x7fc883e73678: {[OutputNodes.t Value[10 x 1 x *1]] }
0x7fc883e73838: {[OutputNodes.z Value[10 x 1 x *1]] }
05/13/2016 15:10:58: Final Results: Minibatch[1-625]: Err = 0.86430000 * 10000; CE = 2.28476029 * 10000; perplexity = 9.82333117
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 10:50:43: Minibatch[1-500]: Err = 0.86125000 * 8000; CE = 2.28389484 * 8000
08/16/2016 10:50:43: Minibatch[501-625]: Err = 0.86350000 * 2000; CE = 2.28027481 * 2000
08/16/2016 10:50:43: Final Results: Minibatch[1-625]: Err = 0.86170000 * 10000; CE = 2.28317084 * 10000; perplexity = 9.80772986
05/13/2016 15:10:58: Action "test" complete.
08/16/2016 10:50:43: Action "test" complete.
05/13/2016 15:10:58: __COMPLETED__
08/16/2016 10:50:43: __COMPLETED__

Просмотреть файл

@ -1,47 +1,62 @@
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/Config/01_Conv.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10 OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=10]] Train=[SGD=[epochSize=100]] stderr=-
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 268381192 kB
-------------------------------------------------------------------
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10/01_Conv.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10 OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=10]] Train=[SGD=[epochSize=100]] stderr=-
-------------------------------------------------------------------
Build info:
Built time: May 13 2016 08:06:01
Last modified date: Thu May 12 07:31:50 2016
Built time: Aug 16 2016 02:54:53
Last modified date: Fri Aug 12 05:31:21 2016
Build type: Release
Build target: GPU
With 1bit-SGD: no
Math lib: mkl
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
CUB_PATH: c:\src\cub-1.4.1
CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
Build Branch: HEAD
Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by svcphil on Philly-Pool3
Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
-------------------------------------------------------------------
Changed current directory to C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData
05/13/2016 08:17:50: Redirecting stderr to file -_Train_Test.log
05/13/2016 08:17:50: -------------------------------------------------------------------
05/13/2016 08:17:50: Build info:
Changed current directory to C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData
08/16/2016 03:02:05: Redirecting stderr to file -_Train_Test.log
08/16/2016 03:02:05: -------------------------------------------------------------------
08/16/2016 03:02:05: Build info:
05/13/2016 08:17:50: Built time: May 13 2016 08:06:01
05/13/2016 08:17:50: Last modified date: Thu May 12 07:31:50 2016
05/13/2016 08:17:50: Build type: Release
05/13/2016 08:17:50: Build target: GPU
05/13/2016 08:17:50: With 1bit-SGD: no
05/13/2016 08:17:50: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
05/13/2016 08:17:50: CUB_PATH: c:\src\cub-1.4.1
05/13/2016 08:17:50: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
05/13/2016 08:17:50: Build Branch: HEAD
05/13/2016 08:17:50: Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
05/13/2016 08:17:50: Built by svcphil on Philly-Pool3
05/13/2016 08:17:50: Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
05/13/2016 08:17:50: -------------------------------------------------------------------
08/16/2016 03:02:05: Built time: Aug 16 2016 02:54:53
08/16/2016 03:02:05: Last modified date: Fri Aug 12 05:31:21 2016
08/16/2016 03:02:05: Build type: Release
08/16/2016 03:02:05: Build target: GPU
08/16/2016 03:02:05: With 1bit-SGD: no
08/16/2016 03:02:05: Math lib: mkl
08/16/2016 03:02:05: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
08/16/2016 03:02:05: CUB_PATH: c:\src\cub-1.4.1
08/16/2016 03:02:05: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
08/16/2016 03:02:05: Build Branch: HEAD
08/16/2016 03:02:05: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 03:02:05: Built by svcphil on Philly-Pool3
08/16/2016 03:02:05: Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
08/16/2016 03:02:05: -------------------------------------------------------------------
08/16/2016 03:02:07: -------------------------------------------------------------------
08/16/2016 03:02:07: GPU info:
05/13/2016 08:17:50: Running on Philly-Pool2 at 2016/05/13 08:17:50
05/13/2016 08:17:50: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/Config/01_Conv.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10 OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=10]] Train=[SGD=[epochSize=100]] stderr=-
08/16/2016 03:02:07: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:02:07: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:02:07: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:02:07: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:02:07: -------------------------------------------------------------------
08/16/2016 03:02:07: Running on DPHAIM-24 at 2016/08/16 03:02:07
08/16/2016 03:02:07: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10/01_Conv.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10 OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=10]] Train=[SGD=[epochSize=100]] stderr=-
05/13/2016 08:17:50: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/13/2016 08:17:50: RootDir = "."
08/16/2016 03:02:07: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:02:07: RootDir = "."
ConfigDir = "$RootDir$"
DataDir = "$RootDir$"
OutputDir = "$RootDir$/Output"
@ -51,7 +66,6 @@ precision = "float"
deviceId = 0
imageLayout = "cudnn"
initOnCPUOnly=true
prefetch = "true"
command = Train:Test
modelPath = "$ModelDir$/01_Convolution"
stderr = "$OutputDir$/01_Conv"
@ -84,7 +98,7 @@ Train = [
format = "dense"
]
]
]
]
]
Test = [
action = "test"
@ -102,36 +116,35 @@ Test = [
format = "dense"
]
]
]
]
]
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu
DeviceId=0
timestamping=true
Train=[SGD=[maxEpochs=10]]
Train=[SGD=[epochSize=100]]
stderr=-
05/13/2016 08:17:50: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:02:07: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/13/2016 08:17:50: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/13/2016 08:17:50: RootDir = "."
08/16/2016 03:02:07: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:02:07: RootDir = "."
ConfigDir = "."
DataDir = "."
OutputDir = "./Output"
ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models"
ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models"
ndlMacros = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10/Macros.ndl"
precision = "float"
deviceId = 0
imageLayout = "cudnn"
initOnCPUOnly=true
prefetch = "true"
command = Train:Test
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution"
stderr = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/01_Conv"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution"
stderr = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/01_Conv"
traceLevel = 1
numMBsToShowResult = 500
Train = [
@ -150,7 +163,7 @@ Train = [
]
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData/Train_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData/Train_cntk_text.txt"
input = [
features = [
dim = 3072
@ -161,14 +174,14 @@ Train = [
format = "dense"
]
]
]
]
]
Test = [
action = "test"
minibatchSize = 16
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData/Test_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData/Test_cntk_text.txt"
input = [
features = [
dim = 3072
@ -179,45 +192,44 @@ Test = [
format = "dense"
]
]
]
]
]
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu
DeviceId=0
timestamping=true
Train=[SGD=[maxEpochs=10]]
Train=[SGD=[epochSize=100]]
stderr=-
05/13/2016 08:17:50: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:02:07: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 08:17:50: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:02:07: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: 01_Conv.cntk:command=Train:Test
configparameters: 01_Conv.cntk:ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10
configparameters: 01_Conv.cntk:currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData
configparameters: 01_Conv.cntk:DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData
configparameters: 01_Conv.cntk:currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData
configparameters: 01_Conv.cntk:DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData
configparameters: 01_Conv.cntk:deviceId=0
configparameters: 01_Conv.cntk:imageLayout=cudnn
configparameters: 01_Conv.cntk:initOnCPUOnly=true
configparameters: 01_Conv.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models
configparameters: 01_Conv.cntk:modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution
configparameters: 01_Conv.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models
configparameters: 01_Conv.cntk:modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution
configparameters: 01_Conv.cntk:ndlMacros=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10/Macros.ndl
configparameters: 01_Conv.cntk:numMBsToShowResult=500
configparameters: 01_Conv.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu
configparameters: 01_Conv.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu
configparameters: 01_Conv.cntk:precision=float
configparameters: 01_Conv.cntk:prefetch=true
configparameters: 01_Conv.cntk:RootDir=.
configparameters: 01_Conv.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu
configparameters: 01_Conv.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu
configparameters: 01_Conv.cntk:stderr=-
configparameters: 01_Conv.cntk:Test=[
action = "test"
minibatchSize = 16
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData/Test_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData/Test_cntk_text.txt"
input = [
features = [
dim = 3072
@ -228,7 +240,7 @@ configparameters: 01_Conv.cntk:Test=[
format = "dense"
]
]
]
]
]
configparameters: 01_Conv.cntk:timestamping=true
@ -249,7 +261,7 @@ configparameters: 01_Conv.cntk:Train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData/Train_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu\TestData/Train_cntk_text.txt"
input = [
features = [
dim = 3072
@ -260,27 +272,51 @@ configparameters: 01_Conv.cntk:Train=[
format = "dense"
]
]
]
]
] [SGD=[maxEpochs=10]] [SGD=[epochSize=100]]
05/13/2016 08:17:50: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 08:17:50: Commands: Train Test
05/13/2016 08:17:50: Precision = "float"
05/13/2016 08:17:50: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution
05/13/2016 08:17:50: CNTKCommandTrainInfo: Train : 10
05/13/2016 08:17:50: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 10
08/16/2016 03:02:07: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:02:07: Commands: Train Test
08/16/2016 03:02:07: Precision = "float"
08/16/2016 03:02:07: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution
08/16/2016 03:02:07: CNTKCommandTrainInfo: Train : 10
08/16/2016 03:02:07: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 10
05/13/2016 08:17:50: ##############################################################################
05/13/2016 08:17:50: # #
05/13/2016 08:17:50: # Action "train" #
05/13/2016 08:17:50: # #
05/13/2016 08:17:50: ##############################################################################
08/16/2016 03:02:07: ##############################################################################
08/16/2016 03:02:07: # #
08/16/2016 03:02:07: # Action "train" #
08/16/2016 03:02:07: # #
08/16/2016 03:02:07: ##############################################################################
05/13/2016 08:17:50: CNTKCommandTrainBegin: Train
08/16/2016 03:02:07: CNTKCommandTrainBegin: Train
NDLBuilder Using GPU 0
05/13/2016 08:17:52: Creating virgin network.
08/16/2016 03:02:08: Creating virgin network.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.000000.
Node 'conv1_act.W' (LearnableParameter operation): Initializing Parameter[32 x 75] <- 0.000000.
Node 'conv1_act.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 32] <- 0.000000.
Node 'conv2_act.W' (LearnableParameter operation): Initializing Parameter[32 x 800] <- 0.000000.
Node 'conv2_act.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 32] <- 0.000000.
Node 'conv3_act.W' (LearnableParameter operation): Initializing Parameter[64 x 800] <- 0.000000.
Node 'conv3_act.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[64 x 3 x 3 x 64] <- 0.000000.
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'OutputNodes.W' (LearnableParameter operation): Initializing Parameter[10 x 64] <- 0.000000.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[10] <- 0.000000.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 128.000000.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 128.000000.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 128.000000.
Node 'conv1_act.W' (LearnableParameter operation): Initializing Parameter[32 x 75] <- gaussian(seed=1, range=0.023094*0.004300, onCPU=false).
Microsoft::MSR::CNTK::GPUMatrix<ElemType>::SetGaussianRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4
Node 'conv1_act.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 32] <- 0.000000.
Node 'conv2_act.W' (LearnableParameter operation): Initializing Parameter[32 x 800] <- gaussian(seed=2, range=0.007071*1.414000, onCPU=false).
Node 'conv2_act.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 32] <- 0.000000.
Node 'conv3_act.W' (LearnableParameter operation): Initializing Parameter[64 x 800] <- gaussian(seed=3, range=0.007071*1.414000, onCPU=false).
Node 'conv3_act.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[64 x 3 x 3 x 64] <- gaussian(seed=4, range=0.008333*12.000000, onCPU=false).
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'OutputNodes.W' (LearnableParameter operation): Initializing Parameter[10 x 64] <- gaussian(seed=5, range=0.025000*1.500000, onCPU=false).
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[10] <- 0.000000.
Post-processing network...
@ -332,158 +368,176 @@ Validating network. 21 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 32, Kernel: 5 x 5 x 3, Map: 1 x 1 x 32, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1_act.c: using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 32, Kernel: 5 x 5 x 3, Map: 1 x 1 x 32, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 32, Output: 15 x 15 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 32 x 32 x 32, Output: 15 x 15 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 15 x 15 x 32, Kernel: 5 x 5 x 32, Map: 1 x 1 x 32, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2_act.c: using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 15 x 15 x 32, Kernel: 5 x 5 x 32, Map: 1 x 1 x 32, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 7 x 7 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 7 x 7 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 7 x 7 x 32, Output: 7 x 7 x 64, Kernel: 5 x 5 x 32, Map: 1 x 1 x 64, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3_act.c: using cuDNN convolution engine for geometry: Input: 7 x 7 x 32, Output: 7 x 7 x 64, Kernel: 5 x 5 x 32, Map: 1 x 1 x 64, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 7 x 7 x 64, Output: 3 x 3 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool3: using cuDNN convolution engine for geometry: Input: 7 x 7 x 64, Output: 3 x 3 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
13 out of 34 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
05/13/2016 08:17:53: Created model with 34 nodes on GPU 0.
08/16/2016 03:02:09: Created model with 34 nodes on GPU 0.
05/13/2016 08:17:53: Training criterion node(s):
05/13/2016 08:17:53: CE = CrossEntropyWithSoftmax
08/16/2016 03:02:09: Training criterion node(s):
08/16/2016 03:02:09: CE = CrossEntropyWithSoftmax
05/13/2016 08:17:53: Evaluation criterion node(s):
05/13/2016 08:17:53: Err = ErrorPrediction
08/16/2016 03:02:09: Evaluation criterion node(s):
08/16/2016 03:02:09: Err = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 63 matrices, 38 are shared as 17, and 25 are not shared.
0000000000000000: {[Err Gradient[1]] [featOffs Gradient[1 x 1]] [featScaled Gradient[32 x 32 x 3 x *]] [features Gradient[32 x 32 x 3 x *]] [labels Gradient[10 x *]] }
0000004790872560: {[features Value[32 x 32 x 3 x *]] }
00000047A69D0CD0: {[h1.W Value[64 x 3 x 3 x 64]] }
00000047A69D1130: {[conv1_act.b Value[1 x 1 x 32]] }
00000047A69D11D0: {[h1.b Value[64 x 1]] }
00000047A69D1450: {[conv1_act.W Value[32 x 75]] }
00000047A69D14F0: {[conv2_act.b Value[1 x 1 x 32]] }
00000047A69D1810: {[featOffs Value[1 x 1]] }
00000047A69D1950: {[OutputNodes.W Value[10 x 64]] }
00000047A69D1C70: {[conv3_act.W Value[64 x 800]] }
00000047A69D1D10: {[OutputNodes.b Value[10]] }
00000047A69D1F90: {[conv3_act.b Value[1 x 1 x 64]] }
00000047A69D2490: {[labels Value[10 x *]] }
00000047A69D2850: {[conv2_act.W Value[32 x 800]] }
00000047AD12D4B0: {[conv3_act.p Gradient[7 x 7 x 64 x *]] [pool2 Gradient[7 x 7 x 32 x *]] [pool3 Value[3 x 3 x 64 x *]] }
00000047AD12D690: {[conv3_act.W Gradient[64 x 800]] [conv3_act.p Value[7 x 7 x 64 x *]] }
00000047AD12D7D0: {[CE Value[1]] }
00000047AD12D870: {[featScaled Value[32 x 32 x 3 x *]] }
00000047AD12D910: {[conv1_act.c Value[32 x 32 x 32 x *]] }
00000047AD12DC30: {[OutputNodes.t Value[10 x 1 x *]] [h1.b Gradient[64 x 1]] [h1.y Gradient[64 x 1 x *]] }
00000047AD12DEB0: {[conv2_act.p Gradient[15 x 15 x 32 x *]] [pool1 Gradient[15 x 15 x 32 x *]] [pool2 Value[7 x 7 x 32 x *]] }
00000047AD12DF50: {[conv3_act.c Gradient[7 x 7 x 64 x *]] [conv3_act.y Value[7 x 7 x 64 x *]] }
00000047AD12E090: {[OutputNodes.t Gradient[10 x 1 x *]] }
00000047AD12E130: {[conv1_act.p Gradient[32 x 32 x 32 x *]] [pool1 Value[15 x 15 x 32 x *]] }
00000047AD12E270: {[conv2_act.c Gradient[15 x 15 x 32 x *]] [conv2_act.y Value[15 x 15 x 32 x *]] }
00000047AD12E3B0: {[Err Value[1]] }
00000047AD12E450: {[conv2_act.c Value[15 x 15 x 32 x *]] }
00000047AD12E590: {[h1_d Gradient[64 x 1 x *]] }
00000047AD12E6D0: {[conv1_act.W Gradient[32 x 75]] [conv1_act.p Value[32 x 32 x 32 x *]] }
00000047AD12E810: {[h1.t Gradient[64 x *]] [h1.y Value[64 x 1 x *]] }
00000047AD12E8B0: {[h1_d Value[64 x 1 x *]] }
00000047AD12E950: {[conv3_act.c Value[7 x 7 x 64 x *]] }
00000047AD12EA90: {[OutputNodes.W Gradient[10 x 64]] [OutputNodes.z Gradient[10 x 1 x *]] }
00000047AD12EBD0: {[conv2_act.W Gradient[32 x 800]] [conv2_act.p Value[15 x 15 x 32 x *]] }
00000047AD12EC70: {[h1.z Gradient[64 x 1 x *]] [pool3 Gradient[3 x 3 x 64 x *]] }
00000047AD12ED10: {[OutputNodes.b Gradient[10]] }
00000047AD12F2B0: {[CE Gradient[1]] }
00000047AD12F490: {[conv2_act.b Gradient[1 x 1 x 32]] [conv2_act.y Gradient[15 x 15 x 32 x *]] }
00000047AD12F530: {[conv3_act.b Gradient[1 x 1 x 64]] [conv3_act.y Gradient[7 x 7 x 64 x *]] [h1.t Value[64 x *]] }
00000047AD12F5D0: {[h1.W Gradient[64 x 3 x 3 x 64]] [h1.z Value[64 x 1 x *]] }
00000047AD12F670: {[conv1_act.b Gradient[1 x 1 x 32]] [conv1_act.y Gradient[32 x 32 x 32 x *]] }
00000047AD12F710: {[OutputNodes.z Value[10 x 1 x *]] }
00000047AD12F7B0: {[conv1_act.c Gradient[32 x 32 x 32 x *]] [conv1_act.y Value[32 x 32 x 32 x *]] }
{ conv2_act.c : [15 x 15 x 32 x *] (gradient)
conv2_act.y : [15 x 15 x 32 x *] }
{ h1.t : [64 x *] (gradient)
h1.y : [64 x 1 x *] }
{ conv2_act.W : [32 x 800] (gradient)
conv2_act.p : [15 x 15 x 32 x *] }
{ conv2_act.b : [1 x 1 x 32] (gradient)
conv2_act.y : [15 x 15 x 32 x *] (gradient) }
{ h1.z : [64 x 1 x *] (gradient)
pool3 : [3 x 3 x 64 x *] (gradient) }
{ conv3_act.c : [7 x 7 x 64 x *] (gradient)
conv3_act.y : [7 x 7 x 64 x *] }
{ conv3_act.W : [64 x 800] (gradient)
conv3_act.p : [7 x 7 x 64 x *] }
{ conv3_act.p : [7 x 7 x 64 x *] (gradient)
pool2 : [7 x 7 x 32 x *] (gradient)
pool3 : [3 x 3 x 64 x *] }
{ conv3_act.b : [1 x 1 x 64] (gradient)
conv3_act.y : [7 x 7 x 64 x *] (gradient)
h1.t : [64 x *] }
{ conv1_act.c : [32 x 32 x 32 x *] (gradient)
conv1_act.y : [32 x 32 x 32 x *] }
{ h1.W : [64 x 3 x 3 x 64] (gradient)
h1.z : [64 x 1 x *] }
{ OutputNodes.t : [10 x 1 x *]
h1.b : [64 x 1] (gradient)
h1.y : [64 x 1 x *] (gradient) }
{ conv2_act.p : [15 x 15 x 32 x *] (gradient)
pool1 : [15 x 15 x 32 x *] (gradient)
pool2 : [7 x 7 x 32 x *] }
{ conv1_act.W : [32 x 75] (gradient)
conv1_act.p : [32 x 32 x 32 x *] }
{ conv1_act.b : [1 x 1 x 32] (gradient)
conv1_act.y : [32 x 32 x 32 x *] (gradient) }
{ OutputNodes.W : [10 x 64] (gradient)
OutputNodes.z : [10 x 1 x *] (gradient) }
{ conv1_act.p : [32 x 32 x 32 x *] (gradient)
pool1 : [15 x 15 x 32 x *] }
05/13/2016 08:17:53: No PreCompute nodes found, skipping PreCompute step.
05/13/2016 08:17:53: Starting Epoch 1: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
08/16/2016 03:02:09: Training 116906 parameters in 10 out of 10 parameter tensors and 29 nodes with gradient:
05/13/2016 08:17:53: Starting minibatch loop.
05/13/2016 08:18:02: Finished Epoch[ 1 of 10]: [Training] CE = 2.30266907 * 100; Err = 0.91000000 * 100; totalSamplesSeen = 100; learningRatePerSample = 0.00015625; epochTime=9.23399s
05/13/2016 08:18:02: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.1'
08/16/2016 03:02:09: Node 'OutputNodes.W' (LearnableParameter operation) : [10 x 64]
08/16/2016 03:02:09: Node 'OutputNodes.b' (LearnableParameter operation) : [10]
08/16/2016 03:02:09: Node 'conv1_act.W' (LearnableParameter operation) : [32 x 75]
08/16/2016 03:02:09: Node 'conv1_act.b' (LearnableParameter operation) : [1 x 1 x 32]
08/16/2016 03:02:09: Node 'conv2_act.W' (LearnableParameter operation) : [32 x 800]
08/16/2016 03:02:09: Node 'conv2_act.b' (LearnableParameter operation) : [1 x 1 x 32]
08/16/2016 03:02:09: Node 'conv3_act.W' (LearnableParameter operation) : [64 x 800]
08/16/2016 03:02:09: Node 'conv3_act.b' (LearnableParameter operation) : [1 x 1 x 64]
08/16/2016 03:02:09: Node 'h1.W' (LearnableParameter operation) : [64 x 3 x 3 x 64]
08/16/2016 03:02:09: Node 'h1.b' (LearnableParameter operation) : [64 x 1]
05/13/2016 08:18:02: Starting Epoch 2: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
08/16/2016 03:02:09: No PreCompute nodes found, or all already computed. Skipping pre-computation step.
05/13/2016 08:18:02: Starting minibatch loop.
05/13/2016 08:18:02: Finished Epoch[ 2 of 10]: [Training] CE = 2.30141006 * 100; Err = 0.86000000 * 100; totalSamplesSeen = 200; learningRatePerSample = 0.00015625; epochTime=0.0203s
05/13/2016 08:18:02: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.2'
08/16/2016 03:02:09: Starting Epoch 1: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..100] (first sequence at sample 0), data subset 0 of 1
05/13/2016 08:18:02: Starting Epoch 3: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
08/16/2016 03:02:09: Starting minibatch loop.
08/16/2016 03:02:14: Finished Epoch[ 1 of 10]: [Training] CE = 2.30223602 * 100; Err = 0.90000000 * 100; totalSamplesSeen = 100; learningRatePerSample = 0.00015625; epochTime=4.93739s
08/16/2016 03:02:14: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.1'
05/13/2016 08:18:02: Starting minibatch loop.
05/13/2016 08:18:02: Finished Epoch[ 3 of 10]: [Training] CE = 2.30164764 * 100; Err = 0.92000000 * 100; totalSamplesSeen = 300; learningRatePerSample = 0.00015625; epochTime=0.020255s
05/13/2016 08:18:02: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.3'
08/16/2016 03:02:14: Starting Epoch 2: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 1: frames [100..200] (first sequence at sample 100), data subset 0 of 1
05/13/2016 08:18:02: Starting Epoch 4: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
08/16/2016 03:02:14: Starting minibatch loop.
08/16/2016 03:02:14: Finished Epoch[ 2 of 10]: [Training] CE = 2.30189240 * 100; Err = 0.87000000 * 100; totalSamplesSeen = 200; learningRatePerSample = 0.00015625; epochTime=0.016498s
08/16/2016 03:02:14: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.2'
05/13/2016 08:18:02: Starting minibatch loop.
05/13/2016 08:18:02: Finished Epoch[ 4 of 10]: [Training] CE = 2.29509628 * 100; Err = 0.87000000 * 100; totalSamplesSeen = 400; learningRatePerSample = 0.00015625; epochTime=0.020212s
05/13/2016 08:18:02: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.4'
08/16/2016 03:02:15: Starting Epoch 3: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 2: frames [200..300] (first sequence at sample 200), data subset 0 of 1
05/13/2016 08:18:03: Starting Epoch 5: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
08/16/2016 03:02:15: Starting minibatch loop.
08/16/2016 03:02:15: Finished Epoch[ 3 of 10]: [Training] CE = 2.29965256 * 100; Err = 0.86000000 * 100; totalSamplesSeen = 300; learningRatePerSample = 0.00015625; epochTime=0.0146s
08/16/2016 03:02:15: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.3'
05/13/2016 08:18:03: Starting minibatch loop.
05/13/2016 08:18:03: Finished Epoch[ 5 of 10]: [Training] CE = 2.29264740 * 100; Err = 0.87000000 * 100; totalSamplesSeen = 500; learningRatePerSample = 0.00015625; epochTime=0.02033s
05/13/2016 08:18:03: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.5'
08/16/2016 03:02:15: Starting Epoch 4: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 3: frames [300..400] (first sequence at sample 300), data subset 0 of 1
08/16/2016 03:02:15: Starting minibatch loop.
08/16/2016 03:02:15: Finished Epoch[ 4 of 10]: [Training] CE = 2.29966064 * 100; Err = 0.91000000 * 100; totalSamplesSeen = 400; learningRatePerSample = 0.00015625; epochTime=0.01451s
08/16/2016 03:02:15: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.4'
08/16/2016 03:02:15: Starting Epoch 5: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 4: frames [400..500] (first sequence at sample 400), data subset 0 of 1
08/16/2016 03:02:15: Starting minibatch loop.
08/16/2016 03:02:15: Finished Epoch[ 5 of 10]: [Training] CE = 2.30450378 * 100; Err = 0.94000000 * 100; totalSamplesSeen = 500; learningRatePerSample = 0.00015625; epochTime=0.014432s
08/16/2016 03:02:15: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.5'
Setting dropout rate to 0.5.
05/13/2016 08:18:03: Starting Epoch 6: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
08/16/2016 03:02:15: Starting Epoch 6: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 5: frames [500..600] (first sequence at sample 500), data subset 0 of 1
05/13/2016 08:18:03: Starting minibatch loop.
08/16/2016 03:02:15: Starting minibatch loop.
(GPU): creating curand object with seed 5
05/13/2016 08:18:03: Finished Epoch[ 6 of 10]: [Training] CE = 2.30378311 * 100; Err = 0.92000000 * 100; totalSamplesSeen = 600; learningRatePerSample = 0.00015625; epochTime=0.026637s
05/13/2016 08:18:03: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.6'
08/16/2016 03:02:15: Finished Epoch[ 6 of 10]: [Training] CE = 2.29013901 * 100; Err = 0.81000000 * 100; totalSamplesSeen = 600; learningRatePerSample = 0.00015625; epochTime=0.023069s
08/16/2016 03:02:15: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.6'
05/13/2016 08:18:03: Starting Epoch 7: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
08/16/2016 03:02:15: Starting Epoch 7: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 6: frames [600..700] (first sequence at sample 600), data subset 0 of 1
05/13/2016 08:18:03: Starting minibatch loop.
08/16/2016 03:02:15: Starting minibatch loop.
(GPU): creating curand object with seed 6
05/13/2016 08:18:03: Finished Epoch[ 7 of 10]: [Training] CE = 2.28946518 * 100; Err = 0.90000000 * 100; totalSamplesSeen = 700; learningRatePerSample = 0.00015625; epochTime=0.02618s
05/13/2016 08:18:03: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.7'
08/16/2016 03:02:15: Finished Epoch[ 7 of 10]: [Training] CE = 2.29815735 * 100; Err = 0.93000000 * 100; totalSamplesSeen = 700; learningRatePerSample = 0.00015625; epochTime=0.030436s
08/16/2016 03:02:15: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.7'
05/13/2016 08:18:03: Starting Epoch 8: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
08/16/2016 03:02:15: Starting Epoch 8: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 7: frames [700..800] (first sequence at sample 700), data subset 0 of 1
05/13/2016 08:18:03: Starting minibatch loop.
08/16/2016 03:02:15: Starting minibatch loop.
(GPU): creating curand object with seed 7
05/13/2016 08:18:03: Finished Epoch[ 8 of 10]: [Training] CE = 2.29619675 * 100; Err = 0.93000000 * 100; totalSamplesSeen = 800; learningRatePerSample = 0.00015625; epochTime=0.026196s
05/13/2016 08:18:03: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.8'
08/16/2016 03:02:15: Finished Epoch[ 8 of 10]: [Training] CE = 2.28805984 * 100; Err = 0.89000000 * 100; totalSamplesSeen = 800; learningRatePerSample = 0.00015625; epochTime=0.022867s
08/16/2016 03:02:15: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.8'
05/13/2016 08:18:03: Starting Epoch 9: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
08/16/2016 03:02:15: Starting Epoch 9: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 8: frames [800..900] (first sequence at sample 800), data subset 0 of 1
05/13/2016 08:18:03: Starting minibatch loop.
08/16/2016 03:02:15: Starting minibatch loop.
(GPU): creating curand object with seed 8
05/13/2016 08:18:03: Finished Epoch[ 9 of 10]: [Training] CE = 2.27065186 * 100; Err = 0.83000000 * 100; totalSamplesSeen = 900; learningRatePerSample = 0.00015625; epochTime=0.026126s
05/13/2016 08:18:03: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.9'
08/16/2016 03:02:15: Finished Epoch[ 9 of 10]: [Training] CE = 2.29377136 * 100; Err = 0.88000000 * 100; totalSamplesSeen = 900; learningRatePerSample = 0.00015625; epochTime=0.022876s
08/16/2016 03:02:15: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution.9'
05/13/2016 08:18:03: Starting Epoch 10: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
08/16/2016 03:02:15: Starting Epoch 10: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 9: frames [900..1000] (first sequence at sample 900), data subset 0 of 1
05/13/2016 08:18:03: Starting minibatch loop.
08/16/2016 03:02:15: Starting minibatch loop.
(GPU): creating curand object with seed 9
05/13/2016 08:18:03: Finished Epoch[10 of 10]: [Training] CE = 2.31216217 * 100; Err = 0.92000000 * 100; totalSamplesSeen = 1000; learningRatePerSample = 0.00015625; epochTime=0.026148s
05/13/2016 08:18:03: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution'
05/13/2016 08:18:03: CNTKCommandTrainEnd: Train
08/16/2016 03:02:15: Finished Epoch[10 of 10]: [Training] CE = 2.27813766 * 100; Err = 0.88000000 * 100; totalSamplesSeen = 1000; learningRatePerSample = 0.00015625; epochTime=0.022892s
08/16/2016 03:02:15: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_01_Convolution@release_gpu/Models/01_Convolution'
08/16/2016 03:02:15: CNTKCommandTrainEnd: Train
05/13/2016 08:18:03: Action "train" complete.
08/16/2016 03:02:15: Action "train" complete.
05/13/2016 08:18:03: ##############################################################################
05/13/2016 08:18:03: # #
05/13/2016 08:18:03: # Action "test" #
05/13/2016 08:18:03: # #
05/13/2016 08:18:03: ##############################################################################
08/16/2016 03:02:15: ##############################################################################
08/16/2016 03:02:15: # #
08/16/2016 03:02:15: # Action "test" #
08/16/2016 03:02:15: # #
08/16/2016 03:02:15: ##############################################################################
Post-processing network...
@ -536,17 +590,17 @@ Validating network. 21 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 32, Kernel: 5 x 5 x 3, Map: 1 x 1 x 32, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1_act.c: using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 32, Kernel: 5 x 5 x 3, Map: 1 x 1 x 32, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 32, Output: 15 x 15 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 32 x 32 x 32, Output: 15 x 15 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 15 x 15 x 32, Kernel: 5 x 5 x 32, Map: 1 x 1 x 32, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2_act.c: using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 15 x 15 x 32, Kernel: 5 x 5 x 32, Map: 1 x 1 x 32, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 7 x 7 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 7 x 7 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 7 x 7 x 32, Output: 7 x 7 x 64, Kernel: 5 x 5 x 32, Map: 1 x 1 x 64, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3_act.c: using cuDNN convolution engine for geometry: Input: 7 x 7 x 32, Output: 7 x 7 x 64, Kernel: 5 x 5 x 32, Map: 1 x 1 x 64, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 7 x 7 x 64, Output: 3 x 3 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool3: using cuDNN convolution engine for geometry: Input: 7 x 7 x 64, Output: 3 x 3 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
13 out of 34 nodes do not share the minibatch layout with the input data.
@ -558,46 +612,14 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 34 matrices, 0 are shared as 0, and 34 are not shared.
0000000000000000: {[CE Gradient[1]] [Err Gradient[1]] [OutputNodes.W Gradient[10 x 64]] [OutputNodes.b Gradient[10]] [OutputNodes.t Gradient[10 x 1 x *1]] [OutputNodes.z Gradient[10 x 1 x *1]] [conv1_act.W Gradient[32 x 75]] [conv1_act.b Gradient[1 x 1 x 32]] [conv1_act.c Gradient[32 x 32 x 32 x *1]] [conv1_act.p Gradient[32 x 32 x 32 x *1]] [conv1_act.y Gradient[32 x 32 x 32 x *1]] [conv2_act.W Gradient[32 x 800]] [conv2_act.b Gradient[1 x 1 x 32]] [conv2_act.c Gradient[15 x 15 x 32 x *1]] [conv2_act.p Gradient[15 x 15 x 32 x *1]] [conv2_act.y Gradient[15 x 15 x 32 x *1]] [conv3_act.W Gradient[64 x 800]] [conv3_act.b Gradient[1 x 1 x 64]] [conv3_act.c Gradient[7 x 7 x 64 x *1]] [conv3_act.p Gradient[7 x 7 x 64 x *1]] [conv3_act.y Gradient[7 x 7 x 64 x *1]] [featOffs Gradient[1 x 1]] [featScaled Gradient[32 x 32 x 3 x *1]] [features Gradient[32 x 32 x 3 x *1]] [h1.W Gradient[64 x 3 x 3 x 64]] [h1.b Gradient[64 x 1]] [h1.t Gradient[64 x *1]] [h1.y Gradient[64 x 1 x *1]] [h1.z Gradient[64 x 1 x *1]] [h1_d Gradient[64 x 1 x *1]] [labels Gradient[10 x *1]] [pool1 Gradient[15 x 15 x 32 x *1]] [pool2 Gradient[7 x 7 x 32 x *1]] [pool3 Gradient[3 x 3 x 64 x *1]] }
00000047A69D0FF0: {[h1.t Value[64 x *1]] }
00000047A69D16D0: {[h1_d Value[64 x 1 x *1]] }
00000047A69D1D10: {[OutputNodes.z Value[10 x 1 x *1]] }
00000047A69D1DB0: {[OutputNodes.t Value[10 x 1 x *1]] }
00000047A69D1E50: {[h1.y Value[64 x 1 x *1]] }
00000047A69D2530: {[h1.z Value[64 x 1 x *1]] }
00000047AD12D7D0: {[featOffs Value[1 x 1]] }
00000047AD12D910: {[OutputNodes.W Value[10 x 64]] }
00000047AD12DC30: {[conv1_act.b Value[1 x 1 x 32]] }
00000047AD12DF50: {[conv2_act.W Value[32 x 800]] }
00000047AD12E090: {[conv3_act.W Value[64 x 800]] }
00000047AD12E3B0: {[features Value[32 x 32 x 3 x *1]] }
00000047AD12E9F0: {[h1.W Value[64 x 3 x 3 x 64]] }
00000047AD12EA90: {[conv1_act.W Value[32 x 75]] }
00000047AD12EBD0: {[conv2_act.b Value[1 x 1 x 32]] }
00000047AD12ED10: {[labels Value[10 x *1]] }
00000047AD12F210: {[h1.b Value[64 x 1]] }
00000047AD12F670: {[conv3_act.b Value[1 x 1 x 64]] }
00000047AD12FB70: {[OutputNodes.b Value[10]] }
00000047AD12FCB0: {[conv2_act.y Value[15 x 15 x 32 x *1]] }
00000047AD12FD50: {[pool2 Value[7 x 7 x 32 x *1]] }
00000047AD12FFD0: {[conv2_act.p Value[15 x 15 x 32 x *1]] }
00000047AD130110: {[featScaled Value[32 x 32 x 3 x *1]] }
00000047AD130250: {[conv3_act.c Value[7 x 7 x 64 x *1]] }
00000047AD130390: {[conv3_act.p Value[7 x 7 x 64 x *1]] }
00000047AD130430: {[conv3_act.y Value[7 x 7 x 64 x *1]] }
00000047AD1304D0: {[conv1_act.p Value[32 x 32 x 32 x *1]] }
00000047AD130570: {[pool3 Value[3 x 3 x 64 x *1]] }
00000047AD1307F0: {[conv1_act.y Value[32 x 32 x 32 x *1]] }
00000047AD130BB0: {[conv1_act.c Value[32 x 32 x 32 x *1]] }
00000047AD1310B0: {[Err Value[1]] }
00000047AD131150: {[pool1 Value[15 x 15 x 32 x *1]] }
00000047AD1311F0: {[CE Value[1]] }
00000047AD131330: {[conv2_act.c Value[15 x 15 x 32 x *1]] }
05/13/2016 08:18:17: Final Results: Minibatch[1-625]: Err = 0.84020000 * 10000; CE = 2.27465317 * 10000; perplexity = 9.72454569
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 03:02:17: Minibatch[1-500]: Err = 0.86112500 * 8000; CE = 2.28394067 * 8000
08/16/2016 03:02:18: Minibatch[501-625]: Err = 0.86300000 * 2000; CE = 2.28036680 * 2000
08/16/2016 03:02:18: Final Results: Minibatch[1-625]: Err = 0.86150000 * 10000; CE = 2.28322590 * 10000; perplexity = 9.80826991
05/13/2016 08:18:17: Action "test" complete.
08/16/2016 03:02:18: Action "test" complete.
05/13/2016 08:18:17: __COMPLETED__
08/16/2016 03:02:18: __COMPLETED__

Просмотреть файл

@ -1,49 +1,62 @@
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/Config/02_BatchNormConv.cntk currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10 OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=5]] Train=[SGD=[epochSize=100]] stderr=-
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 264172964 kB
-------------------------------------------------------------------
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv.cntk currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10 OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=5]] Train=[SGD=[epochSize=100]] stderr=-
-------------------------------------------------------------------
Build info:
Built time: May 13 2016 14:50:25
Last modified date: Thu May 12 14:00:37 2016
Built time: Aug 16 2016 09:41:56
Last modified date: Fri Aug 12 07:32:43 2016
Build type: release
Build target: GPU
With 1bit-SGD: no
Math lib: acml
Math lib: mkl
CUDA_PATH: /usr/local/cuda-7.5
CUB_PATH: /usr/local/cub-1.4.1
CUDNN_PATH: /usr/local/cudnn-4.0
Build Branch: HEAD
Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
Built by philly on d8dc82703b0f
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by philly on f67b30a647de
Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
-------------------------------------------------------------------
Changed current directory to /tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData
05/13/2016 15:10:59: Redirecting stderr to file -_Train_Test.log
05/13/2016 15:10:59: -------------------------------------------------------------------
05/13/2016 15:10:59: Build info:
Changed current directory to /tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData
08/16/2016 10:50:44: Redirecting stderr to file -_Train_Test.log
08/16/2016 10:50:44: -------------------------------------------------------------------
08/16/2016 10:50:44: Build info:
05/13/2016 15:10:59: Built time: May 13 2016 14:50:25
05/13/2016 15:10:59: Last modified date: Thu May 12 14:00:37 2016
05/13/2016 15:10:59: Build type: release
05/13/2016 15:10:59: Build target: GPU
05/13/2016 15:10:59: With 1bit-SGD: no
05/13/2016 15:10:59: Math lib: acml
05/13/2016 15:10:59: CUDA_PATH: /usr/local/cuda-7.5
05/13/2016 15:10:59: CUB_PATH: /usr/local/cub-1.4.1
05/13/2016 15:10:59: CUDNN_PATH: /usr/local/cudnn-4.0
05/13/2016 15:10:59: Build Branch: HEAD
05/13/2016 15:10:59: Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
05/13/2016 15:10:59: Built by philly on d8dc82703b0f
05/13/2016 15:10:59: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
05/13/2016 15:10:59: -------------------------------------------------------------------
08/16/2016 10:50:44: Built time: Aug 16 2016 09:41:56
08/16/2016 10:50:44: Last modified date: Fri Aug 12 07:32:43 2016
08/16/2016 10:50:44: Build type: release
08/16/2016 10:50:44: Build target: GPU
08/16/2016 10:50:44: With 1bit-SGD: no
08/16/2016 10:50:44: Math lib: mkl
08/16/2016 10:50:44: CUDA_PATH: /usr/local/cuda-7.5
08/16/2016 10:50:44: CUB_PATH: /usr/local/cub-1.4.1
08/16/2016 10:50:44: CUDNN_PATH: /usr/local/cudnn-4.0
08/16/2016 10:50:44: Build Branch: HEAD
08/16/2016 10:50:44: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 10:50:44: Built by philly on f67b30a647de
08/16/2016 10:50:44: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
08/16/2016 10:50:44: -------------------------------------------------------------------
08/16/2016 10:50:45: -------------------------------------------------------------------
08/16/2016 10:50:45: GPU info:
05/13/2016 15:10:59: Running on localhost at 2016/05/13 15:10:59
05/13/2016 15:10:59: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/Config/02_BatchNormConv.cntk currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10 OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=5]] Train=[SGD=[epochSize=100]] stderr=-
08/16/2016 10:50:45: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:50:45: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:50:45: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:50:45: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:50:45: -------------------------------------------------------------------
08/16/2016 10:50:45: Running on localhost at 2016/08/16 10:50:45
08/16/2016 10:50:45: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv.cntk currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10 OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=5]] Train=[SGD=[epochSize=100]] stderr=-
05/13/2016 15:10:59: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/13/2016 15:10:59: RootDir = "."
08/16/2016 10:50:45: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:50:45: RootDir = "."
ConfigDir = "$RootDir$"
DataDir = "$RootDir$"
OutputDir = "$RootDir$/Output"
@ -53,7 +66,6 @@ precision = "float"
deviceId = 0
imageLayout = "cudnn"
initOnCPUOnly=true
prefetch = "true"
command = Train:Test
stderr = "$OutputDir$/02_BatchNormConv"
traceLevel = 1
@ -86,7 +98,7 @@ Train = [
format = "dense"
]
]
]
]
]
Test = [
action = "test"
@ -105,42 +117,41 @@ Test = [
format = "dense"
]
]
]
]
]
currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData
RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu
DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10
OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu
currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData
RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu
DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10
OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu
DeviceId=0
timestamping=true
Train=[SGD=[maxEpochs=5]]
Train=[SGD=[epochSize=100]]
stderr=-
05/13/2016 15:10:59: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:50:45: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/13/2016 15:10:59: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/13/2016 15:10:59: RootDir = "."
08/16/2016 10:50:45: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:50:45: RootDir = "."
ConfigDir = "."
DataDir = "."
OutputDir = "./Output"
ModelDir = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models"
ndlMacros = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/Macros.ndl"
ModelDir = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models"
ndlMacros = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/Macros.ndl"
precision = "float"
deviceId = 0
imageLayout = "cudnn"
initOnCPUOnly=true
prefetch = "true"
command = Train:Test
stderr = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/02_BatchNormConv"
stderr = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/02_BatchNormConv"
traceLevel = 1
numMBsToShowResult = 500
Train = [
action = "train"
modelPath = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv"
modelPath = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv"
NDLNetworkBuilder = [
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv.ndl"
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv.ndl"
]
SGD = [
epochSize = 49984
@ -153,7 +164,7 @@ Train = [
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData/Train_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData/Train_cntk_text.txt"
input = [
features = [
dim = 3072
@ -164,15 +175,15 @@ Train = [
format = "dense"
]
]
]
]
]
Test = [
action = "test"
modelPath = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv"
modelPath = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv"
minibatchSize = 16
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData/Test_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData/Test_cntk_text.txt"
input = [
features = [
dim = 3072
@ -183,45 +194,44 @@ Test = [
format = "dense"
]
]
]
]
]
currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData
RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu
DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10
OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu
currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData
RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu
DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10
OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu
DeviceId=0
timestamping=true
Train=[SGD=[maxEpochs=5]]
Train=[SGD=[epochSize=100]]
stderr=-
05/13/2016 15:10:59: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:50:45: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 15:10:59: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:50:45: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: 02_BatchNormConv.cntk:command=Train:Test
configparameters: 02_BatchNormConv.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10
configparameters: 02_BatchNormConv.cntk:currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData
configparameters: 02_BatchNormConv.cntk:DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData
configparameters: 02_BatchNormConv.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10
configparameters: 02_BatchNormConv.cntk:currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData
configparameters: 02_BatchNormConv.cntk:DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData
configparameters: 02_BatchNormConv.cntk:deviceId=0
configparameters: 02_BatchNormConv.cntk:imageLayout=cudnn
configparameters: 02_BatchNormConv.cntk:initOnCPUOnly=true
configparameters: 02_BatchNormConv.cntk:ModelDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models
configparameters: 02_BatchNormConv.cntk:ndlMacros=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/Macros.ndl
configparameters: 02_BatchNormConv.cntk:ModelDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models
configparameters: 02_BatchNormConv.cntk:ndlMacros=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/Macros.ndl
configparameters: 02_BatchNormConv.cntk:numMBsToShowResult=500
configparameters: 02_BatchNormConv.cntk:OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu
configparameters: 02_BatchNormConv.cntk:OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu
configparameters: 02_BatchNormConv.cntk:precision=float
configparameters: 02_BatchNormConv.cntk:prefetch=true
configparameters: 02_BatchNormConv.cntk:RootDir=.
configparameters: 02_BatchNormConv.cntk:RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu
configparameters: 02_BatchNormConv.cntk:RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu
configparameters: 02_BatchNormConv.cntk:stderr=-
configparameters: 02_BatchNormConv.cntk:Test=[
action = "test"
modelPath = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv"
modelPath = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv"
minibatchSize = 16
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData/Test_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData/Test_cntk_text.txt"
input = [
features = [
dim = 3072
@ -232,16 +242,16 @@ configparameters: 02_BatchNormConv.cntk:Test=[
format = "dense"
]
]
]
]
]
configparameters: 02_BatchNormConv.cntk:timestamping=true
configparameters: 02_BatchNormConv.cntk:traceLevel=1
configparameters: 02_BatchNormConv.cntk:Train=[
action = "train"
modelPath = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv"
modelPath = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv"
NDLNetworkBuilder = [
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv.ndl"
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/02_BatchNormConv.ndl"
]
SGD = [
epochSize = 49984
@ -254,7 +264,7 @@ configparameters: 02_BatchNormConv.cntk:Train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData/Train_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/TestData/Train_cntk_text.txt"
input = [
features = [
dim = 3072
@ -265,27 +275,75 @@ configparameters: 02_BatchNormConv.cntk:Train=[
format = "dense"
]
]
]
]
] [SGD=[maxEpochs=5]] [SGD=[epochSize=100]]
05/13/2016 15:10:59: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 15:10:59: Commands: Train Test
05/13/2016 15:10:59: Precision = "float"
05/13/2016 15:10:59: CNTKModelPath: /tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv
05/13/2016 15:10:59: CNTKCommandTrainInfo: Train : 5
05/13/2016 15:10:59: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 5
08/16/2016 10:50:45: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:50:45: Commands: Train Test
08/16/2016 10:50:45: Precision = "float"
08/16/2016 10:50:45: CNTKModelPath: /tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv
08/16/2016 10:50:45: CNTKCommandTrainInfo: Train : 5
08/16/2016 10:50:45: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 5
05/13/2016 15:10:59: ##############################################################################
05/13/2016 15:10:59: # #
05/13/2016 15:10:59: # Action "train" #
05/13/2016 15:10:59: # #
05/13/2016 15:10:59: ##############################################################################
08/16/2016 10:50:45: ##############################################################################
08/16/2016 10:50:45: # #
08/16/2016 10:50:45: # Action "train" #
08/16/2016 10:50:45: # #
08/16/2016 10:50:45: ##############################################################################
05/13/2016 15:10:59: CNTKCommandTrainBegin: Train
08/16/2016 10:50:45: CNTKCommandTrainBegin: Train
NDLBuilder Using GPU 0
05/13/2016 15:10:59: Creating virgin network.
08/16/2016 10:50:46: Creating virgin network.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.000000.
Node 'conv1.c.W' (LearnableParameter operation): Initializing Parameter[32 x 75] <- 0.000000.
Node 'conv1.c.c.b' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv1.c.c.sc' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv1.c.c.m' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv1.c.c.isd' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.W' (LearnableParameter operation): Initializing Parameter[32 x 800] <- 0.000000.
Node 'conv2.c.c.b' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.c.sc' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.c.m' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.c.isd' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv3.c.W' (LearnableParameter operation): Initializing Parameter[64 x 800] <- 0.000000.
Node 'conv3.c.c.b' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'conv3.c.c.sc' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'conv3.c.c.m' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'conv3.c.c.isd' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[64 x 3 x 3 x 64] <- 0.000000.
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'h1.sc' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'h1.m' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'h1.isd' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'OutputNodes.W' (LearnableParameter operation): Initializing Parameter[10 x 64] <- 0.000000.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[10] <- 0.000000.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 128.000000.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 128.000000.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 128.000000.
Node 'conv1.c.W' (LearnableParameter operation): Initializing Parameter[32 x 75] <- gaussian(seed=1, range=0.023094*0.004300, onCPU=false).
SetGaussianRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4
Node 'conv1.c.c.b' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv1.c.c.sc' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 1.000000.
Node 'conv1.c.c.m' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv1.c.c.isd' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.W' (LearnableParameter operation): Initializing Parameter[32 x 800] <- gaussian(seed=2, range=0.007071*1.414000, onCPU=false).
Node 'conv2.c.c.b' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.c.sc' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 1.000000.
Node 'conv2.c.c.m' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.c.isd' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv3.c.W' (LearnableParameter operation): Initializing Parameter[64 x 800] <- gaussian(seed=3, range=0.007071*1.414000, onCPU=false).
Node 'conv3.c.c.b' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'conv3.c.c.sc' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 1.000000.
Node 'conv3.c.c.m' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'conv3.c.c.isd' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[64 x 3 x 3 x 64] <- gaussian(seed=4, range=0.008333*12.000000, onCPU=false).
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'h1.sc' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 1.000000.
Node 'h1.m' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'h1.isd' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'OutputNodes.W' (LearnableParameter operation): Initializing Parameter[10 x 64] <- gaussian(seed=5, range=0.025000*1.500000, onCPU=false).
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[10] <- 0.000000.
Post-processing network...
@ -348,23 +406,23 @@ Validating network. 20 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 32, Kernel: 5 x 5 x 3, Map: 1 x 1 x 32, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c.c.c: using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 32, Kernel: 5 x 5 x 3, Map: 1 x 1 x 32, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 32, Output: 15 x 15 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 32 x 32 x 32, Output: 15 x 15 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 15 x 15 x 32, Kernel: 5 x 5 x 32, Map: 1 x 1 x 32, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c.c.c: using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 15 x 15 x 32, Kernel: 5 x 5 x 32, Map: 1 x 1 x 32, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 7 x 7 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 7 x 7 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 7 x 7 x 32, Output: 7 x 7 x 64, Kernel: 5 x 5 x 32, Map: 1 x 1 x 64, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3.c.c.c: using cuDNN convolution engine for geometry: Input: 7 x 7 x 32, Output: 7 x 7 x 64, Kernel: 5 x 5 x 32, Map: 1 x 1 x 64, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
Using cuDNN convolution engine for geometry: Input: 7 x 7 x 64, Output: 3 x 3 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool3: using cuDNN convolution engine for geometry: Input: 7 x 7 x 64, Output: 3 x 3 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
@ -373,118 +431,122 @@ Using CNTK batch normalization engine.
Post-processing network complete.
05/13/2016 15:10:59: Created model with 45 nodes on GPU 0.
08/16/2016 10:50:46: Created model with 45 nodes on GPU 0.
05/13/2016 15:10:59: Training criterion node(s):
05/13/2016 15:10:59: CE = CrossEntropyWithSoftmax
08/16/2016 10:50:46: Training criterion node(s):
08/16/2016 10:50:46: CE = CrossEntropyWithSoftmax
05/13/2016 15:10:59: Evaluation criterion node(s):
05/13/2016 15:10:59: Err = ErrorPrediction
08/16/2016 10:50:46: Evaluation criterion node(s):
08/16/2016 10:50:46: Err = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 77 matrices, 38 are shared as 16, and 39 are not shared.
(nil): {[Err Gradient[1]] [conv1.c.c.isd Gradient[32 x 1]] [conv1.c.c.m Gradient[32 x 1]] [conv2.c.c.isd Gradient[32 x 1]] [conv2.c.c.m Gradient[32 x 1]] [conv3.c.c.isd Gradient[64 x 1]] [conv3.c.c.m Gradient[64 x 1]] [featOffs Gradient[1 x 1]] [featScaled Gradient[32 x 32 x 3 x *]] [features Gradient[32 x 32 x 3 x *]] [h1.isd Gradient[64 x 1]] [h1.m Gradient[64 x 1]] [labels Gradient[10 x *]] }
0x28d4ae8: {[features Value[32 x 32 x 3 x *]] }
0x31e4be8: {[featOffs Value[1 x 1]] }
0x31e6988: {[labels Value[10 x *]] }
0x31e74c8: {[conv1.c.W Value[32 x 75]] }
0x31e7a08: {[conv1.c.c.b Value[32 x 1]] }
0x31e86c8: {[conv1.c.c.sc Value[32 x 1]] }
0x31e9228: {[conv1.c.c.m Value[32 x 1]] }
0x31e9d78: {[conv1.c.c.isd Value[32 x 1]] }
0x31ead98: {[conv2.c.W Value[32 x 800]] }
0x31ec628: {[conv2.c.c.b Value[32 x 1]] }
0x31ed2e8: {[conv2.c.c.sc Value[32 x 1]] }
0x31ed9b8: {[h1.b Value[64 x 1]] }
0x31edfc8: {[conv2.c.c.m Value[32 x 1]] }
0x31eeb38: {[conv2.c.c.isd Value[32 x 1]] }
0x31efbe8: {[conv3.c.W Value[64 x 800]] }
0x31f0ca8: {[conv3.c.c.b Value[64 x 1]] }
0x31f16a8: {[conv3.c.c.sc Value[64 x 1]] }
0x31f2548: {[conv3.c.c.m Value[64 x 1]] }
0x31f30b8: {[conv3.c.c.isd Value[64 x 1]] }
0x31f4a48: {[h1.W Value[64 x 3 x 3 x 64]] }
0x31f6098: {[h1.sc Value[64 x 1]] }
0x31f6b48: {[h1.m Value[64 x 1]] }
0x3629fb8: {[h1.isd Value[64 x 1]] }
0x362b3f8: {[OutputNodes.W Value[10 x 64]] }
0x362c2e8: {[OutputNodes.b Value[10]] }
0x7f51399894d8: {[Err Value[1]] }
0x7f513998b9d8: {[conv1.c.c.y Value[32 x 32 x 32 x *]] }
0x7f51399ab038: {[featScaled Value[32 x 32 x 3 x *]] }
0x7f51399ab378: {[conv1.c.c.c Value[32 x 32 x 32 x *]] }
0x7f51399ac5f8: {[conv1.c.c.c Gradient[32 x 32 x 32 x *]] [conv1.y Value[32 x 32 x 32 x *]] }
0x7f51399ac7b8: {[conv1.c.c.y Gradient[32 x 32 x 32 x *]] [pool1 Value[15 x 15 x 32 x *]] }
0x7f51399ac978: {[conv1.c.W Gradient[32 x 75]] [conv2.c.c.c Value[15 x 15 x 32 x *]] }
0x7f51399acb38: {[conv1.c.c.sc Gradient[32 x 1]] [conv1.y Gradient[32 x 32 x 32 x *]] }
0x7f51399accf8: {[conv2.c.c.y Value[15 x 15 x 32 x *]] }
0x7f51399ad238: {[conv1.c.c.b Gradient[32 x 1]] [conv2.c.c.c Gradient[15 x 15 x 32 x *]] [conv2.y Value[15 x 15 x 32 x *]] }
0x7f51399ad3f8: {[conv2.c.c.y Gradient[15 x 15 x 32 x *]] [pool2 Value[7 x 7 x 32 x *]] }
0x7f51399ad5b8: {[conv2.c.W Gradient[32 x 800]] [conv3.c.c.c Value[7 x 7 x 64 x *]] }
0x7f51399ad778: {[conv2.c.c.sc Gradient[32 x 1]] [conv2.y Gradient[15 x 15 x 32 x *]] }
0x7f51399ad938: {[conv3.c.c.y Value[7 x 7 x 64 x *]] }
0x7f51399ade78: {[conv2.c.c.b Gradient[32 x 1]] [conv3.c.c.c Gradient[7 x 7 x 64 x *]] [conv3.y Value[7 x 7 x 64 x *]] }
0x7f51399ae038: {[conv3.c.c.y Gradient[7 x 7 x 64 x *]] [pool3 Value[3 x 3 x 64 x *]] }
0x7f51399ae1f8: {[conv3.c.c.sc Gradient[64 x 1]] [conv3.y Gradient[7 x 7 x 64 x *]] [h1.t Value[64 x *]] }
0x7f51399ae3b8: {[h1.bn Value[64 x *]] }
0x7f51399ae738: {[conv3.c.c.b Gradient[64 x 1]] }
0x7f51399ae8f8: {[conv3.c.W Gradient[64 x 800]] [h1.t Gradient[64 x *]] [h1.y Value[64 x *]] }
0x7f51399aeab8: {[OutputNodes.t Value[10 x *]] [h1.bn Gradient[64 x *]] }
0x7f51399af598: {[CE Gradient[1]] }
0x7f51399af758: {[OutputNodes.W Gradient[10 x 64]] [OutputNodes.z Gradient[10 x *]] }
0x7f51399af918: {[OutputNodes.t Gradient[10 x *]] [pool1 Gradient[15 x 15 x 32 x *]] [pool2 Gradient[7 x 7 x 32 x *]] [pool3 Gradient[3 x 3 x 64 x *]] }
0x7f51399afad8: {[OutputNodes.b Gradient[10]] }
0x7f51399afc98: {[h1.sc Gradient[64 x 1]] [h1.y Gradient[64 x *]] }
0x7f51399afe88: {[h1.W Gradient[64 x 3 x 3 x 64]] }
0x7f51399b0048: {[h1.b Gradient[64 x 1]] }
0x7f51399b6728: {[OutputNodes.z Value[10 x *]] }
0x7f51399b68e8: {[CE Value[1]] }
05/13/2016 15:10:59: No PreCompute nodes found, skipping PreCompute step.
05/13/2016 15:10:59: Starting Epoch 1: learning rate per sample = 0.000469 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 15:10:59: Starting minibatch loop.
05/13/2016 15:11:03: Finished Epoch[ 1 of 5]: [Training] CE = 2.29343704 * 100; Err = 0.87000000 * 100; totalSamplesSeen = 100; learningRatePerSample = 0.00046874999; epochTime=3.58144s
05/13/2016 15:11:03: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv.1'
05/13/2016 15:11:03: Starting Epoch 2: learning rate per sample = 0.000469 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 15:11:03: Starting minibatch loop.
05/13/2016 15:11:03: Finished Epoch[ 2 of 5]: [Training] CE = 2.22764633 * 100; Err = 0.88000000 * 100; totalSamplesSeen = 200; learningRatePerSample = 0.00046874999; epochTime=0.01264s
05/13/2016 15:11:03: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv.2'
05/13/2016 15:11:03: Starting Epoch 3: learning rate per sample = 0.000469 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 15:11:03: Starting minibatch loop.
05/13/2016 15:11:03: Finished Epoch[ 3 of 5]: [Training] CE = 2.20062683 * 100; Err = 0.77000000 * 100; totalSamplesSeen = 300; learningRatePerSample = 0.00046874999; epochTime=0.01151s
05/13/2016 15:11:03: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv.3'
05/13/2016 15:11:03: Starting Epoch 4: learning rate per sample = 0.000469 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 15:11:03: Starting minibatch loop.
05/13/2016 15:11:03: Finished Epoch[ 4 of 5]: [Training] CE = 2.19534531 * 100; Err = 0.81000000 * 100; totalSamplesSeen = 400; learningRatePerSample = 0.00046874999; epochTime=0.012353s
05/13/2016 15:11:03: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv.4'
05/13/2016 15:11:03: Starting Epoch 5: learning rate per sample = 0.000469 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 15:11:03: Starting minibatch loop.
05/13/2016 15:11:03: Finished Epoch[ 5 of 5]: [Training] CE = 2.16844864 * 100; Err = 0.79000000 * 100; totalSamplesSeen = 500; learningRatePerSample = 0.00046874999; epochTime=0.01142s
05/13/2016 15:11:03: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv'
05/13/2016 15:11:03: CNTKCommandTrainEnd: Train
05/13/2016 15:11:03: Action "train" complete.
{ conv1.c.c.y : [32 x 32 x 32 x *] (gradient)
pool1 : [15 x 15 x 32 x *] }
{ conv1.c.W : [32 x 75] (gradient)
conv2.c.c.c : [15 x 15 x 32 x *] }
{ conv1.c.c.sc : [32 x 1] (gradient)
conv1.y : [32 x 32 x 32 x *] (gradient) }
{ conv1.c.c.b : [32 x 1] (gradient)
conv2.c.c.c : [15 x 15 x 32 x *] (gradient)
conv2.y : [15 x 15 x 32 x *] }
{ conv2.c.c.y : [15 x 15 x 32 x *] (gradient)
pool2 : [7 x 7 x 32 x *] }
{ conv2.c.W : [32 x 800] (gradient)
conv3.c.c.c : [7 x 7 x 64 x *] }
{ conv2.c.c.sc : [32 x 1] (gradient)
conv2.y : [15 x 15 x 32 x *] (gradient) }
{ conv2.c.c.b : [32 x 1] (gradient)
conv3.c.c.c : [7 x 7 x 64 x *] (gradient)
conv3.y : [7 x 7 x 64 x *] }
{ conv3.c.c.y : [7 x 7 x 64 x *] (gradient)
pool3 : [3 x 3 x 64 x *] }
{ conv3.c.c.sc : [64 x 1] (gradient)
conv3.y : [7 x 7 x 64 x *] (gradient)
h1.t : [64 x *] }
{ conv3.c.W : [64 x 800] (gradient)
h1.t : [64 x *] (gradient)
h1.y : [64 x *] }
{ OutputNodes.t : [10 x *]
h1.bn : [64 x *] (gradient) }
{ OutputNodes.W : [10 x 64] (gradient)
OutputNodes.z : [10 x *] (gradient) }
{ OutputNodes.t : [10 x *] (gradient)
pool1 : [15 x 15 x 32 x *] (gradient)
pool2 : [7 x 7 x 32 x *] (gradient)
pool3 : [3 x 3 x 64 x *] (gradient) }
{ h1.sc : [64 x 1] (gradient)
h1.y : [64 x *] (gradient) }
{ conv1.c.c.c : [32 x 32 x 32 x *] (gradient)
conv1.y : [32 x 32 x 32 x *] }
05/13/2016 15:11:03: ##############################################################################
05/13/2016 15:11:03: # #
05/13/2016 15:11:03: # Action "test" #
05/13/2016 15:11:03: # #
05/13/2016 15:11:03: ##############################################################################
08/16/2016 10:50:46: Training 117098 parameters in 14 out of 14 parameter tensors and 32 nodes with gradient:
08/16/2016 10:50:46: Node 'OutputNodes.W' (LearnableParameter operation) : [10 x 64]
08/16/2016 10:50:46: Node 'OutputNodes.b' (LearnableParameter operation) : [10]
08/16/2016 10:50:46: Node 'conv1.c.W' (LearnableParameter operation) : [32 x 75]
08/16/2016 10:50:46: Node 'conv1.c.c.b' (LearnableParameter operation) : [32 x 1]
08/16/2016 10:50:46: Node 'conv1.c.c.sc' (LearnableParameter operation) : [32 x 1]
08/16/2016 10:50:46: Node 'conv2.c.W' (LearnableParameter operation) : [32 x 800]
08/16/2016 10:50:46: Node 'conv2.c.c.b' (LearnableParameter operation) : [32 x 1]
08/16/2016 10:50:46: Node 'conv2.c.c.sc' (LearnableParameter operation) : [32 x 1]
08/16/2016 10:50:46: Node 'conv3.c.W' (LearnableParameter operation) : [64 x 800]
08/16/2016 10:50:46: Node 'conv3.c.c.b' (LearnableParameter operation) : [64 x 1]
08/16/2016 10:50:46: Node 'conv3.c.c.sc' (LearnableParameter operation) : [64 x 1]
08/16/2016 10:50:46: Node 'h1.W' (LearnableParameter operation) : [64 x 3 x 3 x 64]
08/16/2016 10:50:46: Node 'h1.b' (LearnableParameter operation) : [64 x 1]
08/16/2016 10:50:46: Node 'h1.sc' (LearnableParameter operation) : [64 x 1]
08/16/2016 10:50:46: No PreCompute nodes found, or all already computed. Skipping pre-computation step.
08/16/2016 10:50:46: Starting Epoch 1: learning rate per sample = 0.000469 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..100] (first sequence at sample 0), data subset 0 of 1
08/16/2016 10:50:46: Starting minibatch loop.
08/16/2016 10:50:49: Finished Epoch[ 1 of 5]: [Training] CE = 2.26618500 * 100; Err = 0.87000000 * 100; totalSamplesSeen = 100; learningRatePerSample = 0.00046874999; epochTime=3.51442s
08/16/2016 10:50:49: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv.1'
08/16/2016 10:50:49: Starting Epoch 2: learning rate per sample = 0.000469 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 1: frames [100..200] (first sequence at sample 100), data subset 0 of 1
08/16/2016 10:50:49: Starting minibatch loop.
08/16/2016 10:50:49: Finished Epoch[ 2 of 5]: [Training] CE = 2.24375671 * 100; Err = 0.82000000 * 100; totalSamplesSeen = 200; learningRatePerSample = 0.00046874999; epochTime=0.011601s
08/16/2016 10:50:50: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv.2'
08/16/2016 10:50:50: Starting Epoch 3: learning rate per sample = 0.000469 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 2: frames [200..300] (first sequence at sample 200), data subset 0 of 1
08/16/2016 10:50:50: Starting minibatch loop.
08/16/2016 10:50:50: Finished Epoch[ 3 of 5]: [Training] CE = 2.21250885 * 100; Err = 0.84000000 * 100; totalSamplesSeen = 300; learningRatePerSample = 0.00046874999; epochTime=0.012328s
08/16/2016 10:50:50: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv.3'
08/16/2016 10:50:50: Starting Epoch 4: learning rate per sample = 0.000469 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 3: frames [300..400] (first sequence at sample 300), data subset 0 of 1
08/16/2016 10:50:50: Starting minibatch loop.
08/16/2016 10:50:50: Finished Epoch[ 4 of 5]: [Training] CE = 2.20485107 * 100; Err = 0.82000000 * 100; totalSamplesSeen = 400; learningRatePerSample = 0.00046874999; epochTime=0.011359s
08/16/2016 10:50:50: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv.4'
08/16/2016 10:50:50: Starting Epoch 5: learning rate per sample = 0.000469 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 4: frames [400..500] (first sequence at sample 400), data subset 0 of 1
08/16/2016 10:50:50: Starting minibatch loop.
08/16/2016 10:50:50: Finished Epoch[ 5 of 5]: [Training] CE = 2.17108704 * 100; Err = 0.78000000 * 100; totalSamplesSeen = 500; learningRatePerSample = 0.00046874999; epochTime=0.011981s
08/16/2016 10:50:50: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv'
08/16/2016 10:50:50: CNTKCommandTrainEnd: Train
08/16/2016 10:50:50: Action "train" complete.
08/16/2016 10:50:50: ##############################################################################
08/16/2016 10:50:50: # #
08/16/2016 10:50:50: # Action "test" #
08/16/2016 10:50:50: # #
08/16/2016 10:50:50: ##############################################################################
Post-processing network...
@ -548,23 +610,23 @@ Validating network. 20 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 32, Kernel: 5 x 5 x 3, Map: 1 x 1 x 32, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c.c.c: using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 32, Kernel: 5 x 5 x 3, Map: 1 x 1 x 32, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 32, Output: 15 x 15 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 32 x 32 x 32, Output: 15 x 15 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 15 x 15 x 32, Kernel: 5 x 5 x 32, Map: 1 x 1 x 32, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c.c.c: using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 15 x 15 x 32, Kernel: 5 x 5 x 32, Map: 1 x 1 x 32, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 7 x 7 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 7 x 7 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 7 x 7 x 32, Output: 7 x 7 x 64, Kernel: 5 x 5 x 32, Map: 1 x 1 x 64, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3.c.c.c: using cuDNN convolution engine for geometry: Input: 7 x 7 x 32, Output: 7 x 7 x 64, Kernel: 5 x 5 x 32, Map: 1 x 1 x 64, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
Using cuDNN convolution engine for geometry: Input: 7 x 7 x 64, Output: 3 x 3 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool3: using cuDNN convolution engine for geometry: Input: 7 x 7 x 64, Output: 3 x 3 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
@ -578,57 +640,14 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 45 matrices, 0 are shared as 0, and 45 are not shared.
(nil): {[CE Gradient[1]] [Err Gradient[1]] [OutputNodes.W Gradient[10 x 64]] [OutputNodes.b Gradient[10]] [OutputNodes.t Gradient[10 x *1]] [OutputNodes.z Gradient[10 x *1]] [conv1.c.W Gradient[32 x 75]] [conv1.c.c.b Gradient[32 x 1]] [conv1.c.c.c Gradient[32 x 32 x 32 x *1]] [conv1.c.c.isd Gradient[32 x 1]] [conv1.c.c.m Gradient[32 x 1]] [conv1.c.c.sc Gradient[32 x 1]] [conv1.c.c.y Gradient[32 x 32 x 32 x *1]] [conv1.y Gradient[32 x 32 x 32 x *1]] [conv2.c.W Gradient[32 x 800]] [conv2.c.c.b Gradient[32 x 1]] [conv2.c.c.c Gradient[15 x 15 x 32 x *1]] [conv2.c.c.isd Gradient[32 x 1]] [conv2.c.c.m Gradient[32 x 1]] [conv2.c.c.sc Gradient[32 x 1]] [conv2.c.c.y Gradient[15 x 15 x 32 x *1]] [conv2.y Gradient[15 x 15 x 32 x *1]] [conv3.c.W Gradient[64 x 800]] [conv3.c.c.b Gradient[64 x 1]] [conv3.c.c.c Gradient[7 x 7 x 64 x *1]] [conv3.c.c.isd Gradient[64 x 1]] [conv3.c.c.m Gradient[64 x 1]] [conv3.c.c.sc Gradient[64 x 1]] [conv3.c.c.y Gradient[7 x 7 x 64 x *1]] [conv3.y Gradient[7 x 7 x 64 x *1]] [featOffs Gradient[1 x 1]] [featScaled Gradient[32 x 32 x 3 x *1]] [features Gradient[32 x 32 x 3 x *1]] [h1.W Gradient[64 x 3 x 3 x 64]] [h1.b Gradient[64 x 1]] [h1.bn Gradient[64 x *1]] [h1.isd Gradient[64 x 1]] [h1.m Gradient[64 x 1]] [h1.sc Gradient[64 x 1]] [h1.t Gradient[64 x *1]] [h1.y Gradient[64 x *1]] [labels Gradient[10 x *1]] [pool1 Gradient[15 x 15 x 32 x *1]] [pool2 Gradient[7 x 7 x 32 x *1]] [pool3 Gradient[3 x 3 x 64 x *1]] }
0x7f5132919b38: {[conv2.c.c.isd Value[32 x 1]] }
0x7f5132919cf8: {[conv2.c.c.m Value[32 x 1]] }
0x7f513291a7b8: {[conv2.c.c.sc Value[32 x 1]] }
0x7f5132974258: {[conv1.c.W Value[32 x 75]] }
0x7f51329744c8: {[conv2.c.c.b Value[32 x 1]] }
0x7f5132974fa8: {[conv1.c.c.isd Value[32 x 1]] }
0x7f5132975168: {[conv1.c.c.m Value[32 x 1]] }
0x7f513298b078: {[conv1.y Value[32 x 32 x 32 x *1]] }
0x7f513298b238: {[pool1 Value[15 x 15 x 32 x *1]] }
0x7f513298b3f8: {[conv2.c.c.c Value[15 x 15 x 32 x *1]] }
0x7f513298b778: {[conv2.c.c.y Value[15 x 15 x 32 x *1]] }
0x7f513298bcb8: {[conv2.y Value[15 x 15 x 32 x *1]] }
0x7f513298be78: {[pool2 Value[7 x 7 x 32 x *1]] }
0x7f513298c038: {[conv3.c.c.c Value[7 x 7 x 64 x *1]] }
0x7f513298c3b8: {[conv3.c.c.y Value[7 x 7 x 64 x *1]] }
0x7f513298c8f8: {[conv3.y Value[7 x 7 x 64 x *1]] }
0x7f513298cab8: {[pool3 Value[3 x 3 x 64 x *1]] }
0x7f513298cc78: {[h1.t Value[64 x *1]] }
0x7f513298ce38: {[h1.bn Value[64 x *1]] }
0x7f513298d378: {[h1.y Value[64 x *1]] }
0x7f513298d538: {[OutputNodes.t Value[10 x *1]] }
0x7f513298d6f8: {[OutputNodes.z Value[10 x *1]] }
0x7f51397eafd8: {[featScaled Value[32 x 32 x 3 x *1]] }
0x7f51397eb318: {[conv1.c.c.c Value[32 x 32 x 32 x *1]] }
0x7f5139989708: {[labels Value[10 x *1]] }
0x7f513998a198: {[OutputNodes.b Value[10]] }
0x7f513998aea8: {[OutputNodes.W Value[10 x 64]] }
0x7f513998d7f8: {[conv1.c.c.sc Value[32 x 1]] }
0x7f51399aaca8: {[CE Value[1]] }
0x7f51399ab038: {[Err Value[1]] }
0x7f51399cc578: {[conv1.c.c.y Value[32 x 32 x 32 x *1]] }
0x7f51399ce9c8: {[conv3.c.c.sc Value[64 x 1]] }
0x7f51399cebd8: {[conv3.c.W Value[64 x 800]] }
0x7f51399d04a8: {[featOffs Value[1 x 1]] }
0x7f51399d1148: {[features Value[32 x 32 x 3 x *1]] }
0x7f51399d1b98: {[h1.b Value[64 x 1]] }
0x7f51399d1e78: {[h1.isd Value[64 x 1]] }
0x7f51399d2ab8: {[h1.m Value[64 x 1]] }
0x7f51399d3518: {[h1.sc Value[64 x 1]] }
0x7f51399d4f88: {[conv2.c.W Value[32 x 800]] }
0x7f51399d5a88: {[conv3.c.c.b Value[64 x 1]] }
0x7f51399d6bf8: {[conv3.c.c.isd Value[64 x 1]] }
0x7f51399d6df8: {[conv3.c.c.m Value[64 x 1]] }
0x7f51399f43a8: {[h1.W Value[64 x 3 x 3 x 64]] }
0x7f51399fb388: {[conv1.c.c.b Value[32 x 1]] }
05/13/2016 15:11:09: Final Results: Minibatch[1-625]: Err = 0.86810000 * 10000; CE = 2.32970283 * 10000; perplexity = 10.27488769
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 10:50:51: Minibatch[1-500]: Err = 0.86100000 * 8000; CE = 2.27391421 * 8000
08/16/2016 10:50:51: Minibatch[501-625]: Err = 0.85550000 * 2000; CE = 2.27178036 * 2000
08/16/2016 10:50:51: Final Results: Minibatch[1-625]: Err = 0.85990000 * 10000; CE = 2.27348744 * 10000; perplexity = 9.71321604
05/13/2016 15:11:09: Action "test" complete.
08/16/2016 10:50:51: Action "test" complete.
05/13/2016 15:11:09: __COMPLETED__
08/16/2016 10:50:51: __COMPLETED__

Просмотреть файл

@ -1,47 +1,62 @@
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/Config/02_BatchNormConv.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10 OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=5]] Train=[SGD=[epochSize=100]] stderr=-
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 268381192 kB
-------------------------------------------------------------------
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10/02_BatchNormConv.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10 OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=5]] Train=[SGD=[epochSize=100]] stderr=-
-------------------------------------------------------------------
Build info:
Built time: May 13 2016 08:06:01
Last modified date: Thu May 12 07:31:50 2016
Built time: Aug 16 2016 02:54:53
Last modified date: Fri Aug 12 05:31:21 2016
Build type: Release
Build target: GPU
With 1bit-SGD: no
Math lib: mkl
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
CUB_PATH: c:\src\cub-1.4.1
CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
Build Branch: HEAD
Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by svcphil on Philly-Pool3
Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
-------------------------------------------------------------------
Changed current directory to C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData
05/13/2016 08:18:23: Redirecting stderr to file -_Train_Test.log
05/13/2016 08:18:23: -------------------------------------------------------------------
05/13/2016 08:18:23: Build info:
Changed current directory to C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData
08/16/2016 03:02:22: Redirecting stderr to file -_Train_Test.log
08/16/2016 03:02:22: -------------------------------------------------------------------
08/16/2016 03:02:22: Build info:
05/13/2016 08:18:23: Built time: May 13 2016 08:06:01
05/13/2016 08:18:23: Last modified date: Thu May 12 07:31:50 2016
05/13/2016 08:18:23: Build type: Release
05/13/2016 08:18:23: Build target: GPU
05/13/2016 08:18:23: With 1bit-SGD: no
05/13/2016 08:18:23: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
05/13/2016 08:18:23: CUB_PATH: c:\src\cub-1.4.1
05/13/2016 08:18:23: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
05/13/2016 08:18:23: Build Branch: HEAD
05/13/2016 08:18:23: Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
05/13/2016 08:18:23: Built by svcphil on Philly-Pool3
05/13/2016 08:18:23: Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
05/13/2016 08:18:23: -------------------------------------------------------------------
08/16/2016 03:02:22: Built time: Aug 16 2016 02:54:53
08/16/2016 03:02:22: Last modified date: Fri Aug 12 05:31:21 2016
08/16/2016 03:02:22: Build type: Release
08/16/2016 03:02:22: Build target: GPU
08/16/2016 03:02:22: With 1bit-SGD: no
08/16/2016 03:02:22: Math lib: mkl
08/16/2016 03:02:22: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
08/16/2016 03:02:22: CUB_PATH: c:\src\cub-1.4.1
08/16/2016 03:02:22: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
08/16/2016 03:02:22: Build Branch: HEAD
08/16/2016 03:02:22: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 03:02:22: Built by svcphil on Philly-Pool3
08/16/2016 03:02:22: Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
08/16/2016 03:02:22: -------------------------------------------------------------------
08/16/2016 03:02:25: -------------------------------------------------------------------
08/16/2016 03:02:25: GPU info:
05/13/2016 08:18:23: Running on Philly-Pool2 at 2016/05/13 08:18:23
05/13/2016 08:18:23: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/Config/02_BatchNormConv.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10 OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=5]] Train=[SGD=[epochSize=100]] stderr=-
08/16/2016 03:02:25: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:02:25: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:02:25: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:02:25: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:02:25: -------------------------------------------------------------------
08/16/2016 03:02:25: Running on DPHAIM-24 at 2016/08/16 03:02:25
08/16/2016 03:02:25: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10/02_BatchNormConv.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10 OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=5]] Train=[SGD=[epochSize=100]] stderr=-
05/13/2016 08:18:23: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/13/2016 08:18:23: RootDir = "."
08/16/2016 03:02:25: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:02:25: RootDir = "."
ConfigDir = "$RootDir$"
DataDir = "$RootDir$"
OutputDir = "$RootDir$/Output"
@ -51,7 +66,6 @@ precision = "float"
deviceId = 0
imageLayout = "cudnn"
initOnCPUOnly=true
prefetch = "true"
command = Train:Test
stderr = "$OutputDir$/02_BatchNormConv"
traceLevel = 1
@ -84,7 +98,7 @@ Train = [
format = "dense"
]
]
]
]
]
Test = [
action = "test"
@ -103,40 +117,39 @@ Test = [
format = "dense"
]
]
]
]
]
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu
DeviceId=0
timestamping=true
Train=[SGD=[maxEpochs=5]]
Train=[SGD=[epochSize=100]]
stderr=-
05/13/2016 08:18:23: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:02:25: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/13/2016 08:18:23: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/13/2016 08:18:23: RootDir = "."
08/16/2016 03:02:25: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:02:25: RootDir = "."
ConfigDir = "."
DataDir = "."
OutputDir = "./Output"
ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models"
ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models"
ndlMacros = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10/Macros.ndl"
precision = "float"
deviceId = 0
imageLayout = "cudnn"
initOnCPUOnly=true
prefetch = "true"
command = Train:Test
stderr = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/02_BatchNormConv"
stderr = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/02_BatchNormConv"
traceLevel = 1
numMBsToShowResult = 500
Train = [
action = "train"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv"
NDLNetworkBuilder = [
networkDescription = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10/02_BatchNormConv.ndl"
]
@ -151,7 +164,7 @@ Train = [
]
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData/Train_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData/Train_cntk_text.txt"
input = [
features = [
dim = 3072
@ -162,15 +175,15 @@ Train = [
format = "dense"
]
]
]
]
]
Test = [
action = "test"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv"
minibatchSize = 16
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData/Test_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData/Test_cntk_text.txt"
input = [
features = [
dim = 3072
@ -181,45 +194,44 @@ Test = [
format = "dense"
]
]
]
]
]
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu
DeviceId=0
timestamping=true
Train=[SGD=[maxEpochs=5]]
Train=[SGD=[epochSize=100]]
stderr=-
05/13/2016 08:18:23: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:02:25: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 08:18:23: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:02:25: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: 02_BatchNormConv.cntk:command=Train:Test
configparameters: 02_BatchNormConv.cntk:ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10
configparameters: 02_BatchNormConv.cntk:currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData
configparameters: 02_BatchNormConv.cntk:DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData
configparameters: 02_BatchNormConv.cntk:currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData
configparameters: 02_BatchNormConv.cntk:DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData
configparameters: 02_BatchNormConv.cntk:deviceId=0
configparameters: 02_BatchNormConv.cntk:imageLayout=cudnn
configparameters: 02_BatchNormConv.cntk:initOnCPUOnly=true
configparameters: 02_BatchNormConv.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models
configparameters: 02_BatchNormConv.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models
configparameters: 02_BatchNormConv.cntk:ndlMacros=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10/Macros.ndl
configparameters: 02_BatchNormConv.cntk:numMBsToShowResult=500
configparameters: 02_BatchNormConv.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu
configparameters: 02_BatchNormConv.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu
configparameters: 02_BatchNormConv.cntk:precision=float
configparameters: 02_BatchNormConv.cntk:prefetch=true
configparameters: 02_BatchNormConv.cntk:RootDir=.
configparameters: 02_BatchNormConv.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu
configparameters: 02_BatchNormConv.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu
configparameters: 02_BatchNormConv.cntk:stderr=-
configparameters: 02_BatchNormConv.cntk:Test=[
action = "test"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv"
minibatchSize = 16
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData/Test_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData/Test_cntk_text.txt"
input = [
features = [
dim = 3072
@ -230,14 +242,14 @@ configparameters: 02_BatchNormConv.cntk:Test=[
format = "dense"
]
]
]
]
]
configparameters: 02_BatchNormConv.cntk:timestamping=true
configparameters: 02_BatchNormConv.cntk:traceLevel=1
configparameters: 02_BatchNormConv.cntk:Train=[
action = "train"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv"
NDLNetworkBuilder = [
networkDescription = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10/02_BatchNormConv.ndl"
]
@ -252,7 +264,7 @@ configparameters: 02_BatchNormConv.cntk:Train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData/Train_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu\TestData/Train_cntk_text.txt"
input = [
features = [
dim = 3072
@ -263,27 +275,75 @@ configparameters: 02_BatchNormConv.cntk:Train=[
format = "dense"
]
]
]
]
] [SGD=[maxEpochs=5]] [SGD=[epochSize=100]]
05/13/2016 08:18:23: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 08:18:23: Commands: Train Test
05/13/2016 08:18:23: Precision = "float"
05/13/2016 08:18:23: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv
05/13/2016 08:18:23: CNTKCommandTrainInfo: Train : 5
05/13/2016 08:18:23: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 5
08/16/2016 03:02:25: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:02:25: Commands: Train Test
08/16/2016 03:02:25: Precision = "float"
08/16/2016 03:02:25: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv
08/16/2016 03:02:25: CNTKCommandTrainInfo: Train : 5
08/16/2016 03:02:25: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 5
05/13/2016 08:18:23: ##############################################################################
05/13/2016 08:18:23: # #
05/13/2016 08:18:23: # Action "train" #
05/13/2016 08:18:23: # #
05/13/2016 08:18:23: ##############################################################################
08/16/2016 03:02:25: ##############################################################################
08/16/2016 03:02:25: # #
08/16/2016 03:02:25: # Action "train" #
08/16/2016 03:02:25: # #
08/16/2016 03:02:25: ##############################################################################
05/13/2016 08:18:23: CNTKCommandTrainBegin: Train
08/16/2016 03:02:25: CNTKCommandTrainBegin: Train
NDLBuilder Using GPU 0
05/13/2016 08:18:24: Creating virgin network.
08/16/2016 03:02:26: Creating virgin network.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.000000.
Node 'conv1.c.W' (LearnableParameter operation): Initializing Parameter[32 x 75] <- 0.000000.
Node 'conv1.c.c.b' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv1.c.c.sc' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv1.c.c.m' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv1.c.c.isd' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.W' (LearnableParameter operation): Initializing Parameter[32 x 800] <- 0.000000.
Node 'conv2.c.c.b' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.c.sc' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.c.m' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.c.isd' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv3.c.W' (LearnableParameter operation): Initializing Parameter[64 x 800] <- 0.000000.
Node 'conv3.c.c.b' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'conv3.c.c.sc' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'conv3.c.c.m' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'conv3.c.c.isd' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[64 x 3 x 3 x 64] <- 0.000000.
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'h1.sc' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'h1.m' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'h1.isd' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'OutputNodes.W' (LearnableParameter operation): Initializing Parameter[10 x 64] <- 0.000000.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[10] <- 0.000000.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 128.000000.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 128.000000.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 128.000000.
Node 'conv1.c.W' (LearnableParameter operation): Initializing Parameter[32 x 75] <- gaussian(seed=1, range=0.023094*0.004300, onCPU=false).
Microsoft::MSR::CNTK::GPUMatrix<ElemType>::SetGaussianRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4
Node 'conv1.c.c.b' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv1.c.c.sc' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 1.000000.
Node 'conv1.c.c.m' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv1.c.c.isd' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.W' (LearnableParameter operation): Initializing Parameter[32 x 800] <- gaussian(seed=2, range=0.007071*1.414000, onCPU=false).
Node 'conv2.c.c.b' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.c.sc' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 1.000000.
Node 'conv2.c.c.m' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv2.c.c.isd' (LearnableParameter operation): Initializing Parameter[32 x 1] <- 0.000000.
Node 'conv3.c.W' (LearnableParameter operation): Initializing Parameter[64 x 800] <- gaussian(seed=3, range=0.007071*1.414000, onCPU=false).
Node 'conv3.c.c.b' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'conv3.c.c.sc' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 1.000000.
Node 'conv3.c.c.m' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'conv3.c.c.isd' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[64 x 3 x 3 x 64] <- gaussian(seed=4, range=0.008333*12.000000, onCPU=false).
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'h1.sc' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 1.000000.
Node 'h1.m' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'h1.isd' (LearnableParameter operation): Initializing Parameter[64 x 1] <- 0.000000.
Node 'OutputNodes.W' (LearnableParameter operation): Initializing Parameter[10 x 64] <- gaussian(seed=5, range=0.025000*1.500000, onCPU=false).
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[10] <- 0.000000.
Post-processing network...
@ -346,23 +406,23 @@ Validating network. 20 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 32, Kernel: 5 x 5 x 3, Map: 1 x 1 x 32, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c.c.c: using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 32, Kernel: 5 x 5 x 3, Map: 1 x 1 x 32, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 32, Output: 15 x 15 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 32 x 32 x 32, Output: 15 x 15 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 15 x 15 x 32, Kernel: 5 x 5 x 32, Map: 1 x 1 x 32, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c.c.c: using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 15 x 15 x 32, Kernel: 5 x 5 x 32, Map: 1 x 1 x 32, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 7 x 7 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 7 x 7 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 7 x 7 x 32, Output: 7 x 7 x 64, Kernel: 5 x 5 x 32, Map: 1 x 1 x 64, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3.c.c.c: using cuDNN convolution engine for geometry: Input: 7 x 7 x 32, Output: 7 x 7 x 64, Kernel: 5 x 5 x 32, Map: 1 x 1 x 64, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
Using cuDNN convolution engine for geometry: Input: 7 x 7 x 64, Output: 3 x 3 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool3: using cuDNN convolution engine for geometry: Input: 7 x 7 x 64, Output: 3 x 3 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
@ -371,118 +431,122 @@ Using CNTK batch normalization engine.
Post-processing network complete.
05/13/2016 08:18:26: Created model with 45 nodes on GPU 0.
08/16/2016 03:02:27: Created model with 45 nodes on GPU 0.
05/13/2016 08:18:26: Training criterion node(s):
05/13/2016 08:18:26: CE = CrossEntropyWithSoftmax
08/16/2016 03:02:27: Training criterion node(s):
08/16/2016 03:02:27: CE = CrossEntropyWithSoftmax
05/13/2016 08:18:26: Evaluation criterion node(s):
05/13/2016 08:18:26: Err = ErrorPrediction
08/16/2016 03:02:27: Evaluation criterion node(s):
08/16/2016 03:02:27: Err = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 77 matrices, 38 are shared as 16, and 39 are not shared.
0000000000000000: {[Err Gradient[1]] [conv1.c.c.isd Gradient[32 x 1]] [conv1.c.c.m Gradient[32 x 1]] [conv2.c.c.isd Gradient[32 x 1]] [conv2.c.c.m Gradient[32 x 1]] [conv3.c.c.isd Gradient[64 x 1]] [conv3.c.c.m Gradient[64 x 1]] [featOffs Gradient[1 x 1]] [featScaled Gradient[32 x 32 x 3 x *]] [features Gradient[32 x 32 x 3 x *]] [h1.isd Gradient[64 x 1]] [h1.m Gradient[64 x 1]] [labels Gradient[10 x *]] }
000000E89AC81140: {[conv3.c.c.sc Value[64 x 1]] }
000000E89AC813C0: {[conv2.c.c.sc Value[32 x 1]] }
000000E89AC815A0: {[conv2.c.c.b Value[32 x 1]] }
000000E89AC81820: {[h1.isd Value[64 x 1]] }
000000E89AC81A00: {[OutputNodes.W Value[10 x 64]] }
000000E89AC81BE0: {[OutputNodes.b Value[10]] }
000000E89AC81F00: {[h1.W Value[64 x 3 x 3 x 64]] }
000000E89AC81FA0: {[h1.m Value[64 x 1]] }
000000E89AC82180: {[conv2.c.c.m Value[32 x 1]] }
000000E89AC822C0: {[conv3.c.c.isd Value[64 x 1]] }
000000E89AC82540: {[h1.sc Value[64 x 1]] }
000000E89AC825E0: {[conv2.c.c.isd Value[32 x 1]] }
000000E89AC82680: {[conv3.c.c.m Value[64 x 1]] }
000000E89AC82720: {[h1.b Value[64 x 1]] }
000000E89AC82860: {[conv3.c.W Value[64 x 800]] }
000000E89AC82AE0: {[conv2.c.W Value[32 x 800]] }
000000E89AC82B80: {[conv3.c.c.b Value[64 x 1]] }
000000E8A0568140: {[featScaled Value[32 x 32 x 3 x *]] }
000000E8A05681E0: {[conv2.c.c.y Gradient[15 x 15 x 32 x *]] [pool2 Value[7 x 7 x 32 x *]] }
000000E8A0568280: {[conv2.c.c.sc Gradient[32 x 1]] [conv2.y Gradient[15 x 15 x 32 x *]] }
000000E8A0568320: {[conv3.c.c.y Value[7 x 7 x 64 x *]] }
000000E8A0568460: {[conv2.c.c.b Gradient[32 x 1]] [conv3.c.c.c Gradient[7 x 7 x 64 x *]] [conv3.y Value[7 x 7 x 64 x *]] }
000000E8A05685A0: {[OutputNodes.t Value[10 x *]] [h1.bn Gradient[64 x *]] }
000000E8A0568A00: {[Err Value[1]] }
000000E8A0568AA0: {[conv2.c.c.y Value[15 x 15 x 32 x *]] }
000000E8A0568BE0: {[conv1.c.c.b Gradient[32 x 1]] [conv2.c.c.c Gradient[15 x 15 x 32 x *]] [conv2.y Value[15 x 15 x 32 x *]] }
000000E8A0568D20: {[conv3.c.c.b Gradient[64 x 1]] }
000000E8A0568DC0: {[conv3.c.c.sc Gradient[64 x 1]] [conv3.y Gradient[7 x 7 x 64 x *]] [h1.t Value[64 x *]] }
000000E8A0568E60: {[conv3.c.W Gradient[64 x 800]] [h1.t Gradient[64 x *]] [h1.y Value[64 x *]] }
000000E8A0569040: {[conv1.c.c.y Gradient[32 x 32 x 32 x *]] [pool1 Value[15 x 15 x 32 x *]] }
000000E8A0569400: {[conv1.c.c.y Value[32 x 32 x 32 x *]] }
000000E8A05694A0: {[conv2.c.W Gradient[32 x 800]] [conv3.c.c.c Value[7 x 7 x 64 x *]] }
000000E8A0569540: {[OutputNodes.W Gradient[10 x 64]] [OutputNodes.z Gradient[10 x *]] }
000000E8A0569680: {[OutputNodes.t Gradient[10 x *]] [pool1 Gradient[15 x 15 x 32 x *]] [pool2 Gradient[7 x 7 x 32 x *]] [pool3 Gradient[3 x 3 x 64 x *]] }
000000E8A0569720: {[OutputNodes.b Gradient[10]] }
000000E8A05697C0: {[h1.sc Gradient[64 x 1]] [h1.y Gradient[64 x *]] }
000000E8A0569860: {[conv1.c.W Gradient[32 x 75]] [conv2.c.c.c Value[15 x 15 x 32 x *]] }
000000E8A0569900: {[conv1.c.c.c Gradient[32 x 32 x 32 x *]] [conv1.y Value[32 x 32 x 32 x *]] }
000000E8A05699A0: {[CE Gradient[1]] }
000000E8A0569A40: {[h1.W Gradient[64 x 3 x 3 x 64]] }
000000E8A0569B80: {[conv3.c.c.y Gradient[7 x 7 x 64 x *]] [pool3 Value[3 x 3 x 64 x *]] }
000000E8A0569E00: {[h1.bn Value[64 x *]] }
000000E8A0569FE0: {[h1.b Gradient[64 x 1]] }
000000E8A056A120: {[conv1.c.c.sc Gradient[32 x 1]] [conv1.y Gradient[32 x 32 x 32 x *]] }
000000E8A056A3A0: {[CE Value[1]] }
000000E8A056A620: {[OutputNodes.z Value[10 x *]] }
000000E8A056A760: {[conv1.c.c.c Value[32 x 32 x 32 x *]] }
000000E8FC080980: {[featOffs Value[1 x 1]] }
000000E8FC0811A0: {[conv1.c.W Value[32 x 75]] }
000000E8FC081240: {[conv1.c.c.b Value[32 x 1]] }
000000E8FC081740: {[conv1.c.c.sc Value[32 x 1]] }
000000E8FC081920: {[labels Value[10 x *]] }
000000E8FC081D80: {[features Value[32 x 32 x 3 x *]] }
000000E8FC081EC0: {[conv1.c.c.m Value[32 x 1]] }
000000E8FC081F60: {[conv1.c.c.isd Value[32 x 1]] }
05/13/2016 08:18:26: No PreCompute nodes found, skipping PreCompute step.
05/13/2016 08:18:26: Starting Epoch 1: learning rate per sample = 0.000469 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 08:18:26: Starting minibatch loop.
05/13/2016 08:18:35: Finished Epoch[ 1 of 5]: [Training] CE = 2.31451355 * 100; Err = 0.87000000 * 100; totalSamplesSeen = 100; learningRatePerSample = 0.00046874999; epochTime=9.33323s
05/13/2016 08:18:36: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv.1'
05/13/2016 08:18:37: Starting Epoch 2: learning rate per sample = 0.000469 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 08:18:37: Starting minibatch loop.
05/13/2016 08:18:37: Finished Epoch[ 2 of 5]: [Training] CE = 2.27380722 * 100; Err = 0.82000000 * 100; totalSamplesSeen = 200; learningRatePerSample = 0.00046874999; epochTime=0.020597s
05/13/2016 08:18:37: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv.2'
05/13/2016 08:18:37: Starting Epoch 3: learning rate per sample = 0.000469 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 08:18:37: Starting minibatch loop.
05/13/2016 08:18:37: Finished Epoch[ 3 of 5]: [Training] CE = 2.25248398 * 100; Err = 0.83000000 * 100; totalSamplesSeen = 300; learningRatePerSample = 0.00046874999; epochTime=0.020236s
05/13/2016 08:18:37: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv.3'
05/13/2016 08:18:37: Starting Epoch 4: learning rate per sample = 0.000469 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 08:18:37: Starting minibatch loop.
05/13/2016 08:18:37: Finished Epoch[ 4 of 5]: [Training] CE = 2.15781601 * 100; Err = 0.77000000 * 100; totalSamplesSeen = 400; learningRatePerSample = 0.00046874999; epochTime=0.020351s
05/13/2016 08:18:37: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv.4'
05/13/2016 08:18:37: Starting Epoch 5: learning rate per sample = 0.000469 effective momentum = 0.000000 momentum as time constant = 0.0 samples
05/13/2016 08:18:37: Starting minibatch loop.
05/13/2016 08:18:37: Finished Epoch[ 5 of 5]: [Training] CE = 2.12939789 * 100; Err = 0.71000000 * 100; totalSamplesSeen = 500; learningRatePerSample = 0.00046874999; epochTime=0.02018s
05/13/2016 08:18:37: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv'
05/13/2016 08:18:37: CNTKCommandTrainEnd: Train
05/13/2016 08:18:37: Action "train" complete.
{ OutputNodes.W : [10 x 64] (gradient)
OutputNodes.z : [10 x *] (gradient) }
{ conv2.c.W : [32 x 800] (gradient)
conv3.c.c.c : [7 x 7 x 64 x *] }
{ conv3.c.W : [64 x 800] (gradient)
h1.t : [64 x *] (gradient)
h1.y : [64 x *] }
{ OutputNodes.t : [10 x *]
h1.bn : [64 x *] (gradient) }
{ conv1.c.W : [32 x 75] (gradient)
conv2.c.c.c : [15 x 15 x 32 x *] }
{ conv1.c.c.c : [32 x 32 x 32 x *] (gradient)
conv1.y : [32 x 32 x 32 x *] }
{ conv2.c.c.y : [15 x 15 x 32 x *] (gradient)
pool2 : [7 x 7 x 32 x *] }
{ conv2.c.c.sc : [32 x 1] (gradient)
conv2.y : [15 x 15 x 32 x *] (gradient) }
{ conv3.c.c.sc : [64 x 1] (gradient)
conv3.y : [7 x 7 x 64 x *] (gradient)
h1.t : [64 x *] }
{ conv1.c.c.sc : [32 x 1] (gradient)
conv1.y : [32 x 32 x 32 x *] (gradient) }
{ conv1.c.c.b : [32 x 1] (gradient)
conv2.c.c.c : [15 x 15 x 32 x *] (gradient)
conv2.y : [15 x 15 x 32 x *] }
{ conv2.c.c.b : [32 x 1] (gradient)
conv3.c.c.c : [7 x 7 x 64 x *] (gradient)
conv3.y : [7 x 7 x 64 x *] }
{ conv3.c.c.y : [7 x 7 x 64 x *] (gradient)
pool3 : [3 x 3 x 64 x *] }
{ conv1.c.c.y : [32 x 32 x 32 x *] (gradient)
pool1 : [15 x 15 x 32 x *] }
{ OutputNodes.t : [10 x *] (gradient)
pool1 : [15 x 15 x 32 x *] (gradient)
pool2 : [7 x 7 x 32 x *] (gradient)
pool3 : [3 x 3 x 64 x *] (gradient) }
{ h1.sc : [64 x 1] (gradient)
h1.y : [64 x *] (gradient) }
05/13/2016 08:18:37: ##############################################################################
05/13/2016 08:18:37: # #
05/13/2016 08:18:37: # Action "test" #
05/13/2016 08:18:37: # #
05/13/2016 08:18:37: ##############################################################################
08/16/2016 03:02:27: Training 117098 parameters in 14 out of 14 parameter tensors and 32 nodes with gradient:
08/16/2016 03:02:27: Node 'OutputNodes.W' (LearnableParameter operation) : [10 x 64]
08/16/2016 03:02:27: Node 'OutputNodes.b' (LearnableParameter operation) : [10]
08/16/2016 03:02:27: Node 'conv1.c.W' (LearnableParameter operation) : [32 x 75]
08/16/2016 03:02:27: Node 'conv1.c.c.b' (LearnableParameter operation) : [32 x 1]
08/16/2016 03:02:27: Node 'conv1.c.c.sc' (LearnableParameter operation) : [32 x 1]
08/16/2016 03:02:27: Node 'conv2.c.W' (LearnableParameter operation) : [32 x 800]
08/16/2016 03:02:27: Node 'conv2.c.c.b' (LearnableParameter operation) : [32 x 1]
08/16/2016 03:02:27: Node 'conv2.c.c.sc' (LearnableParameter operation) : [32 x 1]
08/16/2016 03:02:27: Node 'conv3.c.W' (LearnableParameter operation) : [64 x 800]
08/16/2016 03:02:27: Node 'conv3.c.c.b' (LearnableParameter operation) : [64 x 1]
08/16/2016 03:02:27: Node 'conv3.c.c.sc' (LearnableParameter operation) : [64 x 1]
08/16/2016 03:02:27: Node 'h1.W' (LearnableParameter operation) : [64 x 3 x 3 x 64]
08/16/2016 03:02:27: Node 'h1.b' (LearnableParameter operation) : [64 x 1]
08/16/2016 03:02:27: Node 'h1.sc' (LearnableParameter operation) : [64 x 1]
08/16/2016 03:02:27: No PreCompute nodes found, or all already computed. Skipping pre-computation step.
08/16/2016 03:02:27: Starting Epoch 1: learning rate per sample = 0.000469 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..100] (first sequence at sample 0), data subset 0 of 1
08/16/2016 03:02:27: Starting minibatch loop.
08/16/2016 03:02:32: Finished Epoch[ 1 of 5]: [Training] CE = 2.26618500 * 100; Err = 0.87000000 * 100; totalSamplesSeen = 100; learningRatePerSample = 0.00046874999; epochTime=5.56244s
08/16/2016 03:02:32: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv.1'
08/16/2016 03:02:32: Starting Epoch 2: learning rate per sample = 0.000469 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 1: frames [100..200] (first sequence at sample 100), data subset 0 of 1
08/16/2016 03:02:32: Starting minibatch loop.
08/16/2016 03:02:32: Finished Epoch[ 2 of 5]: [Training] CE = 2.24384949 * 100; Err = 0.82000000 * 100; totalSamplesSeen = 200; learningRatePerSample = 0.00046874999; epochTime=0.015922s
08/16/2016 03:02:32: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv.2'
08/16/2016 03:02:32: Starting Epoch 3: learning rate per sample = 0.000469 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 2: frames [200..300] (first sequence at sample 200), data subset 0 of 1
08/16/2016 03:02:32: Starting minibatch loop.
08/16/2016 03:02:33: Finished Epoch[ 3 of 5]: [Training] CE = 2.20850739 * 100; Err = 0.81000000 * 100; totalSamplesSeen = 300; learningRatePerSample = 0.00046874999; epochTime=0.015231s
08/16/2016 03:02:33: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv.3'
08/16/2016 03:02:33: Starting Epoch 4: learning rate per sample = 0.000469 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 3: frames [300..400] (first sequence at sample 300), data subset 0 of 1
08/16/2016 03:02:33: Starting minibatch loop.
08/16/2016 03:02:33: Finished Epoch[ 4 of 5]: [Training] CE = 2.21282410 * 100; Err = 0.85000000 * 100; totalSamplesSeen = 400; learningRatePerSample = 0.00046874999; epochTime=0.015851s
08/16/2016 03:02:33: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv.4'
08/16/2016 03:02:33: Starting Epoch 5: learning rate per sample = 0.000469 effective momentum = 0.000000 momentum as time constant = 0.0 samples
BlockRandomizer::StartEpoch: epoch 4: frames [400..500] (first sequence at sample 400), data subset 0 of 1
08/16/2016 03:02:33: Starting minibatch loop.
08/16/2016 03:02:33: Finished Epoch[ 5 of 5]: [Training] CE = 2.16235260 * 100; Err = 0.79000000 * 100; totalSamplesSeen = 500; learningRatePerSample = 0.00046874999; epochTime=0.015383s
08/16/2016 03:02:33: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_02_BatchNormConv@release_gpu/Models/02_BatchNormConv'
08/16/2016 03:02:33: CNTKCommandTrainEnd: Train
08/16/2016 03:02:33: Action "train" complete.
08/16/2016 03:02:33: ##############################################################################
08/16/2016 03:02:33: # #
08/16/2016 03:02:33: # Action "test" #
08/16/2016 03:02:33: # #
08/16/2016 03:02:33: ##############################################################################
Post-processing network...
@ -546,23 +610,23 @@ Validating network. 20 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 32, Kernel: 5 x 5 x 3, Map: 1 x 1 x 32, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c.c.c: using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 32, Kernel: 5 x 5 x 3, Map: 1 x 1 x 32, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 32, Output: 15 x 15 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 32 x 32 x 32, Output: 15 x 15 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 15 x 15 x 32, Kernel: 5 x 5 x 32, Map: 1 x 1 x 32, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c.c.c: using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 15 x 15 x 32, Kernel: 5 x 5 x 32, Map: 1 x 1 x 32, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 7 x 7 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 15 x 15 x 32, Output: 7 x 7 x 32, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 7 x 7 x 32, Output: 7 x 7 x 64, Kernel: 5 x 5 x 32, Map: 1 x 1 x 64, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3.c.c.c: using cuDNN convolution engine for geometry: Input: 7 x 7 x 32, Output: 7 x 7 x 64, Kernel: 5 x 5 x 32, Map: 1 x 1 x 64, Stride: 1 x 1 x 32, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
Using cuDNN convolution engine for geometry: Input: 7 x 7 x 64, Output: 3 x 3 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool3: using cuDNN convolution engine for geometry: Input: 7 x 7 x 64, Output: 3 x 3 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using CNTK batch normalization engine.
@ -576,57 +640,14 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 45 matrices, 0 are shared as 0, and 45 are not shared.
0000000000000000: {[CE Gradient[1]] [Err Gradient[1]] [OutputNodes.W Gradient[10 x 64]] [OutputNodes.b Gradient[10]] [OutputNodes.t Gradient[10 x *1]] [OutputNodes.z Gradient[10 x *1]] [conv1.c.W Gradient[32 x 75]] [conv1.c.c.b Gradient[32 x 1]] [conv1.c.c.c Gradient[32 x 32 x 32 x *1]] [conv1.c.c.isd Gradient[32 x 1]] [conv1.c.c.m Gradient[32 x 1]] [conv1.c.c.sc Gradient[32 x 1]] [conv1.c.c.y Gradient[32 x 32 x 32 x *1]] [conv1.y Gradient[32 x 32 x 32 x *1]] [conv2.c.W Gradient[32 x 800]] [conv2.c.c.b Gradient[32 x 1]] [conv2.c.c.c Gradient[15 x 15 x 32 x *1]] [conv2.c.c.isd Gradient[32 x 1]] [conv2.c.c.m Gradient[32 x 1]] [conv2.c.c.sc Gradient[32 x 1]] [conv2.c.c.y Gradient[15 x 15 x 32 x *1]] [conv2.y Gradient[15 x 15 x 32 x *1]] [conv3.c.W Gradient[64 x 800]] [conv3.c.c.b Gradient[64 x 1]] [conv3.c.c.c Gradient[7 x 7 x 64 x *1]] [conv3.c.c.isd Gradient[64 x 1]] [conv3.c.c.m Gradient[64 x 1]] [conv3.c.c.sc Gradient[64 x 1]] [conv3.c.c.y Gradient[7 x 7 x 64 x *1]] [conv3.y Gradient[7 x 7 x 64 x *1]] [featOffs Gradient[1 x 1]] [featScaled Gradient[32 x 32 x 3 x *1]] [features Gradient[32 x 32 x 3 x *1]] [h1.W Gradient[64 x 3 x 3 x 64]] [h1.b Gradient[64 x 1]] [h1.bn Gradient[64 x *1]] [h1.isd Gradient[64 x 1]] [h1.m Gradient[64 x 1]] [h1.sc Gradient[64 x 1]] [h1.t Gradient[64 x *1]] [h1.y Gradient[64 x *1]] [labels Gradient[10 x *1]] [pool1 Gradient[15 x 15 x 32 x *1]] [pool2 Gradient[7 x 7 x 32 x *1]] [pool3 Gradient[3 x 3 x 64 x *1]] }
000000E8A05681E0: {[conv2.c.c.c Value[15 x 15 x 32 x *1]] }
000000E8A0568460: {[conv1.c.c.c Value[32 x 32 x 32 x *1]] }
000000E8A05685A0: {[conv1.c.c.y Value[32 x 32 x 32 x *1]] }
000000E8A0568A00: {[CE Value[1]] }
000000E8A0568AA0: {[conv2.y Value[15 x 15 x 32 x *1]] }
000000E8A0568B40: {[h1.y Value[64 x *1]] }
000000E8A0568D20: {[featScaled Value[32 x 32 x 3 x *1]] }
000000E8A0568DC0: {[pool1 Value[15 x 15 x 32 x *1]] }
000000E8A05694A0: {[conv1.y Value[32 x 32 x 32 x *1]] }
000000E8A0569540: {[pool3 Value[3 x 3 x 64 x *1]] }
000000E8A0569680: {[OutputNodes.t Value[10 x *1]] }
000000E8A0569720: {[OutputNodes.z Value[10 x *1]] }
000000E8A05697C0: {[conv3.y Value[7 x 7 x 64 x *1]] }
000000E8A05699A0: {[conv3.c.c.y Value[7 x 7 x 64 x *1]] }
000000E8A0569D60: {[conv2.c.c.y Value[15 x 15 x 32 x *1]] }
000000E8A0569E00: {[h1.t Value[64 x *1]] }
000000E8A0569F40: {[conv3.c.c.c Value[7 x 7 x 64 x *1]] }
000000E8A056A080: {[Err Value[1]] }
000000E8A056A3A0: {[pool2 Value[7 x 7 x 32 x *1]] }
000000E8A056A620: {[h1.bn Value[64 x *1]] }
000000E8A16A32D0: {[h1.sc Value[64 x 1]] }
000000E8A16A3870: {[conv2.c.c.b Value[32 x 1]] }
000000E8A16A3C30: {[conv1.c.c.isd Value[32 x 1]] }
000000E8A16A3CD0: {[conv2.c.c.sc Value[32 x 1]] }
000000E8A16A3E10: {[conv3.c.c.b Value[64 x 1]] }
000000E8A16A3F50: {[conv1.c.c.b Value[32 x 1]] }
000000E8A16A4090: {[conv2.c.c.isd Value[32 x 1]] }
000000E8A16A4310: {[conv3.c.c.sc Value[64 x 1]] }
000000E8A16A4630: {[conv1.c.c.sc Value[32 x 1]] }
000000E8A16A46D0: {[conv1.c.W Value[32 x 75]] }
000000E8A16A4A90: {[conv1.c.c.m Value[32 x 1]] }
000000E8A16A4B30: {[conv3.c.W Value[64 x 800]] }
000000E8A16A4EF0: {[conv2.c.W Value[32 x 800]] }
000000E8A16A4F90: {[conv3.c.c.m Value[64 x 1]] }
000000E8A16A5030: {[featOffs Value[1 x 1]] }
000000E8A16A50D0: {[conv3.c.c.isd Value[64 x 1]] }
000000E8A16A5350: {[conv2.c.c.m Value[32 x 1]] }
000000E8A16A53F0: {[features Value[32 x 32 x 3 x *1]] }
000000E8A16A5530: {[h1.b Value[64 x 1]] }
000000E8A16A57B0: {[h1.isd Value[64 x 1]] }
000000E8A16A58F0: {[h1.m Value[64 x 1]] }
000000E8A16A5CB0: {[labels Value[10 x *1]] }
000000E8A16A6110: {[OutputNodes.W Value[10 x 64]] }
000000E8A16A61B0: {[OutputNodes.b Value[10]] }
000000E8A16A6930: {[h1.W Value[64 x 3 x 3 x 64]] }
05/13/2016 08:18:52: Final Results: Minibatch[1-625]: Err = 0.84580000 * 10000; CE = 2.27296712 * 10000; perplexity = 9.70816338
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 03:02:35: Minibatch[1-500]: Err = 0.87962500 * 8000; CE = 2.28452046 * 8000
08/16/2016 03:02:35: Minibatch[501-625]: Err = 0.88300000 * 2000; CE = 2.28575908 * 2000
08/16/2016 03:02:35: Final Results: Minibatch[1-625]: Err = 0.88030000 * 10000; CE = 2.28476819 * 10000; perplexity = 9.82340875
05/13/2016 08:18:52: Action "test" complete.
08/16/2016 03:02:35: Action "test" complete.
05/13/2016 08:18:52: __COMPLETED__
08/16/2016 03:02:35: __COMPLETED__

Различия файлов скрыты, потому что одна или несколько строк слишком длинны

Различия файлов скрыты, потому что одна или несколько строк слишком длинны

Различия файлов скрыты, потому что одна или несколько строк слишком длинны

Различия файлов скрыты, потому что одна или несколько строк слишком длинны

Просмотреть файл

@ -1,49 +1,62 @@
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/Config/05_ConvLocal.cntk currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10 OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=5]] Train=[SGD=[epochSize=100]] stderr=-
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 264172964 kB
-------------------------------------------------------------------
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal.cntk currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10 OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=5]] Train=[SGD=[epochSize=100]] stderr=-
-------------------------------------------------------------------
Build info:
Built time: May 13 2016 14:50:25
Last modified date: Thu May 12 14:00:37 2016
Built time: Aug 16 2016 09:41:56
Last modified date: Fri Aug 12 07:32:43 2016
Build type: release
Build target: GPU
With 1bit-SGD: no
Math lib: acml
Math lib: mkl
CUDA_PATH: /usr/local/cuda-7.5
CUB_PATH: /usr/local/cub-1.4.1
CUDNN_PATH: /usr/local/cudnn-4.0
Build Branch: HEAD
Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
Built by philly on d8dc82703b0f
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by philly on f67b30a647de
Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
-------------------------------------------------------------------
Changed current directory to /tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData
05/13/2016 15:11:10: Redirecting stderr to file -_Train_Test.log
05/13/2016 15:11:10: -------------------------------------------------------------------
05/13/2016 15:11:10: Build info:
Changed current directory to /tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData
08/16/2016 10:51:22: Redirecting stderr to file -_Train_Test.log
08/16/2016 10:51:22: -------------------------------------------------------------------
08/16/2016 10:51:22: Build info:
05/13/2016 15:11:10: Built time: May 13 2016 14:50:25
05/13/2016 15:11:10: Last modified date: Thu May 12 14:00:37 2016
05/13/2016 15:11:10: Build type: release
05/13/2016 15:11:10: Build target: GPU
05/13/2016 15:11:10: With 1bit-SGD: no
05/13/2016 15:11:10: Math lib: acml
05/13/2016 15:11:10: CUDA_PATH: /usr/local/cuda-7.5
05/13/2016 15:11:10: CUB_PATH: /usr/local/cub-1.4.1
05/13/2016 15:11:10: CUDNN_PATH: /usr/local/cudnn-4.0
05/13/2016 15:11:10: Build Branch: HEAD
05/13/2016 15:11:10: Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
05/13/2016 15:11:10: Built by philly on d8dc82703b0f
05/13/2016 15:11:10: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
05/13/2016 15:11:10: -------------------------------------------------------------------
08/16/2016 10:51:22: Built time: Aug 16 2016 09:41:56
08/16/2016 10:51:22: Last modified date: Fri Aug 12 07:32:43 2016
08/16/2016 10:51:22: Build type: release
08/16/2016 10:51:22: Build target: GPU
08/16/2016 10:51:22: With 1bit-SGD: no
08/16/2016 10:51:22: Math lib: mkl
08/16/2016 10:51:22: CUDA_PATH: /usr/local/cuda-7.5
08/16/2016 10:51:22: CUB_PATH: /usr/local/cub-1.4.1
08/16/2016 10:51:22: CUDNN_PATH: /usr/local/cudnn-4.0
08/16/2016 10:51:22: Build Branch: HEAD
08/16/2016 10:51:22: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 10:51:22: Built by philly on f67b30a647de
08/16/2016 10:51:22: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
08/16/2016 10:51:22: -------------------------------------------------------------------
08/16/2016 10:51:23: -------------------------------------------------------------------
08/16/2016 10:51:23: GPU info:
05/13/2016 15:11:10: Running on localhost at 2016/05/13 15:11:10
05/13/2016 15:11:10: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/Config/05_ConvLocal.cntk currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10 OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=5]] Train=[SGD=[epochSize=100]] stderr=-
08/16/2016 10:51:23: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:51:23: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:51:23: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:51:23: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:51:23: -------------------------------------------------------------------
08/16/2016 10:51:23: Running on localhost at 2016/08/16 10:51:23
08/16/2016 10:51:23: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal.cntk currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10 OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=5]] Train=[SGD=[epochSize=100]] stderr=-
05/13/2016 15:11:10: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/13/2016 15:11:10: RootDir = "."
08/16/2016 10:51:23: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:51:23: RootDir = "."
ConfigDir = "$RootDir$"
DataDir = "$RootDir$"
OutputDir = "$RootDir$/Output"
@ -52,7 +65,6 @@ ndlMacros = "$ConfigDir$/Macros.ndl"
precision = "float"
deviceId = 0
imageLayout = "cudnn"
prefetch = "true"
command = Train:Test
modelPath = "$ModelDir$/05_ConvLocal"
stderr = "$OutputDir$/05_ConvLocal"
@ -84,7 +96,7 @@ Train = [
format = "dense"
]
]
]
]
]
Test = [
action = "test"
@ -102,41 +114,40 @@ Test = [
format = "dense"
]
]
]
]
]
currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData
RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu
DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10
OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu
currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData
RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu
DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10
OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu
DeviceId=0
timestamping=true
Train=[SGD=[maxEpochs=5]]
Train=[SGD=[epochSize=100]]
stderr=-
05/13/2016 15:11:10: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:51:23: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/13/2016 15:11:10: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/13/2016 15:11:10: RootDir = "."
08/16/2016 10:51:23: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:51:23: RootDir = "."
ConfigDir = "."
DataDir = "."
OutputDir = "./Output"
ModelDir = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/Models"
ndlMacros = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/Macros.ndl"
ModelDir = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/Models"
ndlMacros = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/Macros.ndl"
precision = "float"
deviceId = 0
imageLayout = "cudnn"
prefetch = "true"
command = Train:Test
modelPath = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal"
stderr = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/05_ConvLocal"
modelPath = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal"
stderr = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/05_ConvLocal"
traceLevel = 1
numMBsToShowResult = 50
Train = [
action = "train"
NDLNetworkBuilder = [
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal.ndl"
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal.ndl"
]
SGD = [
epochSize = 49984
@ -148,7 +159,7 @@ Train = [
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData/Train_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData/Train_cntk_text.txt"
input = [
features = [
dim = 3072
@ -159,14 +170,14 @@ Train = [
format = "dense"
]
]
]
]
]
Test = [
action = "test"
minibatchSize = 16
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData/Test_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData/Test_cntk_text.txt"
input = [
features = [
dim = 3072
@ -177,44 +188,43 @@ Test = [
format = "dense"
]
]
]
]
]
currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData
RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu
DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10
OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu
currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData
RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu
DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10
OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu
DeviceId=0
timestamping=true
Train=[SGD=[maxEpochs=5]]
Train=[SGD=[epochSize=100]]
stderr=-
05/13/2016 15:11:10: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:51:23: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 15:11:10: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:51:23: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: 05_ConvLocal.cntk:command=Train:Test
configparameters: 05_ConvLocal.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10
configparameters: 05_ConvLocal.cntk:currentDirectory=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData
configparameters: 05_ConvLocal.cntk:DataDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData
configparameters: 05_ConvLocal.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10
configparameters: 05_ConvLocal.cntk:currentDirectory=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData
configparameters: 05_ConvLocal.cntk:DataDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData
configparameters: 05_ConvLocal.cntk:deviceId=0
configparameters: 05_ConvLocal.cntk:imageLayout=cudnn
configparameters: 05_ConvLocal.cntk:ModelDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/Models
configparameters: 05_ConvLocal.cntk:modelPath=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal
configparameters: 05_ConvLocal.cntk:ndlMacros=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/Macros.ndl
configparameters: 05_ConvLocal.cntk:ModelDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/Models
configparameters: 05_ConvLocal.cntk:modelPath=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal
configparameters: 05_ConvLocal.cntk:ndlMacros=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/Macros.ndl
configparameters: 05_ConvLocal.cntk:numMBsToShowResult=50
configparameters: 05_ConvLocal.cntk:OutputDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu
configparameters: 05_ConvLocal.cntk:OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu
configparameters: 05_ConvLocal.cntk:precision=float
configparameters: 05_ConvLocal.cntk:prefetch=true
configparameters: 05_ConvLocal.cntk:RootDir=.
configparameters: 05_ConvLocal.cntk:RunDir=/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu
configparameters: 05_ConvLocal.cntk:RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu
configparameters: 05_ConvLocal.cntk:stderr=-
configparameters: 05_ConvLocal.cntk:Test=[
action = "test"
minibatchSize = 16
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData/Test_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData/Test_cntk_text.txt"
input = [
features = [
dim = 3072
@ -225,7 +235,7 @@ configparameters: 05_ConvLocal.cntk:Test=[
format = "dense"
]
]
]
]
]
configparameters: 05_ConvLocal.cntk:timestamping=true
@ -233,7 +243,7 @@ configparameters: 05_ConvLocal.cntk:traceLevel=1
configparameters: 05_ConvLocal.cntk:Train=[
action = "train"
NDLNetworkBuilder = [
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal.ndl"
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal/../../../../../../../Examples/Image/Miscellaneous/CIFAR-10/05_ConvLocal.ndl"
]
SGD = [
epochSize = 49984
@ -245,7 +255,7 @@ configparameters: 05_ConvLocal.cntk:Train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData/Train_cntk_text.txt"
file = "/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/TestData/Train_cntk_text.txt"
input = [
features = [
dim = 3072
@ -256,27 +266,51 @@ configparameters: 05_ConvLocal.cntk:Train=[
format = "dense"
]
]
]
]
] [SGD=[maxEpochs=5]] [SGD=[epochSize=100]]
05/13/2016 15:11:10: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 15:11:10: Commands: Train Test
05/13/2016 15:11:10: Precision = "float"
05/13/2016 15:11:10: CNTKModelPath: /tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal
05/13/2016 15:11:10: CNTKCommandTrainInfo: Train : 5
05/13/2016 15:11:10: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 5
08/16/2016 10:51:23: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:51:23: Commands: Train Test
08/16/2016 10:51:23: Precision = "float"
08/16/2016 10:51:23: CNTKModelPath: /tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal
08/16/2016 10:51:23: CNTKCommandTrainInfo: Train : 5
08/16/2016 10:51:23: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 5
05/13/2016 15:11:10: ##############################################################################
05/13/2016 15:11:10: # #
05/13/2016 15:11:10: # Action "train" #
05/13/2016 15:11:10: # #
05/13/2016 15:11:10: ##############################################################################
08/16/2016 10:51:23: ##############################################################################
08/16/2016 10:51:23: # #
08/16/2016 10:51:23: # Action "train" #
08/16/2016 10:51:23: # #
08/16/2016 10:51:23: ##############################################################################
05/13/2016 15:11:10: CNTKCommandTrainBegin: Train
08/16/2016 10:51:23: CNTKCommandTrainBegin: Train
NDLBuilder Using GPU 0
05/13/2016 15:11:10: Creating virgin network.
08/16/2016 10:51:23: Creating virgin network.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.000000.
Node 'conv1.W' (LearnableParameter operation): Initializing Parameter[64 x 75] <- 0.000000.
Node 'conv1.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv2.W' (LearnableParameter operation): Initializing Parameter[64 x 1600] <- 0.000000.
Node 'conv2.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv3.W' (LearnableParameter operation): Initializing Parameter[3136 x 576] <- 0.000000.
Node 'conv3.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv4.W' (LearnableParameter operation): Initializing Parameter[1568 x 576] <- 0.000000.
Node 'conv4.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 32] <- 0.000000.
Node 'OutputNodes.W' (LearnableParameter operation): Initializing Parameter[10 x 7 x 7 x 32] <- 0.000000.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[10] <- 0.000000.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 128.000000.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 128.000000.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 128.000000.
Node 'conv1.W' (LearnableParameter operation): Initializing Parameter[64 x 75] <- gaussian(seed=1, range=0.023094*0.004300, onCPU=false).
SetGaussianRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4
Node 'conv1.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv2.W' (LearnableParameter operation): Initializing Parameter[64 x 1600] <- gaussian(seed=2, range=0.005000*1.414000, onCPU=false).
Node 'conv2.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv3.W' (LearnableParameter operation): Initializing Parameter[3136 x 576] <- gaussian(seed=3, range=0.008333*1.414000, onCPU=false).
Node 'conv3.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv4.W' (LearnableParameter operation): Initializing Parameter[1568 x 576] <- gaussian(seed=4, range=0.008333*1.414000, onCPU=false).
Node 'conv4.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 32] <- 0.000000.
Node 'OutputNodes.W' (LearnableParameter operation): Initializing Parameter[10 x 7 x 7 x 32] <- gaussian(seed=5, range=0.005051*1.500000, onCPU=false).
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[10] <- 0.000000.
Post-processing network...
@ -326,120 +360,132 @@ Validating network. 19 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 64, Kernel: 5 x 5 x 3, Map: 1 x 1 x 64, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c: using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 64, Kernel: 5 x 5 x 3, Map: 1 x 1 x 64, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 64, Output: 15 x 15 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 32 x 32 x 64, Output: 15 x 15 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 64, Output: 15 x 15 x 64, Kernel: 5 x 5 x 64, Map: 1 x 1 x 64, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c: using cuDNN convolution engine for geometry: Input: 15 x 15 x 64, Output: 15 x 15 x 64, Kernel: 5 x 5 x 64, Map: 1 x 1 x 64, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 64, Output: 7 x 7 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 15 x 15 x 64, Output: 7 x 7 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using reference convolution engine for geometry: Input: 7 x 7 x 64, Output: 7 x 7 x 64, Kernel: 3 x 3 x 64, Map: 64, Stride: 1 x 1 x 64, Sharing: (0, 0, 0), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3.c: using reference convolution engine for geometry: Input: 7 x 7 x 64, Output: 7 x 7 x 64, Kernel: 3 x 3 x 64, Map: 64, Stride: 1 x 1 x 64, Sharing: (0, 0, 0), AutoPad: (1, 1, 1), LowerPad: 0 x 0 x 0, UpperPad: 0 x 0 x 0.
Using reference convolution engine for geometry: Input: 7 x 7 x 64, Output: 7 x 7 x 32, Kernel: 3 x 3 x 64, Map: 32, Stride: 1 x 1 x 64, Sharing: (0, 0, 0), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv4.c: using reference convolution engine for geometry: Input: 7 x 7 x 64, Output: 7 x 7 x 32, Kernel: 3 x 3 x 64, Map: 32, Stride: 1 x 1 x 64, Sharing: (0, 0, 0), AutoPad: (1, 1, 1), LowerPad: 0 x 0 x 0, UpperPad: 0 x 0 x 0.
13 out of 32 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
05/13/2016 15:11:11: Created model with 32 nodes on GPU 0.
08/16/2016 10:51:24: Created model with 32 nodes on GPU 0.
05/13/2016 15:11:11: Training criterion node(s):
05/13/2016 15:11:11: CE = CrossEntropyWithSoftmax
08/16/2016 10:51:24: Training criterion node(s):
08/16/2016 10:51:24: CE = CrossEntropyWithSoftmax
05/13/2016 15:11:11: Evaluation criterion node(s):
05/13/2016 15:11:11: Err = ErrorPrediction
08/16/2016 10:51:24: Evaluation criterion node(s):
08/16/2016 10:51:24: Err = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 59 matrices, 35 are shared as 16, and 24 are not shared.
(nil): {[Err Gradient[1]] [featOffs Gradient[1 x 1]] [featScaled Gradient[32 x 32 x 3 x *]] [features Gradient[32 x 32 x 3 x *]] [labels Gradient[10 x *]] }
0x116d9a8: {[features Value[32 x 32 x 3 x *]] }
0x1a7f8b8: {[labels Value[10 x *]] }
0x1a80378: {[conv1.W Value[64 x 75]] }
0x1a811e8: {[conv1.b Value[1 x 1 x 64]] }
0x1a823c8: {[conv2.W Value[64 x 1600]] }
0x1a82ad8: {[conv2.b Value[1 x 1 x 64]] }
0x1a85518: {[conv3.W Value[3136 x 576]] }
0x1a86638: {[conv3.b Value[1 x 1 x 64]] }
0x1a877e8: {[conv4.W Value[1568 x 576]] }
0x1a89748: {[conv4.b Value[1 x 1 x 32]] }
0x1a8bb58: {[OutputNodes.W Value[10 x 7 x 7 x 32]] }
0x1a8c538: {[OutputNodes.b Value[10]] }
0x1a9f838: {[featOffs Value[1 x 1]] }
0x22a7f78: {[Err Value[1]] }
0x64a9888: {[conv1.c Gradient[32 x 32 x 64 x *]] [conv1.y Value[32 x 32 x 64 x *]] }
0x64a9a48: {[conv1.p Gradient[32 x 32 x 64 x *]] [pool1 Value[15 x 15 x 64 x *]] }
0x64a9c08: {[conv2.c Value[15 x 15 x 64 x *]] }
0x64a9dc8: {[conv1.b Gradient[1 x 1 x 64]] [conv1.y Gradient[32 x 32 x 64 x *]] }
0x64a9f88: {[conv2.W Gradient[64 x 1600]] [conv2.p Value[15 x 15 x 64 x *]] }
0x64aa148: {[conv2.c Gradient[15 x 15 x 64 x *]] [conv2.y Value[15 x 15 x 64 x *]] }
0x64aa308: {[conv2.p Gradient[15 x 15 x 64 x *]] [pool1 Gradient[15 x 15 x 64 x *]] [pool2 Value[7 x 7 x 64 x *]] }
0x64aa4c8: {[conv3.c Value[7 x 7 x 64 x *]] }
0x64aa688: {[conv2.b Gradient[1 x 1 x 64]] [conv2.y Gradient[15 x 15 x 64 x *]] }
0x64aa848: {[conv3.W Gradient[3136 x 576]] [conv3.p Value[7 x 7 x 64 x *]] }
0x64aaa08: {[conv3.c Gradient[7 x 7 x 64 x *]] [conv3.y Value[7 x 7 x 64 x *]] }
0x64aabc8: {[conv4.c Value[7 x 7 x 32 x *]] }
0x64aad88: {[conv3.p Gradient[7 x 7 x 64 x *]] [pool2 Gradient[7 x 7 x 64 x *]] }
0x64aaf48: {[conv4.W Gradient[1568 x 576]] [conv4.p Value[7 x 7 x 32 x *]] }
0x64ab108: {[conv4.c Gradient[7 x 7 x 32 x *]] [conv4.y Value[7 x 7 x 32 x *]] }
0x64ab2c8: {[OutputNodes.t Value[10 x *]] [conv3.b Gradient[1 x 1 x 64]] [conv3.y Gradient[7 x 7 x 64 x *]] [conv4.p Gradient[7 x 7 x 32 x *]] }
0x670e7f8: {[OutputNodes.z Value[10 x *]] }
0x675a228: {[featScaled Value[32 x 32 x 3 x *]] }
0x675ada8: {[conv1.W Gradient[64 x 75]] [conv1.p Value[32 x 32 x 64 x *]] }
0x675b248: {[CE Value[1]] }
0x675b4c8: {[conv1.c Value[32 x 32 x 64 x *]] }
0x67cd168: {[CE Gradient[1]] }
0x67cd328: {[OutputNodes.W Gradient[10 x 7 x 7 x 32]] [OutputNodes.z Gradient[10 x *]] }
0x67cd4e8: {[OutputNodes.t Gradient[10 x *]] }
0x67cd6a8: {[OutputNodes.b Gradient[10]] }
0x67cd868: {[conv4.b Gradient[1 x 1 x 32]] [conv4.y Gradient[7 x 7 x 32 x *]] }
05/13/2016 15:11:11: No PreCompute nodes found, skipping PreCompute step.
05/13/2016 15:11:11: Starting Epoch 1: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
05/13/2016 15:11:11: Starting minibatch loop.
05/13/2016 15:11:14: Finished Epoch[ 1 of 5]: [Training] CE = 2.30261719 * 100; Err = 0.90000000 * 100; totalSamplesSeen = 100; learningRatePerSample = 0.00015625; epochTime=3.71954s
05/13/2016 15:11:14: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal.1'
05/13/2016 15:11:15: Starting Epoch 2: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
05/13/2016 15:11:15: Starting minibatch loop.
05/13/2016 15:11:15: Finished Epoch[ 2 of 5]: [Training] CE = 2.30258881 * 100; Err = 0.94000000 * 100; totalSamplesSeen = 200; learningRatePerSample = 0.00015625; epochTime=0.184562s
05/13/2016 15:11:15: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal.2'
05/13/2016 15:11:15: Starting Epoch 3: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
05/13/2016 15:11:15: Starting minibatch loop.
05/13/2016 15:11:15: Finished Epoch[ 3 of 5]: [Training] CE = 2.30256729 * 100; Err = 0.92000000 * 100; totalSamplesSeen = 300; learningRatePerSample = 0.00015625; epochTime=0.187378s
05/13/2016 15:11:15: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal.3'
05/13/2016 15:11:15: Starting Epoch 4: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
05/13/2016 15:11:15: Starting minibatch loop.
05/13/2016 15:11:16: Finished Epoch[ 4 of 5]: [Training] CE = 2.30254120 * 100; Err = 0.89000000 * 100; totalSamplesSeen = 400; learningRatePerSample = 0.00015625; epochTime=0.181785s
05/13/2016 15:11:16: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal.4'
05/13/2016 15:11:16: Starting Epoch 5: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
05/13/2016 15:11:16: Starting minibatch loop.
05/13/2016 15:11:16: Finished Epoch[ 5 of 5]: [Training] CE = 2.30259888 * 100; Err = 0.92000000 * 100; totalSamplesSeen = 500; learningRatePerSample = 0.00015625; epochTime=0.186221s
05/13/2016 15:11:16: SGD: Saving checkpoint model '/tmp/cntk-test-20160513145544.775982/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal'
05/13/2016 15:11:16: CNTKCommandTrainEnd: Train
05/13/2016 15:11:16: Action "train" complete.
{ OutputNodes.W : [10 x 7 x 7 x 32] (gradient)
OutputNodes.z : [10 x *] (gradient) }
{ conv4.b : [1 x 1 x 32] (gradient)
conv4.y : [7 x 7 x 32 x *] (gradient) }
{ conv1.W : [64 x 75] (gradient)
conv1.p : [32 x 32 x 64 x *] }
{ conv1.c : [32 x 32 x 64 x *] (gradient)
conv1.y : [32 x 32 x 64 x *] }
{ conv1.p : [32 x 32 x 64 x *] (gradient)
pool1 : [15 x 15 x 64 x *] }
{ conv1.b : [1 x 1 x 64] (gradient)
conv1.y : [32 x 32 x 64 x *] (gradient) }
{ conv2.W : [64 x 1600] (gradient)
conv2.p : [15 x 15 x 64 x *] }
{ conv2.c : [15 x 15 x 64 x *] (gradient)
conv2.y : [15 x 15 x 64 x *] }
{ conv2.p : [15 x 15 x 64 x *] (gradient)
pool1 : [15 x 15 x 64 x *] (gradient)
pool2 : [7 x 7 x 64 x *] }
{ conv2.b : [1 x 1 x 64] (gradient)
conv2.y : [15 x 15 x 64 x *] (gradient) }
{ conv3.W : [3136 x 576] (gradient)
conv3.p : [7 x 7 x 64 x *] }
{ conv3.c : [7 x 7 x 64 x *] (gradient)
conv3.y : [7 x 7 x 64 x *] }
{ conv3.p : [7 x 7 x 64 x *] (gradient)
pool2 : [7 x 7 x 64 x *] (gradient) }
{ conv4.W : [1568 x 576] (gradient)
conv4.p : [7 x 7 x 32 x *] }
{ conv4.c : [7 x 7 x 32 x *] (gradient)
conv4.y : [7 x 7 x 32 x *] }
{ OutputNodes.t : [10 x *]
conv3.b : [1 x 1 x 64] (gradient)
conv3.y : [7 x 7 x 64 x *] (gradient)
conv4.p : [7 x 7 x 32 x *] (gradient) }
05/13/2016 15:11:16: ##############################################################################
05/13/2016 15:11:16: # #
05/13/2016 15:11:16: # Action "test" #
05/13/2016 15:11:16: # #
05/13/2016 15:11:16: ##############################################################################
08/16/2016 10:51:24: Training 2832618 parameters in 10 out of 10 parameter tensors and 27 nodes with gradient:
08/16/2016 10:51:24: Node 'OutputNodes.W' (LearnableParameter operation) : [10 x 7 x 7 x 32]
08/16/2016 10:51:24: Node 'OutputNodes.b' (LearnableParameter operation) : [10]
08/16/2016 10:51:24: Node 'conv1.W' (LearnableParameter operation) : [64 x 75]
08/16/2016 10:51:24: Node 'conv1.b' (LearnableParameter operation) : [1 x 1 x 64]
08/16/2016 10:51:24: Node 'conv2.W' (LearnableParameter operation) : [64 x 1600]
08/16/2016 10:51:24: Node 'conv2.b' (LearnableParameter operation) : [1 x 1 x 64]
08/16/2016 10:51:24: Node 'conv3.W' (LearnableParameter operation) : [3136 x 576]
08/16/2016 10:51:24: Node 'conv3.b' (LearnableParameter operation) : [1 x 1 x 64]
08/16/2016 10:51:24: Node 'conv4.W' (LearnableParameter operation) : [1568 x 576]
08/16/2016 10:51:24: Node 'conv4.b' (LearnableParameter operation) : [1 x 1 x 32]
08/16/2016 10:51:24: No PreCompute nodes found, or all already computed. Skipping pre-computation step.
08/16/2016 10:51:24: Starting Epoch 1: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..100] (first sequence at sample 0), data subset 0 of 1
08/16/2016 10:51:24: Starting minibatch loop.
08/16/2016 10:51:28: Finished Epoch[ 1 of 5]: [Training] CE = 2.30258331 * 100; Err = 0.90000000 * 100; totalSamplesSeen = 100; learningRatePerSample = 0.00015625; epochTime=3.83324s
08/16/2016 10:51:28: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal.1'
08/16/2016 10:51:28: Starting Epoch 2: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 1: frames [100..200] (first sequence at sample 100), data subset 0 of 1
08/16/2016 10:51:28: Starting minibatch loop.
08/16/2016 10:51:28: Finished Epoch[ 2 of 5]: [Training] CE = 2.30260956 * 100; Err = 0.91000000 * 100; totalSamplesSeen = 200; learningRatePerSample = 0.00015625; epochTime=0.190736s
08/16/2016 10:51:28: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal.2'
08/16/2016 10:51:28: Starting Epoch 3: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 2: frames [200..300] (first sequence at sample 200), data subset 0 of 1
08/16/2016 10:51:28: Starting minibatch loop.
08/16/2016 10:51:28: Finished Epoch[ 3 of 5]: [Training] CE = 2.30259949 * 100; Err = 0.90000000 * 100; totalSamplesSeen = 300; learningRatePerSample = 0.00015625; epochTime=0.190026s
08/16/2016 10:51:29: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal.3'
08/16/2016 10:51:29: Starting Epoch 4: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 3: frames [300..400] (first sequence at sample 300), data subset 0 of 1
08/16/2016 10:51:29: Starting minibatch loop.
08/16/2016 10:51:29: Finished Epoch[ 4 of 5]: [Training] CE = 2.30261490 * 100; Err = 0.92000000 * 100; totalSamplesSeen = 400; learningRatePerSample = 0.00015625; epochTime=0.186068s
08/16/2016 10:51:29: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal.4'
08/16/2016 10:51:29: Starting Epoch 5: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 4: frames [400..500] (first sequence at sample 400), data subset 0 of 1
08/16/2016 10:51:29: Starting minibatch loop.
08/16/2016 10:51:29: Finished Epoch[ 5 of 5]: [Training] CE = 2.30255005 * 100; Err = 0.92000000 * 100; totalSamplesSeen = 500; learningRatePerSample = 0.00015625; epochTime=0.187202s
08/16/2016 10:51:29: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Image/Miscellaneous/CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal'
08/16/2016 10:51:30: CNTKCommandTrainEnd: Train
08/16/2016 10:51:30: Action "train" complete.
08/16/2016 10:51:30: ##############################################################################
08/16/2016 10:51:30: # #
08/16/2016 10:51:30: # Action "test" #
08/16/2016 10:51:30: # #
08/16/2016 10:51:30: ##############################################################################
Post-processing network...
@ -490,17 +536,17 @@ Validating network. 19 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 64, Kernel: 5 x 5 x 3, Map: 1 x 1 x 64, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c: using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 64, Kernel: 5 x 5 x 3, Map: 1 x 1 x 64, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 64, Output: 15 x 15 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 32 x 32 x 64, Output: 15 x 15 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 64, Output: 15 x 15 x 64, Kernel: 5 x 5 x 64, Map: 1 x 1 x 64, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c: using cuDNN convolution engine for geometry: Input: 15 x 15 x 64, Output: 15 x 15 x 64, Kernel: 5 x 5 x 64, Map: 1 x 1 x 64, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 64, Output: 7 x 7 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 15 x 15 x 64, Output: 7 x 7 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using reference convolution engine for geometry: Input: 7 x 7 x 64, Output: 7 x 7 x 64, Kernel: 3 x 3 x 64, Map: 64, Stride: 1 x 1 x 64, Sharing: (0, 0, 0), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3.c: using reference convolution engine for geometry: Input: 7 x 7 x 64, Output: 7 x 7 x 64, Kernel: 3 x 3 x 64, Map: 64, Stride: 1 x 1 x 64, Sharing: (0, 0, 0), AutoPad: (1, 1, 1), LowerPad: 0 x 0 x 0, UpperPad: 0 x 0 x 0.
Using reference convolution engine for geometry: Input: 7 x 7 x 64, Output: 7 x 7 x 32, Kernel: 3 x 3 x 64, Map: 32, Stride: 1 x 1 x 64, Sharing: (0, 0, 0), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv4.c: using reference convolution engine for geometry: Input: 7 x 7 x 64, Output: 7 x 7 x 32, Kernel: 3 x 3 x 64, Map: 32, Stride: 1 x 1 x 64, Sharing: (0, 0, 0), AutoPad: (1, 1, 1), LowerPad: 0 x 0 x 0, UpperPad: 0 x 0 x 0.
13 out of 32 nodes do not share the minibatch layout with the input data.
@ -512,44 +558,25 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 32 matrices, 0 are shared as 0, and 32 are not shared.
(nil): {[CE Gradient[1]] [Err Gradient[1]] [OutputNodes.W Gradient[10 x 7 x 7 x 32]] [OutputNodes.b Gradient[10]] [OutputNodes.t Gradient[10 x *1]] [OutputNodes.z Gradient[10 x *1]] [conv1.W Gradient[64 x 75]] [conv1.b Gradient[1 x 1 x 64]] [conv1.c Gradient[32 x 32 x 64 x *1]] [conv1.p Gradient[32 x 32 x 64 x *1]] [conv1.y Gradient[32 x 32 x 64 x *1]] [conv2.W Gradient[64 x 1600]] [conv2.b Gradient[1 x 1 x 64]] [conv2.c Gradient[15 x 15 x 64 x *1]] [conv2.p Gradient[15 x 15 x 64 x *1]] [conv2.y Gradient[15 x 15 x 64 x *1]] [conv3.W Gradient[3136 x 576]] [conv3.b Gradient[1 x 1 x 64]] [conv3.c Gradient[7 x 7 x 64 x *1]] [conv3.p Gradient[7 x 7 x 64 x *1]] [conv3.y Gradient[7 x 7 x 64 x *1]] [conv4.W Gradient[1568 x 576]] [conv4.b Gradient[1 x 1 x 32]] [conv4.c Gradient[7 x 7 x 32 x *1]] [conv4.p Gradient[7 x 7 x 32 x *1]] [conv4.y Gradient[7 x 7 x 32 x *1]] [featOffs Gradient[1 x 1]] [featScaled Gradient[32 x 32 x 3 x *1]] [features Gradient[32 x 32 x 3 x *1]] [labels Gradient[10 x *1]] [pool1 Gradient[15 x 15 x 64 x *1]] [pool2 Gradient[7 x 7 x 64 x *1]] }
0x7f2a5c2042f8: {[conv1.W Value[64 x 75]] }
0x7f2a5c204418: {[conv1.b Value[1 x 1 x 64]] }
0x7f2a5c205fe8: {[conv2.b Value[1 x 1 x 64]] }
0x7f2a5c206938: {[conv2.W Value[64 x 1600]] }
0x7f2a5c2089d8: {[conv3.W Value[3136 x 576]] }
0x7f2a5c208d08: {[conv3.b Value[1 x 1 x 64]] }
0x7f2a5c20b888: {[conv4.b Value[1 x 1 x 32]] }
0x7f2a5c20cd98: {[conv4.W Value[1568 x 576]] }
0x7f2a5c20e228: {[featOffs Value[1 x 1]] }
0x7f2a5c20eeb8: {[features Value[32 x 32 x 3 x *1]] }
0x7f2a5c20fd18: {[labels Value[10 x *1]] }
0x7f2a5c210718: {[OutputNodes.b Value[10]] }
0x7f2a5c211278: {[OutputNodes.W Value[10 x 7 x 7 x 32]] }
0x7f2a5c2287c8: {[Err Value[1]] }
0x7f2a5c22af98: {[conv1.c Value[32 x 32 x 64 x *1]] }
0x7f2a5c22b318: {[conv1.p Value[32 x 32 x 64 x *1]] }
0x7f2a5c27cfd8: {[CE Value[1]] }
0x7f2a5c2e8b08: {[featScaled Value[32 x 32 x 3 x *1]] }
0x7f2a5c2e9748: {[conv1.y Value[32 x 32 x 64 x *1]] }
0x7f2a5c2e9908: {[pool1 Value[15 x 15 x 64 x *1]] }
0x7f2a5c2e9ac8: {[conv2.c Value[15 x 15 x 64 x *1]] }
0x7f2a5c2ee708: {[conv2.p Value[15 x 15 x 64 x *1]] }
0x7f2a5c2ee8c8: {[conv2.y Value[15 x 15 x 64 x *1]] }
0x7f2a5c2eea88: {[pool2 Value[7 x 7 x 64 x *1]] }
0x7f2a5c2eec48: {[conv3.c Value[7 x 7 x 64 x *1]] }
0x7f2a5c2eefc8: {[conv3.p Value[7 x 7 x 64 x *1]] }
0x7f2a5c2ef188: {[conv3.y Value[7 x 7 x 64 x *1]] }
0x7f2a5c2ef348: {[conv4.c Value[7 x 7 x 32 x *1]] }
0x7f2a5c2ef6c8: {[conv4.p Value[7 x 7 x 32 x *1]] }
0x7f2a5c2ef888: {[conv4.y Value[7 x 7 x 32 x *1]] }
0x7f2a5c2efa48: {[OutputNodes.t Value[10 x *1]] }
0x7f2a5c2efc08: {[OutputNodes.z Value[10 x *1]] }
05/13/2016 15:11:30: Final Results: Minibatch[1-625]: Err = 0.84650000 * 10000; CE = 2.30252428 * 10000; perplexity = 9.99939189
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 10:51:31: Minibatch[1-50]: Err = 0.88250000 * 800; CE = 2.30253527 * 800
08/16/2016 10:51:31: Minibatch[51-100]: Err = 0.89625000 * 800; CE = 2.30253128 * 800
08/16/2016 10:51:31: Minibatch[101-150]: Err = 0.89000000 * 800; CE = 2.30254278 * 800
08/16/2016 10:51:32: Minibatch[151-200]: Err = 0.87625000 * 800; CE = 2.30252282 * 800
08/16/2016 10:51:32: Minibatch[201-250]: Err = 0.89250000 * 800; CE = 2.30252040 * 800
08/16/2016 10:51:32: Minibatch[251-300]: Err = 0.88625000 * 800; CE = 2.30254718 * 800
08/16/2016 10:51:32: Minibatch[301-350]: Err = 0.87250000 * 800; CE = 2.30251737 * 800
08/16/2016 10:51:32: Minibatch[351-400]: Err = 0.89875000 * 800; CE = 2.30257154 * 800
08/16/2016 10:51:33: Minibatch[401-450]: Err = 0.90000000 * 800; CE = 2.30253825 * 800
08/16/2016 10:51:33: Minibatch[451-500]: Err = 0.85625000 * 800; CE = 2.30253371 * 800
08/16/2016 10:51:33: Minibatch[501-550]: Err = 0.90125000 * 800; CE = 2.30255184 * 800
08/16/2016 10:51:33: Minibatch[551-600]: Err = 0.88125000 * 800; CE = 2.30251704 * 800
08/16/2016 10:51:34: Minibatch[601-625]: Err = 0.89250000 * 400; CE = 2.30252918 * 400
08/16/2016 10:51:34: Final Results: Minibatch[1-625]: Err = 0.88640000 * 10000; CE = 2.30253552 * 10000; perplexity = 9.99950432
05/13/2016 15:11:30: Action "test" complete.
08/16/2016 10:51:34: Action "test" complete.
05/13/2016 15:11:30: __COMPLETED__
08/16/2016 10:51:34: __COMPLETED__

Просмотреть файл

@ -1,47 +1,62 @@
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/Config/05_ConvLocal.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10 OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=5]] Train=[SGD=[epochSize=100]] stderr=-
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 268381192 kB
-------------------------------------------------------------------
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10/05_ConvLocal.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10 OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=5]] Train=[SGD=[epochSize=100]] stderr=-
-------------------------------------------------------------------
Build info:
Built time: May 13 2016 08:06:01
Last modified date: Thu May 12 07:31:50 2016
Built time: Aug 16 2016 02:54:53
Last modified date: Fri Aug 12 05:31:21 2016
Build type: Release
Build target: GPU
With 1bit-SGD: no
Math lib: mkl
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
CUB_PATH: c:\src\cub-1.4.1
CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
Build Branch: HEAD
Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by svcphil on Philly-Pool3
Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
-------------------------------------------------------------------
Changed current directory to C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData
05/13/2016 08:18:58: Redirecting stderr to file -_Train_Test.log
05/13/2016 08:18:58: -------------------------------------------------------------------
05/13/2016 08:18:58: Build info:
Changed current directory to C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData
08/16/2016 03:03:54: Redirecting stderr to file -_Train_Test.log
08/16/2016 03:03:54: -------------------------------------------------------------------
08/16/2016 03:03:54: Build info:
05/13/2016 08:18:58: Built time: May 13 2016 08:06:01
05/13/2016 08:18:58: Last modified date: Thu May 12 07:31:50 2016
05/13/2016 08:18:58: Build type: Release
05/13/2016 08:18:58: Build target: GPU
05/13/2016 08:18:58: With 1bit-SGD: no
05/13/2016 08:18:58: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
05/13/2016 08:18:58: CUB_PATH: c:\src\cub-1.4.1
05/13/2016 08:18:58: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
05/13/2016 08:18:58: Build Branch: HEAD
05/13/2016 08:18:58: Build SHA1: 35fadc316f045d843bbd9b85061250a959268787
05/13/2016 08:18:58: Built by svcphil on Philly-Pool3
05/13/2016 08:18:58: Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
05/13/2016 08:18:58: -------------------------------------------------------------------
08/16/2016 03:03:54: Built time: Aug 16 2016 02:54:53
08/16/2016 03:03:54: Last modified date: Fri Aug 12 05:31:21 2016
08/16/2016 03:03:54: Build type: Release
08/16/2016 03:03:54: Build target: GPU
08/16/2016 03:03:54: With 1bit-SGD: no
08/16/2016 03:03:54: Math lib: mkl
08/16/2016 03:03:54: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
08/16/2016 03:03:54: CUB_PATH: c:\src\cub-1.4.1
08/16/2016 03:03:54: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
08/16/2016 03:03:54: Build Branch: HEAD
08/16/2016 03:03:54: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 03:03:54: Built by svcphil on Philly-Pool3
08/16/2016 03:03:54: Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
08/16/2016 03:03:54: -------------------------------------------------------------------
08/16/2016 03:03:57: -------------------------------------------------------------------
08/16/2016 03:03:57: GPU info:
05/13/2016 08:18:58: Running on Philly-Pool2 at 2016/05/13 08:18:58
05/13/2016 08:18:58: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10/../../../../Tests/EndToEndTests/CNTKTextFormatReader/Examples/Image/Miscellaneous/CIFAR-10/Config/05_ConvLocal.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10 OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=5]] Train=[SGD=[epochSize=100]] stderr=-
08/16/2016 03:03:57: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:03:57: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:03:57: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:03:57: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:03:57: -------------------------------------------------------------------
08/16/2016 03:03:57: Running on DPHAIM-24 at 2016/08/16 03:03:57
08/16/2016 03:03:57: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10/05_ConvLocal.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10 OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu DeviceId=0 timestamping=true Train=[SGD=[maxEpochs=5]] Train=[SGD=[epochSize=100]] stderr=-
05/13/2016 08:18:59: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/13/2016 08:18:59: RootDir = "."
08/16/2016 03:03:57: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:03:57: RootDir = "."
ConfigDir = "$RootDir$"
DataDir = "$RootDir$"
OutputDir = "$RootDir$/Output"
@ -50,7 +65,6 @@ ndlMacros = "$ConfigDir$/Macros.ndl"
precision = "float"
deviceId = 0
imageLayout = "cudnn"
prefetch = "true"
command = Train:Test
modelPath = "$ModelDir$/05_ConvLocal"
stderr = "$OutputDir$/05_ConvLocal"
@ -82,7 +96,7 @@ Train = [
format = "dense"
]
]
]
]
]
Test = [
action = "test"
@ -100,35 +114,34 @@ Test = [
format = "dense"
]
]
]
]
]
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu
DeviceId=0
timestamping=true
Train=[SGD=[maxEpochs=5]]
Train=[SGD=[epochSize=100]]
stderr=-
05/13/2016 08:18:59: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:03:57: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/13/2016 08:18:59: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/13/2016 08:18:59: RootDir = "."
08/16/2016 03:03:57: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:03:57: RootDir = "."
ConfigDir = "."
DataDir = "."
OutputDir = "./Output"
ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/Models"
ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/Models"
ndlMacros = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10/Macros.ndl"
precision = "float"
deviceId = 0
imageLayout = "cudnn"
prefetch = "true"
command = Train:Test
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal"
stderr = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/05_ConvLocal"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal"
stderr = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/05_ConvLocal"
traceLevel = 1
numMBsToShowResult = 50
Train = [
@ -146,7 +159,7 @@ Train = [
]
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData/Train_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData/Train_cntk_text.txt"
input = [
features = [
dim = 3072
@ -157,14 +170,14 @@ Train = [
format = "dense"
]
]
]
]
]
Test = [
action = "test"
minibatchSize = 16
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData/Test_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData/Test_cntk_text.txt"
input = [
features = [
dim = 3072
@ -175,44 +188,43 @@ Test = [
format = "dense"
]
]
]
]
]
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu
DeviceId=0
timestamping=true
Train=[SGD=[maxEpochs=5]]
Train=[SGD=[epochSize=100]]
stderr=-
05/13/2016 08:18:59: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:03:57: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 08:18:59: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:03:57: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: 05_ConvLocal.cntk:command=Train:Test
configparameters: 05_ConvLocal.cntk:ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10
configparameters: 05_ConvLocal.cntk:currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData
configparameters: 05_ConvLocal.cntk:DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData
configparameters: 05_ConvLocal.cntk:currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData
configparameters: 05_ConvLocal.cntk:DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData
configparameters: 05_ConvLocal.cntk:deviceId=0
configparameters: 05_ConvLocal.cntk:imageLayout=cudnn
configparameters: 05_ConvLocal.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/Models
configparameters: 05_ConvLocal.cntk:modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal
configparameters: 05_ConvLocal.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/Models
configparameters: 05_ConvLocal.cntk:modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal
configparameters: 05_ConvLocal.cntk:ndlMacros=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Image\Miscellaneous\CIFAR-10/Macros.ndl
configparameters: 05_ConvLocal.cntk:numMBsToShowResult=50
configparameters: 05_ConvLocal.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu
configparameters: 05_ConvLocal.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu
configparameters: 05_ConvLocal.cntk:precision=float
configparameters: 05_ConvLocal.cntk:prefetch=true
configparameters: 05_ConvLocal.cntk:RootDir=.
configparameters: 05_ConvLocal.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu
configparameters: 05_ConvLocal.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu
configparameters: 05_ConvLocal.cntk:stderr=-
configparameters: 05_ConvLocal.cntk:Test=[
action = "test"
minibatchSize = 16
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData/Test_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData/Test_cntk_text.txt"
input = [
features = [
dim = 3072
@ -223,7 +235,7 @@ configparameters: 05_ConvLocal.cntk:Test=[
format = "dense"
]
]
]
]
]
configparameters: 05_ConvLocal.cntk:timestamping=true
@ -243,7 +255,7 @@ configparameters: 05_ConvLocal.cntk:Train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData/Train_cntk_text.txt"
file = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu\TestData/Train_cntk_text.txt"
input = [
features = [
dim = 3072
@ -254,27 +266,51 @@ configparameters: 05_ConvLocal.cntk:Train=[
format = "dense"
]
]
]
]
] [SGD=[maxEpochs=5]] [SGD=[epochSize=100]]
05/13/2016 08:18:59: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/13/2016 08:18:59: Commands: Train Test
05/13/2016 08:18:59: Precision = "float"
05/13/2016 08:18:59: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal
05/13/2016 08:18:59: CNTKCommandTrainInfo: Train : 5
05/13/2016 08:18:59: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 5
08/16/2016 03:03:57: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:03:57: Commands: Train Test
08/16/2016 03:03:57: Precision = "float"
08/16/2016 03:03:57: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal
08/16/2016 03:03:57: CNTKCommandTrainInfo: Train : 5
08/16/2016 03:03:57: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 5
05/13/2016 08:18:59: ##############################################################################
05/13/2016 08:18:59: # #
05/13/2016 08:18:59: # Action "train" #
05/13/2016 08:18:59: # #
05/13/2016 08:18:59: ##############################################################################
08/16/2016 03:03:57: ##############################################################################
08/16/2016 03:03:57: # #
08/16/2016 03:03:57: # Action "train" #
08/16/2016 03:03:57: # #
08/16/2016 03:03:57: ##############################################################################
05/13/2016 08:18:59: CNTKCommandTrainBegin: Train
08/16/2016 03:03:57: CNTKCommandTrainBegin: Train
NDLBuilder Using GPU 0
05/13/2016 08:19:00: Creating virgin network.
08/16/2016 03:03:58: Creating virgin network.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.000000.
Node 'conv1.W' (LearnableParameter operation): Initializing Parameter[64 x 75] <- 0.000000.
Node 'conv1.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv2.W' (LearnableParameter operation): Initializing Parameter[64 x 1600] <- 0.000000.
Node 'conv2.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv3.W' (LearnableParameter operation): Initializing Parameter[3136 x 576] <- 0.000000.
Node 'conv3.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv4.W' (LearnableParameter operation): Initializing Parameter[1568 x 576] <- 0.000000.
Node 'conv4.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 32] <- 0.000000.
Node 'OutputNodes.W' (LearnableParameter operation): Initializing Parameter[10 x 7 x 7 x 32] <- 0.000000.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[10] <- 0.000000.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 128.000000.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 128.000000.
Node 'featOffs' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 128.000000.
Node 'conv1.W' (LearnableParameter operation): Initializing Parameter[64 x 75] <- gaussian(seed=1, range=0.023094*0.004300, onCPU=false).
Microsoft::MSR::CNTK::GPUMatrix<ElemType>::SetGaussianRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4
Node 'conv1.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv2.W' (LearnableParameter operation): Initializing Parameter[64 x 1600] <- gaussian(seed=2, range=0.005000*1.414000, onCPU=false).
Node 'conv2.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv3.W' (LearnableParameter operation): Initializing Parameter[3136 x 576] <- gaussian(seed=3, range=0.008333*1.414000, onCPU=false).
Node 'conv3.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv4.W' (LearnableParameter operation): Initializing Parameter[1568 x 576] <- gaussian(seed=4, range=0.008333*1.414000, onCPU=false).
Node 'conv4.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 32] <- 0.000000.
Node 'OutputNodes.W' (LearnableParameter operation): Initializing Parameter[10 x 7 x 7 x 32] <- gaussian(seed=5, range=0.005051*1.500000, onCPU=false).
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[10] <- 0.000000.
Post-processing network...
@ -324,120 +360,132 @@ Validating network. 19 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 64, Kernel: 5 x 5 x 3, Map: 1 x 1 x 64, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c: using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 64, Kernel: 5 x 5 x 3, Map: 1 x 1 x 64, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 64, Output: 15 x 15 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 32 x 32 x 64, Output: 15 x 15 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 64, Output: 15 x 15 x 64, Kernel: 5 x 5 x 64, Map: 1 x 1 x 64, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c: using cuDNN convolution engine for geometry: Input: 15 x 15 x 64, Output: 15 x 15 x 64, Kernel: 5 x 5 x 64, Map: 1 x 1 x 64, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 64, Output: 7 x 7 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 15 x 15 x 64, Output: 7 x 7 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using reference convolution engine for geometry: Input: 7 x 7 x 64, Output: 7 x 7 x 64, Kernel: 3 x 3 x 64, Map: 64, Stride: 1 x 1 x 64, Sharing: (0, 0, 0), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3.c: using reference convolution engine for geometry: Input: 7 x 7 x 64, Output: 7 x 7 x 64, Kernel: 3 x 3 x 64, Map: 64, Stride: 1 x 1 x 64, Sharing: (0, 0, 0), AutoPad: (1, 1, 1), LowerPad: 0 x 0 x 0, UpperPad: 0 x 0 x 0.
Using reference convolution engine for geometry: Input: 7 x 7 x 64, Output: 7 x 7 x 32, Kernel: 3 x 3 x 64, Map: 32, Stride: 1 x 1 x 64, Sharing: (0, 0, 0), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv4.c: using reference convolution engine for geometry: Input: 7 x 7 x 64, Output: 7 x 7 x 32, Kernel: 3 x 3 x 64, Map: 32, Stride: 1 x 1 x 64, Sharing: (0, 0, 0), AutoPad: (1, 1, 1), LowerPad: 0 x 0 x 0, UpperPad: 0 x 0 x 0.
13 out of 32 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
05/13/2016 08:19:02: Created model with 32 nodes on GPU 0.
08/16/2016 03:03:59: Created model with 32 nodes on GPU 0.
05/13/2016 08:19:02: Training criterion node(s):
05/13/2016 08:19:02: CE = CrossEntropyWithSoftmax
08/16/2016 03:03:59: Training criterion node(s):
08/16/2016 03:03:59: CE = CrossEntropyWithSoftmax
05/13/2016 08:19:02: Evaluation criterion node(s):
05/13/2016 08:19:02: Err = ErrorPrediction
08/16/2016 03:03:59: Evaluation criterion node(s):
08/16/2016 03:03:59: Err = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 59 matrices, 35 are shared as 16, and 24 are not shared.
0000000000000000: {[Err Gradient[1]] [featOffs Gradient[1 x 1]] [featScaled Gradient[32 x 32 x 3 x *]] [features Gradient[32 x 32 x 3 x *]] [labels Gradient[10 x *]] }
000000DE977F80B0: {[conv1.W Gradient[64 x 75]] [conv1.p Value[32 x 32 x 64 x *]] }
000000DE977F8330: {[conv4.b Gradient[1 x 1 x 32]] [conv4.y Gradient[7 x 7 x 32 x *]] }
000000DE977F8470: {[CE Value[1]] }
000000DE977F8510: {[conv3.p Gradient[7 x 7 x 64 x *]] [pool2 Gradient[7 x 7 x 64 x *]] }
000000DE977F8830: {[OutputNodes.t Gradient[10 x *]] }
000000DE977F8A10: {[OutputNodes.z Value[10 x *]] }
000000DE977F8AB0: {[conv2.c Gradient[15 x 15 x 64 x *]] [conv2.y Value[15 x 15 x 64 x *]] }
000000DE977F8D30: {[CE Gradient[1]] }
000000DE977F8DD0: {[conv3.c Value[7 x 7 x 64 x *]] }
000000DE977F8FB0: {[conv2.b Gradient[1 x 1 x 64]] [conv2.y Gradient[15 x 15 x 64 x *]] }
000000DE977F90F0: {[conv1.c Gradient[32 x 32 x 64 x *]] [conv1.y Value[32 x 32 x 64 x *]] }
000000DE977F9230: {[conv3.W Gradient[3136 x 576]] [conv3.p Value[7 x 7 x 64 x *]] }
000000DE977F92D0: {[conv2.c Value[15 x 15 x 64 x *]] }
000000DE977F9410: {[OutputNodes.W Gradient[10 x 7 x 7 x 32]] [OutputNodes.z Gradient[10 x *]] }
000000DE977F9550: {[conv1.c Value[32 x 32 x 64 x *]] }
000000DE977F95F0: {[conv1.p Gradient[32 x 32 x 64 x *]] [pool1 Value[15 x 15 x 64 x *]] }
000000DE977F9690: {[conv2.p Gradient[15 x 15 x 64 x *]] [pool1 Gradient[15 x 15 x 64 x *]] [pool2 Value[7 x 7 x 64 x *]] }
000000DE977F9730: {[conv3.c Gradient[7 x 7 x 64 x *]] [conv3.y Value[7 x 7 x 64 x *]] }
000000DE977F97D0: {[conv2.W Gradient[64 x 1600]] [conv2.p Value[15 x 15 x 64 x *]] }
000000DE977F9910: {[featScaled Value[32 x 32 x 3 x *]] }
000000DE977F99B0: {[conv4.W Gradient[1568 x 576]] [conv4.p Value[7 x 7 x 32 x *]] }
000000DE977F9AF0: {[conv4.c Gradient[7 x 7 x 32 x *]] [conv4.y Value[7 x 7 x 32 x *]] }
000000DE977FA130: {[conv4.c Value[7 x 7 x 32 x *]] }
000000DE977FA1D0: {[Err Value[1]] }
000000DE977FA270: {[OutputNodes.t Value[10 x *]] [conv3.b Gradient[1 x 1 x 64]] [conv3.y Gradient[7 x 7 x 64 x *]] [conv4.p Gradient[7 x 7 x 32 x *]] }
000000DE977FA310: {[OutputNodes.b Gradient[10]] }
000000DE977FA770: {[conv1.b Gradient[1 x 1 x 64]] [conv1.y Gradient[32 x 32 x 64 x *]] }
000000DEF7E6FAA0: {[features Value[32 x 32 x 3 x *]] }
000000DEFC647630: {[conv4.W Value[1568 x 576]] }
000000DEFC647950: {[conv1.W Value[64 x 75]] }
000000DEFC647C70: {[featOffs Value[1 x 1]] }
000000DEFC647DB0: {[conv1.b Value[1 x 1 x 64]] }
000000DEFC648350: {[conv2.W Value[64 x 1600]] }
000000DEFC6483F0: {[conv3.b Value[1 x 1 x 64]] }
000000DEFC6488F0: {[labels Value[10 x *]] }
000000DEFC648A30: {[conv2.b Value[1 x 1 x 64]] }
000000DEFC648B70: {[OutputNodes.W Value[10 x 7 x 7 x 32]] }
000000DEFC648CB0: {[conv4.b Value[1 x 1 x 32]] }
000000DEFC6491B0: {[OutputNodes.b Value[10]] }
000000DEFC649430: {[conv3.W Value[3136 x 576]] }
05/13/2016 08:19:02: No PreCompute nodes found, skipping PreCompute step.
05/13/2016 08:19:02: Starting Epoch 1: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
05/13/2016 08:19:02: Starting minibatch loop.
05/13/2016 08:19:12: Finished Epoch[ 1 of 5]: [Training] CE = 2.30259964 * 100; Err = 0.92000000 * 100; totalSamplesSeen = 100; learningRatePerSample = 0.00015625; epochTime=10.1655s
05/13/2016 08:19:12: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal.1'
05/13/2016 08:19:12: Starting Epoch 2: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
05/13/2016 08:19:12: Starting minibatch loop.
05/13/2016 08:19:13: Finished Epoch[ 2 of 5]: [Training] CE = 2.30259521 * 100; Err = 0.88000000 * 100; totalSamplesSeen = 200; learningRatePerSample = 0.00015625; epochTime=0.8044s
05/13/2016 08:19:14: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal.2'
05/13/2016 08:19:14: Starting Epoch 3: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
05/13/2016 08:19:14: Starting minibatch loop.
05/13/2016 08:19:15: Finished Epoch[ 3 of 5]: [Training] CE = 2.30259445 * 100; Err = 0.89000000 * 100; totalSamplesSeen = 300; learningRatePerSample = 0.00015625; epochTime=0.807411s
05/13/2016 08:19:15: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal.3'
05/13/2016 08:19:15: Starting Epoch 4: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
05/13/2016 08:19:15: Starting minibatch loop.
05/13/2016 08:19:16: Finished Epoch[ 4 of 5]: [Training] CE = 2.30256668 * 100; Err = 0.92000000 * 100; totalSamplesSeen = 400; learningRatePerSample = 0.00015625; epochTime=0.805702s
05/13/2016 08:19:16: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal.4'
05/13/2016 08:19:16: Starting Epoch 5: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
05/13/2016 08:19:16: Starting minibatch loop.
05/13/2016 08:19:17: Finished Epoch[ 5 of 5]: [Training] CE = 2.30257889 * 100; Err = 0.93000000 * 100; totalSamplesSeen = 500; learningRatePerSample = 0.00015625; epochTime=0.799938s
05/13/2016 08:19:17: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160513081543.861015\CNTKTextFormatReader\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal'
05/13/2016 08:19:18: CNTKCommandTrainEnd: Train
05/13/2016 08:19:18: Action "train" complete.
{ conv1.W : [64 x 75] (gradient)
conv1.p : [32 x 32 x 64 x *] }
{ conv1.b : [1 x 1 x 64] (gradient)
conv1.y : [32 x 32 x 64 x *] (gradient) }
{ conv2.W : [64 x 1600] (gradient)
conv2.p : [15 x 15 x 64 x *] }
{ conv2.c : [15 x 15 x 64 x *] (gradient)
conv2.y : [15 x 15 x 64 x *] }
{ conv2.p : [15 x 15 x 64 x *] (gradient)
pool1 : [15 x 15 x 64 x *] (gradient)
pool2 : [7 x 7 x 64 x *] }
{ conv2.b : [1 x 1 x 64] (gradient)
conv2.y : [15 x 15 x 64 x *] (gradient) }
{ conv1.c : [32 x 32 x 64 x *] (gradient)
conv1.y : [32 x 32 x 64 x *] }
{ conv1.p : [32 x 32 x 64 x *] (gradient)
pool1 : [15 x 15 x 64 x *] }
{ conv4.b : [1 x 1 x 32] (gradient)
conv4.y : [7 x 7 x 32 x *] (gradient) }
{ OutputNodes.t : [10 x *]
conv3.b : [1 x 1 x 64] (gradient)
conv3.y : [7 x 7 x 64 x *] (gradient)
conv4.p : [7 x 7 x 32 x *] (gradient) }
{ OutputNodes.W : [10 x 7 x 7 x 32] (gradient)
OutputNodes.z : [10 x *] (gradient) }
{ conv3.c : [7 x 7 x 64 x *] (gradient)
conv3.y : [7 x 7 x 64 x *] }
{ conv3.W : [3136 x 576] (gradient)
conv3.p : [7 x 7 x 64 x *] }
{ conv4.c : [7 x 7 x 32 x *] (gradient)
conv4.y : [7 x 7 x 32 x *] }
{ conv3.p : [7 x 7 x 64 x *] (gradient)
pool2 : [7 x 7 x 64 x *] (gradient) }
{ conv4.W : [1568 x 576] (gradient)
conv4.p : [7 x 7 x 32 x *] }
05/13/2016 08:19:18: ##############################################################################
05/13/2016 08:19:18: # #
05/13/2016 08:19:18: # Action "test" #
05/13/2016 08:19:18: # #
05/13/2016 08:19:18: ##############################################################################
08/16/2016 03:03:59: Training 2832618 parameters in 10 out of 10 parameter tensors and 27 nodes with gradient:
08/16/2016 03:03:59: Node 'OutputNodes.W' (LearnableParameter operation) : [10 x 7 x 7 x 32]
08/16/2016 03:03:59: Node 'OutputNodes.b' (LearnableParameter operation) : [10]
08/16/2016 03:03:59: Node 'conv1.W' (LearnableParameter operation) : [64 x 75]
08/16/2016 03:03:59: Node 'conv1.b' (LearnableParameter operation) : [1 x 1 x 64]
08/16/2016 03:03:59: Node 'conv2.W' (LearnableParameter operation) : [64 x 1600]
08/16/2016 03:03:59: Node 'conv2.b' (LearnableParameter operation) : [1 x 1 x 64]
08/16/2016 03:03:59: Node 'conv3.W' (LearnableParameter operation) : [3136 x 576]
08/16/2016 03:03:59: Node 'conv3.b' (LearnableParameter operation) : [1 x 1 x 64]
08/16/2016 03:03:59: Node 'conv4.W' (LearnableParameter operation) : [1568 x 576]
08/16/2016 03:03:59: Node 'conv4.b' (LearnableParameter operation) : [1 x 1 x 32]
08/16/2016 03:03:59: No PreCompute nodes found, or all already computed. Skipping pre-computation step.
08/16/2016 03:03:59: Starting Epoch 1: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..100] (first sequence at sample 0), data subset 0 of 1
08/16/2016 03:03:59: Starting minibatch loop.
08/16/2016 03:04:04: Finished Epoch[ 1 of 5]: [Training] CE = 2.30258331 * 100; Err = 0.90000000 * 100; totalSamplesSeen = 100; learningRatePerSample = 0.00015625; epochTime=5.21825s
08/16/2016 03:04:05: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal.1'
08/16/2016 03:04:05: Starting Epoch 2: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 1: frames [100..200] (first sequence at sample 100), data subset 0 of 1
08/16/2016 03:04:05: Starting minibatch loop.
08/16/2016 03:04:05: Finished Epoch[ 2 of 5]: [Training] CE = 2.30260956 * 100; Err = 0.91000000 * 100; totalSamplesSeen = 200; learningRatePerSample = 0.00015625; epochTime=0.191092s
08/16/2016 03:04:05: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal.2'
08/16/2016 03:04:05: Starting Epoch 3: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 2: frames [200..300] (first sequence at sample 200), data subset 0 of 1
08/16/2016 03:04:05: Starting minibatch loop.
08/16/2016 03:04:05: Finished Epoch[ 3 of 5]: [Training] CE = 2.30259949 * 100; Err = 0.90000000 * 100; totalSamplesSeen = 300; learningRatePerSample = 0.00015625; epochTime=0.18611s
08/16/2016 03:04:06: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal.3'
08/16/2016 03:04:06: Starting Epoch 4: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 3: frames [300..400] (first sequence at sample 300), data subset 0 of 1
08/16/2016 03:04:06: Starting minibatch loop.
08/16/2016 03:04:06: Finished Epoch[ 4 of 5]: [Training] CE = 2.30261505 * 100; Err = 0.92000000 * 100; totalSamplesSeen = 400; learningRatePerSample = 0.00015625; epochTime=0.189814s
08/16/2016 03:04:06: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal.4'
08/16/2016 03:04:06: Starting Epoch 5: learning rate per sample = 0.000156 effective momentum = 0.900000 momentum as time constant = 607.4 samples
BlockRandomizer::StartEpoch: epoch 4: frames [400..500] (first sequence at sample 400), data subset 0 of 1
08/16/2016 03:04:06: Starting minibatch loop.
08/16/2016 03:04:06: Finished Epoch[ 5 of 5]: [Training] CE = 2.30255020 * 100; Err = 0.92000000 * 100; totalSamplesSeen = 500; learningRatePerSample = 0.00015625; epochTime=0.193188s
08/16/2016 03:04:07: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Image\Miscellaneous\CIFAR-10_05_ConvLocal@release_gpu/Models/05_ConvLocal'
08/16/2016 03:04:07: CNTKCommandTrainEnd: Train
08/16/2016 03:04:07: Action "train" complete.
08/16/2016 03:04:07: ##############################################################################
08/16/2016 03:04:07: # #
08/16/2016 03:04:07: # Action "test" #
08/16/2016 03:04:07: # #
08/16/2016 03:04:07: ##############################################################################
Post-processing network...
@ -488,17 +536,17 @@ Validating network. 19 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 64, Kernel: 5 x 5 x 3, Map: 1 x 1 x 64, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c: using cuDNN convolution engine for geometry: Input: 32 x 32 x 3, Output: 32 x 32 x 64, Kernel: 5 x 5 x 3, Map: 1 x 1 x 64, Stride: 1 x 1 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 32 x 32 x 64, Output: 15 x 15 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 32 x 32 x 64, Output: 15 x 15 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 64, Output: 15 x 15 x 64, Kernel: 5 x 5 x 64, Map: 1 x 1 x 64, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c: using cuDNN convolution engine for geometry: Input: 15 x 15 x 64, Output: 15 x 15 x 64, Kernel: 5 x 5 x 64, Map: 1 x 1 x 64, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 15 x 15 x 64, Output: 7 x 7 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 15 x 15 x 64, Output: 7 x 7 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using reference convolution engine for geometry: Input: 7 x 7 x 64, Output: 7 x 7 x 64, Kernel: 3 x 3 x 64, Map: 64, Stride: 1 x 1 x 64, Sharing: (0, 0, 0), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3.c: using reference convolution engine for geometry: Input: 7 x 7 x 64, Output: 7 x 7 x 64, Kernel: 3 x 3 x 64, Map: 64, Stride: 1 x 1 x 64, Sharing: (0, 0, 0), AutoPad: (1, 1, 1), LowerPad: 0 x 0 x 0, UpperPad: 0 x 0 x 0.
Using reference convolution engine for geometry: Input: 7 x 7 x 64, Output: 7 x 7 x 32, Kernel: 3 x 3 x 64, Map: 32, Stride: 1 x 1 x 64, Sharing: (0, 0, 0), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv4.c: using reference convolution engine for geometry: Input: 7 x 7 x 64, Output: 7 x 7 x 32, Kernel: 3 x 3 x 64, Map: 32, Stride: 1 x 1 x 64, Sharing: (0, 0, 0), AutoPad: (1, 1, 1), LowerPad: 0 x 0 x 0, UpperPad: 0 x 0 x 0.
13 out of 32 nodes do not share the minibatch layout with the input data.
@ -510,44 +558,25 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 32 matrices, 0 are shared as 0, and 32 are not shared.
0000000000000000: {[CE Gradient[1]] [Err Gradient[1]] [OutputNodes.W Gradient[10 x 7 x 7 x 32]] [OutputNodes.b Gradient[10]] [OutputNodes.t Gradient[10 x *1]] [OutputNodes.z Gradient[10 x *1]] [conv1.W Gradient[64 x 75]] [conv1.b Gradient[1 x 1 x 64]] [conv1.c Gradient[32 x 32 x 64 x *1]] [conv1.p Gradient[32 x 32 x 64 x *1]] [conv1.y Gradient[32 x 32 x 64 x *1]] [conv2.W Gradient[64 x 1600]] [conv2.b Gradient[1 x 1 x 64]] [conv2.c Gradient[15 x 15 x 64 x *1]] [conv2.p Gradient[15 x 15 x 64 x *1]] [conv2.y Gradient[15 x 15 x 64 x *1]] [conv3.W Gradient[3136 x 576]] [conv3.b Gradient[1 x 1 x 64]] [conv3.c Gradient[7 x 7 x 64 x *1]] [conv3.p Gradient[7 x 7 x 64 x *1]] [conv3.y Gradient[7 x 7 x 64 x *1]] [conv4.W Gradient[1568 x 576]] [conv4.b Gradient[1 x 1 x 32]] [conv4.c Gradient[7 x 7 x 32 x *1]] [conv4.p Gradient[7 x 7 x 32 x *1]] [conv4.y Gradient[7 x 7 x 32 x *1]] [featOffs Gradient[1 x 1]] [featScaled Gradient[32 x 32 x 3 x *1]] [features Gradient[32 x 32 x 3 x *1]] [labels Gradient[10 x *1]] [pool1 Gradient[15 x 15 x 64 x *1]] [pool2 Gradient[7 x 7 x 64 x *1]] }
000000DE977F8010: {[labels Value[10 x *1]] }
000000DE977F8290: {[OutputNodes.b Value[10]] }
000000DE977F8510: {[OutputNodes.W Value[10 x 7 x 7 x 32]] }
000000DE977F8C90: {[conv1.W Value[64 x 75]] }
000000DE977F8DD0: {[conv2.W Value[64 x 1600]] }
000000DE977F90F0: {[conv3.W Value[3136 x 576]] }
000000DE977F94B0: {[conv3.b Value[1 x 1 x 64]] }
000000DE977F9C30: {[conv4.b Value[1 x 1 x 32]] }
000000DE977FA1D0: {[conv4.W Value[1568 x 576]] }
000000DE977FA270: {[featOffs Value[1 x 1]] }
000000DE977FA310: {[conv2.b Value[1 x 1 x 64]] }
000000DE977FA450: {[conv1.b Value[1 x 1 x 64]] }
000000DE977FA630: {[features Value[32 x 32 x 3 x *1]] }
000000DE977FAA90: {[pool1 Value[15 x 15 x 64 x *1]] }
000000DE977FAB30: {[conv2.p Value[15 x 15 x 64 x *1]] }
000000DE977FADB0: {[Err Value[1]] }
000000DE977FAE50: {[conv2.c Value[15 x 15 x 64 x *1]] }
000000DE977FB030: {[conv3.c Value[7 x 7 x 64 x *1]] }
000000DE977FB210: {[conv3.p Value[7 x 7 x 64 x *1]] }
000000DE977FB3F0: {[conv1.c Value[32 x 32 x 64 x *1]] }
000000DE977FB530: {[conv1.p Value[32 x 32 x 64 x *1]] }
000000DE977FB5D0: {[conv1.y Value[32 x 32 x 64 x *1]] }
000000DE977FBAD0: {[featScaled Value[32 x 32 x 3 x *1]] }
000000DE977FBC10: {[CE Value[1]] }
000000DE977FBD50: {[conv2.y Value[15 x 15 x 64 x *1]] }
000000DE977FBDF0: {[pool2 Value[7 x 7 x 64 x *1]] }
000000DEFC647810: {[conv4.y Value[7 x 7 x 32 x *1]] }
000000DEFC648030: {[conv4.p Value[7 x 7 x 32 x *1]] }
000000DEFC648530: {[conv3.y Value[7 x 7 x 64 x *1]] }
000000DEFC648DF0: {[OutputNodes.z Value[10 x *1]] }
000000DEFC649070: {[conv4.c Value[7 x 7 x 32 x *1]] }
000000DEFC6491B0: {[OutputNodes.t Value[10 x *1]] }
05/13/2016 08:19:48: Final Results: Minibatch[1-625]: Err = 0.85850000 * 10000; CE = 2.30251652 * 10000; perplexity = 9.99931430
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 03:04:09: Minibatch[1-50]: Err = 0.88250000 * 800; CE = 2.30253532 * 800
08/16/2016 03:04:09: Minibatch[51-100]: Err = 0.89625000 * 800; CE = 2.30253127 * 800
08/16/2016 03:04:09: Minibatch[101-150]: Err = 0.89000000 * 800; CE = 2.30254280 * 800
08/16/2016 03:04:10: Minibatch[151-200]: Err = 0.87625000 * 800; CE = 2.30252286 * 800
08/16/2016 03:04:10: Minibatch[201-250]: Err = 0.89125000 * 800; CE = 2.30252037 * 800
08/16/2016 03:04:10: Minibatch[251-300]: Err = 0.88500000 * 800; CE = 2.30254713 * 800
08/16/2016 03:04:11: Minibatch[301-350]: Err = 0.87375000 * 800; CE = 2.30251743 * 800
08/16/2016 03:04:11: Minibatch[351-400]: Err = 0.89875000 * 800; CE = 2.30257149 * 800
08/16/2016 03:04:11: Minibatch[401-450]: Err = 0.90125000 * 800; CE = 2.30253827 * 800
08/16/2016 03:04:11: Minibatch[451-500]: Err = 0.85625000 * 800; CE = 2.30253367 * 800
08/16/2016 03:04:12: Minibatch[501-550]: Err = 0.90125000 * 800; CE = 2.30255186 * 800
08/16/2016 03:04:12: Minibatch[551-600]: Err = 0.88125000 * 800; CE = 2.30251704 * 800
08/16/2016 03:04:12: Minibatch[601-625]: Err = 0.89250000 * 400; CE = 2.30252914 * 400
08/16/2016 03:04:12: Final Results: Minibatch[1-625]: Err = 0.88640000 * 10000; CE = 2.30253553 * 10000; perplexity = 9.99950434
05/13/2016 08:19:48: Action "test" complete.
08/16/2016 03:04:12: Action "test" complete.
05/13/2016 08:19:48: __COMPLETED__
08/16/2016 03:04:12: __COMPLETED__

Просмотреть файл

@ -1,22 +1,27 @@
=== Running /home/alrezni/src/cntk_git/build/release/bin/cntk configFile=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/MultiGpu/../Config/Multigpu.cntk currentDirectory=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data RunDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu DataDir=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data ConfigDir=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/MultiGpu/../Config OutputDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu DeviceId=-1 timestamping=true Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 264172964 kB
-------------------------------------------------------------------
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/1bitsgd/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/../../../../../../Examples/Other/Simple2d/Config/Multigpu.cntk currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_cpu DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/../../../../../../Examples/Other/Simple2d/Config OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_cpu DeviceId=-1 timestamping=true Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
-------------------------------------------------------------------
Build info:
Built time: May 3 2016 15:08:09
Last modified date: Tue Apr 5 16:01:37 2016
Built time: Aug 16 2016 09:41:57
Last modified date: Mon Aug 15 23:39:17 2016
Build type: release
Build target: GPU
With 1bit-SGD: yes
Math lib: acml
CUDA_PATH: /usr/local/cuda-7.0
Math lib: mkl
CUDA_PATH: /usr/local/cuda-7.5
CUB_PATH: /usr/local/cub-1.4.1
CUDNN_PATH: /usr/local/cudnn-4.0
Build Branch: alrezni/examples_text
Build SHA1: e80dab7d66009531806ce70b4842146e0da00516
Built by alrezni on atleneu04
Build Path: /home/alrezni/src/cntk_git
Build Branch: HEAD
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by philly on 643085f7f8c2
Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
-------------------------------------------------------------------
Changed current directory to /home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
Changed current directory to /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
MPIWrapper: initializing MPI
ping [requestnodes (before change)]: 1 nodes pinging each other
ping [requestnodes (before change)]: all 1 nodes responded
@ -26,32 +31,40 @@ ping [requestnodes (after change)]: all 1 nodes responded
mpihelper: only one MPI process: MPI operation will be boring
ping [mpihelper]: 1 nodes pinging each other
ping [mpihelper]: all 1 nodes responded
05/03/2016 15:21:43: -------------------------------------------------------------------
05/03/2016 15:21:43: Build info:
08/16/2016 10:01:26: -------------------------------------------------------------------
08/16/2016 10:01:26: Build info:
05/03/2016 15:21:43: Built time: May 3 2016 15:08:09
05/03/2016 15:21:43: Last modified date: Tue Apr 5 16:01:37 2016
05/03/2016 15:21:43: Build type: release
05/03/2016 15:21:43: Build target: GPU
05/03/2016 15:21:43: With 1bit-SGD: yes
05/03/2016 15:21:43: Math lib: acml
05/03/2016 15:21:43: CUDA_PATH: /usr/local/cuda-7.0
05/03/2016 15:21:43: CUB_PATH: /usr/local/cub-1.4.1
05/03/2016 15:21:43: CUDNN_PATH: /usr/local/cudnn-4.0
05/03/2016 15:21:43: Build Branch: alrezni/examples_text
05/03/2016 15:21:43: Build SHA1: e80dab7d66009531806ce70b4842146e0da00516
05/03/2016 15:21:43: Built by alrezni on atleneu04
05/03/2016 15:21:43: Build Path: /home/alrezni/src/cntk_git
05/03/2016 15:21:43: -------------------------------------------------------------------
08/16/2016 10:01:26: Built time: Aug 16 2016 09:41:57
08/16/2016 10:01:26: Last modified date: Mon Aug 15 23:39:17 2016
08/16/2016 10:01:26: Build type: release
08/16/2016 10:01:26: Build target: GPU
08/16/2016 10:01:26: With 1bit-SGD: yes
08/16/2016 10:01:26: Math lib: mkl
08/16/2016 10:01:26: CUDA_PATH: /usr/local/cuda-7.5
08/16/2016 10:01:26: CUB_PATH: /usr/local/cub-1.4.1
08/16/2016 10:01:26: CUDNN_PATH: /usr/local/cudnn-4.0
08/16/2016 10:01:26: Build Branch: HEAD
08/16/2016 10:01:26: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 10:01:26: Built by philly on 643085f7f8c2
08/16/2016 10:01:26: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
08/16/2016 10:01:26: -------------------------------------------------------------------
08/16/2016 10:01:27: -------------------------------------------------------------------
08/16/2016 10:01:27: GPU info:
05/03/2016 15:21:43: Running on localhost at 2016/05/03 15:21:43
05/03/2016 15:21:43: Command line:
/home/alrezni/src/cntk_git/build/release/bin/cntk configFile=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/MultiGpu/../Config/Multigpu.cntk currentDirectory=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data RunDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu DataDir=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data ConfigDir=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/MultiGpu/../Config OutputDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu DeviceId=-1 timestamping=true Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
08/16/2016 10:01:27: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:01:27: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:01:27: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:01:27: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:01:27: -------------------------------------------------------------------
08/16/2016 10:01:27: Running on localhost at 2016/08/16 10:01:27
08/16/2016 10:01:27: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/1bitsgd/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/../../../../../../Examples/Other/Simple2d/Config/Multigpu.cntk currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_cpu DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/../../../../../../Examples/Other/Simple2d/Config OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_cpu DeviceId=-1 timestamping=true Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 15:21:43: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/03/2016 15:21:43: RootDir = ".."
08/16/2016 10:01:27: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:01:27: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
@ -140,28 +153,28 @@ dim = 2
]
outputPath = "$OutputDir$/MultigpuOutput"
]
currentDirectory=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
RunDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu
DataDir=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
ConfigDir=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/MultiGpu/../Config
OutputDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu
currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_cpu
DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/../../../../../../Examples/Other/Simple2d/Config
OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_cpu
DeviceId=-1
timestamping=true
Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 15:21:43: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:01:27: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/03/2016 15:21:43: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/03/2016 15:21:43: RootDir = ".."
08/16/2016 10:01:27: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:01:27: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu/Models"
ModelDir = "/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_cpu/Models"
deviceId = "auto"
command = Multigpu_Demo_Train:Multigpu_Demo_Test
precision = "float"
traceLevel = 1
modelPath = "/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn"
modelPath = "/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn"
outputNodeNames = ScaledLogLikelihood
parallelTrain = true
Multigpu_Demo_Train=[
@ -193,7 +206,7 @@ Multigpu_Demo_Train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTrain_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTrain_cntk_text.txt"
input = [
features = [
dim = 2
@ -210,7 +223,7 @@ Multigpu_Demo_Test=[
action = "test"
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -227,7 +240,7 @@ Multigpu_Demo_Output=[
action = "write"
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -239,32 +252,32 @@ dim = 2
]
]
]
outputPath = "/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu/MultigpuOutput"
outputPath = "/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_cpu/MultigpuOutput"
]
currentDirectory=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
RunDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu
DataDir=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
ConfigDir=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/MultiGpu/../Config
OutputDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu
currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_cpu
DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/../../../../../../Examples/Other/Simple2d/Config
OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_cpu
DeviceId=-1
timestamping=true
Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 15:21:43: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:01:27: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 15:21:43: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:01:27: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: Multigpu.cntk:command=Multigpu_Demo_Train:Multigpu_Demo_Test
configparameters: Multigpu.cntk:ConfigDir=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/MultiGpu/../Config
configparameters: Multigpu.cntk:currentDirectory=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
configparameters: Multigpu.cntk:DataDir=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
configparameters: Multigpu.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/../../../../../../Examples/Other/Simple2d/Config
configparameters: Multigpu.cntk:currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
configparameters: Multigpu.cntk:DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
configparameters: Multigpu.cntk:deviceId=-1
configparameters: Multigpu.cntk:ModelDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu/Models
configparameters: Multigpu.cntk:modelPath=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn
configparameters: Multigpu.cntk:ModelDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_cpu/Models
configparameters: Multigpu.cntk:modelPath=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn
configparameters: Multigpu.cntk:Multigpu_Demo_Output=[
action = "write"
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -276,14 +289,14 @@ dim = 2
]
]
]
outputPath = "/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu/MultigpuOutput"
outputPath = "/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_cpu/MultigpuOutput"
]
configparameters: Multigpu.cntk:Multigpu_Demo_Test=[
action = "test"
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -326,7 +339,7 @@ configparameters: Multigpu.cntk:Multigpu_Demo_Train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTrain_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTrain_cntk_text.txt"
input = [
features = [
dim = 2
@ -340,31 +353,43 @@ dim = 2
]
] [SGD=[maxEpochs=3]]
configparameters: Multigpu.cntk:OutputDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu
configparameters: Multigpu.cntk:OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_cpu
configparameters: Multigpu.cntk:outputNodeNames=ScaledLogLikelihood
configparameters: Multigpu.cntk:parallelTrain=true
configparameters: Multigpu.cntk:precision=float
configparameters: Multigpu.cntk:RootDir=..
configparameters: Multigpu.cntk:RunDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu
configparameters: Multigpu.cntk:RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_cpu
configparameters: Multigpu.cntk:timestamping=true
configparameters: Multigpu.cntk:traceLevel=1
05/03/2016 15:21:43: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 15:21:43: Commands: Multigpu_Demo_Train Multigpu_Demo_Test
05/03/2016 15:21:43: Precision = "float"
05/03/2016 15:21:43: CNTKModelPath: /tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn
05/03/2016 15:21:43: CNTKCommandTrainInfo: Multigpu_Demo_Train : 3
05/03/2016 15:21:43: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
08/16/2016 10:01:27: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:01:27: Commands: Multigpu_Demo_Train Multigpu_Demo_Test
08/16/2016 10:01:27: Precision = "float"
08/16/2016 10:01:27: CNTKModelPath: /tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn
08/16/2016 10:01:27: CNTKCommandTrainInfo: Multigpu_Demo_Train : 3
08/16/2016 10:01:27: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
05/03/2016 15:21:43: ##############################################################################
05/03/2016 15:21:43: # #
05/03/2016 15:21:43: # Action "train" #
05/03/2016 15:21:43: # #
05/03/2016 15:21:43: ##############################################################################
08/16/2016 10:01:27: ##############################################################################
08/16/2016 10:01:27: # #
08/16/2016 10:01:27: # Action "train" #
08/16/2016 10:01:27: # #
08/16/2016 10:01:27: ##############################################################################
05/03/2016 15:21:43: CNTKCommandTrainBegin: Multigpu_Demo_Train
08/16/2016 10:01:27: CNTKCommandTrainBegin: Multigpu_Demo_Train
SimpleNetworkBuilder Using CPU
05/03/2016 15:21:43: Creating virgin network.
08/16/2016 10:01:27: Creating virgin network.
Node 'W0' (LearnableParameter operation): Initializing Parameter[50 x 2] <- 0.000000.
Node 'W0' (LearnableParameter operation): Initializing Parameter[50 x 2] <- uniform(seed=1, range=0.050000*1.000000, onCPU=false).
Node 'B0' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'B0' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[50 x 50] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[50 x 50] <- uniform(seed=2, range=0.050000*1.000000, onCPU=false).
Node 'B1' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'B1' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[2 x 50] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[2 x 50] <- uniform(seed=3, range=0.050000*1.000000, onCPU=false).
Node 'B2' (LearnableParameter operation): Initializing Parameter[2 x 1] <- 0.000000.
Node 'B2' (LearnableParameter operation): Initializing Parameter[2 x 1] <- 0.000000.
Post-processing network...
@ -416,207 +441,210 @@ Validating network, final pass.
Post-processing network complete.
05/03/2016 15:21:43: Created model with 25 nodes on CPU.
08/16/2016 10:01:27: Created model with 25 nodes on CPU.
05/03/2016 15:21:43: Training criterion node(s):
05/03/2016 15:21:43: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
08/16/2016 10:01:27: Training criterion node(s):
08/16/2016 10:01:27: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
05/03/2016 15:21:43: Evaluation criterion node(s):
05/03/2016 15:21:43: EvalErrorPrediction = ErrorPrediction
08/16/2016 10:01:27: Evaluation criterion node(s):
08/16/2016 10:01:27: EvalErrorPrediction = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 40 matrices, 19 are shared as 8, and 21 are not shared.
(nil): {[EvalErrorPrediction Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
0x1abc7c8: {[InvStdOfFeatures Value[2]] }
0x1b40348: {[features Value[2 x *]] }
0x1b408b8: {[MeanOfFeatures Value[2]] }
0x1b40bb8: {[W0 Value[50 x 2]] }
0x1b41058: {[B0 Value[50 x 1]] }
0x1b41d88: {[W1 Value[50 x 50]] }
0x1b448c8: {[B1 Value[50 x 1]] }
0x1b45698: {[W2 Value[2 x 50]] }
0x1b45c98: {[B2 Value[2 x 1]] }
0x1b46708: {[labels Value[2 x *]] }
0x1b473e8: {[Prior Value[2]] }
0x1b4b138: {[ScaledLogLikelihood Value[2 x 1 x *]] }
0x1b4cc28: {[EvalErrorPrediction Value[1]] }
0x1b4cea8: {[CrossEntropyWithSoftmax Value[1]] }
0x1b4d388: {[H1 Value[50 x 1 x *]] [W0*features Gradient[50 x *]] }
0x1b4d548: {[W0*features+B0 Gradient[50 x 1 x *]] [W1*H1 Value[50 x 1 x *]] }
0x1b4d6c8: {[LogOfPrior Value[2]] }
0x1b4f7f8: {[W0 Gradient[50 x 2]] [W0*features+B0 Value[50 x 1 x *]] }
0x1b4fa08: {[MVNormalizedFeatures Value[2 x *]] }
0x1b4fd28: {[W0*features Value[50 x *]] }
0x1b4fee8: {[W1 Gradient[50 x 50]] [W1*H1+B1 Value[50 x 1 x *]] }
0x1b500a8: {[H2 Value[50 x 1 x *]] [W1*H1 Gradient[50 x 1 x *]] }
0x1b50268: {[B0 Gradient[50 x 1]] [H1 Gradient[50 x 1 x *]] [W1*H1+B1 Gradient[50 x 1 x *]] [W2*H1 Value[2 x 1 x *]] }
0x1b50428: {[HLast Value[2 x 1 x *]] [W2 Gradient[2 x 50]] }
0x1b50fb8: {[CrossEntropyWithSoftmax Gradient[1]] }
0x1b51178: {[B1 Gradient[50 x 1]] [H2 Gradient[50 x 1 x *]] [HLast Gradient[2 x 1 x *]] }
0x1b51338: {[W2*H1 Gradient[2 x 1 x *]] }
0x1b514f8: {[B2 Gradient[2 x 1]] }
{ W0 : [50 x 2] (gradient)
W0*features+B0 : [50 x 1 x *] }
{ H1 : [50 x 1 x *]
W0*features : [50 x *] (gradient) }
{ W0*features+B0 : [50 x 1 x *] (gradient)
W1*H1 : [50 x 1 x *] }
{ W1 : [50 x 50] (gradient)
W1*H1+B1 : [50 x 1 x *] }
{ H2 : [50 x 1 x *]
W1*H1 : [50 x 1 x *] (gradient) }
{ B0 : [50 x 1] (gradient)
H1 : [50 x 1 x *] (gradient)
W1*H1+B1 : [50 x 1 x *] (gradient)
W2*H1 : [2 x 1 x *] }
{ HLast : [2 x 1 x *]
W2 : [2 x 50] (gradient) }
{ B1 : [50 x 1] (gradient)
H2 : [50 x 1 x *] (gradient)
HLast : [2 x 1 x *] (gradient) }
05/03/2016 15:21:43: Precomputing --> 3 PreCompute nodes found.
08/16/2016 10:01:27: Training 2802 parameters in 6 out of 6 parameter tensors and 15 nodes with gradient:
05/03/2016 15:21:43: MeanOfFeatures = Mean()
05/03/2016 15:21:43: InvStdOfFeatures = InvStdDev()
05/03/2016 15:21:43: Prior = Mean()
05/03/2016 15:21:44: Precomputing --> Completed.
08/16/2016 10:01:27: Node 'B0' (LearnableParameter operation) : [50 x 1]
08/16/2016 10:01:27: Node 'B1' (LearnableParameter operation) : [50 x 1]
08/16/2016 10:01:27: Node 'B2' (LearnableParameter operation) : [2 x 1]
08/16/2016 10:01:27: Node 'W0' (LearnableParameter operation) : [50 x 2]
08/16/2016 10:01:27: Node 'W1' (LearnableParameter operation) : [50 x 50]
08/16/2016 10:01:27: Node 'W2' (LearnableParameter operation) : [2 x 50]
05/03/2016 15:21:44: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
08/16/2016 10:01:27: Precomputing --> 3 PreCompute nodes found.
05/03/2016 15:21:44: Starting minibatch loop.
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.69966235 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0538s; samplesPerSecond = 4647.4
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.70639648 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.1073s; samplesPerSecond = 2329.6
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.70470264 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0631s; samplesPerSecond = 3961.3
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.69813501 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0747s; samplesPerSecond = 3346.9
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.73551416 * 250; EvalErrorPrediction = 0.57600000 * 250; time = 0.0900s; samplesPerSecond = 2778.4
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72432324 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0605s; samplesPerSecond = 4135.0
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.73327588 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0619s; samplesPerSecond = 4039.0
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.70092627 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0769s; samplesPerSecond = 3249.9
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.72354980 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0799s; samplesPerSecond = 3129.0
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.72148096 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0620s; samplesPerSecond = 4031.5
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.69814941 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.1278s; samplesPerSecond = 1955.9
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.70699121 * 250; EvalErrorPrediction = 0.54800000 * 250; time = 0.0821s; samplesPerSecond = 3044.1
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.69898437 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0755s; samplesPerSecond = 3312.4
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.71712695 * 250; EvalErrorPrediction = 0.54000000 * 250; time = 0.0657s; samplesPerSecond = 3804.8
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.69470703 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.1049s; samplesPerSecond = 2382.9
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.71375879 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.1180s; samplesPerSecond = 2117.9
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70381641 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.1065s; samplesPerSecond = 2347.9
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.71748633 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.2709s; samplesPerSecond = 922.9
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71863281 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.1375s; samplesPerSecond = 1818.4
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.70715234 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.1143s; samplesPerSecond = 2186.6
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.70401074 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.1079s; samplesPerSecond = 2317.1
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70599414 * 250; EvalErrorPrediction = 0.48400000 * 250; time = 0.0917s; samplesPerSecond = 2727.7
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69628711 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0923s; samplesPerSecond = 2707.6
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.75920898 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0887s; samplesPerSecond = 2819.0
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.70542578 * 250; EvalErrorPrediction = 0.43600000 * 250; time = 0.0634s; samplesPerSecond = 3945.8
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.70643945 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0885s; samplesPerSecond = 2823.7
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.72481641 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0601s; samplesPerSecond = 4162.6
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.71133594 * 250; EvalErrorPrediction = 0.55600000 * 250; time = 0.0630s; samplesPerSecond = 3968.1
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.68605664 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0849s; samplesPerSecond = 2944.1
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.69535352 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0879s; samplesPerSecond = 2844.6
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.68741797 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0752s; samplesPerSecond = 3325.7
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.67916406 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0958s; samplesPerSecond = 2610.3
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.67841992 * 250; EvalErrorPrediction = 0.44800000 * 250; time = 0.1009s; samplesPerSecond = 2478.7
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.68038477 * 250; EvalErrorPrediction = 0.49200000 * 250; time = 0.1607s; samplesPerSecond = 1555.6
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.61937109 * 250; EvalErrorPrediction = 0.30400000 * 250; time = 0.1131s; samplesPerSecond = 2211.4
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.57844141 * 250; EvalErrorPrediction = 0.27200000 * 250; time = 0.1047s; samplesPerSecond = 2388.5
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.49124023 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0896s; samplesPerSecond = 2791.5
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.39071289 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0727s; samplesPerSecond = 3438.8
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.27650586 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.2624s; samplesPerSecond = 952.6
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.26430078 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0842s; samplesPerSecond = 2967.7
05/03/2016 15:21:47: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.66664150 * 10000; EvalErrorPrediction = 0.44430000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=3.93174s
05/03/2016 15:21:47: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn.1'
08/16/2016 10:01:27: MeanOfFeatures = Mean()
08/16/2016 10:01:27: InvStdOfFeatures = InvStdDev()
08/16/2016 10:01:27: Prior = Mean()
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
05/03/2016 15:21:47: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
05/03/2016 15:21:47: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.20720006 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0545s; samplesPerSecond = 4583.4
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.19690290 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0641s; samplesPerSecond = 3899.7
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.16064646 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0770s; samplesPerSecond = 3247.1
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.13547171 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0640s; samplesPerSecond = 3904.2
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.18000261 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0732s; samplesPerSecond = 3413.6
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.17787841 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0790s; samplesPerSecond = 3164.0
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.16821879 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0880s; samplesPerSecond = 2839.4
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16363456 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0854s; samplesPerSecond = 2926.8
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.19533907 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0774s; samplesPerSecond = 3228.6
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.19318692 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0820s; samplesPerSecond = 3049.5
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.12726279 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0766s; samplesPerSecond = 3261.6
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.18620067 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0773s; samplesPerSecond = 3235.5
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.11547500 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0797s; samplesPerSecond = 3136.6
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16675950 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0833s; samplesPerSecond = 2999.8
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.15807389 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0822s; samplesPerSecond = 3042.5
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.18389093 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0726s; samplesPerSecond = 3443.0
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.18269750 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0897s; samplesPerSecond = 2787.7
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18737841 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0963s; samplesPerSecond = 2597.3
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.20174757 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0811s; samplesPerSecond = 3081.1
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.13336708 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0732s; samplesPerSecond = 3414.6
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13851332 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0879s; samplesPerSecond = 2843.0
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.15422288 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0821s; samplesPerSecond = 3044.3
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.15478799 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0815s; samplesPerSecond = 3069.2
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14530201 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0810s; samplesPerSecond = 3086.3
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.12192809 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.2596s; samplesPerSecond = 962.9
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.13975597 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0569s; samplesPerSecond = 4394.5
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12566363 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0911s; samplesPerSecond = 2744.6
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.18963051 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0765s; samplesPerSecond = 3267.2
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.17955467 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0914s; samplesPerSecond = 2736.4
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.18862103 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0772s; samplesPerSecond = 3236.7
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17503073 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0775s; samplesPerSecond = 3225.8
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.14741998 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0774s; samplesPerSecond = 3230.1
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.13803981 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0726s; samplesPerSecond = 3443.0
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.14139232 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0820s; samplesPerSecond = 3048.4
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13886877 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0766s; samplesPerSecond = 3264.1
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.15025864 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0852s; samplesPerSecond = 2933.5
05/03/2016 15:21:51: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.14659342 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0903s; samplesPerSecond = 2767.4
05/03/2016 15:21:51: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.13078795 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0784s; samplesPerSecond = 3187.6
05/03/2016 15:21:51: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.19832882 * 250; EvalErrorPrediction = 0.11600000 * 250; time = 0.0772s; samplesPerSecond = 3240.4
05/03/2016 15:21:51: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15828904 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0721s; samplesPerSecond = 3468.7
05/03/2016 15:21:51: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.16210811 * 10000; EvalErrorPrediction = 0.07480000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=3.34279s
05/03/2016 15:21:51: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn.2'
05/03/2016 15:21:51: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
05/03/2016 15:21:51: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.19031988 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0960s; samplesPerSecond = 2604.5
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.13920714 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0967s; samplesPerSecond = 2585.3
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14595162 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0869s; samplesPerSecond = 2877.8
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.13324012 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0817s; samplesPerSecond = 3060.5
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.17358728 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0804s; samplesPerSecond = 3109.2
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.17949159 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0660s; samplesPerSecond = 3788.1
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.15009323 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0653s; samplesPerSecond = 3829.5
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.17060954 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0660s; samplesPerSecond = 3787.3
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.10410764 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0762s; samplesPerSecond = 3280.0
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.20572259 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.2571s; samplesPerSecond = 972.5
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.16519130 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0640s; samplesPerSecond = 3906.2
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.14908187 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0593s; samplesPerSecond = 4213.2
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.19227612 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0688s; samplesPerSecond = 3632.8
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13670934 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0532s; samplesPerSecond = 4700.3
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.21113164 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0693s; samplesPerSecond = 3609.4
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.13129944 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0882s; samplesPerSecond = 2833.6
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17304376 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0840s; samplesPerSecond = 2975.2
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16479250 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0685s; samplesPerSecond = 3648.5
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.14591786 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0976s; samplesPerSecond = 2561.0
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.12562012 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0969s; samplesPerSecond = 2580.7
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13442773 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0959s; samplesPerSecond = 2607.8
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.17125328 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0754s; samplesPerSecond = 3314.6
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.22482522 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.1037s; samplesPerSecond = 2410.8
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.18291792 * 250; EvalErrorPrediction = 0.11600000 * 250; time = 0.0650s; samplesPerSecond = 3844.3
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.20296558 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0823s; samplesPerSecond = 3038.9
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.22849719 * 250; EvalErrorPrediction = 0.12400000 * 250; time = 0.0828s; samplesPerSecond = 3020.2
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12500068 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0864s; samplesPerSecond = 2894.1
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.15719802 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0840s; samplesPerSecond = 2976.4
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.11520810 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0687s; samplesPerSecond = 3636.7
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14159592 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0974s; samplesPerSecond = 2567.1
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18509569 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0721s; samplesPerSecond = 3465.4
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.15008345 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0905s; samplesPerSecond = 2763.6
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.12866435 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0902s; samplesPerSecond = 2770.5
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.17640526 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0896s; samplesPerSecond = 2789.2
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.14982110 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.2845s; samplesPerSecond = 878.8
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.11472753 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0867s; samplesPerSecond = 2882.5
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16524783 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0755s; samplesPerSecond = 3312.4
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14961037 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0958s; samplesPerSecond = 2608.8
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.15972387 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0972s; samplesPerSecond = 2572.7
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.17867958 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0969s; samplesPerSecond = 2581.0
05/03/2016 15:21:54: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.16073358 * 10000; EvalErrorPrediction = 0.07780000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=3.65495s
05/03/2016 15:21:54: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn'
05/03/2016 15:21:54: CNTKCommandTrainEnd: Multigpu_Demo_Train
05/03/2016 15:21:54: Action "train" complete.
08/16/2016 10:01:27: Precomputing --> Completed.
05/03/2016 15:21:54: ##############################################################################
05/03/2016 15:21:54: # #
05/03/2016 15:21:54: # Action "test" #
05/03/2016 15:21:54: # #
05/03/2016 15:21:54: ##############################################################################
08/16/2016 10:01:27: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 10:01:27: Starting minibatch loop.
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.69846765 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0208s; samplesPerSecond = 12032.5
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.76129944 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0104s; samplesPerSecond = 24029.2
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.72963208 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0263s; samplesPerSecond = 9510.0
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.74041528 * 250; EvalErrorPrediction = 0.56800000 * 250; time = 0.0289s; samplesPerSecond = 8665.2
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70611035 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0197s; samplesPerSecond = 12660.8
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.74740723 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0259s; samplesPerSecond = 9634.3
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.75085840 * 250; EvalErrorPrediction = 0.40400000 * 250; time = 0.0103s; samplesPerSecond = 24163.9
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.78210742 * 250; EvalErrorPrediction = 0.48400000 * 250; time = 0.0168s; samplesPerSecond = 14848.3
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.70286572 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0170s; samplesPerSecond = 14742.3
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.69580322 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0292s; samplesPerSecond = 8552.3
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.70703613 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0334s; samplesPerSecond = 7480.3
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.74512988 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0104s; samplesPerSecond = 23941.8
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.70837598 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0166s; samplesPerSecond = 15043.0
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.69913086 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0166s; samplesPerSecond = 15038.5
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70321875 * 250; EvalErrorPrediction = 0.53600000 * 250; time = 0.0206s; samplesPerSecond = 12148.9
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.69290918 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0260s; samplesPerSecond = 9610.2
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.74415527 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0107s; samplesPerSecond = 23353.6
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.73745117 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0166s; samplesPerSecond = 15081.1
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71849609 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0168s; samplesPerSecond = 14905.8
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.71476953 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0136s; samplesPerSecond = 18331.1
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.69918457 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0290s; samplesPerSecond = 8620.1
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.69749512 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0107s; samplesPerSecond = 23454.4
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.70658887 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0104s; samplesPerSecond = 23973.9
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.69760742 * 250; EvalErrorPrediction = 0.56800000 * 250; time = 0.0199s; samplesPerSecond = 12538.9
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69499219 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0135s; samplesPerSecond = 18504.8
08/16/2016 10:01:27: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69291211 * 250; EvalErrorPrediction = 0.49200000 * 250; time = 0.0293s; samplesPerSecond = 8538.8
08/16/2016 10:01:28: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.70718945 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0305s; samplesPerSecond = 8199.1
08/16/2016 10:01:28: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69039453 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0169s; samplesPerSecond = 14832.4
08/16/2016 10:01:28: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.70257422 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0167s; samplesPerSecond = 14931.6
08/16/2016 10:01:28: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.71058984 * 250; EvalErrorPrediction = 0.42800000 * 250; time = 0.0166s; samplesPerSecond = 15085.7
08/16/2016 10:01:28: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.69296875 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0167s; samplesPerSecond = 14995.2
08/16/2016 10:01:28: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.69641211 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0168s; samplesPerSecond = 14916.5
08/16/2016 10:01:28: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69531055 * 250; EvalErrorPrediction = 0.49200000 * 250; time = 0.0329s; samplesPerSecond = 7601.3
08/16/2016 10:01:28: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.69090430 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0208s; samplesPerSecond = 12036.6
08/16/2016 10:01:28: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.68339063 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0168s; samplesPerSecond = 14893.4
08/16/2016 10:01:28: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.67383984 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0330s; samplesPerSecond = 7576.2
08/16/2016 10:01:28: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.65904102 * 250; EvalErrorPrediction = 0.26400000 * 250; time = 0.0104s; samplesPerSecond = 24010.8
08/16/2016 10:01:28: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.64259766 * 250; EvalErrorPrediction = 0.36000000 * 250; time = 0.0135s; samplesPerSecond = 18487.0
08/16/2016 10:01:28: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.60433398 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0167s; samplesPerSecond = 15004.2
08/16/2016 10:01:28: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.56497070 * 250; EvalErrorPrediction = 0.11600000 * 250; time = 0.0136s; samplesPerSecond = 18390.5
08/16/2016 10:01:28: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.70222344 * 10000; EvalErrorPrediction = 0.46820000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=0.776535s
08/16/2016 10:01:28: SGD: Saving checkpoint model '/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn.1'
08/16/2016 10:01:28: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 1: frames [10000..20000] (first sequence at sample 10000), data subset 0 of 1
08/16/2016 10:01:28: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.50722371 * 250; EvalErrorPrediction = 0.14800000 * 250; time = 0.0397s; samplesPerSecond = 6295.5
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.45786101 * 250; EvalErrorPrediction = 0.12800000 * 250; time = 0.0285s; samplesPerSecond = 8776.9
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.37902995 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0178s; samplesPerSecond = 14020.5
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.34590577 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0176s; samplesPerSecond = 14178.0
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.29942918 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0174s; samplesPerSecond = 14344.7
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.28291648 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0301s; samplesPerSecond = 8297.1
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.25680062 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0530s; samplesPerSecond = 4715.7
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.21806843 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0388s; samplesPerSecond = 6450.9
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.22671616 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0293s; samplesPerSecond = 8533.6
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.20709374 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0177s; samplesPerSecond = 14159.5
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.18895447 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0365s; samplesPerSecond = 6855.7
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.17506560 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0441s; samplesPerSecond = 5669.8
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.18710038 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0252s; samplesPerSecond = 9901.0
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.18230681 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0205s; samplesPerSecond = 12218.4
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.18466931 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0175s; samplesPerSecond = 14290.6
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.17889979 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0174s; samplesPerSecond = 14329.9
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.18170165 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0215s; samplesPerSecond = 11627.4
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.21059295 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0206s; samplesPerSecond = 12147.1
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.16428288 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0301s; samplesPerSecond = 8297.9
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.17104948 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0500s; samplesPerSecond = 5002.3
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13190985 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0206s; samplesPerSecond = 12160.7
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.17235489 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0174s; samplesPerSecond = 14329.1
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.12426324 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0205s; samplesPerSecond = 12183.2
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.21852627 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0177s; samplesPerSecond = 14104.4
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.21640896 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0487s; samplesPerSecond = 5133.5
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.17959436 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0157s; samplesPerSecond = 15952.0
08/16/2016 10:01:28: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.16189965 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0145s; samplesPerSecond = 17266.4
08/16/2016 10:01:29: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.13475075 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0175s; samplesPerSecond = 14282.4
08/16/2016 10:01:29: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.16423768 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0333s; samplesPerSecond = 7510.0
08/16/2016 10:01:29: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14635259 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0298s; samplesPerSecond = 8393.5
08/16/2016 10:01:29: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.14974090 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0174s; samplesPerSecond = 14368.6
08/16/2016 10:01:29: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.12504713 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0175s; samplesPerSecond = 14289.0
08/16/2016 10:01:29: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.16433451 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0371s; samplesPerSecond = 6744.0
08/16/2016 10:01:29: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.14200378 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0221s; samplesPerSecond = 11319.9
08/16/2016 10:01:29: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13708748 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0208s; samplesPerSecond = 12010.0
08/16/2016 10:01:29: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.13991044 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0149s; samplesPerSecond = 16734.7
08/16/2016 10:01:29: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.15786864 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0208s; samplesPerSecond = 12029.1
08/16/2016 10:01:29: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.16220493 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0155s; samplesPerSecond = 16121.8
08/16/2016 10:01:29: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.13517917 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0199s; samplesPerSecond = 12571.7
08/16/2016 10:01:29: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15440438 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0217s; samplesPerSecond = 11501.1
08/16/2016 10:01:29: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.20309370 * 10000; EvalErrorPrediction = 0.08040000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=1.02227s
08/16/2016 10:01:29: SGD: Saving checkpoint model '/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn.2'
08/16/2016 10:01:29: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 2: frames [20000..30000] (first sequence at sample 20000), data subset 0 of 1
08/16/2016 10:01:29: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
08/16/2016 10:01:29: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.18478506 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0216s; samplesPerSecond = 11585.3
08/16/2016 10:01:29: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.12741733 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0184s; samplesPerSecond = 13576.6
08/16/2016 10:01:29: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.17535235 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0235s; samplesPerSecond = 10656.9
08/16/2016 10:01:29: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.14042800 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0150s; samplesPerSecond = 16696.7
08/16/2016 10:01:29: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.16643002 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0247s; samplesPerSecond = 10109.6
08/16/2016 10:01:29: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.19327050 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0389s; samplesPerSecond = 6424.8
08/16/2016 10:01:29: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.12260149 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0292s; samplesPerSecond = 8568.7
08/16/2016 10:01:29: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16504305 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0328s; samplesPerSecond = 7631.0
08/16/2016 10:01:29: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.12425912 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0315s; samplesPerSecond = 7945.3
08/16/2016 10:01:29: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.19996755 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0943s; samplesPerSecond = 2649.9
08/16/2016 10:01:29: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.14253075 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0703s; samplesPerSecond = 3554.8
08/16/2016 10:01:29: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.12335900 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0494s; samplesPerSecond = 5064.0
08/16/2016 10:01:29: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.16695660 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0353s; samplesPerSecond = 7090.2
08/16/2016 10:01:29: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.19907855 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0346s; samplesPerSecond = 7225.4
08/16/2016 10:01:29: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16895044 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0346s; samplesPerSecond = 7233.4
08/16/2016 10:01:29: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.13285834 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0376s; samplesPerSecond = 6645.0
08/16/2016 10:01:29: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.14406293 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0176s; samplesPerSecond = 14231.2
08/16/2016 10:01:29: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.20987060 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0171s; samplesPerSecond = 14639.6
08/16/2016 10:01:29: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.19265041 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0389s; samplesPerSecond = 6432.9
08/16/2016 10:01:29: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.15040079 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0277s; samplesPerSecond = 9019.4
08/16/2016 10:01:30: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15551715 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0205s; samplesPerSecond = 12207.0
08/16/2016 10:01:30: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.13682837 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0212s; samplesPerSecond = 11784.1
08/16/2016 10:01:30: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.17235013 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0174s; samplesPerSecond = 14356.3
08/16/2016 10:01:30: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14431340 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0176s; samplesPerSecond = 14196.5
08/16/2016 10:01:30: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.13791050 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0184s; samplesPerSecond = 13580.3
08/16/2016 10:01:30: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.14160704 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0175s; samplesPerSecond = 14275.1
08/16/2016 10:01:30: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.16921888 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0172s; samplesPerSecond = 14549.3
08/16/2016 10:01:30: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.18580557 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0206s; samplesPerSecond = 12133.6
08/16/2016 10:01:30: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.16487179 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0157s; samplesPerSecond = 15918.5
08/16/2016 10:01:30: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.15450410 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0204s; samplesPerSecond = 12249.5
08/16/2016 10:01:30: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18731137 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0540s; samplesPerSecond = 4628.8
08/16/2016 10:01:30: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13205502 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0113s; samplesPerSecond = 22137.6
08/16/2016 10:01:30: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.14591704 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0174s; samplesPerSecond = 14338.2
08/16/2016 10:01:30: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.13912720 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0175s; samplesPerSecond = 14267.0
08/16/2016 10:01:30: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.20110201 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0199s; samplesPerSecond = 12535.1
08/16/2016 10:01:30: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.12560399 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0245s; samplesPerSecond = 10196.2
08/16/2016 10:01:30: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.18609894 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0184s; samplesPerSecond = 13563.4
08/16/2016 10:01:30: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15309858 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0174s; samplesPerSecond = 14405.9
08/16/2016 10:01:30: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.11872821 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0175s; samplesPerSecond = 14303.7
08/16/2016 10:01:30: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.12948843 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0178s; samplesPerSecond = 14041.0
08/16/2016 10:01:30: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15779327 * 10000; EvalErrorPrediction = 0.07250000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=1.10281s
08/16/2016 10:01:30: SGD: Saving checkpoint model '/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn'
08/16/2016 10:01:30: CNTKCommandTrainEnd: Multigpu_Demo_Train
08/16/2016 10:01:30: Action "train" complete.
08/16/2016 10:01:30: ##############################################################################
08/16/2016 10:01:30: # #
08/16/2016 10:01:30: # Action "test" #
08/16/2016 10:01:30: # #
08/16/2016 10:01:30: ##############################################################################
Post-processing network...
@ -674,35 +702,17 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 25 matrices, 2 are shared as 1, and 23 are not shared.
(nil): {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalErrorPrediction Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
0x1abbf28: {[B0 Value[50 x 1]] }
0x1b47908: {[W1 Value[50 x 50]] }
0x1b48278: {[W2 Value[2 x 50]] }
0x1b49778: {[InvStdOfFeatures Value[2]] }
0x1b49f18: {[labels Value[2 x *1]] }
0x1b4a958: {[B2 Value[2 x 1]] }
0x1b4e568: {[features Value[2 x *1]] }
0x1b502a8: {[MeanOfFeatures Value[2]] }
0x1b50cd8: {[Prior Value[2]] }
0x1b514f8: {[W0 Value[50 x 2]] }
0x1b53938: {[B1 Value[50 x 1]] }
0x1c0fd98: {[EvalErrorPrediction Value[1]] }
0x1c0fef8: {[CrossEntropyWithSoftmax Value[1]] }
0x1c10438: {[LogOfPrior Value[2]] }
0x1c11f48: {[MVNormalizedFeatures Value[2 x *1]] }
0x1c122f8: {[W0*features Value[50 x *1]] }
0x1c124b8: {[W0*features+B0 Value[50 x 1 x *1]] }
0x1c12678: {[H1 Value[50 x 1 x *1]] }
0x1c12838: {[W1*H1 Value[50 x 1 x *1]] }
0x1c129f8: {[W1*H1+B1 Value[50 x 1 x *1]] }
0x1c12bb8: {[H2 Value[50 x 1 x *1]] }
0x1c12d78: {[W2*H1 Value[2 x 1 x *1]] }
0x1c12f38: {[HLast Value[2 x 1 x *1]] }
{ PosteriorProb : [2 x 1 x *1]
ScaledLogLikelihood : [2 x 1 x *1] }
05/03/2016 15:21:55: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.05804312 * 603; CrossEntropyWithSoftmax = 0.12790061 * 603; perplexity = 1.13644005
BlockRandomizer::StartEpoch: epoch 0: frames [0..603] (first sequence at sample 0), data subset 0 of 1
Actual gradient aggregation time: 0.000192
08/16/2016 10:01:30: Minibatch[1-1]: EvalErrorPrediction = 0.05140962 * 603; CrossEntropyWithSoftmax = 0.10665885 * 603
08/16/2016 10:01:30: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.05140962 * 603; CrossEntropyWithSoftmax = 0.10665885 * 603; perplexity = 1.11255464
05/03/2016 15:21:55: Action "test" complete.
08/16/2016 10:01:30: Action "test" complete.
05/03/2016 15:21:55: __COMPLETED__
08/16/2016 10:01:30: __COMPLETED__
~MPIWrapper

Просмотреть файл

@ -1,22 +1,27 @@
=== Running /home/alrezni/src/cntk_git/build/release/bin/cntk configFile=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/MultiGpu/../Config/Multigpu.cntk currentDirectory=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data RunDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu DataDir=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data ConfigDir=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/MultiGpu/../Config OutputDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu DeviceId=0 timestamping=true Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 264172964 kB
-------------------------------------------------------------------
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/1bitsgd/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/../../../../../../Examples/Other/Simple2d/Config/Multigpu.cntk currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_gpu DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/../../../../../../Examples/Other/Simple2d/Config OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_gpu DeviceId=0 timestamping=true Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
-------------------------------------------------------------------
Build info:
Built time: May 3 2016 15:08:09
Last modified date: Tue Apr 5 16:01:37 2016
Built time: Aug 16 2016 09:41:57
Last modified date: Mon Aug 15 23:39:17 2016
Build type: release
Build target: GPU
With 1bit-SGD: yes
Math lib: acml
CUDA_PATH: /usr/local/cuda-7.0
Math lib: mkl
CUDA_PATH: /usr/local/cuda-7.5
CUB_PATH: /usr/local/cub-1.4.1
CUDNN_PATH: /usr/local/cudnn-4.0
Build Branch: alrezni/examples_text
Build SHA1: e80dab7d66009531806ce70b4842146e0da00516
Built by alrezni on atleneu04
Build Path: /home/alrezni/src/cntk_git
Build Branch: HEAD
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by philly on 643085f7f8c2
Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
-------------------------------------------------------------------
Changed current directory to /home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
Changed current directory to /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
MPIWrapper: initializing MPI
ping [requestnodes (before change)]: 1 nodes pinging each other
ping [requestnodes (before change)]: all 1 nodes responded
@ -26,32 +31,40 @@ ping [requestnodes (after change)]: all 1 nodes responded
mpihelper: only one MPI process: MPI operation will be boring
ping [mpihelper]: 1 nodes pinging each other
ping [mpihelper]: all 1 nodes responded
05/03/2016 15:21:55: -------------------------------------------------------------------
05/03/2016 15:21:55: Build info:
08/16/2016 10:01:31: -------------------------------------------------------------------
08/16/2016 10:01:31: Build info:
05/03/2016 15:21:55: Built time: May 3 2016 15:08:09
05/03/2016 15:21:55: Last modified date: Tue Apr 5 16:01:37 2016
05/03/2016 15:21:55: Build type: release
05/03/2016 15:21:55: Build target: GPU
05/03/2016 15:21:55: With 1bit-SGD: yes
05/03/2016 15:21:55: Math lib: acml
05/03/2016 15:21:55: CUDA_PATH: /usr/local/cuda-7.0
05/03/2016 15:21:55: CUB_PATH: /usr/local/cub-1.4.1
05/03/2016 15:21:55: CUDNN_PATH: /usr/local/cudnn-4.0
05/03/2016 15:21:55: Build Branch: alrezni/examples_text
05/03/2016 15:21:55: Build SHA1: e80dab7d66009531806ce70b4842146e0da00516
05/03/2016 15:21:55: Built by alrezni on atleneu04
05/03/2016 15:21:55: Build Path: /home/alrezni/src/cntk_git
05/03/2016 15:21:55: -------------------------------------------------------------------
08/16/2016 10:01:31: Built time: Aug 16 2016 09:41:57
08/16/2016 10:01:31: Last modified date: Mon Aug 15 23:39:17 2016
08/16/2016 10:01:31: Build type: release
08/16/2016 10:01:31: Build target: GPU
08/16/2016 10:01:31: With 1bit-SGD: yes
08/16/2016 10:01:31: Math lib: mkl
08/16/2016 10:01:31: CUDA_PATH: /usr/local/cuda-7.5
08/16/2016 10:01:31: CUB_PATH: /usr/local/cub-1.4.1
08/16/2016 10:01:31: CUDNN_PATH: /usr/local/cudnn-4.0
08/16/2016 10:01:31: Build Branch: HEAD
08/16/2016 10:01:31: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 10:01:31: Built by philly on 643085f7f8c2
08/16/2016 10:01:31: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
08/16/2016 10:01:31: -------------------------------------------------------------------
08/16/2016 10:01:32: -------------------------------------------------------------------
08/16/2016 10:01:32: GPU info:
05/03/2016 15:21:55: Running on localhost at 2016/05/03 15:21:55
05/03/2016 15:21:55: Command line:
/home/alrezni/src/cntk_git/build/release/bin/cntk configFile=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/MultiGpu/../Config/Multigpu.cntk currentDirectory=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data RunDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu DataDir=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data ConfigDir=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/MultiGpu/../Config OutputDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu DeviceId=0 timestamping=true Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
08/16/2016 10:01:32: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:01:32: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:01:32: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:01:32: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:01:32: -------------------------------------------------------------------
08/16/2016 10:01:32: Running on localhost at 2016/08/16 10:01:32
08/16/2016 10:01:32: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/1bitsgd/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/../../../../../../Examples/Other/Simple2d/Config/Multigpu.cntk currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_gpu DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/../../../../../../Examples/Other/Simple2d/Config OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_gpu DeviceId=0 timestamping=true Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 15:21:55: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/03/2016 15:21:55: RootDir = ".."
08/16/2016 10:01:32: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:01:32: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
@ -140,28 +153,28 @@ dim = 2
]
outputPath = "$OutputDir$/MultigpuOutput"
]
currentDirectory=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
RunDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu
DataDir=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
ConfigDir=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/MultiGpu/../Config
OutputDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu
currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_gpu
DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/../../../../../../Examples/Other/Simple2d/Config
OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_gpu
DeviceId=0
timestamping=true
Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 15:21:55: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:01:32: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/03/2016 15:21:55: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/03/2016 15:21:55: RootDir = ".."
08/16/2016 10:01:32: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:01:32: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu/Models"
ModelDir = "/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_gpu/Models"
deviceId = "auto"
command = Multigpu_Demo_Train:Multigpu_Demo_Test
precision = "float"
traceLevel = 1
modelPath = "/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn"
modelPath = "/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn"
outputNodeNames = ScaledLogLikelihood
parallelTrain = true
Multigpu_Demo_Train=[
@ -193,7 +206,7 @@ Multigpu_Demo_Train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTrain_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTrain_cntk_text.txt"
input = [
features = [
dim = 2
@ -210,7 +223,7 @@ Multigpu_Demo_Test=[
action = "test"
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -227,7 +240,7 @@ Multigpu_Demo_Output=[
action = "write"
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -239,32 +252,32 @@ dim = 2
]
]
]
outputPath = "/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu/MultigpuOutput"
outputPath = "/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_gpu/MultigpuOutput"
]
currentDirectory=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
RunDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu
DataDir=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
ConfigDir=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/MultiGpu/../Config
OutputDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu
currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_gpu
DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/../../../../../../Examples/Other/Simple2d/Config
OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_gpu
DeviceId=0
timestamping=true
Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 15:21:55: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:01:32: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 15:21:55: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:01:32: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: Multigpu.cntk:command=Multigpu_Demo_Train:Multigpu_Demo_Test
configparameters: Multigpu.cntk:ConfigDir=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/MultiGpu/../Config
configparameters: Multigpu.cntk:currentDirectory=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
configparameters: Multigpu.cntk:DataDir=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
configparameters: Multigpu.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/MultiGpu/../../../../../../Examples/Other/Simple2d/Config
configparameters: Multigpu.cntk:currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
configparameters: Multigpu.cntk:DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
configparameters: Multigpu.cntk:deviceId=0
configparameters: Multigpu.cntk:ModelDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu/Models
configparameters: Multigpu.cntk:modelPath=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn
configparameters: Multigpu.cntk:ModelDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_gpu/Models
configparameters: Multigpu.cntk:modelPath=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn
configparameters: Multigpu.cntk:Multigpu_Demo_Output=[
action = "write"
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -276,14 +289,14 @@ dim = 2
]
]
]
outputPath = "/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu/MultigpuOutput"
outputPath = "/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_gpu/MultigpuOutput"
]
configparameters: Multigpu.cntk:Multigpu_Demo_Test=[
action = "test"
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -326,7 +339,7 @@ configparameters: Multigpu.cntk:Multigpu_Demo_Train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTrain_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTrain_cntk_text.txt"
input = [
features = [
dim = 2
@ -340,32 +353,44 @@ dim = 2
]
] [SGD=[maxEpochs=3]]
configparameters: Multigpu.cntk:OutputDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu
configparameters: Multigpu.cntk:OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_gpu
configparameters: Multigpu.cntk:outputNodeNames=ScaledLogLikelihood
configparameters: Multigpu.cntk:parallelTrain=true
configparameters: Multigpu.cntk:precision=float
configparameters: Multigpu.cntk:RootDir=..
configparameters: Multigpu.cntk:RunDir=/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu
configparameters: Multigpu.cntk:RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_gpu
configparameters: Multigpu.cntk:timestamping=true
configparameters: Multigpu.cntk:traceLevel=1
05/03/2016 15:21:55: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 15:21:55: Commands: Multigpu_Demo_Train Multigpu_Demo_Test
05/03/2016 15:21:55: Precision = "float"
05/03/2016 15:21:55: CNTKModelPath: /tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn
05/03/2016 15:21:55: CNTKCommandTrainInfo: Multigpu_Demo_Train : 3
05/03/2016 15:21:55: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
08/16/2016 10:01:32: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:01:32: Commands: Multigpu_Demo_Train Multigpu_Demo_Test
08/16/2016 10:01:32: Precision = "float"
08/16/2016 10:01:32: CNTKModelPath: /tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn
08/16/2016 10:01:32: CNTKCommandTrainInfo: Multigpu_Demo_Train : 3
08/16/2016 10:01:32: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
05/03/2016 15:21:55: ##############################################################################
05/03/2016 15:21:55: # #
05/03/2016 15:21:55: # Action "train" #
05/03/2016 15:21:55: # #
05/03/2016 15:21:55: ##############################################################################
08/16/2016 10:01:32: ##############################################################################
08/16/2016 10:01:32: # #
08/16/2016 10:01:32: # Action "train" #
08/16/2016 10:01:32: # #
08/16/2016 10:01:32: ##############################################################################
05/03/2016 15:21:55: CNTKCommandTrainBegin: Multigpu_Demo_Train
08/16/2016 10:01:32: CNTKCommandTrainBegin: Multigpu_Demo_Train
SimpleNetworkBuilder Using GPU 0
05/03/2016 15:21:55: Creating virgin network.
08/16/2016 10:01:32: Creating virgin network.
Node 'W0' (LearnableParameter operation): Initializing Parameter[50 x 2] <- 0.000000.
Node 'W0' (LearnableParameter operation): Initializing Parameter[50 x 2] <- uniform(seed=1, range=0.050000*1.000000, onCPU=false).
SetUniformRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4
Node 'B0' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'B0' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[50 x 50] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[50 x 50] <- uniform(seed=2, range=0.050000*1.000000, onCPU=false).
Node 'B1' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'B1' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[2 x 50] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[2 x 50] <- uniform(seed=3, range=0.050000*1.000000, onCPU=false).
Node 'B2' (LearnableParameter operation): Initializing Parameter[2 x 1] <- 0.000000.
Node 'B2' (LearnableParameter operation): Initializing Parameter[2 x 1] <- 0.000000.
Post-processing network...
@ -417,207 +442,210 @@ Validating network, final pass.
Post-processing network complete.
05/03/2016 15:21:55: Created model with 25 nodes on GPU 0.
08/16/2016 10:01:32: Created model with 25 nodes on GPU 0.
05/03/2016 15:21:55: Training criterion node(s):
05/03/2016 15:21:55: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
08/16/2016 10:01:32: Training criterion node(s):
08/16/2016 10:01:32: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
05/03/2016 15:21:55: Evaluation criterion node(s):
05/03/2016 15:21:55: EvalErrorPrediction = ErrorPrediction
08/16/2016 10:01:32: Evaluation criterion node(s):
08/16/2016 10:01:32: EvalErrorPrediction = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 40 matrices, 19 are shared as 8, and 21 are not shared.
(nil): {[EvalErrorPrediction Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
0x12a62e8: {[features Value[2 x *]] }
0x20202b8: {[MeanOfFeatures Value[2]] }
0x20207c8: {[InvStdOfFeatures Value[2]] }
0x2021538: {[W0 Value[50 x 2]] }
0x2786378: {[W1 Value[50 x 50]] }
0x2787248: {[B1 Value[50 x 1]] }
0x2788348: {[W2 Value[2 x 50]] }
0x2788de8: {[B2 Value[2 x 1]] }
0x2789cc8: {[labels Value[2 x *]] }
0x278ae18: {[Prior Value[2]] }
0x278c158: {[LogOfPrior Value[2]] }
0x27908f8: {[H1 Value[50 x 1 x *]] [W0*features Gradient[50 x *]] }
0x2790a18: {[EvalErrorPrediction Value[1]] }
0x2790d18: {[ScaledLogLikelihood Value[2 x 1 x *]] }
0x2790e78: {[CrossEntropyWithSoftmax Value[1]] }
0x27966e8: {[B0 Value[50 x 1]] }
0x2adb168: {[W0 Gradient[50 x 2]] [W0*features+B0 Value[50 x 1 x *]] }
0x2adb378: {[MVNormalizedFeatures Value[2 x *]] }
0x2adb698: {[W0*features Value[50 x *]] }
0x2adb738: {[W0*features+B0 Gradient[50 x 1 x *]] [W1*H1 Value[50 x 1 x *]] }
0x2adb898: {[W1 Gradient[50 x 50]] [W1*H1+B1 Value[50 x 1 x *]] }
0x2adb9f8: {[H2 Value[50 x 1 x *]] [W1*H1 Gradient[50 x 1 x *]] }
0x2adbb58: {[B0 Gradient[50 x 1]] [H1 Gradient[50 x 1 x *]] [W1*H1+B1 Gradient[50 x 1 x *]] [W2*H1 Value[2 x 1 x *]] }
0x2adbcb8: {[HLast Value[2 x 1 x *]] [W2 Gradient[2 x 50]] }
0x2adc6f8: {[CrossEntropyWithSoftmax Gradient[1]] }
0x2adc8b8: {[B1 Gradient[50 x 1]] [H2 Gradient[50 x 1 x *]] [HLast Gradient[2 x 1 x *]] }
0x2adca78: {[W2*H1 Gradient[2 x 1 x *]] }
0x2adcc38: {[B2 Gradient[2 x 1]] }
{ W0 : [50 x 2] (gradient)
W0*features+B0 : [50 x 1 x *] }
{ H1 : [50 x 1 x *]
W0*features : [50 x *] (gradient) }
{ W0*features+B0 : [50 x 1 x *] (gradient)
W1*H1 : [50 x 1 x *] }
{ W1 : [50 x 50] (gradient)
W1*H1+B1 : [50 x 1 x *] }
{ H2 : [50 x 1 x *]
W1*H1 : [50 x 1 x *] (gradient) }
{ B0 : [50 x 1] (gradient)
H1 : [50 x 1 x *] (gradient)
W1*H1+B1 : [50 x 1 x *] (gradient)
W2*H1 : [2 x 1 x *] }
{ HLast : [2 x 1 x *]
W2 : [2 x 50] (gradient) }
{ B1 : [50 x 1] (gradient)
H2 : [50 x 1 x *] (gradient)
HLast : [2 x 1 x *] (gradient) }
05/03/2016 15:21:55: Precomputing --> 3 PreCompute nodes found.
08/16/2016 10:01:32: Training 2802 parameters in 6 out of 6 parameter tensors and 15 nodes with gradient:
05/03/2016 15:21:55: MeanOfFeatures = Mean()
05/03/2016 15:21:55: InvStdOfFeatures = InvStdDev()
05/03/2016 15:21:55: Prior = Mean()
05/03/2016 15:21:56: Precomputing --> Completed.
08/16/2016 10:01:32: Node 'B0' (LearnableParameter operation) : [50 x 1]
08/16/2016 10:01:32: Node 'B1' (LearnableParameter operation) : [50 x 1]
08/16/2016 10:01:32: Node 'B2' (LearnableParameter operation) : [2 x 1]
08/16/2016 10:01:32: Node 'W0' (LearnableParameter operation) : [50 x 2]
08/16/2016 10:01:32: Node 'W1' (LearnableParameter operation) : [50 x 50]
08/16/2016 10:01:32: Node 'W2' (LearnableParameter operation) : [2 x 50]
05/03/2016 15:21:56: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
08/16/2016 10:01:32: Precomputing --> 3 PreCompute nodes found.
05/03/2016 15:21:56: Starting minibatch loop.
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70004456 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0059s; samplesPerSecond = 42038.0
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.70309900 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0049s; samplesPerSecond = 50525.5
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.70606104 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0050s; samplesPerSecond = 50423.6
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.69845532 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0049s; samplesPerSecond = 50689.4
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.73496533 * 250; EvalErrorPrediction = 0.57600000 * 250; time = 0.0050s; samplesPerSecond = 50261.4
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72522827 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0050s; samplesPerSecond = 50454.1
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.73287500 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0049s; samplesPerSecond = 50576.6
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.70135547 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0049s; samplesPerSecond = 50566.3
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.72466504 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0049s; samplesPerSecond = 50515.3
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.72187500 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0049s; samplesPerSecond = 50730.5
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.69799023 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0049s; samplesPerSecond = 50751.1
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.70696387 * 250; EvalErrorPrediction = 0.54800000 * 250; time = 0.0050s; samplesPerSecond = 50454.1
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.69863965 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0050s; samplesPerSecond = 50393.1
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.71772461 * 250; EvalErrorPrediction = 0.54800000 * 250; time = 0.0048s; samplesPerSecond = 51899.5
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.69526270 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0047s; samplesPerSecond = 53544.7
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.71436426 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0047s; samplesPerSecond = 53498.8
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70399316 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0047s; samplesPerSecond = 53694.2
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.71745508 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0046s; samplesPerSecond = 53879.3
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71963184 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0047s; samplesPerSecond = 53521.7
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.70689941 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0047s; samplesPerSecond = 53602.1
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.70425098 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0046s; samplesPerSecond = 53890.9
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70622754 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0047s; samplesPerSecond = 53728.8
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69729492 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0046s; samplesPerSecond = 53786.6
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.75974219 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0046s; samplesPerSecond = 54265.2
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.70631250 * 250; EvalErrorPrediction = 0.43600000 * 250; time = 0.0047s; samplesPerSecond = 53659.6
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.70705664 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0047s; samplesPerSecond = 53602.1
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.72660352 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0046s; samplesPerSecond = 54124.3
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.71369727 * 250; EvalErrorPrediction = 0.55600000 * 250; time = 0.0047s; samplesPerSecond = 53441.6
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.68916602 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0047s; samplesPerSecond = 53659.6
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.69964844 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0047s; samplesPerSecond = 53339.0
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.69387891 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0046s; samplesPerSecond = 53832.9
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.68885742 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0047s; samplesPerSecond = 53350.4
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69388867 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0047s; samplesPerSecond = 53430.2
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.70363867 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0046s; samplesPerSecond = 53960.7
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.65449219 * 250; EvalErrorPrediction = 0.44400000 * 250; time = 0.0047s; samplesPerSecond = 53544.7
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.64607031 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0047s; samplesPerSecond = 53453.1
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.59492969 * 250; EvalErrorPrediction = 0.12400000 * 250; time = 0.0046s; samplesPerSecond = 53972.4
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.53965820 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0047s; samplesPerSecond = 53636.6
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.43681445 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0047s; samplesPerSecond = 52854.1
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.37407422 * 250; EvalErrorPrediction = 0.12000000 * 250; time = 0.0047s; samplesPerSecond = 53521.7
05/03/2016 15:21:56: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.68409629 * 10000; EvalErrorPrediction = 0.45780000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=0.194983s
05/03/2016 15:21:56: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn.1'
08/16/2016 10:01:32: MeanOfFeatures = Mean()
08/16/2016 10:01:32: InvStdOfFeatures = InvStdDev()
08/16/2016 10:01:32: Prior = Mean()
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
05/03/2016 15:21:56: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
05/03/2016 15:21:56: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.27919647 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0093s; samplesPerSecond = 26818.3
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.24468611 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0080s; samplesPerSecond = 31063.6
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.19639892 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0081s; samplesPerSecond = 30982.8
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.16397861 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0080s; samplesPerSecond = 31222.7
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.19745002 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0081s; samplesPerSecond = 30944.4
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.19548896 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0081s; samplesPerSecond = 30871.8
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.18230148 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0081s; samplesPerSecond = 30910.0
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.17531255 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0080s; samplesPerSecond = 31059.8
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.20166559 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0081s; samplesPerSecond = 30944.4
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.19749058 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0081s; samplesPerSecond = 31055.9
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.13463336 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0081s; samplesPerSecond = 30963.6
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.19006259 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0080s; samplesPerSecond = 31063.6
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.12234776 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0079s; samplesPerSecond = 31605.6
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16962922 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0077s; samplesPerSecond = 32649.9
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16091639 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0076s; samplesPerSecond = 32743.9
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.18624030 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32748.2
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.18465726 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0076s; samplesPerSecond = 32899.1
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18514518 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0077s; samplesPerSecond = 32620.0
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.20127224 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0076s; samplesPerSecond = 32791.2
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.13418547 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0076s; samplesPerSecond = 32701.1
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13995001 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0076s; samplesPerSecond = 32838.6
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.15602538 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32907.7
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.15448171 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32864.5
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14780067 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32894.7
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.12361633 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0077s; samplesPerSecond = 32628.6
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.14079766 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0077s; samplesPerSecond = 32632.8
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12624363 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0076s; samplesPerSecond = 32899.1
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.18913222 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32894.7
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.17952681 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0076s; samplesPerSecond = 32786.9
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.18825452 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0076s; samplesPerSecond = 32825.6
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17517656 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0076s; samplesPerSecond = 32942.4
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.14744161 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32791.2
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.13888184 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0076s; samplesPerSecond = 32795.5
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.14156678 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0076s; samplesPerSecond = 32855.8
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13990591 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0077s; samplesPerSecond = 32607.3
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.15059729 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32855.8
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.14720846 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0076s; samplesPerSecond = 32799.8
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.13021243 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0076s; samplesPerSecond = 32912.1
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.19704037 * 250; EvalErrorPrediction = 0.11600000 * 250; time = 0.0076s; samplesPerSecond = 33029.5
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15858146 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0076s; samplesPerSecond = 32860.1
05/03/2016 15:21:56: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.16938752 * 10000; EvalErrorPrediction = 0.07430000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.313881s
05/03/2016 15:21:56: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn.2'
05/03/2016 15:21:56: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
05/03/2016 15:21:56: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.18888809 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0078s; samplesPerSecond = 32129.5
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.14084978 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0076s; samplesPerSecond = 32756.8
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14561895 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0077s; samplesPerSecond = 32666.9
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.13238169 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0076s; samplesPerSecond = 32752.5
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.17465335 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0076s; samplesPerSecond = 32765.4
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.17752616 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0076s; samplesPerSecond = 32821.3
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.15030556 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0077s; samplesPerSecond = 32645.6
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.17118019 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0077s; samplesPerSecond = 32611.5
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.10379908 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0077s; samplesPerSecond = 32637.1
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.20636150 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0076s; samplesPerSecond = 32782.6
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.16606704 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0077s; samplesPerSecond = 32543.6
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.14937580 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0077s; samplesPerSecond = 32446.5
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.19161901 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0076s; samplesPerSecond = 32731.1
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13684752 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32696.8
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.21095939 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0076s; samplesPerSecond = 32688.3
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.13216461 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32769.7
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17341094 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0077s; samplesPerSecond = 32586.0
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16532641 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0076s; samplesPerSecond = 32868.8
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.14614740 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0076s; samplesPerSecond = 32696.8
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.12551177 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32705.4
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13419939 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32782.6
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.17050096 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0076s; samplesPerSecond = 32899.1
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.22579789 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0076s; samplesPerSecond = 32838.6
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.18219666 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0078s; samplesPerSecond = 32220.6
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.20347898 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32791.2
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.22972656 * 250; EvalErrorPrediction = 0.12000000 * 250; time = 0.0076s; samplesPerSecond = 32825.6
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12621914 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0076s; samplesPerSecond = 32890.4
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.15674728 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0076s; samplesPerSecond = 32808.4
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.11517532 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0077s; samplesPerSecond = 32658.4
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14187870 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32860.1
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18496784 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0076s; samplesPerSecond = 32929.4
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.15026403 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0076s; samplesPerSecond = 32942.4
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.12862609 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32925.1
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.17651362 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0076s; samplesPerSecond = 32778.3
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.14975908 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0076s; samplesPerSecond = 32981.5
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.11465866 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0076s; samplesPerSecond = 32838.6
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16513610 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0076s; samplesPerSecond = 32808.4
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14972374 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32977.2
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.15995582 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32825.6
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.17898927 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0076s; samplesPerSecond = 32756.8
05/03/2016 15:21:56: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.16083773 * 10000; EvalErrorPrediction = 0.07760000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.307973s
05/03/2016 15:21:56: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn'
05/03/2016 15:21:56: CNTKCommandTrainEnd: Multigpu_Demo_Train
05/03/2016 15:21:56: Action "train" complete.
08/16/2016 10:01:32: Precomputing --> Completed.
05/03/2016 15:21:56: ##############################################################################
05/03/2016 15:21:56: # #
05/03/2016 15:21:56: # Action "test" #
05/03/2016 15:21:56: # #
05/03/2016 15:21:56: ##############################################################################
08/16/2016 10:01:32: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 10:01:32: Starting minibatch loop.
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70124231 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0076s; samplesPerSecond = 32761.1
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.76372424 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0062s; samplesPerSecond = 40374.7
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.72703027 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0061s; samplesPerSecond = 40836.3
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.73895923 * 250; EvalErrorPrediction = 0.56800000 * 250; time = 0.0061s; samplesPerSecond = 41077.9
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70621924 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0061s; samplesPerSecond = 41010.5
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.74767041 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0061s; samplesPerSecond = 41308.7
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.75094434 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0061s; samplesPerSecond = 40690.1
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.78058936 * 250; EvalErrorPrediction = 0.48400000 * 250; time = 0.0061s; samplesPerSecond = 40990.3
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.70407129 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0061s; samplesPerSecond = 40763.1
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.69555762 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0061s; samplesPerSecond = 41247.3
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.70626123 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0061s; samplesPerSecond = 40976.9
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.74540430 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0061s; samplesPerSecond = 41179.4
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.70824414 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0060s; samplesPerSecond = 41480.0
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.69895020 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0060s; samplesPerSecond = 41397.6
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70353223 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0061s; samplesPerSecond = 40763.1
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.69346387 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0061s; samplesPerSecond = 41186.2
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.74449902 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0062s; samplesPerSecond = 40643.8
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.73767969 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0060s; samplesPerSecond = 41820.0
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71876855 * 250; EvalErrorPrediction = 0.48400000 * 250; time = 0.0060s; samplesPerSecond = 41862.0
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.71509473 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0061s; samplesPerSecond = 41138.7
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.69956152 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0059s; samplesPerSecond = 42108.8
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.69785937 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0059s; samplesPerSecond = 42337.0
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.70736035 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0059s; samplesPerSecond = 42030.9
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.69820508 * 250; EvalErrorPrediction = 0.56800000 * 250; time = 0.0059s; samplesPerSecond = 42430.4
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69537109 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0059s; samplesPerSecond = 42286.9
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69347266 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0059s; samplesPerSecond = 42387.2
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.70801172 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0060s; samplesPerSecond = 41652.8
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69131641 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0059s; samplesPerSecond = 42294.0
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.70370312 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0058s; samplesPerSecond = 42771.6
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.71200195 * 250; EvalErrorPrediction = 0.43600000 * 250; time = 0.0058s; samplesPerSecond = 42808.2
08/16/2016 10:01:32: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.69506836 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0058s; samplesPerSecond = 42800.9
08/16/2016 10:01:33: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.69935352 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0058s; samplesPerSecond = 43305.0
08/16/2016 10:01:33: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69887109 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0058s; samplesPerSecond = 42764.3
08/16/2016 10:01:33: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.69604492 * 250; EvalErrorPrediction = 0.49200000 * 250; time = 0.0058s; samplesPerSecond = 43110.9
08/16/2016 10:01:33: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.69011719 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0065s; samplesPerSecond = 38302.4
08/16/2016 10:01:33: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.68419531 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0058s; samplesPerSecond = 43148.1
08/16/2016 10:01:33: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.67551367 * 250; EvalErrorPrediction = 0.32400000 * 250; time = 0.0059s; samplesPerSecond = 42094.6
08/16/2016 10:01:33: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.67028516 * 250; EvalErrorPrediction = 0.40000000 * 250; time = 0.0059s; samplesPerSecond = 42294.0
08/16/2016 10:01:33: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.65152734 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0059s; samplesPerSecond = 42329.8
08/16/2016 10:01:33: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.63594727 * 250; EvalErrorPrediction = 0.22000000 * 250; time = 0.0060s; samplesPerSecond = 41666.7
08/16/2016 10:01:33: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.70729233 * 10000; EvalErrorPrediction = 0.47740000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=0.245257s
08/16/2016 10:01:33: SGD: Saving checkpoint model '/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn.1'
08/16/2016 10:01:33: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 1: frames [10000..20000] (first sequence at sample 10000), data subset 0 of 1
08/16/2016 10:01:33: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.61550018 * 250; EvalErrorPrediction = 0.27600000 * 250; time = 0.0108s; samplesPerSecond = 23111.8
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.59409242 * 250; EvalErrorPrediction = 0.28800000 * 250; time = 0.0094s; samplesPerSecond = 26612.7
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.53884306 * 250; EvalErrorPrediction = 0.20400000 * 250; time = 0.0093s; samplesPerSecond = 26890.4
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.52450125 * 250; EvalErrorPrediction = 0.15200000 * 250; time = 0.0093s; samplesPerSecond = 26942.6
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.49237463 * 250; EvalErrorPrediction = 0.16400000 * 250; time = 0.0092s; samplesPerSecond = 27038.7
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.44029644 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0093s; samplesPerSecond = 26847.1
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.40029475 * 250; EvalErrorPrediction = 0.13200000 * 250; time = 0.0092s; samplesPerSecond = 27059.2
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.34001918 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0093s; samplesPerSecond = 26957.1
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.31615756 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0096s; samplesPerSecond = 26172.5
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.27277486 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0094s; samplesPerSecond = 26635.4
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.24557418 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0092s; samplesPerSecond = 27185.7
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.21023629 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0092s; samplesPerSecond = 27218.3
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.22380673 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0092s; samplesPerSecond = 27115.0
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.20455512 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0092s; samplesPerSecond = 27068.0
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.20168480 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0091s; samplesPerSecond = 27400.3
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.19212741 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0091s; samplesPerSecond = 27397.3
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.19324124 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0091s; samplesPerSecond = 27343.3
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.21777418 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0094s; samplesPerSecond = 26477.4
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.17514209 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0093s; samplesPerSecond = 26948.4
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.17993773 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0091s; samplesPerSecond = 27334.4
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13968032 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0093s; samplesPerSecond = 26989.1
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.17727753 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0095s; samplesPerSecond = 26452.2
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.12898624 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0095s; samplesPerSecond = 26438.2
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.21880105 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0095s; samplesPerSecond = 26340.7
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.21850111 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0097s; samplesPerSecond = 25805.1
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.18102491 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0096s; samplesPerSecond = 26082.4
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.16393427 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0095s; samplesPerSecond = 26235.7
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.13832267 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0095s; samplesPerSecond = 26241.2
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.16506280 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0096s; samplesPerSecond = 25995.6
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14733234 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0095s; samplesPerSecond = 26452.2
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.15041138 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0095s; samplesPerSecond = 26189.0
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.12665836 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0095s; samplesPerSecond = 26296.4
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.16643186 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0095s; samplesPerSecond = 26249.5
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.14422443 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0096s; samplesPerSecond = 26147.9
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13888039 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0094s; samplesPerSecond = 26474.6
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.14108686 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0095s; samplesPerSecond = 26249.5
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.15887684 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0097s; samplesPerSecond = 25738.7
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.16247402 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0094s; samplesPerSecond = 26505.5
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.13586729 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0096s; samplesPerSecond = 26109.7
08/16/2016 10:01:33: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15528679 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0094s; samplesPerSecond = 26626.9
08/16/2016 10:01:33: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.24345139 * 10000; EvalErrorPrediction = 0.09720000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.379525s
08/16/2016 10:01:33: SGD: Saving checkpoint model '/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn.2'
08/16/2016 10:01:33: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 2: frames [20000..30000] (first sequence at sample 20000), data subset 0 of 1
08/16/2016 10:01:33: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.18398525 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0097s; samplesPerSecond = 25685.8
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.12825686 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0095s; samplesPerSecond = 26374.1
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.17547006 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0095s; samplesPerSecond = 26318.6
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.14044644 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0095s; samplesPerSecond = 26321.3
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.16673170 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0094s; samplesPerSecond = 26615.6
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.19317383 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0095s; samplesPerSecond = 26202.7
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.12349199 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0093s; samplesPerSecond = 26778.1
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16427535 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0095s; samplesPerSecond = 26346.3
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.12350212 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0093s; samplesPerSecond = 26746.5
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.19958846 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0096s; samplesPerSecond = 26028.1
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.14269741 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0095s; samplesPerSecond = 26189.0
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.12369058 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0095s; samplesPerSecond = 26219.2
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.16638059 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0093s; samplesPerSecond = 26847.1
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.20047975 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0098s; samplesPerSecond = 25401.3
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16963457 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0099s; samplesPerSecond = 25204.2
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.13367401 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0098s; samplesPerSecond = 25518.0
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.14477143 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0097s; samplesPerSecond = 25805.1
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.21046366 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0097s; samplesPerSecond = 25791.8
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.19247125 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0096s; samplesPerSecond = 26047.1
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.15027023 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0097s; samplesPerSecond = 25670.0
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15612870 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0098s; samplesPerSecond = 25528.4
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.13684548 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0097s; samplesPerSecond = 25725.5
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.17217344 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0096s; samplesPerSecond = 25939.0
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14419519 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0097s; samplesPerSecond = 25807.8
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.13803181 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0097s; samplesPerSecond = 25866.5
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.14209585 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0097s; samplesPerSecond = 25730.8
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.16967141 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0097s; samplesPerSecond = 25730.8
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.18647515 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0097s; samplesPerSecond = 25813.1
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.16511327 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0098s; samplesPerSecond = 25541.5
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.15550174 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0097s; samplesPerSecond = 25752.0
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18759246 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0098s; samplesPerSecond = 25525.8
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13178152 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0097s; samplesPerSecond = 25677.9
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.14624311 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0098s; samplesPerSecond = 25583.3
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.13930281 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0098s; samplesPerSecond = 25575.4
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.20110083 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0099s; samplesPerSecond = 25319.0
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.12558937 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0099s; samplesPerSecond = 25378.1
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.18612014 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0097s; samplesPerSecond = 25821.1
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15336297 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0096s; samplesPerSecond = 25998.3
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.11885079 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0097s; samplesPerSecond = 25850.5
08/16/2016 10:01:33: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.12974982 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0096s; samplesPerSecond = 25979.4
08/16/2016 10:01:33: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15798453 * 10000; EvalErrorPrediction = 0.07300000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.388464s
08/16/2016 10:01:33: SGD: Saving checkpoint model '/tmp/cntk-test-20160816100054.995555/Examples/Other/Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn'
08/16/2016 10:01:33: CNTKCommandTrainEnd: Multigpu_Demo_Train
08/16/2016 10:01:33: Action "train" complete.
08/16/2016 10:01:33: ##############################################################################
08/16/2016 10:01:33: # #
08/16/2016 10:01:33: # Action "test" #
08/16/2016 10:01:33: # #
08/16/2016 10:01:33: ##############################################################################
Post-processing network...
@ -675,35 +703,17 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 25 matrices, 2 are shared as 1, and 23 are not shared.
(nil): {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalErrorPrediction Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
0x1222268: {[InvStdOfFeatures Value[2]] }
0x1223258: {[W2 Value[2 x 50]] }
0x12a56c8: {[B0 Value[50 x 1]] }
0x201fc78: {[W0*features+B0 Value[50 x 1 x *1]] }
0x201fe38: {[H1 Value[50 x 1 x *1]] }
0x201fff8: {[W1*H1 Value[50 x 1 x *1]] }
0x20201b8: {[W1*H1+B1 Value[50 x 1 x *1]] }
0x2020378: {[H2 Value[50 x 1 x *1]] }
0x2020538: {[W2*H1 Value[2 x 1 x *1]] }
0x20206f8: {[HLast Value[2 x 1 x *1]] }
0x278a218: {[MeanOfFeatures Value[2]] }
0x278b058: {[Prior Value[2]] }
0x278d338: {[labels Value[2 x *1]] }
0x27966e8: {[B1 Value[50 x 1]] }
0x2ad9af8: {[B2 Value[2 x 1]] }
0x2adcaa8: {[MVNormalizedFeatures Value[2 x *1]] }
0x2adcc08: {[W0*features Value[50 x *1]] }
0x2add0a8: {[W0 Value[50 x 2]] }
0x2ae0518: {[W1 Value[50 x 50]] }
0x68bf228: {[EvalErrorPrediction Value[1]] }
0x68bf388: {[CrossEntropyWithSoftmax Value[1]] }
0x68bf988: {[LogOfPrior Value[2]] }
0x68d0438: {[features Value[2 x *1]] }
{ PosteriorProb : [2 x 1 x *1]
ScaledLogLikelihood : [2 x 1 x *1] }
05/03/2016 15:21:57: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.05804312 * 603; CrossEntropyWithSoftmax = 0.12736577 * 603; perplexity = 1.13583240
BlockRandomizer::StartEpoch: epoch 0: frames [0..603] (first sequence at sample 0), data subset 0 of 1
Actual gradient aggregation time: 0.000128
08/16/2016 10:01:33: Minibatch[1-1]: EvalErrorPrediction = 0.05140962 * 603; CrossEntropyWithSoftmax = 0.10723887 * 603
08/16/2016 10:01:33: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.05140962 * 603; CrossEntropyWithSoftmax = 0.10723887 * 603; perplexity = 1.11320013
05/03/2016 15:21:57: Action "test" complete.
08/16/2016 10:01:33: Action "test" complete.
05/03/2016 15:21:57: __COMPLETED__
08/16/2016 10:01:33: __COMPLETED__
~MPIWrapper

Просмотреть файл

@ -1,21 +1,27 @@
=== Running /cygdrive/c/src/cntk_github/x64/release/cntk.exe configFile=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config/Multigpu.cntk currentDirectory=C:\src\cntk_github\Examples\Other\Simple2d\Data RunDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu DataDir=C:\src\cntk_github\Examples\Other\Simple2d\Data ConfigDir=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config OutputDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu DeviceId=-1 timestamping=true Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 268381192 kB
-------------------------------------------------------------------
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config/Multigpu.cntk currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_cpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_cpu DeviceId=-1 timestamping=true Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
-------------------------------------------------------------------
Build info:
Built time: May 3 2016 16:22:10
Last modified date: Thu Apr 7 11:05:47 2016
Built time: Aug 16 2016 03:09:16
Last modified date: Fri Aug 12 05:28:23 2016
Build type: Release
Build target: GPU
With 1bit-SGD: yes
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.0
CUB_PATH: E:\lib\cub-1.4.1
CUDNN_PATH: E:\lib\cuDNN_v4
Build Branch: alrezni/examples_text
Build SHA1: e80dab7d66009531806ce70b4842146e0da00516
Built by alrezni on DIFFENG
Build Path: C:\src\cntk_github\Source\CNTK\
Math lib: mkl
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
CUB_PATH: c:\src\cub-1.4.1
CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
Build Branch: HEAD
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by svcphil on Philly-Pool1
Build Path: c:\jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
-------------------------------------------------------------------
Changed current directory to C:\src\cntk_github\Examples\Other\Simple2d\Data
Changed current directory to C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
MPIWrapper: initializing MPI
ping [requestnodes (before change)]: 1 nodes pinging each other
ping [requestnodes (before change)]: all 1 nodes responded
@ -25,31 +31,39 @@ ping [requestnodes (after change)]: all 1 nodes responded
mpihelper: only one MPI process: MPI operation will be boring
ping [mpihelper]: 1 nodes pinging each other
ping [mpihelper]: all 1 nodes responded
05/03/2016 15:29:48: -------------------------------------------------------------------
05/03/2016 15:29:48: Build info:
08/16/2016 03:19:45: -------------------------------------------------------------------
08/16/2016 03:19:45: Build info:
05/03/2016 15:29:48: Built time: May 3 2016 16:22:10
05/03/2016 15:29:48: Last modified date: Thu Apr 7 11:05:47 2016
05/03/2016 15:29:48: Build type: Release
05/03/2016 15:29:48: Build target: GPU
05/03/2016 15:29:48: With 1bit-SGD: yes
05/03/2016 15:29:48: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.0
05/03/2016 15:29:48: CUB_PATH: E:\lib\cub-1.4.1
05/03/2016 15:29:48: CUDNN_PATH: E:\lib\cuDNN_v4
05/03/2016 15:29:48: Build Branch: alrezni/examples_text
05/03/2016 15:29:48: Build SHA1: e80dab7d66009531806ce70b4842146e0da00516
05/03/2016 15:29:48: Built by alrezni on DIFFENG
05/03/2016 15:29:48: Build Path: C:\src\cntk_github\Source\CNTK\
05/03/2016 15:29:48: -------------------------------------------------------------------
08/16/2016 03:19:45: Built time: Aug 16 2016 03:09:16
08/16/2016 03:19:45: Last modified date: Fri Aug 12 05:28:23 2016
08/16/2016 03:19:45: Build type: Release
08/16/2016 03:19:45: Build target: GPU
08/16/2016 03:19:45: With 1bit-SGD: yes
08/16/2016 03:19:45: Math lib: mkl
08/16/2016 03:19:45: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
08/16/2016 03:19:45: CUB_PATH: c:\src\cub-1.4.1
08/16/2016 03:19:45: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
08/16/2016 03:19:45: Build Branch: HEAD
08/16/2016 03:19:45: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 03:19:45: Built by svcphil on Philly-Pool1
08/16/2016 03:19:45: Build Path: c:\jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
08/16/2016 03:19:45: -------------------------------------------------------------------
08/16/2016 03:19:46: -------------------------------------------------------------------
08/16/2016 03:19:46: GPU info:
05/03/2016 15:29:48: Running on DIFFENG at 2016/05/03 15:29:48
05/03/2016 15:29:48: Command line:
C:\src\cntk_github\x64\release\cntk.exe configFile=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config/Multigpu.cntk currentDirectory=C:\src\cntk_github\Examples\Other\Simple2d\Data RunDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu DataDir=C:\src\cntk_github\Examples\Other\Simple2d\Data ConfigDir=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config OutputDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu DeviceId=-1 timestamping=true Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
08/16/2016 03:19:46: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:19:46: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:19:46: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:19:46: -------------------------------------------------------------------
08/16/2016 03:19:46: Running on DPHAIM-25 at 2016/08/16 03:19:46
08/16/2016 03:19:46: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config/Multigpu.cntk currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_cpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_cpu DeviceId=-1 timestamping=true Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 15:29:48: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/03/2016 15:29:48: RootDir = ".."
08/16/2016 03:19:46: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:19:46: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
@ -138,28 +152,28 @@ dim = 2
]
outputPath = "$OutputDir$/MultigpuOutput"
]
currentDirectory=C:\src\cntk_github\Examples\Other\Simple2d\Data
RunDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu
DataDir=C:\src\cntk_github\Examples\Other\Simple2d\Data
ConfigDir=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config
OutputDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu
currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_cpu
DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_cpu
DeviceId=-1
timestamping=true
Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 15:29:48: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:19:46: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/03/2016 15:29:48: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/03/2016 15:29:48: RootDir = ".."
08/16/2016 03:19:46: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:19:46: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu/Models"
ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_cpu/Models"
deviceId = "auto"
command = Multigpu_Demo_Train:Multigpu_Demo_Test
precision = "float"
traceLevel = 1
modelPath = "E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn"
outputNodeNames = ScaledLogLikelihood
parallelTrain = true
Multigpu_Demo_Train=[
@ -191,7 +205,7 @@ Multigpu_Demo_Train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTrain_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTrain_cntk_text.txt"
input = [
features = [
dim = 2
@ -208,7 +222,7 @@ Multigpu_Demo_Test=[
action = "test"
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -225,7 +239,7 @@ Multigpu_Demo_Output=[
action = "write"
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -237,32 +251,32 @@ dim = 2
]
]
]
outputPath = "E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu/MultigpuOutput"
outputPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_cpu/MultigpuOutput"
]
currentDirectory=C:\src\cntk_github\Examples\Other\Simple2d\Data
RunDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu
DataDir=C:\src\cntk_github\Examples\Other\Simple2d\Data
ConfigDir=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config
OutputDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu
currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_cpu
DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_cpu
DeviceId=-1
timestamping=true
Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 15:29:48: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:19:46: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 15:29:48: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:19:46: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: Multigpu.cntk:command=Multigpu_Demo_Train:Multigpu_Demo_Test
configparameters: Multigpu.cntk:ConfigDir=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config
configparameters: Multigpu.cntk:currentDirectory=C:\src\cntk_github\Examples\Other\Simple2d\Data
configparameters: Multigpu.cntk:DataDir=C:\src\cntk_github\Examples\Other\Simple2d\Data
configparameters: Multigpu.cntk:ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config
configparameters: Multigpu.cntk:currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
configparameters: Multigpu.cntk:DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
configparameters: Multigpu.cntk:deviceId=-1
configparameters: Multigpu.cntk:ModelDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu/Models
configparameters: Multigpu.cntk:modelPath=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn
configparameters: Multigpu.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_cpu/Models
configparameters: Multigpu.cntk:modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn
configparameters: Multigpu.cntk:Multigpu_Demo_Output=[
action = "write"
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -274,14 +288,14 @@ dim = 2
]
]
]
outputPath = "E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu/MultigpuOutput"
outputPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_cpu/MultigpuOutput"
]
configparameters: Multigpu.cntk:Multigpu_Demo_Test=[
action = "test"
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -324,7 +338,7 @@ configparameters: Multigpu.cntk:Multigpu_Demo_Train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTrain_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTrain_cntk_text.txt"
input = [
features = [
dim = 2
@ -338,31 +352,43 @@ dim = 2
]
] [SGD=[maxEpochs=3]]
configparameters: Multigpu.cntk:OutputDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu
configparameters: Multigpu.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_cpu
configparameters: Multigpu.cntk:outputNodeNames=ScaledLogLikelihood
configparameters: Multigpu.cntk:parallelTrain=true
configparameters: Multigpu.cntk:precision=float
configparameters: Multigpu.cntk:RootDir=..
configparameters: Multigpu.cntk:RunDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu
configparameters: Multigpu.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_cpu
configparameters: Multigpu.cntk:timestamping=true
configparameters: Multigpu.cntk:traceLevel=1
05/03/2016 15:29:48: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 15:29:48: Commands: Multigpu_Demo_Train Multigpu_Demo_Test
05/03/2016 15:29:48: Precision = "float"
05/03/2016 15:29:48: CNTKModelPath: E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn
05/03/2016 15:29:48: CNTKCommandTrainInfo: Multigpu_Demo_Train : 3
05/03/2016 15:29:48: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
08/16/2016 03:19:46: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:19:46: Commands: Multigpu_Demo_Train Multigpu_Demo_Test
08/16/2016 03:19:46: Precision = "float"
08/16/2016 03:19:46: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn
08/16/2016 03:19:46: CNTKCommandTrainInfo: Multigpu_Demo_Train : 3
08/16/2016 03:19:46: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
05/03/2016 15:29:48: ##############################################################################
05/03/2016 15:29:48: # #
05/03/2016 15:29:48: # Action "train" #
05/03/2016 15:29:48: # #
05/03/2016 15:29:48: ##############################################################################
08/16/2016 03:19:46: ##############################################################################
08/16/2016 03:19:46: # #
08/16/2016 03:19:46: # Action "train" #
08/16/2016 03:19:46: # #
08/16/2016 03:19:46: ##############################################################################
05/03/2016 15:29:48: CNTKCommandTrainBegin: Multigpu_Demo_Train
08/16/2016 03:19:46: CNTKCommandTrainBegin: Multigpu_Demo_Train
SimpleNetworkBuilder Using CPU
05/03/2016 15:29:48: Creating virgin network.
08/16/2016 03:19:46: Creating virgin network.
Node 'W0' (LearnableParameter operation): Initializing Parameter[50 x 2] <- 0.000000.
Node 'W0' (LearnableParameter operation): Initializing Parameter[50 x 2] <- uniform(seed=1, range=0.050000*1.000000, onCPU=false).
Node 'B0' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'B0' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[50 x 50] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[50 x 50] <- uniform(seed=2, range=0.050000*1.000000, onCPU=false).
Node 'B1' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'B1' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[2 x 50] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[2 x 50] <- uniform(seed=3, range=0.050000*1.000000, onCPU=false).
Node 'B2' (LearnableParameter operation): Initializing Parameter[2 x 1] <- 0.000000.
Node 'B2' (LearnableParameter operation): Initializing Parameter[2 x 1] <- 0.000000.
Post-processing network...
@ -414,207 +440,210 @@ Validating network, final pass.
Post-processing network complete.
05/03/2016 15:29:48: Created model with 25 nodes on CPU.
08/16/2016 03:19:47: Created model with 25 nodes on CPU.
05/03/2016 15:29:48: Training criterion node(s):
05/03/2016 15:29:48: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
08/16/2016 03:19:47: Training criterion node(s):
08/16/2016 03:19:47: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
05/03/2016 15:29:48: Evaluation criterion node(s):
05/03/2016 15:29:48: EvalErrorPrediction = ErrorPrediction
08/16/2016 03:19:47: Evaluation criterion node(s):
08/16/2016 03:19:47: EvalErrorPrediction = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 40 matrices, 19 are shared as 8, and 21 are not shared.
0000000000000000: {[EvalErrorPrediction Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
000000CDDFBEECA0: {[features Value[2 x *]] }
000000CDDFC7B170: {[W0*features+B0 Gradient[50 x 1 x *]] [W1*H1 Value[50 x 1 x *]] }
000000CDDFC7B490: {[HLast Value[2 x 1 x *]] [W2 Gradient[2 x 50]] }
000000CDDFC7B530: {[W2*H1 Gradient[2 x 1 x *]] }
000000CDDFC7B670: {[labels Value[2 x *]] }
000000CDDFC7B8F0: {[W0*features Value[50 x *]] }
000000CDDFC7B990: {[H1 Value[50 x 1 x *]] [W0*features Gradient[50 x *]] }
000000CDDFC7BC10: {[LogOfPrior Value[2]] }
000000CDDFC7BCB0: {[MVNormalizedFeatures Value[2 x *]] }
000000CDDFC7BD50: {[EvalErrorPrediction Value[1]] }
000000CDDFC7BDF0: {[W0 Gradient[50 x 2]] [W0*features+B0 Value[50 x 1 x *]] }
000000CDDFC7BF30: {[ScaledLogLikelihood Value[2 x 1 x *]] }
000000CDDFC7C070: {[H2 Value[50 x 1 x *]] [W1*H1 Gradient[50 x 1 x *]] }
000000CDDFC7C250: {[B0 Gradient[50 x 1]] [H1 Gradient[50 x 1 x *]] [W1*H1+B1 Gradient[50 x 1 x *]] [W2*H1 Value[2 x 1 x *]] }
000000CDDFC7C390: {[W1 Gradient[50 x 50]] [W1*H1+B1 Value[50 x 1 x *]] }
000000CDDFC7C610: {[Prior Value[2]] }
000000CDDFC7C930: {[CrossEntropyWithSoftmax Value[1]] }
000000CDDFC7CBB0: {[B1 Gradient[50 x 1]] [H2 Gradient[50 x 1 x *]] [HLast Gradient[2 x 1 x *]] }
000000CDDFC7CC50: {[CrossEntropyWithSoftmax Gradient[1]] }
000000CDDFC7CCF0: {[B2 Gradient[2 x 1]] }
000000CDE2DCDD50: {[W1 Value[50 x 50]] }
000000CDE2DCDDF0: {[B1 Value[50 x 1]] }
000000CDE2DCDF30: {[B2 Value[2 x 1]] }
000000CDE2DCE110: {[W2 Value[2 x 50]] }
000000CDE2DCE2F0: {[W0 Value[50 x 2]] }
000000CDE2DCE930: {[B0 Value[50 x 1]] }
000000CDE2DCEA70: {[InvStdOfFeatures Value[2]] }
000000CDE2DCEFD0: {[MeanOfFeatures Value[2]] }
{ H2 : [50 x 1 x *]
W1*H1 : [50 x 1 x *] (gradient) }
{ W0 : [50 x 2] (gradient)
W0*features+B0 : [50 x 1 x *] }
{ W1 : [50 x 50] (gradient)
W1*H1+B1 : [50 x 1 x *] }
{ H1 : [50 x 1 x *]
W0*features : [50 x *] (gradient) }
{ B1 : [50 x 1] (gradient)
H2 : [50 x 1 x *] (gradient)
HLast : [2 x 1 x *] (gradient) }
{ B0 : [50 x 1] (gradient)
H1 : [50 x 1 x *] (gradient)
W1*H1+B1 : [50 x 1 x *] (gradient)
W2*H1 : [2 x 1 x *] }
{ W0*features+B0 : [50 x 1 x *] (gradient)
W1*H1 : [50 x 1 x *] }
{ HLast : [2 x 1 x *]
W2 : [2 x 50] (gradient) }
05/03/2016 15:29:48: Precomputing --> 3 PreCompute nodes found.
08/16/2016 03:19:47: Training 2802 parameters in 6 out of 6 parameter tensors and 15 nodes with gradient:
05/03/2016 15:29:48: MeanOfFeatures = Mean()
05/03/2016 15:29:48: InvStdOfFeatures = InvStdDev()
05/03/2016 15:29:48: Prior = Mean()
05/03/2016 15:29:48: Precomputing --> Completed.
08/16/2016 03:19:47: Node 'B0' (LearnableParameter operation) : [50 x 1]
08/16/2016 03:19:47: Node 'B1' (LearnableParameter operation) : [50 x 1]
08/16/2016 03:19:47: Node 'B2' (LearnableParameter operation) : [2 x 1]
08/16/2016 03:19:47: Node 'W0' (LearnableParameter operation) : [50 x 2]
08/16/2016 03:19:47: Node 'W1' (LearnableParameter operation) : [50 x 50]
08/16/2016 03:19:47: Node 'W2' (LearnableParameter operation) : [2 x 50]
05/03/2016 15:29:48: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
08/16/2016 03:19:47: Precomputing --> 3 PreCompute nodes found.
05/03/2016 15:29:48: Starting minibatch loop.
05/03/2016 15:29:48: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70511987 * 250; EvalErrorPrediction = 0.55200000 * 250; time = 0.0377s; samplesPerSecond = 6637.8
05/03/2016 15:29:48: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.69754895 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0300s; samplesPerSecond = 8341.4
05/03/2016 15:29:48: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.71056921 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0285s; samplesPerSecond = 8758.7
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.72951074 * 250; EvalErrorPrediction = 0.56000000 * 250; time = 0.0290s; samplesPerSecond = 8610.3
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70946655 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0285s; samplesPerSecond = 8776.9
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72656787 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0289s; samplesPerSecond = 8652.6
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.69337402 * 250; EvalErrorPrediction = 0.43200000 * 250; time = 0.0288s; samplesPerSecond = 8670.9
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.73605176 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0277s; samplesPerSecond = 9033.4
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.71453076 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0271s; samplesPerSecond = 9209.5
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.75191992 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0247s; samplesPerSecond = 10134.6
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.75975146 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0270s; samplesPerSecond = 9243.5
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.73172168 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0268s; samplesPerSecond = 9333.9
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.76840820 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0265s; samplesPerSecond = 9435.7
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.70464746 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0269s; samplesPerSecond = 9309.3
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70557227 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0253s; samplesPerSecond = 9880.3
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.72711816 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0267s; samplesPerSecond = 9357.7
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70076660 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0270s; samplesPerSecond = 9264.1
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.69409766 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0257s; samplesPerSecond = 9716.3
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.69139941 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0257s; samplesPerSecond = 9742.4
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.73361621 * 250; EvalErrorPrediction = 0.55200000 * 250; time = 0.0295s; samplesPerSecond = 8477.4
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.72225879 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0273s; samplesPerSecond = 9161.9
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70356348 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0261s; samplesPerSecond = 9562.8
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69928613 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0254s; samplesPerSecond = 9848.7
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.72360938 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0252s; samplesPerSecond = 9924.6
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69871875 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0262s; samplesPerSecond = 9530.7
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69114844 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0257s; samplesPerSecond = 9720.1
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.68648047 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0273s; samplesPerSecond = 9161.9
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69657227 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0270s; samplesPerSecond = 9259.9
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.71585547 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0264s; samplesPerSecond = 9486.2
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.69730664 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0261s; samplesPerSecond = 9595.1
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.70432422 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0244s; samplesPerSecond = 10248.8
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.69991797 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0220s; samplesPerSecond = 11388.0
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.68696875 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0222s; samplesPerSecond = 11277.0
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.67331445 * 250; EvalErrorPrediction = 0.37200000 * 250; time = 0.0245s; samplesPerSecond = 10192.4
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.65711328 * 250; EvalErrorPrediction = 0.43200000 * 250; time = 0.0240s; samplesPerSecond = 10429.3
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.64534375 * 250; EvalErrorPrediction = 0.44800000 * 250; time = 0.0243s; samplesPerSecond = 10305.0
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.61021875 * 250; EvalErrorPrediction = 0.36400000 * 250; time = 0.0236s; samplesPerSecond = 10606.3
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.54191016 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0236s; samplesPerSecond = 10578.4
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.45624414 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0232s; samplesPerSecond = 10762.4
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.37636133 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0235s; samplesPerSecond = 10623.8
05/03/2016 15:29:49: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.68695688 * 10000; EvalErrorPrediction = 0.45550000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=1.06166s
05/03/2016 15:29:49: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn.1'
08/16/2016 03:19:47: MeanOfFeatures = Mean()
08/16/2016 03:19:47: InvStdOfFeatures = InvStdDev()
08/16/2016 03:19:47: Prior = Mean()
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
05/03/2016 15:29:49: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
05/03/2016 15:29:49: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
05/03/2016 15:29:49: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.28780429 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0246s; samplesPerSecond = 10181.2
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.28222478 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0246s; samplesPerSecond = 10178.3
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.23589864 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0255s; samplesPerSecond = 9796.2
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.21209458 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0242s; samplesPerSecond = 10312.3
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.20285913 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0243s; samplesPerSecond = 10283.0
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.21300948 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0252s; samplesPerSecond = 9928.5
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.17835594 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0256s; samplesPerSecond = 9753.8
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.18830077 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0257s; samplesPerSecond = 9740.1
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.14198478 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0250s; samplesPerSecond = 10019.2
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.15895022 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0237s; samplesPerSecond = 10566.8
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.21062646 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0238s; samplesPerSecond = 10517.9
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.16081948 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0223s; samplesPerSecond = 11186.7
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.15635713 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0234s; samplesPerSecond = 10700.2
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13008516 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0239s; samplesPerSecond = 10453.7
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16625347 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0234s; samplesPerSecond = 10674.2
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.15001793 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0245s; samplesPerSecond = 10223.7
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.22343917 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0234s; samplesPerSecond = 10692.4
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18006735 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0245s; samplesPerSecond = 10194.5
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.15361620 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0235s; samplesPerSecond = 10636.9
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.17039588 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0246s; samplesPerSecond = 10177.1
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15516786 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0237s; samplesPerSecond = 10544.1
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.15969617 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0225s; samplesPerSecond = 11102.2
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.15939439 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0234s; samplesPerSecond = 10697.9
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.15300194 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0233s; samplesPerSecond = 10729.2
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.14902476 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0231s; samplesPerSecond = 10811.7
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.15043256 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0231s; samplesPerSecond = 10823.4
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.15531360 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0229s; samplesPerSecond = 10936.1
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.17990796 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0248s; samplesPerSecond = 10088.4
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.22925668 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0229s; samplesPerSecond = 10913.7
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16843626 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0234s; samplesPerSecond = 10682.8
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18045325 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0236s; samplesPerSecond = 10585.6
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13337526 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0221s; samplesPerSecond = 11308.6
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.14332977 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0245s; samplesPerSecond = 10219.9
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.18749446 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0242s; samplesPerSecond = 10326.7
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.15505967 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0236s; samplesPerSecond = 10587.8
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.19616616 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0228s; samplesPerSecond = 10980.3
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.17305907 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0236s; samplesPerSecond = 10610.3
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15197365 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0249s; samplesPerSecond = 10033.3
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.12102416 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0238s; samplesPerSecond = 10483.5
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15278496 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0235s; samplesPerSecond = 10646.9
05/03/2016 15:29:50: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.17643784 * 10000; EvalErrorPrediction = 0.07560000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.957696s
05/03/2016 15:29:50: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn.2'
05/03/2016 15:29:50: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
05/03/2016 15:29:50: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
05/03/2016 15:29:50: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.10623312 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0235s; samplesPerSecond = 10637.4
05/03/2016 15:29:50: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.17519442 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0236s; samplesPerSecond = 10608.5
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14133983 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0240s; samplesPerSecond = 10404.5
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.16278491 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0233s; samplesPerSecond = 10749.0
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.11783558 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0232s; samplesPerSecond = 10780.0
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.16342188 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0243s; samplesPerSecond = 10305.9
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.16272195 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0239s; samplesPerSecond = 10476.9
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.19401477 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0241s; samplesPerSecond = 10370.0
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.20186661 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0229s; samplesPerSecond = 10903.2
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.13672539 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0235s; samplesPerSecond = 10631.1
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.20069212 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0234s; samplesPerSecond = 10681.5
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.17729039 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0252s; samplesPerSecond = 9928.1
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.15906107 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0251s; samplesPerSecond = 9941.5
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16281632 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0247s; samplesPerSecond = 10121.5
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.19834981 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0248s; samplesPerSecond = 10067.7
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.10217642 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0247s; samplesPerSecond = 10105.1
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17011383 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0258s; samplesPerSecond = 9692.2
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16599137 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0252s; samplesPerSecond = 9911.6
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.12648996 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0254s; samplesPerSecond = 9848.7
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.11920298 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0248s; samplesPerSecond = 10091.2
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.12883164 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0272s; samplesPerSecond = 9205.1
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.18222479 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0250s; samplesPerSecond = 9988.0
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.13443351 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0246s; samplesPerSecond = 10149.4
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.19720325 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0244s; samplesPerSecond = 10230.8
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.15586137 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0254s; samplesPerSecond = 9860.4
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.11854887 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0250s; samplesPerSecond = 9991.6
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.13705285 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0249s; samplesPerSecond = 10050.7
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.20009941 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0240s; samplesPerSecond = 10411.5
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.19078680 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0233s; samplesPerSecond = 10741.6
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16505705 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0238s; samplesPerSecond = 10507.7
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.12232722 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0239s; samplesPerSecond = 10472.1
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.16342047 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0238s; samplesPerSecond = 10514.4
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.15875107 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0234s; samplesPerSecond = 10688.3
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.12248772 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0232s; samplesPerSecond = 10793.5
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13457009 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0238s; samplesPerSecond = 10521.4
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.20976565 * 250; EvalErrorPrediction = 0.11600000 * 250; time = 0.0238s; samplesPerSecond = 10494.9
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16519102 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0230s; samplesPerSecond = 10862.5
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14971420 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0247s; samplesPerSecond = 10106.3
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.16456633 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0230s; samplesPerSecond = 10858.2
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.16971407 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0239s; samplesPerSecond = 10473.0
05/03/2016 15:29:51: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15787325 * 10000; EvalErrorPrediction = 0.07430000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.972052s
05/03/2016 15:29:51: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn'
05/03/2016 15:29:51: CNTKCommandTrainEnd: Multigpu_Demo_Train
05/03/2016 15:29:51: Action "train" complete.
08/16/2016 03:19:47: Precomputing --> Completed.
05/03/2016 15:29:51: ##############################################################################
05/03/2016 15:29:51: # #
05/03/2016 15:29:51: # Action "test" #
05/03/2016 15:29:51: # #
05/03/2016 15:29:51: ##############################################################################
08/16/2016 03:19:47: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 03:19:47: Starting minibatch loop.
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70264496 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0285s; samplesPerSecond = 8786.4
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.76483063 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0246s; samplesPerSecond = 10182.5
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.72648584 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0240s; samplesPerSecond = 10421.9
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.73860254 * 250; EvalErrorPrediction = 0.56800000 * 250; time = 0.0238s; samplesPerSecond = 10525.4
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70622803 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0238s; samplesPerSecond = 10488.3
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.74772852 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0242s; samplesPerSecond = 10327.6
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.75092773 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0238s; samplesPerSecond = 10486.1
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.78004932 * 250; EvalErrorPrediction = 0.48400000 * 250; time = 0.0240s; samplesPerSecond = 10434.5
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.70444336 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0241s; samplesPerSecond = 10391.1
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.69544189 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0240s; samplesPerSecond = 10398.5
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.70595947 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0242s; samplesPerSecond = 10316.5
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.74544189 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0234s; samplesPerSecond = 10662.8
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.70809961 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0241s; samplesPerSecond = 10364.4
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.69884375 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0241s; samplesPerSecond = 10356.3
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70363086 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0239s; samplesPerSecond = 10441.9
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.69351758 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0239s; samplesPerSecond = 10447.6
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.74453613 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0244s; samplesPerSecond = 10240.9
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.73761426 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0242s; samplesPerSecond = 10330.6
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71868652 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0240s; samplesPerSecond = 10417.5
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.71496484 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0236s; samplesPerSecond = 10595.0
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.69961230 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0237s; samplesPerSecond = 10566.4
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.69760645 * 250; EvalErrorPrediction = 0.49200000 * 250; time = 0.0238s; samplesPerSecond = 10503.8
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.70748047 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0237s; samplesPerSecond = 10531.6
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.69785937 * 250; EvalErrorPrediction = 0.56800000 * 250; time = 0.0236s; samplesPerSecond = 10608.1
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69483203 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0246s; samplesPerSecond = 10162.6
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69258203 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0232s; samplesPerSecond = 10776.8
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.70665625 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0239s; samplesPerSecond = 10480.4
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69031445 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0238s; samplesPerSecond = 10502.4
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.70169531 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0240s; samplesPerSecond = 10434.5
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.71008398 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0239s; samplesPerSecond = 10462.0
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.69152930 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0238s; samplesPerSecond = 10514.4
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.69522656 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0240s; samplesPerSecond = 10419.7
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69347070 * 250; EvalErrorPrediction = 0.49200000 * 250; time = 0.0238s; samplesPerSecond = 10490.5
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.68888281 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0238s; samplesPerSecond = 10499.8
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.68067578 * 250; EvalErrorPrediction = 0.48400000 * 250; time = 0.0237s; samplesPerSecond = 10557.4
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.66932227 * 250; EvalErrorPrediction = 0.44400000 * 250; time = 0.0242s; samplesPerSecond = 10314.8
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.65398437 * 250; EvalErrorPrediction = 0.24800000 * 250; time = 0.0235s; samplesPerSecond = 10638.8
08/16/2016 03:19:47: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.63662500 * 250; EvalErrorPrediction = 0.32400000 * 250; time = 0.0234s; samplesPerSecond = 10692.4
08/16/2016 03:19:48: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.59652344 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0236s; samplesPerSecond = 10595.5
08/16/2016 03:19:48: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.55820898 * 250; EvalErrorPrediction = 0.12000000 * 250; time = 0.0245s; samplesPerSecond = 10215.8
08/16/2016 03:19:48: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.70129624 * 10000; EvalErrorPrediction = 0.46850000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=0.964546s
08/16/2016 03:19:48: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn.1'
08/16/2016 03:19:48: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 1: frames [10000..20000] (first sequence at sample 10000), data subset 0 of 1
08/16/2016 03:19:48: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.50509082 * 250; EvalErrorPrediction = 0.14400000 * 250; time = 0.0250s; samplesPerSecond = 9991.2
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.45891377 * 250; EvalErrorPrediction = 0.13200000 * 250; time = 0.0251s; samplesPerSecond = 9958.6
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.38371187 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0247s; samplesPerSecond = 10117.4
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.35526704 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0254s; samplesPerSecond = 9837.5
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.31361566 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0249s; samplesPerSecond = 10049.0
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.29756372 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0254s; samplesPerSecond = 9831.3
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.27214716 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0245s; samplesPerSecond = 10219.1
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.23149490 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0244s; samplesPerSecond = 10231.2
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.23825536 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0247s; samplesPerSecond = 10102.6
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.21847410 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0251s; samplesPerSecond = 9945.5
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.19974600 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0248s; samplesPerSecond = 10088.4
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.18213383 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0252s; samplesPerSecond = 9934.0
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.19621664 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0250s; samplesPerSecond = 10018.4
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.18917135 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0266s; samplesPerSecond = 9390.4
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.18997701 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0272s; samplesPerSecond = 9179.0
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.18456273 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0293s; samplesPerSecond = 8534.2
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.18678577 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0274s; samplesPerSecond = 9126.8
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.21314113 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0270s; samplesPerSecond = 9242.5
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.16860178 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0281s; samplesPerSecond = 8903.8
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.17451651 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0292s; samplesPerSecond = 8561.1
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13649532 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0291s; samplesPerSecond = 8585.8
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.17557703 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0271s; samplesPerSecond = 9213.2
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.12777527 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0266s; samplesPerSecond = 9414.8
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.21833707 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0245s; samplesPerSecond = 10188.7
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.21788590 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0251s; samplesPerSecond = 9969.7
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.18130830 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0250s; samplesPerSecond = 9987.6
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.16267770 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0249s; samplesPerSecond = 10056.7
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.13704118 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0247s; samplesPerSecond = 10125.1
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.16545012 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0242s; samplesPerSecond = 10321.6
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14842740 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0252s; samplesPerSecond = 9932.1
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.15099778 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0250s; samplesPerSecond = 9988.0
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.12730237 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0256s; samplesPerSecond = 9775.2
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.16464377 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0257s; samplesPerSecond = 9723.5
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.14324668 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0248s; samplesPerSecond = 10096.5
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13824633 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0254s; samplesPerSecond = 9853.8
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.14128747 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0248s; samplesPerSecond = 10079.8
08/16/2016 03:19:48: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.15910150 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0253s; samplesPerSecond = 9863.1
08/16/2016 03:19:49: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.16253611 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0251s; samplesPerSecond = 9950.6
08/16/2016 03:19:49: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.13535163 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0256s; samplesPerSecond = 9772.1
08/16/2016 03:19:49: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15552570 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0249s; samplesPerSecond = 10044.2
08/16/2016 03:19:49: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.20771504 * 10000; EvalErrorPrediction = 0.08060000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=1.02956s
08/16/2016 03:19:49: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn.2'
08/16/2016 03:19:49: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 2: frames [20000..30000] (first sequence at sample 20000), data subset 0 of 1
08/16/2016 03:19:49: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.18436522 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0246s; samplesPerSecond = 10145.7
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.12821186 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0251s; samplesPerSecond = 9945.1
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.17512306 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0248s; samplesPerSecond = 10084.3
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.13980331 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0246s; samplesPerSecond = 10172.5
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.16538291 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0247s; samplesPerSecond = 10124.3
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.19375913 * 250; EvalErrorPrediction = 0.11600000 * 250; time = 0.0256s; samplesPerSecond = 9764.1
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.12331922 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0254s; samplesPerSecond = 9851.8
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16604588 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0258s; samplesPerSecond = 9702.7
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.12468993 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0249s; samplesPerSecond = 10048.6
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.20005103 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0253s; samplesPerSecond = 9889.2
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.14282824 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0242s; samplesPerSecond = 10340.0
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.12364929 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0243s; samplesPerSecond = 10295.7
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.16738214 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0252s; samplesPerSecond = 9906.5
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.19934515 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0266s; samplesPerSecond = 9392.5
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16932168 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0247s; samplesPerSecond = 10128.4
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.13332017 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0247s; samplesPerSecond = 10125.6
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.14351372 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0248s; samplesPerSecond = 10100.6
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.20938709 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0247s; samplesPerSecond = 10107.5
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.19203984 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0252s; samplesPerSecond = 9921.0
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.15014813 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0250s; samplesPerSecond = 10010.0
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15581546 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0249s; samplesPerSecond = 10054.3
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.13716517 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0249s; samplesPerSecond = 10047.8
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.17233280 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0262s; samplesPerSecond = 9559.1
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14434328 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0253s; samplesPerSecond = 9878.3
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.13849430 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0246s; samplesPerSecond = 10182.9
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.14141637 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0242s; samplesPerSecond = 10331.0
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.16967658 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0252s; samplesPerSecond = 9932.9
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.18536492 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0248s; samplesPerSecond = 10077.0
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.16547838 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0248s; samplesPerSecond = 10073.7
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.15382617 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0250s; samplesPerSecond = 9985.2
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18866317 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0250s; samplesPerSecond = 9980.0
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13254335 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0249s; samplesPerSecond = 10049.8
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.14548822 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0245s; samplesPerSecond = 10191.2
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.13912198 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0245s; samplesPerSecond = 10194.1
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.20068190 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0257s; samplesPerSecond = 9729.9
08/16/2016 03:19:49: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.12564777 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0245s; samplesPerSecond = 10190.8
08/16/2016 03:19:50: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.18466509 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0251s; samplesPerSecond = 9966.1
08/16/2016 03:19:50: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15248240 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0243s; samplesPerSecond = 10290.2
08/16/2016 03:19:50: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.11889087 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0245s; samplesPerSecond = 10185.0
08/16/2016 03:19:50: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.12990310 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0252s; samplesPerSecond = 9902.2
08/16/2016 03:19:50: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15784221 * 10000; EvalErrorPrediction = 0.07350000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=1.00011s
08/16/2016 03:19:50: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn'
08/16/2016 03:19:50: CNTKCommandTrainEnd: Multigpu_Demo_Train
08/16/2016 03:19:50: Action "train" complete.
08/16/2016 03:19:50: ##############################################################################
08/16/2016 03:19:50: # #
08/16/2016 03:19:50: # Action "test" #
08/16/2016 03:19:50: # #
08/16/2016 03:19:50: ##############################################################################
Post-processing network...
@ -672,35 +701,17 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 25 matrices, 2 are shared as 1, and 23 are not shared.
0000000000000000: {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalErrorPrediction Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
000000CDDFC7B490: {[W0 Value[50 x 2]] }
000000CDDFC7B530: {[features Value[2 x *1]] }
000000CDDFC7B710: {[W1 Value[50 x 50]] }
000000CDDFC7BB70: {[Prior Value[2]] }
000000CDDFC7BCB0: {[InvStdOfFeatures Value[2]] }
000000CDDFC7BE90: {[MeanOfFeatures Value[2]] }
000000CDDFC7C9D0: {[B2 Value[2 x 1]] }
000000CDDFC7CC50: {[B0 Value[50 x 1]] }
000000CDDFC7CCF0: {[W2 Value[2 x 50]] }
000000CDDFC7CD90: {[labels Value[2 x *1]] }
000000CDDFC7CF70: {[B1 Value[50 x 1]] }
000000CDDFC8BC70: {[W0*features Value[50 x *1]] }
000000CDDFC8C2B0: {[W1*H1+B1 Value[50 x 1 x *1]] }
000000CDDFC8C490: {[CrossEntropyWithSoftmax Value[1]] }
000000CDDFC8C5D0: {[LogOfPrior Value[2]] }
000000CDDFC8C670: {[EvalErrorPrediction Value[1]] }
000000CDDFC8C990: {[MVNormalizedFeatures Value[2 x *1]] }
000000CDDFC8CA30: {[H2 Value[50 x 1 x *1]] }
000000CDDFC8CC10: {[W1*H1 Value[50 x 1 x *1]] }
000000CDDFC8CD50: {[W2*H1 Value[2 x 1 x *1]] }
000000CDDFC8D2F0: {[H1 Value[50 x 1 x *1]] }
000000CDDFC8D610: {[HLast Value[2 x 1 x *1]] }
000000CDDFC8D750: {[W0*features+B0 Value[50 x 1 x *1]] }
{ PosteriorProb : [2 x 1 x *1]
ScaledLogLikelihood : [2 x 1 x *1] }
05/03/2016 15:29:52: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.05306799 * 603; CrossEntropyWithSoftmax = 0.11782631 * 603; perplexity = 1.12504868
BlockRandomizer::StartEpoch: epoch 0: frames [0..603] (first sequence at sample 0), data subset 0 of 1
Actual gradient aggregation time: 0.000128
08/16/2016 03:19:50: Minibatch[1-1]: EvalErrorPrediction = 0.04975124 * 603; CrossEntropyWithSoftmax = 0.10640968 * 603
08/16/2016 03:19:50: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.04975124 * 603; CrossEntropyWithSoftmax = 0.10640968 * 603; perplexity = 1.11227746
05/03/2016 15:29:52: Action "test" complete.
08/16/2016 03:19:50: Action "test" complete.
05/03/2016 15:29:52: __COMPLETED__
08/16/2016 03:19:50: __COMPLETED__
~MPIWrapper

Просмотреть файл

@ -1,21 +1,27 @@
=== Running /cygdrive/c/src/cntk_github/x64/release/cntk.exe configFile=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config/Multigpu.cntk currentDirectory=C:\src\cntk_github\Examples\Other\Simple2d\Data RunDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu DataDir=C:\src\cntk_github\Examples\Other\Simple2d\Data ConfigDir=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config OutputDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu DeviceId=0 timestamping=true Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 268381192 kB
-------------------------------------------------------------------
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config/Multigpu.cntk currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_gpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_gpu DeviceId=0 timestamping=true Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
-------------------------------------------------------------------
Build info:
Built time: May 3 2016 16:22:10
Last modified date: Thu Apr 7 11:05:47 2016
Built time: Aug 16 2016 03:09:16
Last modified date: Fri Aug 12 05:28:23 2016
Build type: Release
Build target: GPU
With 1bit-SGD: yes
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.0
CUB_PATH: E:\lib\cub-1.4.1
CUDNN_PATH: E:\lib\cuDNN_v4
Build Branch: alrezni/examples_text
Build SHA1: e80dab7d66009531806ce70b4842146e0da00516
Built by alrezni on DIFFENG
Build Path: C:\src\cntk_github\Source\CNTK\
Math lib: mkl
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
CUB_PATH: c:\src\cub-1.4.1
CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
Build Branch: HEAD
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by svcphil on Philly-Pool1
Build Path: c:\jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
-------------------------------------------------------------------
Changed current directory to C:\src\cntk_github\Examples\Other\Simple2d\Data
Changed current directory to C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
MPIWrapper: initializing MPI
ping [requestnodes (before change)]: 1 nodes pinging each other
ping [requestnodes (before change)]: all 1 nodes responded
@ -25,31 +31,39 @@ ping [requestnodes (after change)]: all 1 nodes responded
mpihelper: only one MPI process: MPI operation will be boring
ping [mpihelper]: 1 nodes pinging each other
ping [mpihelper]: all 1 nodes responded
05/03/2016 15:29:53: -------------------------------------------------------------------
05/03/2016 15:29:53: Build info:
08/16/2016 03:19:52: -------------------------------------------------------------------
08/16/2016 03:19:52: Build info:
05/03/2016 15:29:53: Built time: May 3 2016 16:22:10
05/03/2016 15:29:53: Last modified date: Thu Apr 7 11:05:47 2016
05/03/2016 15:29:53: Build type: Release
05/03/2016 15:29:53: Build target: GPU
05/03/2016 15:29:53: With 1bit-SGD: yes
05/03/2016 15:29:53: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.0
05/03/2016 15:29:53: CUB_PATH: E:\lib\cub-1.4.1
05/03/2016 15:29:53: CUDNN_PATH: E:\lib\cuDNN_v4
05/03/2016 15:29:53: Build Branch: alrezni/examples_text
05/03/2016 15:29:53: Build SHA1: e80dab7d66009531806ce70b4842146e0da00516
05/03/2016 15:29:53: Built by alrezni on DIFFENG
05/03/2016 15:29:53: Build Path: C:\src\cntk_github\Source\CNTK\
05/03/2016 15:29:53: -------------------------------------------------------------------
08/16/2016 03:19:52: Built time: Aug 16 2016 03:09:16
08/16/2016 03:19:52: Last modified date: Fri Aug 12 05:28:23 2016
08/16/2016 03:19:52: Build type: Release
08/16/2016 03:19:52: Build target: GPU
08/16/2016 03:19:52: With 1bit-SGD: yes
08/16/2016 03:19:52: Math lib: mkl
08/16/2016 03:19:52: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
08/16/2016 03:19:52: CUB_PATH: c:\src\cub-1.4.1
08/16/2016 03:19:52: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
08/16/2016 03:19:52: Build Branch: HEAD
08/16/2016 03:19:52: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 03:19:52: Built by svcphil on Philly-Pool1
08/16/2016 03:19:52: Build Path: c:\jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
08/16/2016 03:19:52: -------------------------------------------------------------------
08/16/2016 03:19:53: -------------------------------------------------------------------
08/16/2016 03:19:53: GPU info:
05/03/2016 15:29:53: Running on DIFFENG at 2016/05/03 15:29:53
05/03/2016 15:29:53: Command line:
C:\src\cntk_github\x64\release\cntk.exe configFile=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config/Multigpu.cntk currentDirectory=C:\src\cntk_github\Examples\Other\Simple2d\Data RunDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu DataDir=C:\src\cntk_github\Examples\Other\Simple2d\Data ConfigDir=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config OutputDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu DeviceId=0 timestamping=true Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
08/16/2016 03:19:53: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:19:53: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:19:53: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:19:53: -------------------------------------------------------------------
08/16/2016 03:19:53: Running on DPHAIM-25 at 2016/08/16 03:19:53
08/16/2016 03:19:53: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config/Multigpu.cntk currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_gpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_gpu DeviceId=0 timestamping=true Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 15:29:53: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/03/2016 15:29:53: RootDir = ".."
08/16/2016 03:19:53: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:19:53: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
@ -138,28 +152,28 @@ dim = 2
]
outputPath = "$OutputDir$/MultigpuOutput"
]
currentDirectory=C:\src\cntk_github\Examples\Other\Simple2d\Data
RunDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu
DataDir=C:\src\cntk_github\Examples\Other\Simple2d\Data
ConfigDir=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config
OutputDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu
currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_gpu
DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_gpu
DeviceId=0
timestamping=true
Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 15:29:53: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:19:53: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/03/2016 15:29:53: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/03/2016 15:29:53: RootDir = ".."
08/16/2016 03:19:53: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:19:53: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu/Models"
ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_gpu/Models"
deviceId = "auto"
command = Multigpu_Demo_Train:Multigpu_Demo_Test
precision = "float"
traceLevel = 1
modelPath = "E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn"
outputNodeNames = ScaledLogLikelihood
parallelTrain = true
Multigpu_Demo_Train=[
@ -191,7 +205,7 @@ Multigpu_Demo_Train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTrain_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTrain_cntk_text.txt"
input = [
features = [
dim = 2
@ -208,7 +222,7 @@ Multigpu_Demo_Test=[
action = "test"
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -225,7 +239,7 @@ Multigpu_Demo_Output=[
action = "write"
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -237,32 +251,32 @@ dim = 2
]
]
]
outputPath = "E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu/MultigpuOutput"
outputPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_gpu/MultigpuOutput"
]
currentDirectory=C:\src\cntk_github\Examples\Other\Simple2d\Data
RunDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu
DataDir=C:\src\cntk_github\Examples\Other\Simple2d\Data
ConfigDir=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config
OutputDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu
currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_gpu
DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_gpu
DeviceId=0
timestamping=true
Multigpu_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 15:29:53: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:19:53: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 15:29:53: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:19:53: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: Multigpu.cntk:command=Multigpu_Demo_Train:Multigpu_Demo_Test
configparameters: Multigpu.cntk:ConfigDir=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config
configparameters: Multigpu.cntk:currentDirectory=C:\src\cntk_github\Examples\Other\Simple2d\Data
configparameters: Multigpu.cntk:DataDir=C:\src\cntk_github\Examples\Other\Simple2d\Data
configparameters: Multigpu.cntk:ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config
configparameters: Multigpu.cntk:currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
configparameters: Multigpu.cntk:DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
configparameters: Multigpu.cntk:deviceId=0
configparameters: Multigpu.cntk:ModelDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu/Models
configparameters: Multigpu.cntk:modelPath=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn
configparameters: Multigpu.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_gpu/Models
configparameters: Multigpu.cntk:modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn
configparameters: Multigpu.cntk:Multigpu_Demo_Output=[
action = "write"
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -274,14 +288,14 @@ dim = 2
]
]
]
outputPath = "E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu/MultigpuOutput"
outputPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_gpu/MultigpuOutput"
]
configparameters: Multigpu.cntk:Multigpu_Demo_Test=[
action = "test"
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -324,7 +338,7 @@ configparameters: Multigpu.cntk:Multigpu_Demo_Train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTrain_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTrain_cntk_text.txt"
input = [
features = [
dim = 2
@ -338,32 +352,44 @@ dim = 2
]
] [SGD=[maxEpochs=3]]
configparameters: Multigpu.cntk:OutputDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu
configparameters: Multigpu.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_gpu
configparameters: Multigpu.cntk:outputNodeNames=ScaledLogLikelihood
configparameters: Multigpu.cntk:parallelTrain=true
configparameters: Multigpu.cntk:precision=float
configparameters: Multigpu.cntk:RootDir=..
configparameters: Multigpu.cntk:RunDir=E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu
configparameters: Multigpu.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_gpu
configparameters: Multigpu.cntk:timestamping=true
configparameters: Multigpu.cntk:traceLevel=1
05/03/2016 15:29:53: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 15:29:53: Commands: Multigpu_Demo_Train Multigpu_Demo_Test
05/03/2016 15:29:53: Precision = "float"
05/03/2016 15:29:53: CNTKModelPath: E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn
05/03/2016 15:29:53: CNTKCommandTrainInfo: Multigpu_Demo_Train : 3
05/03/2016 15:29:53: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
08/16/2016 03:19:53: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:19:53: Commands: Multigpu_Demo_Train Multigpu_Demo_Test
08/16/2016 03:19:53: Precision = "float"
08/16/2016 03:19:53: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn
08/16/2016 03:19:53: CNTKCommandTrainInfo: Multigpu_Demo_Train : 3
08/16/2016 03:19:53: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
05/03/2016 15:29:53: ##############################################################################
05/03/2016 15:29:53: # #
05/03/2016 15:29:53: # Action "train" #
05/03/2016 15:29:53: # #
05/03/2016 15:29:53: ##############################################################################
08/16/2016 03:19:53: ##############################################################################
08/16/2016 03:19:53: # #
08/16/2016 03:19:53: # Action "train" #
08/16/2016 03:19:53: # #
08/16/2016 03:19:53: ##############################################################################
05/03/2016 15:29:53: CNTKCommandTrainBegin: Multigpu_Demo_Train
08/16/2016 03:19:53: CNTKCommandTrainBegin: Multigpu_Demo_Train
SimpleNetworkBuilder Using GPU 0
05/03/2016 15:29:53: Creating virgin network.
08/16/2016 03:19:53: Creating virgin network.
Node 'W0' (LearnableParameter operation): Initializing Parameter[50 x 2] <- 0.000000.
Node 'W0' (LearnableParameter operation): Initializing Parameter[50 x 2] <- uniform(seed=1, range=0.050000*1.000000, onCPU=false).
Microsoft::MSR::CNTK::GPUMatrix<ElemType>::SetUniformRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4
Node 'B0' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'B0' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[50 x 50] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[50 x 50] <- uniform(seed=2, range=0.050000*1.000000, onCPU=false).
Node 'B1' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'B1' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[2 x 50] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[2 x 50] <- uniform(seed=3, range=0.050000*1.000000, onCPU=false).
Node 'B2' (LearnableParameter operation): Initializing Parameter[2 x 1] <- 0.000000.
Node 'B2' (LearnableParameter operation): Initializing Parameter[2 x 1] <- 0.000000.
Post-processing network...
@ -415,207 +441,210 @@ Validating network, final pass.
Post-processing network complete.
05/03/2016 15:29:53: Created model with 25 nodes on GPU 0.
08/16/2016 03:19:54: Created model with 25 nodes on GPU 0.
05/03/2016 15:29:53: Training criterion node(s):
05/03/2016 15:29:53: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
08/16/2016 03:19:54: Training criterion node(s):
08/16/2016 03:19:54: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
05/03/2016 15:29:53: Evaluation criterion node(s):
05/03/2016 15:29:53: EvalErrorPrediction = ErrorPrediction
08/16/2016 03:19:54: Evaluation criterion node(s):
08/16/2016 03:19:54: EvalErrorPrediction = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 40 matrices, 19 are shared as 8, and 21 are not shared.
0000000000000000: {[EvalErrorPrediction Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
000000572B66ECA0: {[features Value[2 x *]] }
00000057420A1700: {[W1 Value[50 x 50]] }
00000057420A1980: {[MeanOfFeatures Value[2]] }
00000057420A1AC0: {[B2 Value[2 x 1]] }
00000057420A1E80: {[W0 Value[50 x 2]] }
00000057420A1F20: {[labels Value[2 x *]] }
00000057420A22E0: {[Prior Value[2]] }
00000057420A2560: {[InvStdOfFeatures Value[2]] }
00000057420A2880: {[W2 Value[2 x 50]] }
00000057420A2920: {[B1 Value[50 x 1]] }
00000057420A2B00: {[B0 Value[50 x 1]] }
0000005743927E40: {[CrossEntropyWithSoftmax Gradient[1]] }
0000005743927EE0: {[W2*H1 Gradient[2 x 1 x *]] }
0000005743928200: {[ScaledLogLikelihood Value[2 x 1 x *]] }
00000057439282A0: {[W0*features+B0 Gradient[50 x 1 x *]] [W1*H1 Value[50 x 1 x *]] }
00000057439283E0: {[LogOfPrior Value[2]] }
00000057439285C0: {[W0 Gradient[50 x 2]] [W0*features+B0 Value[50 x 1 x *]] }
0000005743928660: {[B1 Gradient[50 x 1]] [H2 Gradient[50 x 1 x *]] [HLast Gradient[2 x 1 x *]] }
00000057439287A0: {[EvalErrorPrediction Value[1]] }
0000005743928980: {[CrossEntropyWithSoftmax Value[1]] }
0000005743928A20: {[B2 Gradient[2 x 1]] }
0000005743928E80: {[H1 Value[50 x 1 x *]] [W0*features Gradient[50 x *]] }
0000005743928FC0: {[W1 Gradient[50 x 50]] [W1*H1+B1 Value[50 x 1 x *]] }
00000057439291A0: {[HLast Value[2 x 1 x *]] [W2 Gradient[2 x 50]] }
0000005743929240: {[MVNormalizedFeatures Value[2 x *]] }
00000057439292E0: {[H2 Value[50 x 1 x *]] [W1*H1 Gradient[50 x 1 x *]] }
0000005743929420: {[B0 Gradient[50 x 1]] [H1 Gradient[50 x 1 x *]] [W1*H1+B1 Gradient[50 x 1 x *]] [W2*H1 Value[2 x 1 x *]] }
00000057439297E0: {[W0*features Value[50 x *]] }
{ B1 : [50 x 1] (gradient)
H2 : [50 x 1 x *] (gradient)
HLast : [2 x 1 x *] (gradient) }
{ W1 : [50 x 50] (gradient)
W1*H1+B1 : [50 x 1 x *] }
{ B0 : [50 x 1] (gradient)
H1 : [50 x 1 x *] (gradient)
W1*H1+B1 : [50 x 1 x *] (gradient)
W2*H1 : [2 x 1 x *] }
{ H1 : [50 x 1 x *]
W0*features : [50 x *] (gradient) }
{ H2 : [50 x 1 x *]
W1*H1 : [50 x 1 x *] (gradient) }
{ HLast : [2 x 1 x *]
W2 : [2 x 50] (gradient) }
{ W0 : [50 x 2] (gradient)
W0*features+B0 : [50 x 1 x *] }
{ W0*features+B0 : [50 x 1 x *] (gradient)
W1*H1 : [50 x 1 x *] }
05/03/2016 15:29:53: Precomputing --> 3 PreCompute nodes found.
08/16/2016 03:19:54: Training 2802 parameters in 6 out of 6 parameter tensors and 15 nodes with gradient:
05/03/2016 15:29:53: MeanOfFeatures = Mean()
05/03/2016 15:29:53: InvStdOfFeatures = InvStdDev()
05/03/2016 15:29:53: Prior = Mean()
05/03/2016 15:29:54: Precomputing --> Completed.
08/16/2016 03:19:54: Node 'B0' (LearnableParameter operation) : [50 x 1]
08/16/2016 03:19:54: Node 'B1' (LearnableParameter operation) : [50 x 1]
08/16/2016 03:19:54: Node 'B2' (LearnableParameter operation) : [2 x 1]
08/16/2016 03:19:54: Node 'W0' (LearnableParameter operation) : [50 x 2]
08/16/2016 03:19:54: Node 'W1' (LearnableParameter operation) : [50 x 50]
08/16/2016 03:19:54: Node 'W2' (LearnableParameter operation) : [2 x 50]
05/03/2016 15:29:54: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
08/16/2016 03:19:54: Precomputing --> 3 PreCompute nodes found.
05/03/2016 15:29:54: Starting minibatch loop.
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70650452 * 250; EvalErrorPrediction = 0.55200000 * 250; time = 0.0115s; samplesPerSecond = 21832.2
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.69701831 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0095s; samplesPerSecond = 26326.9
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.71089587 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0100s; samplesPerSecond = 25067.7
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.72980273 * 250; EvalErrorPrediction = 0.56000000 * 250; time = 0.0096s; samplesPerSecond = 26079.7
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70902783 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0115s; samplesPerSecond = 21692.0
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72657300 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0124s; samplesPerSecond = 20127.2
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.69319678 * 250; EvalErrorPrediction = 0.43200000 * 250; time = 0.0091s; samplesPerSecond = 27439.4
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.73563477 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0112s; samplesPerSecond = 22246.0
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.71463281 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0115s; samplesPerSecond = 21739.1
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.75213428 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0105s; samplesPerSecond = 23814.1
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.75931445 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0115s; samplesPerSecond = 21763.7
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.73075293 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0120s; samplesPerSecond = 20835.1
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.76701953 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0130s; samplesPerSecond = 19305.0
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.70451270 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0108s; samplesPerSecond = 23184.6
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70539941 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0117s; samplesPerSecond = 21385.8
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.72700293 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0120s; samplesPerSecond = 20917.0
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70096191 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0112s; samplesPerSecond = 22301.5
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.69437305 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0113s; samplesPerSecond = 22079.0
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.69161621 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0116s; samplesPerSecond = 21514.6
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.73388281 * 250; EvalErrorPrediction = 0.55200000 * 250; time = 0.0107s; samplesPerSecond = 23406.0
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.72255664 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0116s; samplesPerSecond = 21546.2
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70414551 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0115s; samplesPerSecond = 21756.2
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69976758 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0113s; samplesPerSecond = 22065.3
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.72419141 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0114s; samplesPerSecond = 22018.7
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69943945 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0111s; samplesPerSecond = 22604.0
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69206445 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0111s; samplesPerSecond = 22504.3
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.68771680 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0113s; samplesPerSecond = 22118.0
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69878516 * 250; EvalErrorPrediction = 0.44000000 * 250; time = 0.0130s; samplesPerSecond = 19278.2
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.71889844 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0127s; samplesPerSecond = 19632.5
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.70086523 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0095s; samplesPerSecond = 26329.6
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.70878320 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0112s; samplesPerSecond = 22361.4
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.70674414 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0130s; samplesPerSecond = 19168.8
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69707422 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0094s; samplesPerSecond = 26729.4
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.68588281 * 250; EvalErrorPrediction = 0.40800000 * 250; time = 0.0112s; samplesPerSecond = 22365.4
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.67734766 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0128s; samplesPerSecond = 19583.3
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.67958008 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0092s; samplesPerSecond = 27144.4
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.66424805 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0114s; samplesPerSecond = 21864.6
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.62412500 * 250; EvalErrorPrediction = 0.20400000 * 250; time = 0.0116s; samplesPerSecond = 21475.8
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.58007422 * 250; EvalErrorPrediction = 0.16000000 * 250; time = 0.0094s; samplesPerSecond = 26567.5
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.52764648 * 250; EvalErrorPrediction = 0.19200000 * 250; time = 0.0132s; samplesPerSecond = 18988.3
05/03/2016 15:29:54: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.69975483 * 10000; EvalErrorPrediction = 0.46850000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=0.453807s
05/03/2016 15:29:54: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn.1'
08/16/2016 03:19:54: MeanOfFeatures = Mean()
08/16/2016 03:19:54: InvStdOfFeatures = InvStdDev()
08/16/2016 03:19:54: Prior = Mean()
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
05/03/2016 15:29:54: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
05/03/2016 15:29:54: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.45075654 * 250; EvalErrorPrediction = 0.15200000 * 250; time = 0.0250s; samplesPerSecond = 10002.4
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.40775497 * 250; EvalErrorPrediction = 0.14400000 * 250; time = 0.0219s; samplesPerSecond = 11420.2
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.34165228 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0230s; samplesPerSecond = 10859.6
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.29708900 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0198s; samplesPerSecond = 12604.0
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.26669365 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0211s; samplesPerSecond = 11860.7
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.25328680 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0212s; samplesPerSecond = 11817.0
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.21017820 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0237s; samplesPerSecond = 10540.1
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.21483054 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0214s; samplesPerSecond = 11699.7
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.16626513 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0213s; samplesPerSecond = 11757.5
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.17672434 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0239s; samplesPerSecond = 10454.6
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.22140190 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0208s; samplesPerSecond = 12033.1
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.17048554 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0237s; samplesPerSecond = 10553.4
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.16438517 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0234s; samplesPerSecond = 10662.3
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13782141 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0218s; samplesPerSecond = 11449.0
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16909663 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0244s; samplesPerSecond = 10228.7
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.15419129 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0229s; samplesPerSecond = 10924.7
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.22229924 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0242s; samplesPerSecond = 10340.4
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18134995 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0236s; samplesPerSecond = 10579.3
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.15616904 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0236s; samplesPerSecond = 10594.6
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.17162733 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0262s; samplesPerSecond = 9530.3
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15676289 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0262s; samplesPerSecond = 9554.4
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.16159542 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0262s; samplesPerSecond = 9558.8
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.16102246 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0284s; samplesPerSecond = 8800.3
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.15392923 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0248s; samplesPerSecond = 10089.6
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.14898334 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0269s; samplesPerSecond = 9279.5
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.15087969 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0285s; samplesPerSecond = 8785.2
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.15494578 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0247s; samplesPerSecond = 10101.4
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.17878713 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0250s; samplesPerSecond = 9986.0
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.22845049 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0249s; samplesPerSecond = 10045.4
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16884430 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0241s; samplesPerSecond = 10376.5
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17970282 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0237s; samplesPerSecond = 10533.9
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13292468 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0257s; samplesPerSecond = 9721.6
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.14167778 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0226s; samplesPerSecond = 11048.3
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.18716852 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0237s; samplesPerSecond = 10534.7
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.15480385 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0258s; samplesPerSecond = 9705.0
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.19482328 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0247s; samplesPerSecond = 10115.7
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.17488171 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0249s; samplesPerSecond = 10048.2
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15164433 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0281s; samplesPerSecond = 8901.2
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.12142463 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0222s; samplesPerSecond = 11279.0
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15287631 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0238s; samplesPerSecond = 10489.7
05/03/2016 15:29:55: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.19475469 * 10000; EvalErrorPrediction = 0.07830000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.964496s
05/03/2016 15:29:55: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn.2'
05/03/2016 15:29:55: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
05/03/2016 15:29:55: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.10717578 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0253s; samplesPerSecond = 9869.7
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.17521929 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0234s; samplesPerSecond = 10701.1
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14088211 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0250s; samplesPerSecond = 9986.8
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.16281337 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0243s; samplesPerSecond = 10287.6
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.11778386 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0234s; samplesPerSecond = 10666.9
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.16295400 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0266s; samplesPerSecond = 9385.8
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.16287201 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0233s; samplesPerSecond = 10746.2
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.19482140 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0242s; samplesPerSecond = 10312.3
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.20113689 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0235s; samplesPerSecond = 10643.3
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.13748570 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0238s; samplesPerSecond = 10484.4
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.20080420 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0236s; samplesPerSecond = 10600.9
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.17730590 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0268s; samplesPerSecond = 9342.3
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.15851029 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0233s; samplesPerSecond = 10743.0
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16257260 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0250s; samplesPerSecond = 10012.8
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.19772537 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0224s; samplesPerSecond = 11143.3
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.10259204 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0235s; samplesPerSecond = 10626.1
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17093073 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0244s; samplesPerSecond = 10230.0
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16628544 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0252s; samplesPerSecond = 9936.8
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.12690716 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0246s; samplesPerSecond = 10171.7
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.11894288 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0233s; samplesPerSecond = 10718.1
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.12815907 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0246s; samplesPerSecond = 10151.0
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.18265773 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0225s; samplesPerSecond = 11131.9
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.13388730 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0231s; samplesPerSecond = 10807.5
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.19787903 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0251s; samplesPerSecond = 9951.4
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.15563315 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0241s; samplesPerSecond = 10373.0
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.11837055 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0240s; samplesPerSecond = 10429.3
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.13732942 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0234s; samplesPerSecond = 10689.7
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.20012115 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0253s; samplesPerSecond = 9872.4
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.19086846 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0238s; samplesPerSecond = 10525.4
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16492589 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0243s; samplesPerSecond = 10272.8
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.12141157 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0238s; samplesPerSecond = 10509.5
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.16335481 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0236s; samplesPerSecond = 10579.3
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.15923900 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0241s; samplesPerSecond = 10358.0
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.12315803 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0235s; samplesPerSecond = 10617.1
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13481532 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0260s; samplesPerSecond = 9612.4
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.20958008 * 250; EvalErrorPrediction = 0.11600000 * 250; time = 0.0223s; samplesPerSecond = 11232.4
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16519713 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0255s; samplesPerSecond = 9814.3
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14990733 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0239s; samplesPerSecond = 10481.3
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.16508552 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0255s; samplesPerSecond = 9789.3
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.16941540 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0240s; samplesPerSecond = 10435.4
05/03/2016 15:29:56: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15791792 * 10000; EvalErrorPrediction = 0.07460000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.970059s
05/03/2016 15:29:56: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn'
05/03/2016 15:29:56: CNTKCommandTrainEnd: Multigpu_Demo_Train
05/03/2016 15:29:56: Action "train" complete.
08/16/2016 03:19:54: Precomputing --> Completed.
05/03/2016 15:29:56: ##############################################################################
05/03/2016 15:29:56: # #
05/03/2016 15:29:56: # Action "test" #
05/03/2016 15:29:56: # #
05/03/2016 15:29:56: ##############################################################################
08/16/2016 03:19:54: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 03:19:54: Starting minibatch loop.
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70124231 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0171s; samplesPerSecond = 14629.3
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.76372424 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0156s; samplesPerSecond = 15976.5
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.72703027 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0158s; samplesPerSecond = 15853.9
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.73895923 * 250; EvalErrorPrediction = 0.56800000 * 250; time = 0.0157s; samplesPerSecond = 15952.0
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70621924 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0157s; samplesPerSecond = 15907.4
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.74767041 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0158s; samplesPerSecond = 15831.8
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.75094434 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0158s; samplesPerSecond = 15822.8
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.78058936 * 250; EvalErrorPrediction = 0.48400000 * 250; time = 0.0157s; samplesPerSecond = 15880.1
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.70407129 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0157s; samplesPerSecond = 15927.6
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.69555762 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0157s; samplesPerSecond = 15926.6
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.70626123 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0158s; samplesPerSecond = 15816.8
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.74540430 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0157s; samplesPerSecond = 15884.1
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.70824414 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0158s; samplesPerSecond = 15815.8
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.69895020 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0157s; samplesPerSecond = 15895.2
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70353223 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0157s; samplesPerSecond = 15937.8
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.69346387 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0158s; samplesPerSecond = 15825.8
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.74449902 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0157s; samplesPerSecond = 15903.3
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.73767969 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0157s; samplesPerSecond = 15895.2
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71876855 * 250; EvalErrorPrediction = 0.48400000 * 250; time = 0.0157s; samplesPerSecond = 15889.2
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.71509473 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0158s; samplesPerSecond = 15836.8
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.69956152 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0157s; samplesPerSecond = 15888.1
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.69785937 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0157s; samplesPerSecond = 15917.5
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.70736035 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0157s; samplesPerSecond = 15923.6
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.69820508 * 250; EvalErrorPrediction = 0.56800000 * 250; time = 0.0158s; samplesPerSecond = 15839.8
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69537109 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0156s; samplesPerSecond = 15981.6
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69347266 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0162s; samplesPerSecond = 15477.0
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.70801172 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0157s; samplesPerSecond = 15921.5
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69131641 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0158s; samplesPerSecond = 15823.8
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.70370312 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0157s; samplesPerSecond = 15923.6
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.71200195 * 250; EvalErrorPrediction = 0.43600000 * 250; time = 0.0157s; samplesPerSecond = 15900.3
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.69506836 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0158s; samplesPerSecond = 15838.8
08/16/2016 03:19:54: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.69935352 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0158s; samplesPerSecond = 15830.8
08/16/2016 03:19:55: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69887109 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0158s; samplesPerSecond = 15833.8
08/16/2016 03:19:55: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.69604492 * 250; EvalErrorPrediction = 0.49200000 * 250; time = 0.0156s; samplesPerSecond = 15991.8
08/16/2016 03:19:55: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.69011719 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0158s; samplesPerSecond = 15794.8
08/16/2016 03:19:55: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.68419531 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0158s; samplesPerSecond = 15850.9
08/16/2016 03:19:55: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.67551367 * 250; EvalErrorPrediction = 0.32400000 * 250; time = 0.0158s; samplesPerSecond = 15859.9
08/16/2016 03:19:55: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.67028516 * 250; EvalErrorPrediction = 0.40000000 * 250; time = 0.0157s; samplesPerSecond = 15940.8
08/16/2016 03:19:55: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.65152734 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0158s; samplesPerSecond = 15841.8
08/16/2016 03:19:55: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.63594727 * 250; EvalErrorPrediction = 0.22000000 * 250; time = 0.0157s; samplesPerSecond = 15917.5
08/16/2016 03:19:55: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.70729233 * 10000; EvalErrorPrediction = 0.47740000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=0.633908s
08/16/2016 03:19:55: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn.1'
08/16/2016 03:19:55: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 1: frames [10000..20000] (first sequence at sample 10000), data subset 0 of 1
08/16/2016 03:19:55: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.61550018 * 250; EvalErrorPrediction = 0.27600000 * 250; time = 0.0399s; samplesPerSecond = 6268.0
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.59409242 * 250; EvalErrorPrediction = 0.28800000 * 250; time = 0.0380s; samplesPerSecond = 6577.0
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.53884306 * 250; EvalErrorPrediction = 0.20400000 * 250; time = 0.0379s; samplesPerSecond = 6604.0
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.52450125 * 250; EvalErrorPrediction = 0.15200000 * 250; time = 0.0374s; samplesPerSecond = 6683.4
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.49237463 * 250; EvalErrorPrediction = 0.16400000 * 250; time = 0.0374s; samplesPerSecond = 6678.4
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.44029644 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0376s; samplesPerSecond = 6645.4
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.40029475 * 250; EvalErrorPrediction = 0.13200000 * 250; time = 0.0370s; samplesPerSecond = 6763.7
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.34001918 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0378s; samplesPerSecond = 6611.8
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.31615756 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0380s; samplesPerSecond = 6582.1
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.27277486 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0375s; samplesPerSecond = 6672.4
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.24557418 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0375s; samplesPerSecond = 6662.2
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.21023629 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0372s; samplesPerSecond = 6712.5
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.22380673 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0376s; samplesPerSecond = 6640.6
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.20455512 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0375s; samplesPerSecond = 6666.1
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.20168480 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0377s; samplesPerSecond = 6623.4
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.19212741 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0373s; samplesPerSecond = 6699.0
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.19324124 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0374s; samplesPerSecond = 6679.5
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.21777418 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0372s; samplesPerSecond = 6729.3
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.17514209 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0376s; samplesPerSecond = 6644.0
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.17993773 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0376s; samplesPerSecond = 6649.8
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13968032 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0376s; samplesPerSecond = 6641.3
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.17727753 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0373s; samplesPerSecond = 6699.0
08/16/2016 03:19:55: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.12898624 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0370s; samplesPerSecond = 6749.8
08/16/2016 03:19:56: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.21880105 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0373s; samplesPerSecond = 6708.2
08/16/2016 03:19:56: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.21850111 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0377s; samplesPerSecond = 6622.9
08/16/2016 03:19:56: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.18102491 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0377s; samplesPerSecond = 6636.6
08/16/2016 03:19:56: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.16393427 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0372s; samplesPerSecond = 6714.3
08/16/2016 03:19:56: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.13832267 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0375s; samplesPerSecond = 6659.7
08/16/2016 03:19:56: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.16506280 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0377s; samplesPerSecond = 6634.6
08/16/2016 03:19:56: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14733234 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0376s; samplesPerSecond = 6644.7
08/16/2016 03:19:56: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.15041138 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0379s; samplesPerSecond = 6600.5
08/16/2016 03:19:56: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.12665836 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0376s; samplesPerSecond = 6641.3
08/16/2016 03:19:56: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.16643186 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0373s; samplesPerSecond = 6699.5
08/16/2016 03:19:56: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.14422443 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0360s; samplesPerSecond = 6946.8
08/16/2016 03:19:56: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13888039 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0364s; samplesPerSecond = 6860.0
08/16/2016 03:19:56: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.14108686 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0377s; samplesPerSecond = 6629.0
08/16/2016 03:19:56: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.15887684 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0375s; samplesPerSecond = 6662.6
08/16/2016 03:19:56: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.16247402 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0377s; samplesPerSecond = 6630.8
08/16/2016 03:19:56: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.13586729 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0377s; samplesPerSecond = 6631.1
08/16/2016 03:19:56: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15528679 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0376s; samplesPerSecond = 6642.8
08/16/2016 03:19:56: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.24345139 * 10000; EvalErrorPrediction = 0.09720000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=1.50329s
08/16/2016 03:19:56: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn.2'
08/16/2016 03:19:56: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 2: frames [20000..30000] (first sequence at sample 20000), data subset 0 of 1
08/16/2016 03:19:56: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
08/16/2016 03:19:56: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.18398525 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0376s; samplesPerSecond = 6641.3
08/16/2016 03:19:56: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.12825686 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0376s; samplesPerSecond = 6653.0
08/16/2016 03:19:56: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.17547006 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0374s; samplesPerSecond = 6692.7
08/16/2016 03:19:56: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.14044644 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0373s; samplesPerSecond = 6703.9
08/16/2016 03:19:56: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.16673170 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0379s; samplesPerSecond = 6591.3
08/16/2016 03:19:56: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.19317383 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0374s; samplesPerSecond = 6678.2
08/16/2016 03:19:56: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.12349199 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0381s; samplesPerSecond = 6555.0
08/16/2016 03:19:56: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16427535 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0373s; samplesPerSecond = 6693.6
08/16/2016 03:19:56: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.12350212 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0376s; samplesPerSecond = 6652.3
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.19958846 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0377s; samplesPerSecond = 6625.1
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.14269741 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0378s; samplesPerSecond = 6615.7
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.12369058 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0370s; samplesPerSecond = 6755.8
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.16638059 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0375s; samplesPerSecond = 6669.5
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.20047975 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0373s; samplesPerSecond = 6704.2
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16963457 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0371s; samplesPerSecond = 6744.7
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.13367401 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0372s; samplesPerSecond = 6724.0
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.14477143 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0369s; samplesPerSecond = 6775.3
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.21046366 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0373s; samplesPerSecond = 6702.8
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.19247125 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0374s; samplesPerSecond = 6679.8
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.15027023 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0371s; samplesPerSecond = 6747.5
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15612870 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0377s; samplesPerSecond = 6635.9
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.13684548 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0373s; samplesPerSecond = 6697.7
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.17217344 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0377s; samplesPerSecond = 6638.7
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14419519 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0375s; samplesPerSecond = 6666.8
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.13803181 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0375s; samplesPerSecond = 6659.6
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.14209585 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0374s; samplesPerSecond = 6680.2
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.16967141 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0373s; samplesPerSecond = 6710.0
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.18647515 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0377s; samplesPerSecond = 6630.2
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.16511327 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0363s; samplesPerSecond = 6885.7
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.15550174 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0376s; samplesPerSecond = 6646.5
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18759246 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0373s; samplesPerSecond = 6695.4
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13178152 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0376s; samplesPerSecond = 6657.3
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.14624311 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0372s; samplesPerSecond = 6714.7
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.13930281 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0374s; samplesPerSecond = 6682.3
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.20110083 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0377s; samplesPerSecond = 6632.4
08/16/2016 03:19:57: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.12558937 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0369s; samplesPerSecond = 6776.5
08/16/2016 03:19:58: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.18612014 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0376s; samplesPerSecond = 6647.2
08/16/2016 03:19:58: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15336297 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0374s; samplesPerSecond = 6684.3
08/16/2016 03:19:58: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.11885079 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0375s; samplesPerSecond = 6668.4
08/16/2016 03:19:58: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.12974982 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0381s; samplesPerSecond = 6568.7
08/16/2016 03:19:58: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15798453 * 10000; EvalErrorPrediction = 0.07300000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=1.49905s
08/16/2016 03:19:58: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Other\Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn'
08/16/2016 03:19:58: CNTKCommandTrainEnd: Multigpu_Demo_Train
08/16/2016 03:19:58: Action "train" complete.
08/16/2016 03:19:58: ##############################################################################
08/16/2016 03:19:58: # #
08/16/2016 03:19:58: # Action "test" #
08/16/2016 03:19:58: # #
08/16/2016 03:19:58: ##############################################################################
Post-processing network...
@ -673,35 +702,17 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 25 matrices, 2 are shared as 1, and 23 are not shared.
0000000000000000: {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalErrorPrediction Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
0000005743925BB0: {[HLast Value[2 x 1 x *1]] }
0000005743925D90: {[MVNormalizedFeatures Value[2 x *1]] }
0000005743925E30: {[CrossEntropyWithSoftmax Value[1]] }
0000005743925F70: {[W2 Value[2 x 50]] }
0000005743926150: {[W0*features Value[50 x *1]] }
00000057439261F0: {[H1 Value[50 x 1 x *1]] }
0000005743926290: {[LogOfPrior Value[2]] }
00000057439263D0: {[W1*H1+B1 Value[50 x 1 x *1]] }
0000005743926470: {[W2*H1 Value[2 x 1 x *1]] }
00000057439265B0: {[W0*features+B0 Value[50 x 1 x *1]] }
0000005743926650: {[W1*H1 Value[50 x 1 x *1]] }
0000005743926970: {[H2 Value[50 x 1 x *1]] }
0000005743926AB0: {[EvalErrorPrediction Value[1]] }
000000574B7FAD10: {[W0 Value[50 x 2]] }
000000574B7FB170: {[InvStdOfFeatures Value[2]] }
000000574B7FB210: {[MeanOfFeatures Value[2]] }
000000574B7FB530: {[W1 Value[50 x 50]] }
000000574B7FB7B0: {[labels Value[2 x *1]] }
000000574B7FBA30: {[Prior Value[2]] }
000000574C9F1D40: {[features Value[2 x *1]] }
000000574D960D10: {[B1 Value[50 x 1]] }
000000574D960E50: {[B2 Value[2 x 1]] }
000000574D9610D0: {[B0 Value[50 x 1]] }
{ PosteriorProb : [2 x 1 x *1]
ScaledLogLikelihood : [2 x 1 x *1] }
05/03/2016 15:29:56: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.05638474 * 603; CrossEntropyWithSoftmax = 0.12022919 * 603; perplexity = 1.12775529
BlockRandomizer::StartEpoch: epoch 0: frames [0..603] (first sequence at sample 0), data subset 0 of 1
Actual gradient aggregation time: 5.7e-005
08/16/2016 03:19:58: Minibatch[1-1]: EvalErrorPrediction = 0.05140962 * 603; CrossEntropyWithSoftmax = 0.10723887 * 603
08/16/2016 03:19:58: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.05140962 * 603; CrossEntropyWithSoftmax = 0.10723887 * 603; perplexity = 1.11320013
05/03/2016 15:29:56: Action "test" complete.
08/16/2016 03:19:58: Action "test" complete.
05/03/2016 15:29:56: __COMPLETED__
08/16/2016 03:19:58: __COMPLETED__
~MPIWrapper

Просмотреть файл

@ -1,48 +1,61 @@
=== Running /home/alrezni/src/cntk_git/build/release/bin/cntk configFile=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/Simple/../Config/Simple.cntk currentDirectory=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data RunDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu DataDir=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data ConfigDir=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/Simple/../Config OutputDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu DeviceId=-1 timestamping=true Simple_Demo_Train=[SGD=[maxEpochs=3]]
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 264172964 kB
-------------------------------------------------------------------
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config/Simple.cntk currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu DeviceId=-1 timestamping=true Simple_Demo_Train=[SGD=[maxEpochs=3]]
-------------------------------------------------------------------
Build info:
Built time: May 3 2016 15:08:09
Last modified date: Tue Apr 5 16:01:37 2016
Built time: Aug 16 2016 09:41:56
Last modified date: Fri Aug 12 07:32:43 2016
Build type: release
Build target: GPU
With 1bit-SGD: yes
Math lib: acml
CUDA_PATH: /usr/local/cuda-7.0
With 1bit-SGD: no
Math lib: mkl
CUDA_PATH: /usr/local/cuda-7.5
CUB_PATH: /usr/local/cub-1.4.1
CUDNN_PATH: /usr/local/cudnn-4.0
Build Branch: alrezni/examples_text
Build SHA1: e80dab7d66009531806ce70b4842146e0da00516
Built by alrezni on atleneu04
Build Path: /home/alrezni/src/cntk_git
Build Branch: HEAD
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by philly on f67b30a647de
Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
-------------------------------------------------------------------
Changed current directory to /home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
05/03/2016 15:21:15: -------------------------------------------------------------------
05/03/2016 15:21:15: Build info:
Changed current directory to /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
08/16/2016 10:51:34: -------------------------------------------------------------------
08/16/2016 10:51:34: Build info:
05/03/2016 15:21:15: Built time: May 3 2016 15:08:09
05/03/2016 15:21:15: Last modified date: Tue Apr 5 16:01:37 2016
05/03/2016 15:21:15: Build type: release
05/03/2016 15:21:15: Build target: GPU
05/03/2016 15:21:15: With 1bit-SGD: yes
05/03/2016 15:21:15: Math lib: acml
05/03/2016 15:21:15: CUDA_PATH: /usr/local/cuda-7.0
05/03/2016 15:21:15: CUB_PATH: /usr/local/cub-1.4.1
05/03/2016 15:21:15: CUDNN_PATH: /usr/local/cudnn-4.0
05/03/2016 15:21:15: Build Branch: alrezni/examples_text
05/03/2016 15:21:15: Build SHA1: e80dab7d66009531806ce70b4842146e0da00516
05/03/2016 15:21:15: Built by alrezni on atleneu04
05/03/2016 15:21:15: Build Path: /home/alrezni/src/cntk_git
05/03/2016 15:21:15: -------------------------------------------------------------------
08/16/2016 10:51:34: Built time: Aug 16 2016 09:41:56
08/16/2016 10:51:34: Last modified date: Fri Aug 12 07:32:43 2016
08/16/2016 10:51:34: Build type: release
08/16/2016 10:51:34: Build target: GPU
08/16/2016 10:51:34: With 1bit-SGD: no
08/16/2016 10:51:34: Math lib: mkl
08/16/2016 10:51:34: CUDA_PATH: /usr/local/cuda-7.5
08/16/2016 10:51:34: CUB_PATH: /usr/local/cub-1.4.1
08/16/2016 10:51:34: CUDNN_PATH: /usr/local/cudnn-4.0
08/16/2016 10:51:34: Build Branch: HEAD
08/16/2016 10:51:34: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 10:51:34: Built by philly on f67b30a647de
08/16/2016 10:51:34: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
08/16/2016 10:51:34: -------------------------------------------------------------------
08/16/2016 10:51:35: -------------------------------------------------------------------
08/16/2016 10:51:35: GPU info:
05/03/2016 15:21:15: Running on localhost at 2016/05/03 15:21:15
05/03/2016 15:21:15: Command line:
/home/alrezni/src/cntk_git/build/release/bin/cntk configFile=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/Simple/../Config/Simple.cntk currentDirectory=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data RunDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu DataDir=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data ConfigDir=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/Simple/../Config OutputDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu DeviceId=-1 timestamping=true Simple_Demo_Train=[SGD=[maxEpochs=3]]
08/16/2016 10:51:35: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:51:35: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:51:35: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:51:35: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:51:35: -------------------------------------------------------------------
08/16/2016 10:51:35: Running on localhost at 2016/08/16 10:51:35
08/16/2016 10:51:35: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config/Simple.cntk currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu DeviceId=-1 timestamping=true Simple_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 15:21:15: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/03/2016 15:21:15: RootDir = ".."
08/16/2016 10:51:35: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:51:35: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
@ -129,28 +142,28 @@ labelMappingFile = "$DataDir$/SimpleMapping.txt"
sequenceEpilogue = "\t// %s\n"
]
]
currentDirectory=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
RunDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu
DataDir=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
ConfigDir=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/Simple/../Config
OutputDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu
currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu
DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config
OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu
DeviceId=-1
timestamping=true
Simple_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 15:21:15: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:51:35: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/03/2016 15:21:15: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/03/2016 15:21:15: RootDir = ".."
08/16/2016 10:51:35: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:51:35: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu/Models"
ModelDir = "/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu/Models"
deviceId = -1
command = Simple_Demo_Train:Simple_Demo_Test:Simple_Demo_Output
precision = "float"
traceLevel = 1
modelPath = "/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu/Models/simple.dnn"
modelPath = "/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu/Models/simple.dnn"
outputNodeNames = ScaledLogLikelihood
Simple_Demo_Train = [
action = "train"
@ -174,7 +187,7 @@ Simple_Demo_Train = [
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTrain_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTrain_cntk_text.txt"
input = [
features = [
dim = 2
@ -191,7 +204,7 @@ Simple_Demo_Test = [
action = "test"
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -208,7 +221,7 @@ Simple_Demo_Output=[
action = "write"
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -221,42 +234,42 @@ dim = 2
]
]
outputNodeNames = PosteriorProb : labels
outputPath = "/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu/SimpleOutput"
outputPath = "/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu/SimpleOutput"
format = [
type = "category"
labelMappingFile = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleMapping.txt"
labelMappingFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleMapping.txt"
sequenceEpilogue = "\t// %s\n"
]
]
currentDirectory=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
RunDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu
DataDir=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
ConfigDir=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/Simple/../Config
OutputDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu
currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu
DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config
OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu
DeviceId=-1
timestamping=true
Simple_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 15:21:15: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:51:35: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 15:21:15: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:51:35: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: Simple.cntk:command=Simple_Demo_Train:Simple_Demo_Test:Simple_Demo_Output
configparameters: Simple.cntk:ConfigDir=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/Simple/../Config
configparameters: Simple.cntk:currentDirectory=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
configparameters: Simple.cntk:DataDir=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
configparameters: Simple.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config
configparameters: Simple.cntk:currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
configparameters: Simple.cntk:DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
configparameters: Simple.cntk:deviceId=-1
configparameters: Simple.cntk:ModelDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu/Models
configparameters: Simple.cntk:modelPath=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu/Models/simple.dnn
configparameters: Simple.cntk:OutputDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu
configparameters: Simple.cntk:ModelDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu/Models
configparameters: Simple.cntk:modelPath=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu/Models/simple.dnn
configparameters: Simple.cntk:OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu
configparameters: Simple.cntk:outputNodeNames=ScaledLogLikelihood
configparameters: Simple.cntk:precision=float
configparameters: Simple.cntk:RootDir=..
configparameters: Simple.cntk:RunDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu
configparameters: Simple.cntk:RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu
configparameters: Simple.cntk:Simple_Demo_Output=[
action = "write"
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -269,10 +282,10 @@ dim = 2
]
]
outputNodeNames = PosteriorProb : labels
outputPath = "/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu/SimpleOutput"
outputPath = "/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu/SimpleOutput"
format = [
type = "category"
labelMappingFile = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleMapping.txt"
labelMappingFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleMapping.txt"
sequenceEpilogue = "\t// %s\n"
]
]
@ -281,7 +294,7 @@ configparameters: Simple.cntk:Simple_Demo_Test=[
action = "test"
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -317,7 +330,7 @@ configparameters: Simple.cntk:Simple_Demo_Train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTrain_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTrain_cntk_text.txt"
input = [
features = [
dim = 2
@ -333,23 +346,35 @@ dim = 2
configparameters: Simple.cntk:timestamping=true
configparameters: Simple.cntk:traceLevel=1
05/03/2016 15:21:15: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 15:21:15: Commands: Simple_Demo_Train Simple_Demo_Test Simple_Demo_Output
05/03/2016 15:21:15: Precision = "float"
05/03/2016 15:21:15: CNTKModelPath: /tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu/Models/simple.dnn
05/03/2016 15:21:15: CNTKCommandTrainInfo: Simple_Demo_Train : 3
05/03/2016 15:21:15: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
08/16/2016 10:51:35: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:51:35: Commands: Simple_Demo_Train Simple_Demo_Test Simple_Demo_Output
08/16/2016 10:51:35: Precision = "float"
08/16/2016 10:51:35: CNTKModelPath: /tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu/Models/simple.dnn
08/16/2016 10:51:35: CNTKCommandTrainInfo: Simple_Demo_Train : 3
08/16/2016 10:51:35: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
05/03/2016 15:21:15: ##############################################################################
05/03/2016 15:21:15: # #
05/03/2016 15:21:15: # Action "train" #
05/03/2016 15:21:15: # #
05/03/2016 15:21:15: ##############################################################################
08/16/2016 10:51:35: ##############################################################################
08/16/2016 10:51:35: # #
08/16/2016 10:51:35: # Action "train" #
08/16/2016 10:51:35: # #
08/16/2016 10:51:35: ##############################################################################
05/03/2016 15:21:15: CNTKCommandTrainBegin: Simple_Demo_Train
08/16/2016 10:51:35: CNTKCommandTrainBegin: Simple_Demo_Train
SimpleNetworkBuilder Using CPU
05/03/2016 15:21:15: Creating virgin network.
08/16/2016 10:51:35: Creating virgin network.
Node 'W0' (LearnableParameter operation): Initializing Parameter[50 x 2] <- 0.000000.
Node 'W0' (LearnableParameter operation): Initializing Parameter[50 x 2] <- uniform(seed=1, range=0.050000*1.000000, onCPU=false).
Node 'B0' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'B0' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[50 x 50] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[50 x 50] <- uniform(seed=2, range=0.050000*1.000000, onCPU=false).
Node 'B1' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'B1' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[2 x 50] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[2 x 50] <- uniform(seed=3, range=0.050000*1.000000, onCPU=false).
Node 'B2' (LearnableParameter operation): Initializing Parameter[2 x 1] <- 0.000000.
Node 'B2' (LearnableParameter operation): Initializing Parameter[2 x 1] <- 0.000000.
Post-processing network...
@ -401,207 +426,210 @@ Validating network, final pass.
Post-processing network complete.
05/03/2016 15:21:15: Created model with 25 nodes on CPU.
08/16/2016 10:51:35: Created model with 25 nodes on CPU.
05/03/2016 15:21:15: Training criterion node(s):
05/03/2016 15:21:15: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
08/16/2016 10:51:35: Training criterion node(s):
08/16/2016 10:51:35: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
05/03/2016 15:21:15: Evaluation criterion node(s):
05/03/2016 15:21:15: EvalErrorPrediction = ErrorPrediction
08/16/2016 10:51:35: Evaluation criterion node(s):
08/16/2016 10:51:35: EvalErrorPrediction = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 40 matrices, 19 are shared as 8, and 21 are not shared.
(nil): {[EvalErrorPrediction Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
0x2e7f338: {[features Value[2 x *]] }
0x2e82908: {[MeanOfFeatures Value[2]] }
0x2e84f08: {[InvStdOfFeatures Value[2]] }
0x2e861f8: {[W0 Value[50 x 2]] }
0x2e867b8: {[B0 Value[50 x 1]] }
0x2e87718: {[W1 Value[50 x 50]] }
0x2e8a298: {[B1 Value[50 x 1]] }
0x2e8b158: {[W2 Value[2 x 50]] }
0x2e8b718: {[B2 Value[2 x 1]] }
0x2e8c1e8: {[labels Value[2 x *]] }
0x2e8cf38: {[Prior Value[2]] }
0x2e926f8: {[EvalErrorPrediction Value[1]] }
0x2e92858: {[ScaledLogLikelihood Value[2 x 1 x *]] }
0x2e929b8: {[CrossEntropyWithSoftmax Value[1]] }
0x2e93218: {[LogOfPrior Value[2]] }
0x2e95498: {[MVNormalizedFeatures Value[2 x *]] }
0x2e957b8: {[W0*features Value[50 x *]] }
0x2e95918: {[W0 Gradient[50 x 2]] [W0*features+B0 Value[50 x 1 x *]] }
0x2e95a78: {[H1 Value[50 x 1 x *]] [W0*features Gradient[50 x *]] }
0x2e95c38: {[W0*features+B0 Gradient[50 x 1 x *]] [W1*H1 Value[50 x 1 x *]] }
0x2e95df8: {[W1 Gradient[50 x 50]] [W1*H1+B1 Value[50 x 1 x *]] }
0x2e95fb8: {[H2 Value[50 x 1 x *]] [W1*H1 Gradient[50 x 1 x *]] }
0x2e96178: {[B0 Gradient[50 x 1]] [H1 Gradient[50 x 1 x *]] [W1*H1+B1 Gradient[50 x 1 x *]] [W2*H1 Value[2 x 1 x *]] }
0x2e96338: {[HLast Value[2 x 1 x *]] [W2 Gradient[2 x 50]] }
0x2e96ef8: {[CrossEntropyWithSoftmax Gradient[1]] }
0x2e970b8: {[B1 Gradient[50 x 1]] [H2 Gradient[50 x 1 x *]] [HLast Gradient[2 x 1 x *]] }
0x2e97278: {[W2*H1 Gradient[2 x 1 x *]] }
0x2e97438: {[B2 Gradient[2 x 1]] }
{ W0 : [50 x 2] (gradient)
W0*features+B0 : [50 x 1 x *] }
{ H1 : [50 x 1 x *]
W0*features : [50 x *] (gradient) }
{ W0*features+B0 : [50 x 1 x *] (gradient)
W1*H1 : [50 x 1 x *] }
{ W1 : [50 x 50] (gradient)
W1*H1+B1 : [50 x 1 x *] }
{ H2 : [50 x 1 x *]
W1*H1 : [50 x 1 x *] (gradient) }
{ B0 : [50 x 1] (gradient)
H1 : [50 x 1 x *] (gradient)
W1*H1+B1 : [50 x 1 x *] (gradient)
W2*H1 : [2 x 1 x *] }
{ HLast : [2 x 1 x *]
W2 : [2 x 50] (gradient) }
{ B1 : [50 x 1] (gradient)
H2 : [50 x 1 x *] (gradient)
HLast : [2 x 1 x *] (gradient) }
05/03/2016 15:21:15: Precomputing --> 3 PreCompute nodes found.
08/16/2016 10:51:35: Training 2802 parameters in 6 out of 6 parameter tensors and 15 nodes with gradient:
05/03/2016 15:21:15: MeanOfFeatures = Mean()
05/03/2016 15:21:15: InvStdOfFeatures = InvStdDev()
05/03/2016 15:21:15: Prior = Mean()
05/03/2016 15:21:17: Precomputing --> Completed.
08/16/2016 10:51:35: Node 'B0' (LearnableParameter operation) : [50 x 1]
08/16/2016 10:51:35: Node 'B1' (LearnableParameter operation) : [50 x 1]
08/16/2016 10:51:35: Node 'B2' (LearnableParameter operation) : [2 x 1]
08/16/2016 10:51:35: Node 'W0' (LearnableParameter operation) : [50 x 2]
08/16/2016 10:51:35: Node 'W1' (LearnableParameter operation) : [50 x 50]
08/16/2016 10:51:35: Node 'W2' (LearnableParameter operation) : [2 x 50]
05/03/2016 15:21:17: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
08/16/2016 10:51:35: Precomputing --> 3 PreCompute nodes found.
05/03/2016 15:21:17: Starting minibatch loop.
05/03/2016 15:21:17: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.69966235 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0806s; samplesPerSecond = 3103.4
05/03/2016 15:21:17: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.70639648 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0489s; samplesPerSecond = 5107.5
05/03/2016 15:21:17: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.70470264 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0598s; samplesPerSecond = 4180.0
05/03/2016 15:21:17: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.69813501 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0581s; samplesPerSecond = 4306.3
05/03/2016 15:21:17: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.73551416 * 250; EvalErrorPrediction = 0.57600000 * 250; time = 0.0618s; samplesPerSecond = 4045.4
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72432324 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0579s; samplesPerSecond = 4314.7
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.73327588 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.2699s; samplesPerSecond = 926.3
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.70092627 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0620s; samplesPerSecond = 4035.0
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.72354980 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0826s; samplesPerSecond = 3027.2
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.72148096 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0811s; samplesPerSecond = 3082.2
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.69814941 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0895s; samplesPerSecond = 2793.1
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.70699121 * 250; EvalErrorPrediction = 0.54800000 * 250; time = 0.0482s; samplesPerSecond = 5187.9
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.69898437 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0567s; samplesPerSecond = 4408.3
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.71712695 * 250; EvalErrorPrediction = 0.54000000 * 250; time = 0.0586s; samplesPerSecond = 4266.7
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.69470703 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0546s; samplesPerSecond = 4575.3
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.71375879 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0640s; samplesPerSecond = 3907.4
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70381641 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0756s; samplesPerSecond = 3307.9
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.71748633 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0598s; samplesPerSecond = 4178.1
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71863281 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0813s; samplesPerSecond = 3075.3
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.70715234 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0811s; samplesPerSecond = 3082.9
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.70401074 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0673s; samplesPerSecond = 3717.1
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70599414 * 250; EvalErrorPrediction = 0.48400000 * 250; time = 0.0819s; samplesPerSecond = 3052.5
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69628711 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0909s; samplesPerSecond = 2749.3
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.75920898 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0752s; samplesPerSecond = 3323.1
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.70542578 * 250; EvalErrorPrediction = 0.43600000 * 250; time = 0.0734s; samplesPerSecond = 3406.2
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.70643945 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0869s; samplesPerSecond = 2875.4
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.72481641 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0893s; samplesPerSecond = 2798.7
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.71133594 * 250; EvalErrorPrediction = 0.55600000 * 250; time = 0.0814s; samplesPerSecond = 3072.2
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.68605664 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0812s; samplesPerSecond = 3077.4
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.69535352 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0895s; samplesPerSecond = 2792.1
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.68741797 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0831s; samplesPerSecond = 3008.7
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.67916406 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0818s; samplesPerSecond = 3056.5
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.67841992 * 250; EvalErrorPrediction = 0.44800000 * 250; time = 0.2681s; samplesPerSecond = 932.5
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.68038477 * 250; EvalErrorPrediction = 0.49200000 * 250; time = 0.0513s; samplesPerSecond = 4869.4
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.61937109 * 250; EvalErrorPrediction = 0.30400000 * 250; time = 0.0680s; samplesPerSecond = 3678.3
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.57844141 * 250; EvalErrorPrediction = 0.27200000 * 250; time = 0.0758s; samplesPerSecond = 3296.3
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.49124023 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0664s; samplesPerSecond = 3763.4
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.39071289 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0505s; samplesPerSecond = 4955.3
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.27650586 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0515s; samplesPerSecond = 4855.7
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.26430078 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0517s; samplesPerSecond = 4834.4
05/03/2016 15:21:20: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.66664150 * 10000; EvalErrorPrediction = 0.44430000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=3.21314s
05/03/2016 15:21:20: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu/Models/simple.dnn.1'
08/16/2016 10:51:35: MeanOfFeatures = Mean()
08/16/2016 10:51:35: InvStdOfFeatures = InvStdDev()
08/16/2016 10:51:35: Prior = Mean()
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
05/03/2016 15:21:20: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
05/03/2016 15:21:20: Starting minibatch loop.
05/03/2016 15:21:20: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.20732678 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0782s; samplesPerSecond = 3196.0
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.19684015 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0812s; samplesPerSecond = 3079.4
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.16083588 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0796s; samplesPerSecond = 3141.3
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.13558752 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0811s; samplesPerSecond = 3083.5
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.17992950 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0814s; samplesPerSecond = 3070.9
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.17858063 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0812s; samplesPerSecond = 3079.3
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.16847546 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0688s; samplesPerSecond = 3631.6
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16359399 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0547s; samplesPerSecond = 4572.7
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.19534705 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0521s; samplesPerSecond = 4796.2
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.19363660 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0758s; samplesPerSecond = 3297.5
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.12703638 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0682s; samplesPerSecond = 3667.7
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.18622827 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0576s; samplesPerSecond = 4344.0
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.11595044 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0599s; samplesPerSecond = 4171.2
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16689380 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0650s; samplesPerSecond = 3845.2
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.15822559 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0631s; samplesPerSecond = 3964.2
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.18381909 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0638s; samplesPerSecond = 3920.5
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.18274048 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0642s; samplesPerSecond = 3893.2
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18638428 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0564s; samplesPerSecond = 4431.5
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.20111572 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0528s; samplesPerSecond = 4733.8
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.13185034 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0504s; samplesPerSecond = 4962.1
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13692554 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0559s; samplesPerSecond = 4468.8
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.15396802 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0672s; samplesPerSecond = 3719.4
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.15347241 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0818s; samplesPerSecond = 3057.6
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14583887 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.2662s; samplesPerSecond = 939.1
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.12333276 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0738s; samplesPerSecond = 3389.0
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.13958154 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0778s; samplesPerSecond = 3211.3
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12539844 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0772s; samplesPerSecond = 3239.1
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.19014404 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0475s; samplesPerSecond = 5259.1
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.17959521 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0780s; samplesPerSecond = 3206.4
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.18899121 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0469s; samplesPerSecond = 5333.6
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17525586 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0625s; samplesPerSecond = 4003.1
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.14735645 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0940s; samplesPerSecond = 2658.9
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.13705518 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0543s; samplesPerSecond = 4600.2
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.13610693 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0752s; samplesPerSecond = 3324.2
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13555811 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0583s; samplesPerSecond = 4291.1
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.14883594 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0598s; samplesPerSecond = 4180.7
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.14724707 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0599s; samplesPerSecond = 4172.4
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.13130469 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0664s; samplesPerSecond = 3764.2
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.19636084 * 250; EvalErrorPrediction = 0.11600000 * 250; time = 0.0644s; samplesPerSecond = 3884.1
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15681836 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0651s; samplesPerSecond = 3841.0
05/03/2016 15:21:23: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.16173864 * 10000; EvalErrorPrediction = 0.07520000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=2.87283s
05/03/2016 15:21:23: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu/Models/simple.dnn.2'
05/03/2016 15:21:23: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
05/03/2016 15:21:23: Starting minibatch loop.
05/03/2016 15:21:23: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.18214960 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0604s; samplesPerSecond = 4138.7
05/03/2016 15:21:23: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.13526825 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0622s; samplesPerSecond = 4020.6
05/03/2016 15:21:23: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14344995 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0640s; samplesPerSecond = 3906.0
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.12557471 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0628s; samplesPerSecond = 3978.7
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.17627924 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0639s; samplesPerSecond = 3914.6
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.17585291 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0644s; samplesPerSecond = 3884.2
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.14716791 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0628s; samplesPerSecond = 3979.1
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16757751 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0643s; samplesPerSecond = 3885.5
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.10314917 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0642s; samplesPerSecond = 3895.3
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.20322217 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0650s; samplesPerSecond = 3848.0
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.16604797 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0642s; samplesPerSecond = 3892.3
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.15105725 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0651s; samplesPerSecond = 3839.4
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.19206934 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0640s; samplesPerSecond = 3903.9
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13667065 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.2688s; samplesPerSecond = 930.0
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.20713037 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0472s; samplesPerSecond = 5299.3
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.12862158 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0625s; samplesPerSecond = 3998.5
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17174683 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0465s; samplesPerSecond = 5381.7
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16493628 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0526s; samplesPerSecond = 4753.8
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.14843726 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0505s; samplesPerSecond = 4952.5
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.12574292 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0505s; samplesPerSecond = 4951.4
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13455151 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0614s; samplesPerSecond = 4072.8
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.16762988 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0495s; samplesPerSecond = 5055.0
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.22347461 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0523s; samplesPerSecond = 4780.1
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.18213623 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0542s; samplesPerSecond = 4611.6
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.19970923 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0539s; samplesPerSecond = 4638.8
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.22695947 * 250; EvalErrorPrediction = 0.12800000 * 250; time = 0.0542s; samplesPerSecond = 4609.7
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12664502 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0541s; samplesPerSecond = 4625.3
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.15838037 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0538s; samplesPerSecond = 4648.8
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.11555566 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0581s; samplesPerSecond = 4305.4
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14157520 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0544s; samplesPerSecond = 4595.2
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18558350 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0541s; samplesPerSecond = 4622.4
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.15083594 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0540s; samplesPerSecond = 4632.9
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.12831787 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0541s; samplesPerSecond = 4624.1
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.17656494 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0545s; samplesPerSecond = 4587.6
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.14956396 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0625s; samplesPerSecond = 4000.3
05/03/2016 15:21:26: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.11451660 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0496s; samplesPerSecond = 5040.3
05/03/2016 15:21:26: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16392383 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0496s; samplesPerSecond = 5036.0
05/03/2016 15:21:26: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14811230 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0505s; samplesPerSecond = 4955.0
05/03/2016 15:21:26: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.16003760 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0588s; samplesPerSecond = 4255.2
05/03/2016 15:21:26: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.17969775 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0482s; samplesPerSecond = 5185.4
05/03/2016 15:21:26: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15964808 * 10000; EvalErrorPrediction = 0.07750000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=2.49695s
05/03/2016 15:21:26: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu/Models/simple.dnn'
05/03/2016 15:21:26: CNTKCommandTrainEnd: Simple_Demo_Train
05/03/2016 15:21:26: Action "train" complete.
08/16/2016 10:51:35: Precomputing --> Completed.
05/03/2016 15:21:26: ##############################################################################
05/03/2016 15:21:26: # #
05/03/2016 15:21:26: # Action "test" #
05/03/2016 15:21:26: # #
05/03/2016 15:21:26: ##############################################################################
08/16/2016 10:51:35: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 10:51:35: Starting minibatch loop.
08/16/2016 10:51:35: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.69846765 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0606s; samplesPerSecond = 4125.1
08/16/2016 10:51:35: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.76129944 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0177s; samplesPerSecond = 14150.7
08/16/2016 10:51:35: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.72963208 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0497s; samplesPerSecond = 5028.9
08/16/2016 10:51:35: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.74041528 * 250; EvalErrorPrediction = 0.56800000 * 250; time = 0.0333s; samplesPerSecond = 7501.9
08/16/2016 10:51:35: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70611035 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0223s; samplesPerSecond = 11225.9
08/16/2016 10:51:35: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.74740723 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0168s; samplesPerSecond = 14876.5
08/16/2016 10:51:35: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.75085840 * 250; EvalErrorPrediction = 0.40400000 * 250; time = 0.0169s; samplesPerSecond = 14758.8
08/16/2016 10:51:35: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.78210742 * 250; EvalErrorPrediction = 0.48400000 * 250; time = 0.0170s; samplesPerSecond = 14729.3
08/16/2016 10:51:35: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.70286572 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0263s; samplesPerSecond = 9508.6
08/16/2016 10:51:35: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.69580322 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0247s; samplesPerSecond = 10135.4
08/16/2016 10:51:35: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.70703613 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0170s; samplesPerSecond = 14700.7
08/16/2016 10:51:35: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.74512988 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0169s; samplesPerSecond = 14772.8
08/16/2016 10:51:35: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.70837598 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0168s; samplesPerSecond = 14850.9
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.69913086 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0173s; samplesPerSecond = 14456.7
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70321875 * 250; EvalErrorPrediction = 0.53600000 * 250; time = 0.0168s; samplesPerSecond = 14899.6
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.69290918 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0198s; samplesPerSecond = 12597.0
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.74415527 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0141s; samplesPerSecond = 17694.1
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.73745117 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0172s; samplesPerSecond = 14513.8
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71849609 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0200s; samplesPerSecond = 12484.4
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.71476953 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0284s; samplesPerSecond = 8813.1
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.69918457 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0212s; samplesPerSecond = 11786.9
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.69749512 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0243s; samplesPerSecond = 10267.4
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.70658887 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0140s; samplesPerSecond = 17871.2
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.69760742 * 250; EvalErrorPrediction = 0.56800000 * 250; time = 0.0170s; samplesPerSecond = 14747.5
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69499219 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0169s; samplesPerSecond = 14768.4
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69291211 * 250; EvalErrorPrediction = 0.49200000 * 250; time = 0.0294s; samplesPerSecond = 8497.9
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.70718945 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0336s; samplesPerSecond = 7433.2
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69039453 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0157s; samplesPerSecond = 15957.1
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.70257422 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0222s; samplesPerSecond = 11244.0
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.71058984 * 250; EvalErrorPrediction = 0.42800000 * 250; time = 0.0151s; samplesPerSecond = 16568.4
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.69296875 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0177s; samplesPerSecond = 14113.1
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.69641211 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0251s; samplesPerSecond = 9974.1
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69531055 * 250; EvalErrorPrediction = 0.49200000 * 250; time = 0.0164s; samplesPerSecond = 15214.2
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.69090430 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0172s; samplesPerSecond = 14501.2
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.68339063 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0170s; samplesPerSecond = 14691.2
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.67383984 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0170s; samplesPerSecond = 14691.2
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.65904102 * 250; EvalErrorPrediction = 0.26400000 * 250; time = 0.0239s; samplesPerSecond = 10454.6
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.64259766 * 250; EvalErrorPrediction = 0.36000000 * 250; time = 0.0186s; samplesPerSecond = 13465.5
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.60433398 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0196s; samplesPerSecond = 12787.7
08/16/2016 10:51:36: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.56497070 * 250; EvalErrorPrediction = 0.11600000 * 250; time = 0.0142s; samplesPerSecond = 17556.2
08/16/2016 10:51:36: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.70222344 * 10000; EvalErrorPrediction = 0.46820000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=0.873074s
08/16/2016 10:51:36: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu/Models/simple.dnn.1'
08/16/2016 10:51:36: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 1: frames [10000..20000] (first sequence at sample 10000), data subset 0 of 1
08/16/2016 10:51:36: Starting minibatch loop.
08/16/2016 10:51:36: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.50663568 * 250; EvalErrorPrediction = 0.15200000 * 250; time = 0.0194s; samplesPerSecond = 12857.4
08/16/2016 10:51:36: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.45398022 * 250; EvalErrorPrediction = 0.12000000 * 250; time = 0.0204s; samplesPerSecond = 12253.7
08/16/2016 10:51:36: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.37457013 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0168s; samplesPerSecond = 14862.4
08/16/2016 10:51:36: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.34124719 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0167s; samplesPerSecond = 14992.5
08/16/2016 10:51:36: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.29298340 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0238s; samplesPerSecond = 10498.0
08/16/2016 10:51:36: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.27701599 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0332s; samplesPerSecond = 7519.0
08/16/2016 10:51:36: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.25128760 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0490s; samplesPerSecond = 5104.9
08/16/2016 10:51:36: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.21941431 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0315s; samplesPerSecond = 7933.5
08/16/2016 10:51:36: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.22864038 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0145s; samplesPerSecond = 17220.0
08/16/2016 10:51:36: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.20533081 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0193s; samplesPerSecond = 12942.6
08/16/2016 10:51:36: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.18820288 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0197s; samplesPerSecond = 12660.2
08/16/2016 10:51:36: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.17363208 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0207s; samplesPerSecond = 12054.0
08/16/2016 10:51:36: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.18979712 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0400s; samplesPerSecond = 6257.7
08/16/2016 10:51:36: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.18266016 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0167s; samplesPerSecond = 15002.4
08/16/2016 10:51:36: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.18476245 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0167s; samplesPerSecond = 14997.0
08/16/2016 10:51:36: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.17951782 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0381s; samplesPerSecond = 6554.3
08/16/2016 10:51:36: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.18190771 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0495s; samplesPerSecond = 5048.7
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.21016113 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0245s; samplesPerSecond = 10195.3
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.16539111 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0166s; samplesPerSecond = 15091.2
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.17295947 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0166s; samplesPerSecond = 15059.3
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13286475 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0134s; samplesPerSecond = 18714.0
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.17238135 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0370s; samplesPerSecond = 6753.5
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.12533740 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0166s; samplesPerSecond = 15029.5
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.21608838 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0306s; samplesPerSecond = 8160.1
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.21742236 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0164s; samplesPerSecond = 15279.3
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.17923486 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0174s; samplesPerSecond = 14330.8
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.16031250 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0165s; samplesPerSecond = 15119.4
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.13486084 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0199s; samplesPerSecond = 12574.8
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.16416699 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0162s; samplesPerSecond = 15386.5
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14665625 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0172s; samplesPerSecond = 14556.9
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.14992627 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0190s; samplesPerSecond = 13191.2
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.12446338 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0165s; samplesPerSecond = 15123.1
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.16560303 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0169s; samplesPerSecond = 14759.7
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.14359863 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0163s; samplesPerSecond = 15295.2
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13723389 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0165s; samplesPerSecond = 15156.1
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.14104785 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0206s; samplesPerSecond = 12144.8
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.15801807 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0259s; samplesPerSecond = 9664.1
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.16213721 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0165s; samplesPerSecond = 15138.7
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.13545947 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0167s; samplesPerSecond = 15003.3
08/16/2016 10:51:37: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15420410 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0197s; samplesPerSecond = 12690.4
08/16/2016 10:51:37: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.20252788 * 10000; EvalErrorPrediction = 0.07960000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.894097s
08/16/2016 10:51:37: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu/Models/simple.dnn.2'
08/16/2016 10:51:37: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 2: frames [20000..30000] (first sequence at sample 20000), data subset 0 of 1
08/16/2016 10:51:37: Starting minibatch loop.
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.18365215 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0160s; samplesPerSecond = 15637.7
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.12863173 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0195s; samplesPerSecond = 12842.9
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.17736676 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0134s; samplesPerSecond = 18714.0
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.14110736 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0137s; samplesPerSecond = 18288.2
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.16524695 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0221s; samplesPerSecond = 11297.4
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.19137244 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0239s; samplesPerSecond = 10451.5
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.12233600 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0179s; samplesPerSecond = 13986.0
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16686743 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0229s; samplesPerSecond = 10916.1
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.12411963 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0179s; samplesPerSecond = 13940.8
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.19959802 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0211s; samplesPerSecond = 11875.4
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.14190784 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0180s; samplesPerSecond = 13927.6
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.12357324 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0188s; samplesPerSecond = 13270.3
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.16388794 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0180s; samplesPerSecond = 13866.5
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.19857666 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0179s; samplesPerSecond = 13944.7
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.17161865 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0541s; samplesPerSecond = 4625.3
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.13291455 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0204s; samplesPerSecond = 12276.6
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.14355762 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0132s; samplesPerSecond = 18926.5
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.20757080 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0164s; samplesPerSecond = 15286.8
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.19119531 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0288s; samplesPerSecond = 8688.4
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.14750488 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0101s; samplesPerSecond = 24781.9
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15454297 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0204s; samplesPerSecond = 12226.7
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.13628662 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0134s; samplesPerSecond = 18693.0
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.17363599 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0236s; samplesPerSecond = 10598.6
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14413379 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0100s; samplesPerSecond = 24942.6
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.13718579 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0195s; samplesPerSecond = 12810.7
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.14220020 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0134s; samplesPerSecond = 18648.4
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.16849121 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0164s; samplesPerSecond = 15271.8
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.18580225 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0166s; samplesPerSecond = 15018.6
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.16339307 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0223s; samplesPerSecond = 11232.4
08/16/2016 10:51:37: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.15557813 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0133s; samplesPerSecond = 18785.7
08/16/2016 10:51:38: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18845215 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0163s; samplesPerSecond = 15311.1
08/16/2016 10:51:38: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13286035 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0170s; samplesPerSecond = 14677.4
08/16/2016 10:51:38: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.14664014 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0164s; samplesPerSecond = 15248.6
08/16/2016 10:51:38: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.13965381 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0143s; samplesPerSecond = 17474.0
08/16/2016 10:51:38: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.20020557 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0196s; samplesPerSecond = 12779.2
08/16/2016 10:51:38: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.12576953 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0197s; samplesPerSecond = 12707.1
08/16/2016 10:51:38: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.18509766 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0422s; samplesPerSecond = 5925.9
08/16/2016 10:51:38: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15134277 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0391s; samplesPerSecond = 6392.4
08/16/2016 10:51:38: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.11977588 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0355s; samplesPerSecond = 7032.9
08/16/2016 10:51:38: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.13046729 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0726s; samplesPerSecond = 3443.6
08/16/2016 10:51:38: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15760303 * 10000; EvalErrorPrediction = 0.07280000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.876577s
08/16/2016 10:51:38: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu/Models/simple.dnn'
08/16/2016 10:51:38: CNTKCommandTrainEnd: Simple_Demo_Train
08/16/2016 10:51:38: Action "train" complete.
08/16/2016 10:51:38: ##############################################################################
08/16/2016 10:51:38: # #
08/16/2016 10:51:38: # Action "test" #
08/16/2016 10:51:38: # #
08/16/2016 10:51:38: ##############################################################################
Post-processing network...
@ -659,43 +687,23 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 25 matrices, 2 are shared as 1, and 23 are not shared.
(nil): {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalErrorPrediction Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
0x2e83eb8: {[W2 Value[2 x 50]] }
0x2e87ac8: {[MVNormalizedFeatures Value[2 x *1]] }
0x2e87e78: {[W0*features Value[50 x *1]] }
0x2e88038: {[W0*features+B0 Value[50 x 1 x *1]] }
0x2e881f8: {[H1 Value[50 x 1 x *1]] }
0x2e883b8: {[W1*H1 Value[50 x 1 x *1]] }
0x2e88578: {[W1*H1+B1 Value[50 x 1 x *1]] }
0x2e88738: {[H2 Value[50 x 1 x *1]] }
0x2e888f8: {[W2*H1 Value[2 x 1 x *1]] }
0x2e88ab8: {[HLast Value[2 x 1 x *1]] }
0x2e8cec8: {[B1 Value[50 x 1]] }
0x2e8d298: {[B2 Value[2 x 1]] }
0x2e8f2c8: {[labels Value[2 x *1]] }
0x2e8f8e8: {[MeanOfFeatures Value[2]] }
0x2e91598: {[EvalErrorPrediction Value[1]] }
0x2e916f8: {[CrossEntropyWithSoftmax Value[1]] }
0x2e91bb8: {[LogOfPrior Value[2]] }
0x2e93758: {[B0 Value[50 x 1]] }
0x2e93da8: {[InvStdOfFeatures Value[2]] }
0x2e94fe8: {[Prior Value[2]] }
0x2e95508: {[W0 Value[50 x 2]] }
0x2e985f8: {[W1 Value[50 x 50]] }
0x2e99178: {[features Value[2 x *1]] }
{ PosteriorProb : [2 x 1 x *1]
ScaledLogLikelihood : [2 x 1 x *1] }
05/03/2016 15:21:26: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.05970149 * 603; CrossEntropyWithSoftmax = 0.13085309 * 603; perplexity = 1.13980032
BlockRandomizer::StartEpoch: epoch 0: frames [0..603] (first sequence at sample 0), data subset 0 of 1
08/16/2016 10:51:38: Minibatch[1-1]: EvalErrorPrediction = 0.04975124 * 603; CrossEntropyWithSoftmax = 0.10807832 * 603
08/16/2016 10:51:38: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.04975124 * 603; CrossEntropyWithSoftmax = 0.10807832 * 603; perplexity = 1.11413500
05/03/2016 15:21:26: Action "test" complete.
08/16/2016 10:51:38: Action "test" complete.
05/03/2016 15:21:26: ##############################################################################
05/03/2016 15:21:26: # #
05/03/2016 15:21:26: # Action "write" #
05/03/2016 15:21:26: # #
05/03/2016 15:21:26: ##############################################################################
08/16/2016 10:51:38: ##############################################################################
08/16/2016 10:51:38: # #
08/16/2016 10:51:38: # Action "write" #
08/16/2016 10:51:38: # #
08/16/2016 10:51:38: ##############################################################################
Post-processing network...
@ -753,36 +761,16 @@ Post-processing network complete.
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 25 matrices, 3 are shared as 1, and 22 are not shared.
(nil): {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [CrossEntropyWithSoftmax Value[1]] [EvalErrorPrediction Gradient[1]] [EvalErrorPrediction Value[1]] [H1 Gradient[50 x 1 x *2]] [H2 Gradient[50 x 1 x *2]] [HLast Gradient[2 x 1 x *2]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *2]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *2]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *2]] [ScaledLogLikelihood Value[2 x 1 x *2]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *2]] [W0*features+B0 Gradient[50 x 1 x *2]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *2]] [W1*H1+B1 Gradient[50 x 1 x *2]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *2]] [features Gradient[2 x *2]] [labels Gradient[2 x *2]] }
0x2e82858: {[PosteriorProb Value[2 x 1 x *2]] }
0x2e83b58: {[labels Value[2 x *2]] }
0x2e84318: {[MeanOfFeatures Value[2]] }
0x2e87878: {[LogOfPrior Value[2]] }
0x2e89098: {[MVNormalizedFeatures Value[2 x *2]] }
0x2e89448: {[W0*features Value[50 x *2]] }
0x2e89608: {[W0*features+B0 Value[50 x 1 x *2]] }
0x2e897c8: {[H1 Value[50 x 1 x *2]] }
0x2e89988: {[W1*H1 Value[50 x 1 x *2]] }
0x2e89b48: {[W1*H1+B1 Value[50 x 1 x *2]] }
0x2e89d08: {[H2 Value[50 x 1 x *2]] }
0x2e89ec8: {[W2*H1 Value[2 x 1 x *2]] }
0x2e8a088: {[HLast Value[2 x 1 x *2]] }
0x2e8f7c8: {[Prior Value[2]] }
0x2e8fe88: {[W0 Value[50 x 2]] }
0x2e93fa8: {[B0 Value[50 x 1]] }
0x2e94378: {[B1 Value[50 x 1]] }
0x2e94a78: {[B2 Value[2 x 1]] }
0x2e953f8: {[features Value[2 x *2]] }
0x2e96148: {[W1 Value[50 x 50]] }
0x2e96a38: {[W2 Value[2 x 50]] }
0x2e981b8: {[InvStdOfFeatures Value[2]] }
{ CrossEntropyWithSoftmax : [1]
EvalErrorPrediction : [1]
ScaledLogLikelihood : [2 x 1 x *2] }
Minibatch[0]: ActualMBSize = 603
Written to /tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu/SimpleOutput*
Written to /tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_cpu/SimpleOutput*
Total Samples Evaluated = 603
05/03/2016 15:21:26: Action "write" complete.
08/16/2016 10:51:38: Action "write" complete.
05/03/2016 15:21:26: __COMPLETED__
08/16/2016 10:51:38: __COMPLETED__

Просмотреть файл

@ -1,48 +1,61 @@
=== Running /home/alrezni/src/cntk_git/build/release/bin/cntk configFile=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/Simple/../Config/Simple.cntk currentDirectory=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data RunDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu DataDir=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data ConfigDir=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/Simple/../Config OutputDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu DeviceId=0 timestamping=true Simple_Demo_Train=[SGD=[maxEpochs=3]]
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 264172964 kB
-------------------------------------------------------------------
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config/Simple.cntk currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu DeviceId=0 timestamping=true Simple_Demo_Train=[SGD=[maxEpochs=3]]
-------------------------------------------------------------------
Build info:
Built time: May 3 2016 15:08:09
Last modified date: Tue Apr 5 16:01:37 2016
Built time: Aug 16 2016 09:41:56
Last modified date: Fri Aug 12 07:32:43 2016
Build type: release
Build target: GPU
With 1bit-SGD: yes
Math lib: acml
CUDA_PATH: /usr/local/cuda-7.0
With 1bit-SGD: no
Math lib: mkl
CUDA_PATH: /usr/local/cuda-7.5
CUB_PATH: /usr/local/cub-1.4.1
CUDNN_PATH: /usr/local/cudnn-4.0
Build Branch: alrezni/examples_text
Build SHA1: e80dab7d66009531806ce70b4842146e0da00516
Built by alrezni on atleneu04
Build Path: /home/alrezni/src/cntk_git
Build Branch: HEAD
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by philly on f67b30a647de
Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
-------------------------------------------------------------------
Changed current directory to /home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
05/03/2016 15:21:27: -------------------------------------------------------------------
05/03/2016 15:21:27: Build info:
Changed current directory to /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
08/16/2016 10:51:39: -------------------------------------------------------------------
08/16/2016 10:51:39: Build info:
05/03/2016 15:21:27: Built time: May 3 2016 15:08:09
05/03/2016 15:21:27: Last modified date: Tue Apr 5 16:01:37 2016
05/03/2016 15:21:27: Build type: release
05/03/2016 15:21:27: Build target: GPU
05/03/2016 15:21:27: With 1bit-SGD: yes
05/03/2016 15:21:27: Math lib: acml
05/03/2016 15:21:27: CUDA_PATH: /usr/local/cuda-7.0
05/03/2016 15:21:27: CUB_PATH: /usr/local/cub-1.4.1
05/03/2016 15:21:27: CUDNN_PATH: /usr/local/cudnn-4.0
05/03/2016 15:21:27: Build Branch: alrezni/examples_text
05/03/2016 15:21:27: Build SHA1: e80dab7d66009531806ce70b4842146e0da00516
05/03/2016 15:21:27: Built by alrezni on atleneu04
05/03/2016 15:21:27: Build Path: /home/alrezni/src/cntk_git
05/03/2016 15:21:27: -------------------------------------------------------------------
08/16/2016 10:51:39: Built time: Aug 16 2016 09:41:56
08/16/2016 10:51:39: Last modified date: Fri Aug 12 07:32:43 2016
08/16/2016 10:51:39: Build type: release
08/16/2016 10:51:39: Build target: GPU
08/16/2016 10:51:39: With 1bit-SGD: no
08/16/2016 10:51:39: Math lib: mkl
08/16/2016 10:51:39: CUDA_PATH: /usr/local/cuda-7.5
08/16/2016 10:51:39: CUB_PATH: /usr/local/cub-1.4.1
08/16/2016 10:51:39: CUDNN_PATH: /usr/local/cudnn-4.0
08/16/2016 10:51:39: Build Branch: HEAD
08/16/2016 10:51:39: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 10:51:39: Built by philly on f67b30a647de
08/16/2016 10:51:39: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
08/16/2016 10:51:39: -------------------------------------------------------------------
08/16/2016 10:51:40: -------------------------------------------------------------------
08/16/2016 10:51:40: GPU info:
05/03/2016 15:21:27: Running on localhost at 2016/05/03 15:21:27
05/03/2016 15:21:27: Command line:
/home/alrezni/src/cntk_git/build/release/bin/cntk configFile=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/Simple/../Config/Simple.cntk currentDirectory=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data RunDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu DataDir=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data ConfigDir=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/Simple/../Config OutputDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu DeviceId=0 timestamping=true Simple_Demo_Train=[SGD=[maxEpochs=3]]
08/16/2016 10:51:40: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:51:40: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:51:40: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:51:40: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:51:40: -------------------------------------------------------------------
08/16/2016 10:51:40: Running on localhost at 2016/08/16 10:51:40
08/16/2016 10:51:40: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config/Simple.cntk currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu DeviceId=0 timestamping=true Simple_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 15:21:27: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/03/2016 15:21:27: RootDir = ".."
08/16/2016 10:51:40: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:51:40: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
@ -129,28 +142,28 @@ labelMappingFile = "$DataDir$/SimpleMapping.txt"
sequenceEpilogue = "\t// %s\n"
]
]
currentDirectory=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
RunDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu
DataDir=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
ConfigDir=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/Simple/../Config
OutputDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu
currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu
DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config
OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu
DeviceId=0
timestamping=true
Simple_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 15:21:27: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:51:40: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/03/2016 15:21:27: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/03/2016 15:21:27: RootDir = ".."
08/16/2016 10:51:40: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:51:40: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu/Models"
ModelDir = "/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/Models"
deviceId = -1
command = Simple_Demo_Train:Simple_Demo_Test:Simple_Demo_Output
precision = "float"
traceLevel = 1
modelPath = "/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn"
modelPath = "/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn"
outputNodeNames = ScaledLogLikelihood
Simple_Demo_Train = [
action = "train"
@ -174,7 +187,7 @@ Simple_Demo_Train = [
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTrain_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTrain_cntk_text.txt"
input = [
features = [
dim = 2
@ -191,7 +204,7 @@ Simple_Demo_Test = [
action = "test"
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -208,7 +221,7 @@ Simple_Demo_Output=[
action = "write"
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -221,42 +234,42 @@ dim = 2
]
]
outputNodeNames = PosteriorProb : labels
outputPath = "/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu/SimpleOutput"
outputPath = "/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/SimpleOutput"
format = [
type = "category"
labelMappingFile = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleMapping.txt"
labelMappingFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleMapping.txt"
sequenceEpilogue = "\t// %s\n"
]
]
currentDirectory=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
RunDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu
DataDir=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
ConfigDir=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/Simple/../Config
OutputDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu
currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu
DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config
OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu
DeviceId=0
timestamping=true
Simple_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 15:21:27: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:51:40: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 15:21:27: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:51:40: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: Simple.cntk:command=Simple_Demo_Train:Simple_Demo_Test:Simple_Demo_Output
configparameters: Simple.cntk:ConfigDir=/home/alrezni/src/cntk_git/Tests/EndToEndTests/CNTKTextFormatReader/Examples/Other/Simple2d/Simple/../Config
configparameters: Simple.cntk:currentDirectory=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
configparameters: Simple.cntk:DataDir=/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data
configparameters: Simple.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Other/Simple2d/Simple/../../../../../../Examples/Other/Simple2d/Config
configparameters: Simple.cntk:currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
configparameters: Simple.cntk:DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data
configparameters: Simple.cntk:deviceId=0
configparameters: Simple.cntk:ModelDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu/Models
configparameters: Simple.cntk:modelPath=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn
configparameters: Simple.cntk:OutputDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu
configparameters: Simple.cntk:ModelDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/Models
configparameters: Simple.cntk:modelPath=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn
configparameters: Simple.cntk:OutputDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu
configparameters: Simple.cntk:outputNodeNames=ScaledLogLikelihood
configparameters: Simple.cntk:precision=float
configparameters: Simple.cntk:RootDir=..
configparameters: Simple.cntk:RunDir=/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu
configparameters: Simple.cntk:RunDir=/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu
configparameters: Simple.cntk:Simple_Demo_Output=[
action = "write"
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -269,10 +282,10 @@ dim = 2
]
]
outputNodeNames = PosteriorProb : labels
outputPath = "/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu/SimpleOutput"
outputPath = "/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/SimpleOutput"
format = [
type = "category"
labelMappingFile = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleMapping.txt"
labelMappingFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleMapping.txt"
sequenceEpilogue = "\t// %s\n"
]
]
@ -281,7 +294,7 @@ configparameters: Simple.cntk:Simple_Demo_Test=[
action = "test"
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -317,7 +330,7 @@ configparameters: Simple.cntk:Simple_Demo_Train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "/home/alrezni/src/cntk_git/Examples/Other/Simple2d/Data/SimpleDataTrain_cntk_text.txt"
file = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Other/Simple2d/Data/SimpleDataTrain_cntk_text.txt"
input = [
features = [
dim = 2
@ -333,24 +346,36 @@ dim = 2
configparameters: Simple.cntk:timestamping=true
configparameters: Simple.cntk:traceLevel=1
05/03/2016 15:21:27: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 15:21:27: Commands: Simple_Demo_Train Simple_Demo_Test Simple_Demo_Output
05/03/2016 15:21:27: Precision = "float"
05/03/2016 15:21:27: CNTKModelPath: /tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn
05/03/2016 15:21:27: CNTKCommandTrainInfo: Simple_Demo_Train : 3
05/03/2016 15:21:27: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
08/16/2016 10:51:40: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:51:40: Commands: Simple_Demo_Train Simple_Demo_Test Simple_Demo_Output
08/16/2016 10:51:40: Precision = "float"
08/16/2016 10:51:40: CNTKModelPath: /tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn
08/16/2016 10:51:40: CNTKCommandTrainInfo: Simple_Demo_Train : 3
08/16/2016 10:51:40: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
05/03/2016 15:21:27: ##############################################################################
05/03/2016 15:21:27: # #
05/03/2016 15:21:27: # Action "train" #
05/03/2016 15:21:27: # #
05/03/2016 15:21:27: ##############################################################################
08/16/2016 10:51:40: ##############################################################################
08/16/2016 10:51:40: # #
08/16/2016 10:51:40: # Action "train" #
08/16/2016 10:51:40: # #
08/16/2016 10:51:40: ##############################################################################
05/03/2016 15:21:27: CNTKCommandTrainBegin: Simple_Demo_Train
08/16/2016 10:51:40: CNTKCommandTrainBegin: Simple_Demo_Train
SimpleNetworkBuilder Using GPU 0
05/03/2016 15:21:27: Creating virgin network.
08/16/2016 10:51:40: Creating virgin network.
Node 'W0' (LearnableParameter operation): Initializing Parameter[50 x 2] <- 0.000000.
Node 'W0' (LearnableParameter operation): Initializing Parameter[50 x 2] <- uniform(seed=1, range=0.050000*1.000000, onCPU=false).
SetUniformRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4
Node 'B0' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'B0' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[50 x 50] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[50 x 50] <- uniform(seed=2, range=0.050000*1.000000, onCPU=false).
Node 'B1' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'B1' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[2 x 50] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[2 x 50] <- uniform(seed=3, range=0.050000*1.000000, onCPU=false).
Node 'B2' (LearnableParameter operation): Initializing Parameter[2 x 1] <- 0.000000.
Node 'B2' (LearnableParameter operation): Initializing Parameter[2 x 1] <- 0.000000.
Post-processing network...
@ -402,207 +427,210 @@ Validating network, final pass.
Post-processing network complete.
05/03/2016 15:21:27: Created model with 25 nodes on GPU 0.
08/16/2016 10:51:40: Created model with 25 nodes on GPU 0.
05/03/2016 15:21:27: Training criterion node(s):
05/03/2016 15:21:27: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
08/16/2016 10:51:40: Training criterion node(s):
08/16/2016 10:51:40: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
05/03/2016 15:21:27: Evaluation criterion node(s):
05/03/2016 15:21:27: EvalErrorPrediction = ErrorPrediction
08/16/2016 10:51:40: Evaluation criterion node(s):
08/16/2016 10:51:40: EvalErrorPrediction = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 40 matrices, 19 are shared as 8, and 21 are not shared.
(nil): {[EvalErrorPrediction Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
0x1ef9338: {[features Value[2 x *]] }
0x2b32ad8: {[MeanOfFeatures Value[2]] }
0x2b32fe8: {[InvStdOfFeatures Value[2]] }
0x2b33cd8: {[W0 Value[50 x 2]] }
0x3180df8: {[W1 Value[50 x 50]] }
0x3181cc8: {[B1 Value[50 x 1]] }
0x3182dc8: {[W2 Value[2 x 50]] }
0x3183868: {[B2 Value[2 x 1]] }
0x3184748: {[labels Value[2 x *]] }
0x3185898: {[Prior Value[2]] }
0x3186bd8: {[LogOfPrior Value[2]] }
0x318b378: {[H1 Value[50 x 1 x *]] [W0*features Gradient[50 x *]] }
0x318b498: {[EvalErrorPrediction Value[1]] }
0x318b798: {[ScaledLogLikelihood Value[2 x 1 x *]] }
0x318b8f8: {[CrossEntropyWithSoftmax Value[1]] }
0x3191148: {[B0 Value[50 x 1]] }
0x34d5bc8: {[W0 Gradient[50 x 2]] [W0*features+B0 Value[50 x 1 x *]] }
0x34d5dd8: {[MVNormalizedFeatures Value[2 x *]] }
0x34d60f8: {[W0*features Value[50 x *]] }
0x34d6198: {[W0*features+B0 Gradient[50 x 1 x *]] [W1*H1 Value[50 x 1 x *]] }
0x34d62f8: {[W1 Gradient[50 x 50]] [W1*H1+B1 Value[50 x 1 x *]] }
0x34d6458: {[H2 Value[50 x 1 x *]] [W1*H1 Gradient[50 x 1 x *]] }
0x34d65b8: {[B0 Gradient[50 x 1]] [H1 Gradient[50 x 1 x *]] [W1*H1+B1 Gradient[50 x 1 x *]] [W2*H1 Value[2 x 1 x *]] }
0x34d6718: {[HLast Value[2 x 1 x *]] [W2 Gradient[2 x 50]] }
0x34d7158: {[CrossEntropyWithSoftmax Gradient[1]] }
0x34d7318: {[B1 Gradient[50 x 1]] [H2 Gradient[50 x 1 x *]] [HLast Gradient[2 x 1 x *]] }
0x34d74d8: {[W2*H1 Gradient[2 x 1 x *]] }
0x34d7698: {[B2 Gradient[2 x 1]] }
{ W0 : [50 x 2] (gradient)
W0*features+B0 : [50 x 1 x *] }
{ H1 : [50 x 1 x *]
W0*features : [50 x *] (gradient) }
{ W0*features+B0 : [50 x 1 x *] (gradient)
W1*H1 : [50 x 1 x *] }
{ W1 : [50 x 50] (gradient)
W1*H1+B1 : [50 x 1 x *] }
{ H2 : [50 x 1 x *]
W1*H1 : [50 x 1 x *] (gradient) }
{ B0 : [50 x 1] (gradient)
H1 : [50 x 1 x *] (gradient)
W1*H1+B1 : [50 x 1 x *] (gradient)
W2*H1 : [2 x 1 x *] }
{ HLast : [2 x 1 x *]
W2 : [2 x 50] (gradient) }
{ B1 : [50 x 1] (gradient)
H2 : [50 x 1 x *] (gradient)
HLast : [2 x 1 x *] (gradient) }
05/03/2016 15:21:27: Precomputing --> 3 PreCompute nodes found.
08/16/2016 10:51:40: Training 2802 parameters in 6 out of 6 parameter tensors and 15 nodes with gradient:
05/03/2016 15:21:27: MeanOfFeatures = Mean()
05/03/2016 15:21:27: InvStdOfFeatures = InvStdDev()
05/03/2016 15:21:27: Prior = Mean()
05/03/2016 15:21:28: Precomputing --> Completed.
08/16/2016 10:51:40: Node 'B0' (LearnableParameter operation) : [50 x 1]
08/16/2016 10:51:40: Node 'B1' (LearnableParameter operation) : [50 x 1]
08/16/2016 10:51:40: Node 'B2' (LearnableParameter operation) : [2 x 1]
08/16/2016 10:51:40: Node 'W0' (LearnableParameter operation) : [50 x 2]
08/16/2016 10:51:40: Node 'W1' (LearnableParameter operation) : [50 x 50]
08/16/2016 10:51:40: Node 'W2' (LearnableParameter operation) : [2 x 50]
05/03/2016 15:21:28: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
08/16/2016 10:51:40: Precomputing --> 3 PreCompute nodes found.
05/03/2016 15:21:28: Starting minibatch loop.
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70004456 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0055s; samplesPerSecond = 45495.9
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.70309900 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0046s; samplesPerSecond = 54347.8
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.70606104 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0046s; samplesPerSecond = 54241.7
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.69845532 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0046s; samplesPerSecond = 54549.4
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.73496533 * 250; EvalErrorPrediction = 0.57600000 * 250; time = 0.0046s; samplesPerSecond = 54136.0
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72522827 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0046s; samplesPerSecond = 54359.6
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.73287500 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0046s; samplesPerSecond = 54466.2
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.70135547 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0046s; samplesPerSecond = 54872.7
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.72466504 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0046s; samplesPerSecond = 54194.7
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.72187500 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0046s; samplesPerSecond = 54501.9
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.69799023 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0046s; samplesPerSecond = 54788.5
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.70696387 * 250; EvalErrorPrediction = 0.54800000 * 250; time = 0.0046s; samplesPerSecond = 54371.5
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.69863965 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0046s; samplesPerSecond = 54300.6
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.71772461 * 250; EvalErrorPrediction = 0.54800000 * 250; time = 0.0046s; samplesPerSecond = 54644.8
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.69526270 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0046s; samplesPerSecond = 54525.6
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.71436426 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0046s; samplesPerSecond = 54561.3
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70399316 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0046s; samplesPerSecond = 54573.2
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.71745508 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0046s; samplesPerSecond = 54716.6
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71963184 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0046s; samplesPerSecond = 54537.5
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.70689941 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0046s; samplesPerSecond = 54336.0
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.70425098 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0046s; samplesPerSecond = 54692.6
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70622754 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0046s; samplesPerSecond = 54561.3
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69729492 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0046s; samplesPerSecond = 54537.5
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.75974219 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0046s; samplesPerSecond = 54680.7
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.70631250 * 250; EvalErrorPrediction = 0.43600000 * 250; time = 0.0046s; samplesPerSecond = 54288.8
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.70705664 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0046s; samplesPerSecond = 54561.3
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.72660352 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0046s; samplesPerSecond = 54824.6
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.71369727 * 250; EvalErrorPrediction = 0.55600000 * 250; time = 0.0046s; samplesPerSecond = 54537.5
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.68916602 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0046s; samplesPerSecond = 54371.5
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.69964844 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0046s; samplesPerSecond = 54218.2
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.69387891 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0045s; samplesPerSecond = 54969.2
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.68885742 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0046s; samplesPerSecond = 54573.2
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69388867 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0046s; samplesPerSecond = 54454.4
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.70363867 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0046s; samplesPerSecond = 54824.6
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.65449219 * 250; EvalErrorPrediction = 0.44400000 * 250; time = 0.0046s; samplesPerSecond = 54561.3
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.64607031 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0046s; samplesPerSecond = 54347.8
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.59492969 * 250; EvalErrorPrediction = 0.12400000 * 250; time = 0.0046s; samplesPerSecond = 54764.5
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.53965820 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54609.0
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.43681445 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0046s; samplesPerSecond = 54525.6
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.37407422 * 250; EvalErrorPrediction = 0.12000000 * 250; time = 0.0046s; samplesPerSecond = 54466.2
05/03/2016 15:21:28: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.68409629 * 10000; EvalErrorPrediction = 0.45780000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=0.1879s
05/03/2016 15:21:28: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn.1'
08/16/2016 10:51:40: MeanOfFeatures = Mean()
08/16/2016 10:51:40: InvStdOfFeatures = InvStdDev()
08/16/2016 10:51:40: Prior = Mean()
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
05/03/2016 15:21:28: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
05/03/2016 15:21:28: Starting minibatch loop.
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.27895840 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0046s; samplesPerSecond = 53902.5
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.24395615 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54933.0
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.19587115 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0046s; samplesPerSecond = 54824.6
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.16368213 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0045s; samplesPerSecond = 55126.8
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.19700140 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0046s; samplesPerSecond = 54933.0
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.19580530 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54585.2
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.18257983 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0045s; samplesPerSecond = 55248.6
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.17520911 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0046s; samplesPerSecond = 54752.5
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.20164514 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0046s; samplesPerSecond = 54752.5
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.19787024 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0046s; samplesPerSecond = 54466.2
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.13437573 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0045s; samplesPerSecond = 55090.3
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.19004956 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0046s; samplesPerSecond = 54848.6
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.12287280 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0045s; samplesPerSecond = 54957.1
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16975903 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0045s; samplesPerSecond = 55175.5
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16102686 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54513.7
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.18611646 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54800.5
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.18469507 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0045s; samplesPerSecond = 55334.2
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18472339 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54908.9
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.20064648 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0046s; samplesPerSecond = 54597.1
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.13324683 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0045s; samplesPerSecond = 54969.2
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13878418 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0045s; samplesPerSecond = 55078.2
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.15587354 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0046s; samplesPerSecond = 54920.9
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.15337378 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54812.5
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14797070 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0045s; samplesPerSecond = 55199.8
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.12512891 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0046s; samplesPerSecond = 54383.3
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.14058545 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0045s; samplesPerSecond = 54993.4
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12611963 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0045s; samplesPerSecond = 54945.1
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.18970605 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0046s; samplesPerSecond = 54884.7
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.17965479 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0045s; samplesPerSecond = 54969.2
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.18866455 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0046s; samplesPerSecond = 54836.6
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17539941 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0045s; samplesPerSecond = 54945.1
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.14742432 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54848.6
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.13789502 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0046s; samplesPerSecond = 54788.5
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.13652100 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0045s; samplesPerSecond = 55224.2
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13619336 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0046s; samplesPerSecond = 54920.9
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.14909424 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54478.1
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.14762256 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0045s; samplesPerSecond = 55139.0
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.13142578 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0046s; samplesPerSecond = 54860.7
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.19570459 * 250; EvalErrorPrediction = 0.11600000 * 250; time = 0.0046s; samplesPerSecond = 54764.5
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15718604 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0045s; samplesPerSecond = 55005.5
05/03/2016 15:21:28: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.16901047 * 10000; EvalErrorPrediction = 0.07510000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.184798s
05/03/2016 15:21:28: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn.2'
05/03/2016 15:21:28: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
05/03/2016 15:21:28: Starting minibatch loop.
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.18133401 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54124.3
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.13605756 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0046s; samplesPerSecond = 54884.7
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14345651 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54668.7
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.12512610 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0045s; samplesPerSecond = 54969.2
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.17690991 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54800.5
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.17504150 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0046s; samplesPerSecond = 54740.5
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.14723834 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0045s; samplesPerSecond = 55224.2
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16752893 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0045s; samplesPerSecond = 54993.4
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.10317773 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0046s; samplesPerSecond = 54800.5
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.20306372 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0045s; samplesPerSecond = 55248.6
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.16637036 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0045s; samplesPerSecond = 55066.1
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.15126868 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54824.6
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.19167224 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0046s; samplesPerSecond = 54884.7
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13687085 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0045s; samplesPerSecond = 55420.1
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.20709912 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0046s; samplesPerSecond = 54740.5
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.12918774 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0045s; samplesPerSecond = 54981.3
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17185107 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0045s; samplesPerSecond = 55322.0
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16523242 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54908.9
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.14880249 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0046s; samplesPerSecond = 54728.5
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.12590967 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0045s; samplesPerSecond = 54957.1
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13443018 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54872.7
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.16726147 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0046s; samplesPerSecond = 54836.6
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.22407422 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0045s; samplesPerSecond = 55041.8
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.18191553 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0045s; samplesPerSecond = 55078.2
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.19983057 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0046s; samplesPerSecond = 54680.7
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.22728223 * 250; EvalErrorPrediction = 0.12400000 * 250; time = 0.0046s; samplesPerSecond = 54692.6
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12720459 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0045s; samplesPerSecond = 55151.1
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.15842871 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0045s; samplesPerSecond = 54945.1
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.11558691 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0045s; samplesPerSecond = 54945.1
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14163428 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0045s; samplesPerSecond = 55248.6
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18560596 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0045s; samplesPerSecond = 54993.4
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.15099561 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0045s; samplesPerSecond = 55078.2
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.12822461 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54395.1
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.17662500 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0045s; samplesPerSecond = 55309.7
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.14950781 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0046s; samplesPerSecond = 54945.1
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.11450977 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0046s; samplesPerSecond = 54908.9
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16386768 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0045s; samplesPerSecond = 55260.8
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14811523 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0045s; samplesPerSecond = 54981.3
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.16021143 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54764.5
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.17989551 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0045s; samplesPerSecond = 55151.1
05/03/2016 15:21:28: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15971016 * 10000; EvalErrorPrediction = 0.07740000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.184406s
05/03/2016 15:21:28: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn'
05/03/2016 15:21:29: CNTKCommandTrainEnd: Simple_Demo_Train
05/03/2016 15:21:29: Action "train" complete.
08/16/2016 10:51:40: Precomputing --> Completed.
05/03/2016 15:21:29: ##############################################################################
05/03/2016 15:21:29: # #
05/03/2016 15:21:29: # Action "test" #
05/03/2016 15:21:29: # #
05/03/2016 15:21:29: ##############################################################################
08/16/2016 10:51:40: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 10:51:40: Starting minibatch loop.
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70124231 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0078s; samplesPerSecond = 32034.9
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.76372424 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0064s; samplesPerSecond = 38892.3
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.72703027 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0064s; samplesPerSecond = 39166.5
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.73895923 * 250; EvalErrorPrediction = 0.56800000 * 250; time = 0.0064s; samplesPerSecond = 38886.3
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70621924 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0065s; samplesPerSecond = 38759.7
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.74767041 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0065s; samplesPerSecond = 38753.7
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.75094434 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0064s; samplesPerSecond = 38989.4
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.78058936 * 250; EvalErrorPrediction = 0.48400000 * 250; time = 0.0064s; samplesPerSecond = 38922.6
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.70407129 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0064s; samplesPerSecond = 39265.0
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.69555762 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0064s; samplesPerSecond = 38922.6
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.70626123 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0064s; samplesPerSecond = 38844.0
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.74540430 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0064s; samplesPerSecond = 39178.8
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.70824414 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0064s; samplesPerSecond = 39209.5
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.69895020 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0064s; samplesPerSecond = 38886.3
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70353223 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0065s; samplesPerSecond = 38669.8
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.69346387 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0064s; samplesPerSecond = 38989.4
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.74449902 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0064s; samplesPerSecond = 38886.3
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.73767969 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0064s; samplesPerSecond = 39025.9
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71876855 * 250; EvalErrorPrediction = 0.48400000 * 250; time = 0.0063s; samplesPerSecond = 39594.6
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.71509473 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0064s; samplesPerSecond = 39271.1
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.69956152 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0064s; samplesPerSecond = 38886.3
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.69785937 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0062s; samplesPerSecond = 40303.1
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.70736035 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0063s; samplesPerSecond = 39563.2
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.69820508 * 250; EvalErrorPrediction = 0.56800000 * 250; time = 0.0062s; samplesPerSecond = 40512.1
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69537109 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0063s; samplesPerSecond = 39432.2
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69347266 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0062s; samplesPerSecond = 40492.4
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.70801172 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0061s; samplesPerSecond = 40909.8
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69131641 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0062s; samplesPerSecond = 40257.6
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.70370312 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0062s; samplesPerSecond = 40270.6
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.71200195 * 250; EvalErrorPrediction = 0.43600000 * 250; time = 0.0061s; samplesPerSecond = 40909.8
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.69506836 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0062s; samplesPerSecond = 40577.8
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.69935352 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0061s; samplesPerSecond = 40889.8
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69887109 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0062s; samplesPerSecond = 40440.0
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.69604492 * 250; EvalErrorPrediction = 0.49200000 * 250; time = 0.0062s; samplesPerSecond = 40512.1
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.69011719 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0062s; samplesPerSecond = 40617.4
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.68419531 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0061s; samplesPerSecond = 40783.0
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.67551367 * 250; EvalErrorPrediction = 0.32400000 * 250; time = 0.0063s; samplesPerSecond = 39904.2
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.67028516 * 250; EvalErrorPrediction = 0.40000000 * 250; time = 0.0062s; samplesPerSecond = 40044.9
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.65152734 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0062s; samplesPerSecond = 40630.6
08/16/2016 10:51:40: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.63594727 * 250; EvalErrorPrediction = 0.22000000 * 250; time = 0.0062s; samplesPerSecond = 40283.6
08/16/2016 10:51:40: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.70729233 * 10000; EvalErrorPrediction = 0.47740000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=0.256818s
08/16/2016 10:51:40: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn.1'
08/16/2016 10:51:40: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 1: frames [10000..20000] (first sequence at sample 10000), data subset 0 of 1
08/16/2016 10:51:40: Starting minibatch loop.
08/16/2016 10:51:40: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.61492108 * 250; EvalErrorPrediction = 0.26800000 * 250; time = 0.0064s; samplesPerSecond = 38801.8
08/16/2016 10:51:40: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.59171271 * 250; EvalErrorPrediction = 0.28400000 * 250; time = 0.0063s; samplesPerSecond = 39923.3
08/16/2016 10:51:40: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.53591638 * 250; EvalErrorPrediction = 0.20000000 * 250; time = 0.0062s; samplesPerSecond = 40122.0
08/16/2016 10:51:40: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.51872742 * 250; EvalErrorPrediction = 0.14000000 * 250; time = 0.0062s; samplesPerSecond = 40479.3
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.48384375 * 250; EvalErrorPrediction = 0.12400000 * 250; time = 0.0062s; samplesPerSecond = 40109.1
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.43163501 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0062s; samplesPerSecond = 40128.4
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.38970386 * 250; EvalErrorPrediction = 0.12400000 * 250; time = 0.0063s; samplesPerSecond = 39733.0
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.33681616 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0062s; samplesPerSecond = 40044.9
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.31352393 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0062s; samplesPerSecond = 40525.2
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.26829492 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0062s; samplesPerSecond = 40270.6
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.24240820 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0063s; samplesPerSecond = 39531.9
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.21015820 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0062s; samplesPerSecond = 40012.8
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.22358789 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0061s; samplesPerSecond = 40856.3
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.20496631 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0061s; samplesPerSecond = 40756.4
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.20070508 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0062s; samplesPerSecond = 40643.8
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.19224707 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0061s; samplesPerSecond = 40896.5
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.19326562 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0061s; samplesPerSecond = 40789.7
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.21712451 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0061s; samplesPerSecond = 40883.1
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.17562354 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0061s; samplesPerSecond = 40869.7
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.18186035 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0062s; samplesPerSecond = 40577.8
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.14065234 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0062s; samplesPerSecond = 40212.3
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.17710254 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0065s; samplesPerSecond = 38711.7
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.13001953 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0064s; samplesPerSecond = 38819.9
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.21622949 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0063s; samplesPerSecond = 39613.4
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.21902246 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0063s; samplesPerSecond = 39904.2
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.18068799 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0064s; samplesPerSecond = 39332.9
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.16232471 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0064s; samplesPerSecond = 39160.4
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.13792139 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0063s; samplesPerSecond = 39607.1
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.16526709 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0064s; samplesPerSecond = 39080.8
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14743457 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0063s; samplesPerSecond = 39619.7
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.15089160 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0064s; samplesPerSecond = 39339.1
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.12636230 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0063s; samplesPerSecond = 39834.3
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.16735547 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0063s; samplesPerSecond = 39382.5
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.14530957 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0064s; samplesPerSecond = 39044.2
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13859570 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0063s; samplesPerSecond = 39638.5
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.14215234 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0064s; samplesPerSecond = 39351.5
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.15903027 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0064s; samplesPerSecond = 39203.4
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.16232520 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0064s; samplesPerSecond = 39191.1
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.13596484 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0064s; samplesPerSecond = 39099.2
08/16/2016 10:51:41: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15469434 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0064s; samplesPerSecond = 38965.1
08/16/2016 10:51:41: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.24215964 * 10000; EvalErrorPrediction = 0.09440000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.253663s
08/16/2016 10:51:41: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn.2'
08/16/2016 10:51:41: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 2: frames [20000..30000] (first sequence at sample 20000), data subset 0 of 1
08/16/2016 10:51:41: Starting minibatch loop.
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.18305315 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0064s; samplesPerSecond = 38880.2
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.12945729 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0063s; samplesPerSecond = 39980.8
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.17735931 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0065s; samplesPerSecond = 38729.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.14128339 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0064s; samplesPerSecond = 39013.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.16558209 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0064s; samplesPerSecond = 39080.8
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.19102692 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0065s; samplesPerSecond = 38627.9
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.12279083 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0064s; samplesPerSecond = 39001.6
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16642798 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0065s; samplesPerSecond = 38314.2
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.12386572 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0064s; samplesPerSecond = 38844.0
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.19928418 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0065s; samplesPerSecond = 38681.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.14213635 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0064s; samplesPerSecond = 38898.4
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.12377087 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0062s; samplesPerSecond = 40032.0
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.16361621 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0063s; samplesPerSecond = 39789.9
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.19886914 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0063s; samplesPerSecond = 39821.6
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.17207544 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0063s; samplesPerSecond = 39968.0
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.13323437 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0063s; samplesPerSecond = 39663.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.14397510 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0063s; samplesPerSecond = 39866.1
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.20777515 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0063s; samplesPerSecond = 39980.8
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.19094092 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0062s; samplesPerSecond = 40057.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.14731372 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0062s; samplesPerSecond = 40038.4
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15483569 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0064s; samplesPerSecond = 39252.6
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.13625415 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0065s; samplesPerSecond = 38491.1
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.17354004 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0063s; samplesPerSecond = 39942.5
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14408350 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0064s; samplesPerSecond = 39013.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.13720044 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0062s; samplesPerSecond = 40025.6
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.14236426 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0062s; samplesPerSecond = 40019.2
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.16857861 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0063s; samplesPerSecond = 39847.0
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.18606982 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0062s; samplesPerSecond = 40381.2
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.16334619 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0062s; samplesPerSecond = 40199.4
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.15598535 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0063s; samplesPerSecond = 39827.9
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18848584 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0062s; samplesPerSecond = 40238.2
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13281348 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0063s; samplesPerSecond = 39669.9
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.14679150 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0063s; samplesPerSecond = 39419.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.13977344 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0063s; samplesPerSecond = 39726.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.20015137 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0062s; samplesPerSecond = 40244.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.12582129 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0063s; samplesPerSecond = 39388.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.18500098 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0062s; samplesPerSecond = 40051.3
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15147754 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0062s; samplesPerSecond = 40057.7
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.11988379 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0063s; samplesPerSecond = 39827.9
08/16/2016 10:51:41: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.13059082 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0064s; samplesPerSecond = 39345.3
08/16/2016 10:51:41: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15767216 * 10000; EvalErrorPrediction = 0.07330000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.255461s
08/16/2016 10:51:41: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn'
08/16/2016 10:51:41: CNTKCommandTrainEnd: Simple_Demo_Train
08/16/2016 10:51:41: Action "train" complete.
08/16/2016 10:51:41: ##############################################################################
08/16/2016 10:51:41: # #
08/16/2016 10:51:41: # Action "test" #
08/16/2016 10:51:41: # #
08/16/2016 10:51:41: ##############################################################################
Post-processing network...
@ -660,43 +688,23 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 25 matrices, 2 are shared as 1, and 23 are not shared.
(nil): {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalErrorPrediction Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
0x1efcc08: {[B2 Value[2 x 1]] }
0x1efd8c8: {[W0 Value[50 x 2]] }
0x1efee68: {[InvStdOfFeatures Value[2]] }
0x2b337e8: {[EvalErrorPrediction Value[1]] }
0x2b33948: {[CrossEntropyWithSoftmax Value[1]] }
0x2b33f08: {[LogOfPrior Value[2]] }
0x31808e8: {[W2 Value[2 x 50]] }
0x3182698: {[MVNormalizedFeatures Value[2 x *1]] }
0x3182a48: {[W0*features Value[50 x *1]] }
0x3182c08: {[W0*features+B0 Value[50 x 1 x *1]] }
0x3182dc8: {[H1 Value[50 x 1 x *1]] }
0x3182f88: {[W1*H1 Value[50 x 1 x *1]] }
0x3183148: {[W1*H1+B1 Value[50 x 1 x *1]] }
0x3183308: {[H2 Value[50 x 1 x *1]] }
0x3191148: {[B0 Value[50 x 1]] }
0x34d4158: {[Prior Value[2]] }
0x34d5128: {[features Value[2 x *1]] }
0x34d54a8: {[labels Value[2 x *1]] }
0x34d8028: {[W1 Value[50 x 50]] }
0x34d9e68: {[MeanOfFeatures Value[2]] }
0x7272228: {[B1 Value[50 x 1]] }
0x7273058: {[W2*H1 Value[2 x 1 x *1]] }
0x7273218: {[HLast Value[2 x 1 x *1]] }
{ PosteriorProb : [2 x 1 x *1]
ScaledLogLikelihood : [2 x 1 x *1] }
05/03/2016 15:21:29: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.05970149 * 603; CrossEntropyWithSoftmax = 0.13093129 * 603; perplexity = 1.13988946
BlockRandomizer::StartEpoch: epoch 0: frames [0..603] (first sequence at sample 0), data subset 0 of 1
08/16/2016 10:51:41: Minibatch[1-1]: EvalErrorPrediction = 0.04975124 * 603; CrossEntropyWithSoftmax = 0.10845041 * 603
08/16/2016 10:51:41: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.04975124 * 603; CrossEntropyWithSoftmax = 0.10845041 * 603; perplexity = 1.11454964
05/03/2016 15:21:29: Action "test" complete.
08/16/2016 10:51:41: Action "test" complete.
05/03/2016 15:21:29: ##############################################################################
05/03/2016 15:21:29: # #
05/03/2016 15:21:29: # Action "write" #
05/03/2016 15:21:29: # #
05/03/2016 15:21:29: ##############################################################################
08/16/2016 10:51:41: ##############################################################################
08/16/2016 10:51:41: # #
08/16/2016 10:51:41: # Action "write" #
08/16/2016 10:51:41: # #
08/16/2016 10:51:41: ##############################################################################
Post-processing network...
@ -754,36 +762,16 @@ Post-processing network complete.
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 25 matrices, 3 are shared as 1, and 22 are not shared.
(nil): {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [CrossEntropyWithSoftmax Value[1]] [EvalErrorPrediction Gradient[1]] [EvalErrorPrediction Value[1]] [H1 Gradient[50 x 1 x *2]] [H2 Gradient[50 x 1 x *2]] [HLast Gradient[2 x 1 x *2]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *2]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *2]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *2]] [ScaledLogLikelihood Value[2 x 1 x *2]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *2]] [W0*features+B0 Gradient[50 x 1 x *2]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *2]] [W1*H1+B1 Gradient[50 x 1 x *2]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *2]] [features Gradient[2 x *2]] [labels Gradient[2 x *2]] }
0x1efcef8: {[features Value[2 x *2]] }
0x1efe2c8: {[labels Value[2 x *2]] }
0x1eff188: {[PosteriorProb Value[2 x 1 x *2]] }
0x3180ab8: {[MeanOfFeatures Value[2]] }
0x31817c8: {[W0 Value[50 x 2]] }
0x31839d8: {[LogOfPrior Value[2]] }
0x3185228: {[MVNormalizedFeatures Value[2 x *2]] }
0x31855d8: {[W0*features Value[50 x *2]] }
0x3185798: {[W0*features+B0 Value[50 x 1 x *2]] }
0x3185958: {[H1 Value[50 x 1 x *2]] }
0x3185b18: {[W1*H1 Value[50 x 1 x *2]] }
0x3185cd8: {[W1*H1+B1 Value[50 x 1 x *2]] }
0x3185e98: {[H2 Value[50 x 1 x *2]] }
0x3186058: {[W2*H1 Value[2 x 1 x *2]] }
0x3186218: {[HLast Value[2 x 1 x *2]] }
0x34d4108: {[B2 Value[2 x 1]] }
0x34d4fe8: {[InvStdOfFeatures Value[2]] }
0x34d8528: {[Prior Value[2]] }
0x34da1c8: {[B0 Value[50 x 1]] }
0x3596b08: {[B1 Value[50 x 1]] }
0x72775d8: {[W1 Value[50 x 50]] }
0x72788f8: {[W2 Value[2 x 50]] }
{ CrossEntropyWithSoftmax : [1]
EvalErrorPrediction : [1]
ScaledLogLikelihood : [2 x 1 x *2] }
Minibatch[0]: ActualMBSize = 603
Written to /tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu/SimpleOutput*
Written to /tmp/cntk-test-20160816095502.258817/Examples/Other/Simple2d_Simple@release_gpu/SimpleOutput*
Total Samples Evaluated = 603
05/03/2016 15:21:29: Action "write" complete.
08/16/2016 10:51:41: Action "write" complete.
05/03/2016 15:21:29: __COMPLETED__
08/16/2016 10:51:41: __COMPLETED__

Просмотреть файл

@ -1,46 +1,61 @@
=== Running /cygdrive/c/src/cntk_github/x64/release/cntk.exe configFile=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config/Simple.cntk currentDirectory=C:\src\cntk_github\Examples\Other\Simple2d\Data RunDir=E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu DataDir=C:\src\cntk_github\Examples\Other\Simple2d\Data ConfigDir=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config OutputDir=E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu DeviceId=-1 timestamping=true Simple_Demo_Train=[SGD=[maxEpochs=3]]
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 268381192 kB
-------------------------------------------------------------------
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config/Simple.cntk currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu DeviceId=-1 timestamping=true Simple_Demo_Train=[SGD=[maxEpochs=3]]
-------------------------------------------------------------------
Build info:
Built time: May 3 2016 12:19:59
Last modified date: Thu Apr 7 11:05:47 2016
Built time: Aug 16 2016 02:54:53
Last modified date: Fri Aug 12 05:31:21 2016
Build type: Release
Build target: GPU
With 1bit-SGD: no
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.0
CUB_PATH: E:\lib\cub-1.4.1
CUDNN_PATH: E:\lib\cuDNN_v4
Build Branch: alrezni/examples_text
Build SHA1: d5e576046e2fa850c4296da155f15c2b08b7927a
Built by alrezni on DIFFENG
Build Path: C:\src\cntk_github\Source\CNTK\
Math lib: mkl
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
CUB_PATH: c:\src\cub-1.4.1
CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
Build Branch: HEAD
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by svcphil on Philly-Pool3
Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
-------------------------------------------------------------------
Changed current directory to C:\src\cntk_github\Examples\Other\Simple2d\Data
05/03/2016 13:12:46: -------------------------------------------------------------------
05/03/2016 13:12:46: Build info:
Changed current directory to C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
08/16/2016 03:04:13: -------------------------------------------------------------------
08/16/2016 03:04:13: Build info:
05/03/2016 13:12:46: Built time: May 3 2016 12:19:59
05/03/2016 13:12:46: Last modified date: Thu Apr 7 11:05:47 2016
05/03/2016 13:12:46: Build type: Release
05/03/2016 13:12:46: Build target: GPU
05/03/2016 13:12:46: With 1bit-SGD: no
05/03/2016 13:12:46: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.0
05/03/2016 13:12:46: CUB_PATH: E:\lib\cub-1.4.1
05/03/2016 13:12:46: CUDNN_PATH: E:\lib\cuDNN_v4
05/03/2016 13:12:46: Build Branch: alrezni/examples_text
05/03/2016 13:12:46: Build SHA1: d5e576046e2fa850c4296da155f15c2b08b7927a
05/03/2016 13:12:46: Built by alrezni on DIFFENG
05/03/2016 13:12:46: Build Path: C:\src\cntk_github\Source\CNTK\
05/03/2016 13:12:46: -------------------------------------------------------------------
08/16/2016 03:04:13: Built time: Aug 16 2016 02:54:53
08/16/2016 03:04:13: Last modified date: Fri Aug 12 05:31:21 2016
08/16/2016 03:04:13: Build type: Release
08/16/2016 03:04:13: Build target: GPU
08/16/2016 03:04:13: With 1bit-SGD: no
08/16/2016 03:04:13: Math lib: mkl
08/16/2016 03:04:13: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
08/16/2016 03:04:13: CUB_PATH: c:\src\cub-1.4.1
08/16/2016 03:04:13: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
08/16/2016 03:04:13: Build Branch: HEAD
08/16/2016 03:04:13: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 03:04:13: Built by svcphil on Philly-Pool3
08/16/2016 03:04:13: Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
08/16/2016 03:04:13: -------------------------------------------------------------------
08/16/2016 03:04:16: -------------------------------------------------------------------
08/16/2016 03:04:16: GPU info:
05/03/2016 13:12:46: Running on DIFFENG at 2016/05/03 13:12:46
05/03/2016 13:12:46: Command line:
C:\src\cntk_github\x64\release\cntk.exe configFile=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config/Simple.cntk currentDirectory=C:\src\cntk_github\Examples\Other\Simple2d\Data RunDir=E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu DataDir=C:\src\cntk_github\Examples\Other\Simple2d\Data ConfigDir=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config OutputDir=E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu DeviceId=-1 timestamping=true Simple_Demo_Train=[SGD=[maxEpochs=3]]
08/16/2016 03:04:16: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:04:16: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:04:16: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:04:16: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:04:16: -------------------------------------------------------------------
08/16/2016 03:04:16: Running on DPHAIM-24 at 2016/08/16 03:04:16
08/16/2016 03:04:16: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config/Simple.cntk currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu DeviceId=-1 timestamping=true Simple_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 13:12:46: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/03/2016 13:12:46: RootDir = ".."
08/16/2016 03:04:16: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:04:16: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
@ -127,28 +142,28 @@ labelMappingFile = "$DataDir$/SimpleMapping.txt"
sequenceEpilogue = "\t// %s\n"
]
]
currentDirectory=C:\src\cntk_github\Examples\Other\Simple2d\Data
RunDir=E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu
DataDir=C:\src\cntk_github\Examples\Other\Simple2d\Data
ConfigDir=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config
OutputDir=E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu
currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu
DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu
DeviceId=-1
timestamping=true
Simple_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 13:12:46: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:04:16: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/03/2016 13:12:46: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/03/2016 13:12:46: RootDir = ".."
08/16/2016 03:04:16: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:04:16: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu/Models"
ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu/Models"
deviceId = -1
command = Simple_Demo_Train:Simple_Demo_Test:Simple_Demo_Output
precision = "float"
traceLevel = 1
modelPath = "E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu/Models/simple.dnn"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu/Models/simple.dnn"
outputNodeNames = ScaledLogLikelihood
Simple_Demo_Train = [
action = "train"
@ -172,7 +187,7 @@ Simple_Demo_Train = [
]
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTrain_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTrain_cntk_text.txt"
input = [
features = [
dim = 2
@ -189,7 +204,7 @@ Simple_Demo_Test = [
action = "test"
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -206,7 +221,7 @@ Simple_Demo_Output=[
action = "write"
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -219,42 +234,42 @@ dim = 2
]
]
outputNodeNames = PosteriorProb : labels
outputPath = "E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu/SimpleOutput"
outputPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu/SimpleOutput"
format = [
type = "category"
labelMappingFile = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleMapping.txt"
labelMappingFile = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleMapping.txt"
sequenceEpilogue = "\t// %s\n"
]
]
currentDirectory=C:\src\cntk_github\Examples\Other\Simple2d\Data
RunDir=E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu
DataDir=C:\src\cntk_github\Examples\Other\Simple2d\Data
ConfigDir=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config
OutputDir=E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu
currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu
DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu
DeviceId=-1
timestamping=true
Simple_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 13:12:46: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:04:16: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 13:12:46: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:04:16: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: Simple.cntk:command=Simple_Demo_Train:Simple_Demo_Test:Simple_Demo_Output
configparameters: Simple.cntk:ConfigDir=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config
configparameters: Simple.cntk:currentDirectory=C:\src\cntk_github\Examples\Other\Simple2d\Data
configparameters: Simple.cntk:DataDir=C:\src\cntk_github\Examples\Other\Simple2d\Data
configparameters: Simple.cntk:ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config
configparameters: Simple.cntk:currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
configparameters: Simple.cntk:DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
configparameters: Simple.cntk:deviceId=-1
configparameters: Simple.cntk:ModelDir=E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu/Models
configparameters: Simple.cntk:modelPath=E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu/Models/simple.dnn
configparameters: Simple.cntk:OutputDir=E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu
configparameters: Simple.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu/Models
configparameters: Simple.cntk:modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu/Models/simple.dnn
configparameters: Simple.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu
configparameters: Simple.cntk:outputNodeNames=ScaledLogLikelihood
configparameters: Simple.cntk:precision=float
configparameters: Simple.cntk:RootDir=..
configparameters: Simple.cntk:RunDir=E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu
configparameters: Simple.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu
configparameters: Simple.cntk:Simple_Demo_Output=[
action = "write"
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -267,10 +282,10 @@ dim = 2
]
]
outputNodeNames = PosteriorProb : labels
outputPath = "E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu/SimpleOutput"
outputPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu/SimpleOutput"
format = [
type = "category"
labelMappingFile = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleMapping.txt"
labelMappingFile = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleMapping.txt"
sequenceEpilogue = "\t// %s\n"
]
]
@ -279,7 +294,7 @@ configparameters: Simple.cntk:Simple_Demo_Test=[
action = "test"
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -315,7 +330,7 @@ configparameters: Simple.cntk:Simple_Demo_Train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTrain_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTrain_cntk_text.txt"
input = [
features = [
dim = 2
@ -331,23 +346,35 @@ dim = 2
configparameters: Simple.cntk:timestamping=true
configparameters: Simple.cntk:traceLevel=1
05/03/2016 13:12:46: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 13:12:46: Commands: Simple_Demo_Train Simple_Demo_Test Simple_Demo_Output
05/03/2016 13:12:46: Precision = "float"
05/03/2016 13:12:46: CNTKModelPath: E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu/Models/simple.dnn
05/03/2016 13:12:46: CNTKCommandTrainInfo: Simple_Demo_Train : 3
05/03/2016 13:12:46: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
08/16/2016 03:04:16: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:04:16: Commands: Simple_Demo_Train Simple_Demo_Test Simple_Demo_Output
08/16/2016 03:04:16: Precision = "float"
08/16/2016 03:04:16: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu/Models/simple.dnn
08/16/2016 03:04:16: CNTKCommandTrainInfo: Simple_Demo_Train : 3
08/16/2016 03:04:16: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
05/03/2016 13:12:46: ##############################################################################
05/03/2016 13:12:46: # #
05/03/2016 13:12:46: # Action "train" #
05/03/2016 13:12:46: # #
05/03/2016 13:12:46: ##############################################################################
08/16/2016 03:04:16: ##############################################################################
08/16/2016 03:04:16: # #
08/16/2016 03:04:16: # Action "train" #
08/16/2016 03:04:16: # #
08/16/2016 03:04:16: ##############################################################################
05/03/2016 13:12:46: CNTKCommandTrainBegin: Simple_Demo_Train
08/16/2016 03:04:16: CNTKCommandTrainBegin: Simple_Demo_Train
SimpleNetworkBuilder Using CPU
05/03/2016 13:12:46: Creating virgin network.
08/16/2016 03:04:16: Creating virgin network.
Node 'W0' (LearnableParameter operation): Initializing Parameter[50 x 2] <- 0.000000.
Node 'W0' (LearnableParameter operation): Initializing Parameter[50 x 2] <- uniform(seed=1, range=0.050000*1.000000, onCPU=false).
Node 'B0' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'B0' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[50 x 50] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[50 x 50] <- uniform(seed=2, range=0.050000*1.000000, onCPU=false).
Node 'B1' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'B1' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[2 x 50] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[2 x 50] <- uniform(seed=3, range=0.050000*1.000000, onCPU=false).
Node 'B2' (LearnableParameter operation): Initializing Parameter[2 x 1] <- 0.000000.
Node 'B2' (LearnableParameter operation): Initializing Parameter[2 x 1] <- 0.000000.
Post-processing network...
@ -399,207 +426,210 @@ Validating network, final pass.
Post-processing network complete.
05/03/2016 13:12:46: Created model with 25 nodes on CPU.
08/16/2016 03:04:16: Created model with 25 nodes on CPU.
05/03/2016 13:12:46: Training criterion node(s):
05/03/2016 13:12:46: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
08/16/2016 03:04:16: Training criterion node(s):
08/16/2016 03:04:16: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
05/03/2016 13:12:46: Evaluation criterion node(s):
05/03/2016 13:12:46: EvalErrorPrediction = ErrorPrediction
08/16/2016 03:04:16: Evaluation criterion node(s):
08/16/2016 03:04:16: EvalErrorPrediction = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 40 matrices, 19 are shared as 8, and 21 are not shared.
0000000000000000: {[EvalErrorPrediction Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
000000702B410E90: {[features Value[2 x *]] }
000000702B44E0C0: {[W0 Value[50 x 2]] }
000000702B4D76F0: {[H2 Value[50 x 1 x *]] [W1*H1 Gradient[50 x 1 x *]] }
000000702B4D7970: {[W0 Gradient[50 x 2]] [W0*features+B0 Value[50 x 1 x *]] }
000000702B4D7AB0: {[CrossEntropyWithSoftmax Gradient[1]] }
000000702B4D7DD0: {[LogOfPrior Value[2]] }
000000702B4D7F10: {[W1 Gradient[50 x 50]] [W1*H1+B1 Value[50 x 1 x *]] }
000000702B4D7FB0: {[B1 Gradient[50 x 1]] [H2 Gradient[50 x 1 x *]] [HLast Gradient[2 x 1 x *]] }
000000702B4D82D0: {[W0*features+B0 Gradient[50 x 1 x *]] [W1*H1 Value[50 x 1 x *]] }
000000702B4D8370: {[W0*features Value[50 x *]] }
000000702B4D84B0: {[MVNormalizedFeatures Value[2 x *]] }
000000702B4D8690: {[B0 Gradient[50 x 1]] [H1 Gradient[50 x 1 x *]] [W1*H1+B1 Gradient[50 x 1 x *]] [W2*H1 Value[2 x 1 x *]] }
000000702B4D8730: {[HLast Value[2 x 1 x *]] [W2 Gradient[2 x 50]] }
000000702B4D89B0: {[CrossEntropyWithSoftmax Value[1]] }
000000702B4D8AF0: {[EvalErrorPrediction Value[1]] }
000000702B4D8B90: {[H1 Value[50 x 1 x *]] [W0*features Gradient[50 x *]] }
000000702B4D8F50: {[B2 Gradient[2 x 1]] }
000000702B4D91D0: {[ScaledLogLikelihood Value[2 x 1 x *]] }
000000702B4D9270: {[W2*H1 Gradient[2 x 1 x *]] }
000000702E1EDCB0: {[B2 Value[2 x 1]] }
000000702E1EDDF0: {[B0 Value[50 x 1]] }
000000702E1EDE90: {[B1 Value[50 x 1]] }
000000702E1EE2F0: {[W2 Value[2 x 50]] }
000000702E1EE6B0: {[labels Value[2 x *]] }
000000702E1EE930: {[Prior Value[2]] }
000000702E1EE9D0: {[W1 Value[50 x 50]] }
000000702E1EEB30: {[MeanOfFeatures Value[2]] }
000000702E1EEEE0: {[InvStdOfFeatures Value[2]] }
{ H1 : [50 x 1 x *]
W0*features : [50 x *] (gradient) }
{ W0 : [50 x 2] (gradient)
W0*features+B0 : [50 x 1 x *] }
{ W0*features+B0 : [50 x 1 x *] (gradient)
W1*H1 : [50 x 1 x *] }
{ W1 : [50 x 50] (gradient)
W1*H1+B1 : [50 x 1 x *] }
{ H2 : [50 x 1 x *]
W1*H1 : [50 x 1 x *] (gradient) }
{ B0 : [50 x 1] (gradient)
H1 : [50 x 1 x *] (gradient)
W1*H1+B1 : [50 x 1 x *] (gradient)
W2*H1 : [2 x 1 x *] }
{ B1 : [50 x 1] (gradient)
H2 : [50 x 1 x *] (gradient)
HLast : [2 x 1 x *] (gradient) }
{ HLast : [2 x 1 x *]
W2 : [2 x 50] (gradient) }
05/03/2016 13:12:46: Precomputing --> 3 PreCompute nodes found.
08/16/2016 03:04:16: Training 2802 parameters in 6 out of 6 parameter tensors and 15 nodes with gradient:
05/03/2016 13:12:46: MeanOfFeatures = Mean()
05/03/2016 13:12:46: InvStdOfFeatures = InvStdDev()
05/03/2016 13:12:46: Prior = Mean()
05/03/2016 13:12:47: Precomputing --> Completed.
08/16/2016 03:04:16: Node 'B0' (LearnableParameter operation) : [50 x 1]
08/16/2016 03:04:16: Node 'B1' (LearnableParameter operation) : [50 x 1]
08/16/2016 03:04:16: Node 'B2' (LearnableParameter operation) : [2 x 1]
08/16/2016 03:04:16: Node 'W0' (LearnableParameter operation) : [50 x 2]
08/16/2016 03:04:16: Node 'W1' (LearnableParameter operation) : [50 x 50]
08/16/2016 03:04:16: Node 'W2' (LearnableParameter operation) : [2 x 50]
05/03/2016 13:12:47: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
08/16/2016 03:04:16: Precomputing --> 3 PreCompute nodes found.
05/03/2016 13:12:47: Starting minibatch loop.
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70511987 * 250; EvalErrorPrediction = 0.55200000 * 250; time = 0.0327s; samplesPerSecond = 7657.0
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.69754895 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0257s; samplesPerSecond = 9726.5
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.71056921 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0248s; samplesPerSecond = 10096.1
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.72951074 * 250; EvalErrorPrediction = 0.56000000 * 250; time = 0.0245s; samplesPerSecond = 10210.3
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70946655 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0249s; samplesPerSecond = 10032.5
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72656787 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0248s; samplesPerSecond = 10065.2
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.69337402 * 250; EvalErrorPrediction = 0.43200000 * 250; time = 0.0256s; samplesPerSecond = 9766.8
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.73605176 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0259s; samplesPerSecond = 9662.6
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.71453076 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0239s; samplesPerSecond = 10469.0
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.75191992 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0255s; samplesPerSecond = 9802.0
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.75975146 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0248s; samplesPerSecond = 10100.6
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.73172168 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0255s; samplesPerSecond = 9808.5
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.76840820 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0261s; samplesPerSecond = 9593.2
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.70464746 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0255s; samplesPerSecond = 9807.4
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70557227 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0242s; samplesPerSecond = 10340.4
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.72711816 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0249s; samplesPerSecond = 10049.8
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70076660 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0247s; samplesPerSecond = 10117.4
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.69409766 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0254s; samplesPerSecond = 9834.0
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.69139941 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0243s; samplesPerSecond = 10275.8
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.73361621 * 250; EvalErrorPrediction = 0.55200000 * 250; time = 0.0255s; samplesPerSecond = 9802.8
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.72225879 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0246s; samplesPerSecond = 10146.5
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70356348 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0243s; samplesPerSecond = 10286.8
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69928613 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0252s; samplesPerSecond = 9909.2
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.72360938 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0244s; samplesPerSecond = 10227.0
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69871875 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0244s; samplesPerSecond = 10243.8
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69114844 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0248s; samplesPerSecond = 10081.5
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.68648047 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0254s; samplesPerSecond = 9844.5
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69657227 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0258s; samplesPerSecond = 9679.8
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.71585547 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0255s; samplesPerSecond = 9798.2
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.69730664 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0260s; samplesPerSecond = 9609.1
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.70432422 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0265s; samplesPerSecond = 9431.1
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.69991797 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0257s; samplesPerSecond = 9722.7
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.68696875 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0259s; samplesPerSecond = 9647.3
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.67331445 * 250; EvalErrorPrediction = 0.37200000 * 250; time = 0.0267s; samplesPerSecond = 9364.7
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.65711328 * 250; EvalErrorPrediction = 0.43200000 * 250; time = 0.0258s; samplesPerSecond = 9700.1
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.64534375 * 250; EvalErrorPrediction = 0.44800000 * 250; time = 0.0260s; samplesPerSecond = 9608.0
05/03/2016 13:12:48: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.61021875 * 250; EvalErrorPrediction = 0.36400000 * 250; time = 0.0263s; samplesPerSecond = 9515.5
05/03/2016 13:12:48: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.54191016 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0229s; samplesPerSecond = 10907.5
05/03/2016 13:12:48: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.45624414 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0239s; samplesPerSecond = 10479.5
05/03/2016 13:12:48: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.37636133 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0229s; samplesPerSecond = 10917.0
05/03/2016 13:12:48: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.68695688 * 10000; EvalErrorPrediction = 0.45550000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=1.01718s
05/03/2016 13:12:48: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu/Models/simple.dnn.1'
08/16/2016 03:04:16: MeanOfFeatures = Mean()
08/16/2016 03:04:16: InvStdOfFeatures = InvStdDev()
08/16/2016 03:04:16: Prior = Mean()
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
05/03/2016 13:12:48: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
05/03/2016 13:12:48: Starting minibatch loop.
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.28579105 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0228s; samplesPerSecond = 10943.3
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.27768619 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0230s; samplesPerSecond = 10860.1
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.23309790 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0223s; samplesPerSecond = 11187.2
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.20937585 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0221s; samplesPerSecond = 11327.1
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.20192059 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0225s; samplesPerSecond = 11116.5
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.21303992 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0232s; samplesPerSecond = 10762.9
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.17823340 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0247s; samplesPerSecond = 10120.6
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.18892688 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0231s; samplesPerSecond = 10816.4
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.14161328 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0225s; samplesPerSecond = 11100.8
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.15813574 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0226s; samplesPerSecond = 11077.1
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.21082446 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0233s; samplesPerSecond = 10728.2
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.16117041 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0229s; samplesPerSecond = 10928.0
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.15665234 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0223s; samplesPerSecond = 11195.2
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13067773 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0226s; samplesPerSecond = 11047.3
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16602710 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0212s; samplesPerSecond = 11796.9
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.14975708 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0215s; samplesPerSecond = 11641.4
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.22351709 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0214s; samplesPerSecond = 11708.5
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18010474 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0207s; samplesPerSecond = 12085.5
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.15341577 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0207s; samplesPerSecond = 12072.6
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.17195337 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0209s; samplesPerSecond = 11976.6
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15546069 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0217s; samplesPerSecond = 11534.6
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.16008325 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0214s; samplesPerSecond = 11689.3
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.15944043 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0209s; samplesPerSecond = 11981.2
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.15336865 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0207s; samplesPerSecond = 12102.4
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.14822266 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0212s; samplesPerSecond = 11766.4
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.14999512 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0211s; samplesPerSecond = 11833.2
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.15481982 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0208s; samplesPerSecond = 11992.7
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.17656738 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0204s; samplesPerSecond = 12229.1
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.22373242 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0213s; samplesPerSecond = 11738.7
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16403760 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0211s; samplesPerSecond = 11856.8
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17322168 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0211s; samplesPerSecond = 11868.0
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13165430 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0205s; samplesPerSecond = 12202.3
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.14016992 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0208s; samplesPerSecond = 11993.9
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.18369678 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0214s; samplesPerSecond = 11657.7
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.15161035 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0215s; samplesPerSecond = 11612.8
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.18919824 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0215s; samplesPerSecond = 11632.8
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.17373975 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0212s; samplesPerSecond = 11818.1
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15033740 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0208s; samplesPerSecond = 12036.6
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.12107568 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0207s; samplesPerSecond = 12075.5
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15386328 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0227s; samplesPerSecond = 10997.7
05/03/2016 13:12:48: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.17515541 * 10000; EvalErrorPrediction = 0.07440000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.87149s
05/03/2016 13:12:48: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu/Models/simple.dnn.2'
05/03/2016 13:12:48: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
05/03/2016 13:12:48: Starting minibatch loop.
05/03/2016 13:12:48: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.10671188 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0217s; samplesPerSecond = 11511.2
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.17609265 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0205s; samplesPerSecond = 12183.8
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14152701 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0208s; samplesPerSecond = 12001.9
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.16348053 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0213s; samplesPerSecond = 11748.1
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.11764551 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0219s; samplesPerSecond = 11435.4
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.16246954 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0212s; samplesPerSecond = 11811.4
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.16140149 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0207s; samplesPerSecond = 12078.5
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.19747632 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0202s; samplesPerSecond = 12391.0
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.20041309 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0214s; samplesPerSecond = 11659.9
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.13657080 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0208s; samplesPerSecond = 12033.7
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.20124377 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0203s; samplesPerSecond = 12293.5
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.17898120 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0206s; samplesPerSecond = 12144.2
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.16037830 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0232s; samplesPerSecond = 10779.1
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16276050 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0214s; samplesPerSecond = 11704.7
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.19882275 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0218s; samplesPerSecond = 11454.2
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.10263354 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0208s; samplesPerSecond = 12041.2
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17038770 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0213s; samplesPerSecond = 11725.5
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16624731 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0209s; samplesPerSecond = 11958.3
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.12664160 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0213s; samplesPerSecond = 11723.3
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.11944995 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0213s; samplesPerSecond = 11733.8
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.12949756 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0208s; samplesPerSecond = 11996.2
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.18147778 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0222s; samplesPerSecond = 11242.5
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.13172412 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0233s; samplesPerSecond = 10719.0
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.19600269 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0238s; samplesPerSecond = 10521.0
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.15840479 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0226s; samplesPerSecond = 11084.5
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.11888281 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0225s; samplesPerSecond = 11129.9
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.13710742 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0222s; samplesPerSecond = 11251.1
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.20026318 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0233s; samplesPerSecond = 10730.5
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.18824951 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0223s; samplesPerSecond = 11227.9
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16653223 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0225s; samplesPerSecond = 11096.3
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.11935254 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0229s; samplesPerSecond = 10918.5
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.16085400 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0225s; samplesPerSecond = 11132.9
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.16112646 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0219s; samplesPerSecond = 11439.6
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.12345313 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0229s; samplesPerSecond = 10904.6
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13502686 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0226s; samplesPerSecond = 11075.2
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.20874756 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0224s; samplesPerSecond = 11185.2
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16650537 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0227s; samplesPerSecond = 11009.3
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14995752 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0206s; samplesPerSecond = 12134.7
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.16497070 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0209s; samplesPerSecond = 11953.7
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.16843018 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0210s; samplesPerSecond = 11912.1
05/03/2016 13:12:49: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15794755 * 10000; EvalErrorPrediction = 0.07480000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.871499s
05/03/2016 13:12:49: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu/Models/simple.dnn'
05/03/2016 13:12:49: CNTKCommandTrainEnd: Simple_Demo_Train
05/03/2016 13:12:49: Action "train" complete.
08/16/2016 03:04:16: Precomputing --> Completed.
05/03/2016 13:12:49: ##############################################################################
05/03/2016 13:12:49: # #
05/03/2016 13:12:49: # Action "test" #
05/03/2016 13:12:49: # #
05/03/2016 13:12:49: ##############################################################################
08/16/2016 03:04:16: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 03:04:16: Starting minibatch loop.
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70264496 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0355s; samplesPerSecond = 7041.1
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.76483063 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0281s; samplesPerSecond = 8903.5
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.72648584 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0269s; samplesPerSecond = 9307.5
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.73860254 * 250; EvalErrorPrediction = 0.56800000 * 250; time = 0.0254s; samplesPerSecond = 9858.4
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70622803 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0248s; samplesPerSecond = 10062.8
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.74772852 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0246s; samplesPerSecond = 10142.8
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.75092773 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0253s; samplesPerSecond = 9869.3
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.78004932 * 250; EvalErrorPrediction = 0.48400000 * 250; time = 0.0250s; samplesPerSecond = 9983.2
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.70444336 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0257s; samplesPerSecond = 9745.8
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.69544189 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0253s; samplesPerSecond = 9889.6
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.70595947 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0255s; samplesPerSecond = 9823.2
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.74544189 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0250s; samplesPerSecond = 9994.4
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.70809961 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0253s; samplesPerSecond = 9888.5
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.69884375 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0252s; samplesPerSecond = 9917.5
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70363086 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0257s; samplesPerSecond = 9717.8
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.69351758 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0250s; samplesPerSecond = 9998.8
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.74453613 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0252s; samplesPerSecond = 9901.8
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.73761426 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0247s; samplesPerSecond = 10133.8
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71868652 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0256s; samplesPerSecond = 9782.1
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.71496484 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0249s; samplesPerSecond = 10052.7
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.69961230 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0249s; samplesPerSecond = 10036.1
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.69760645 * 250; EvalErrorPrediction = 0.49200000 * 250; time = 0.0260s; samplesPerSecond = 9618.3
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.70748047 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0256s; samplesPerSecond = 9771.7
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.69785937 * 250; EvalErrorPrediction = 0.56800000 * 250; time = 0.0253s; samplesPerSecond = 9882.6
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69483203 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0256s; samplesPerSecond = 9754.6
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69258203 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0238s; samplesPerSecond = 10503.8
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.70665625 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0245s; samplesPerSecond = 10191.2
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69031445 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0241s; samplesPerSecond = 10352.4
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.70169531 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0242s; samplesPerSecond = 10326.3
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.71008398 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0238s; samplesPerSecond = 10486.6
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.69152930 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0242s; samplesPerSecond = 10347.3
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.69522656 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0239s; samplesPerSecond = 10472.1
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69347070 * 250; EvalErrorPrediction = 0.49200000 * 250; time = 0.0243s; samplesPerSecond = 10308.9
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.68888281 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0242s; samplesPerSecond = 10329.7
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.68067578 * 250; EvalErrorPrediction = 0.48400000 * 250; time = 0.0243s; samplesPerSecond = 10280.9
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.66932227 * 250; EvalErrorPrediction = 0.44400000 * 250; time = 0.0242s; samplesPerSecond = 10317.8
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.65398437 * 250; EvalErrorPrediction = 0.24800000 * 250; time = 0.0237s; samplesPerSecond = 10545.4
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.63662500 * 250; EvalErrorPrediction = 0.32400000 * 250; time = 0.0240s; samplesPerSecond = 10400.6
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.59652344 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0242s; samplesPerSecond = 10346.8
08/16/2016 03:04:17: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.55820898 * 250; EvalErrorPrediction = 0.12000000 * 250; time = 0.0238s; samplesPerSecond = 10488.3
08/16/2016 03:04:17: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.70129624 * 10000; EvalErrorPrediction = 0.46850000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=1.01068s
08/16/2016 03:04:17: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu/Models/simple.dnn.1'
08/16/2016 03:04:18: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 1: frames [10000..20000] (first sequence at sample 10000), data subset 0 of 1
08/16/2016 03:04:18: Starting minibatch loop.
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.50449603 * 250; EvalErrorPrediction = 0.14800000 * 250; time = 0.0230s; samplesPerSecond = 10862.5
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.45593445 * 250; EvalErrorPrediction = 0.12800000 * 250; time = 0.0229s; samplesPerSecond = 10916.6
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.38063666 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0230s; samplesPerSecond = 10880.0
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.35197192 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0227s; samplesPerSecond = 11005.0
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.30828760 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0229s; samplesPerSecond = 10918.0
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.29232886 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0228s; samplesPerSecond = 10979.4
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.26675781 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0230s; samplesPerSecond = 10878.6
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.23178394 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0230s; samplesPerSecond = 10857.3
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.23917383 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0228s; samplesPerSecond = 10954.3
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.21675732 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0227s; samplesPerSecond = 11001.6
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.19885376 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0230s; samplesPerSecond = 10854.5
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.18136646 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0232s; samplesPerSecond = 10786.6
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.19802368 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0231s; samplesPerSecond = 10826.7
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.18948218 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0227s; samplesPerSecond = 10990.0
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.18990088 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0230s; samplesPerSecond = 10861.1
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.18491504 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0232s; samplesPerSecond = 10772.1
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.18686621 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0232s; samplesPerSecond = 10788.0
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.21271729 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0232s; samplesPerSecond = 10780.5
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.16924951 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0225s; samplesPerSecond = 11127.4
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.17609473 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0231s; samplesPerSecond = 10845.0
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13717920 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0229s; samplesPerSecond = 10921.8
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.17546387 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0233s; samplesPerSecond = 10708.0
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.12864746 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0228s; samplesPerSecond = 10944.8
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.21596680 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0231s; samplesPerSecond = 10832.8
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.21857666 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0228s; samplesPerSecond = 10946.7
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.18096436 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0239s; samplesPerSecond = 10463.8
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.16132373 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0230s; samplesPerSecond = 10881.4
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.13699268 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0228s; samplesPerSecond = 10960.6
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.16551953 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0229s; samplesPerSecond = 10909.4
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14865527 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0238s; samplesPerSecond = 10483.1
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.15119824 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0226s; samplesPerSecond = 11060.0
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.12673340 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0230s; samplesPerSecond = 10887.1
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.16551514 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0231s; samplesPerSecond = 10808.9
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.14445264 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0233s; samplesPerSecond = 10734.2
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13810986 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0230s; samplesPerSecond = 10880.4
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.14219189 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0225s; samplesPerSecond = 11107.2
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.15920459 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0225s; samplesPerSecond = 11113.1
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.16245654 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0238s; samplesPerSecond = 10512.2
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.13554053 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0228s; samplesPerSecond = 10988.5
08/16/2016 03:04:18: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15504346 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0228s; samplesPerSecond = 10968.3
08/16/2016 03:04:18: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.20713335 * 10000; EvalErrorPrediction = 0.08030000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.921702s
08/16/2016 03:04:18: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu/Models/simple.dnn.2'
08/16/2016 03:04:18: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 2: frames [20000..30000] (first sequence at sample 20000), data subset 0 of 1
08/16/2016 03:04:18: Starting minibatch loop.
08/16/2016 03:04:18: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.18297285 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0231s; samplesPerSecond = 10833.8
08/16/2016 03:04:18: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.12934721 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0230s; samplesPerSecond = 10872.4
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.17702411 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0225s; samplesPerSecond = 11110.1
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.14030841 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0228s; samplesPerSecond = 10941.4
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.16429517 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0223s; samplesPerSecond = 11187.2
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.19154443 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0229s; samplesPerSecond = 10924.7
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.12275391 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0244s; samplesPerSecond = 10245.1
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16801855 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0228s; samplesPerSecond = 10987.6
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.12472571 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0230s; samplesPerSecond = 10877.1
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.19939526 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0229s; samplesPerSecond = 10895.1
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.14222791 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0227s; samplesPerSecond = 10995.3
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.12374048 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0228s; samplesPerSecond = 10962.0
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.16442969 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0224s; samplesPerSecond = 11142.8
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.19837036 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0227s; samplesPerSecond = 11003.0
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.17180200 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0235s; samplesPerSecond = 10638.3
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.13326343 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0229s; samplesPerSecond = 10936.6
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.14289917 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0233s; samplesPerSecond = 10727.8
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.20692944 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0231s; samplesPerSecond = 10827.2
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.19077197 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0231s; samplesPerSecond = 10817.4
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.14746069 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0227s; samplesPerSecond = 11027.8
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15464526 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0227s; samplesPerSecond = 11007.9
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.13673071 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0229s; samplesPerSecond = 10923.2
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.17348853 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0226s; samplesPerSecond = 11065.4
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14420581 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0233s; samplesPerSecond = 10725.5
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.13774097 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0228s; samplesPerSecond = 10975.0
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.14177905 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0225s; samplesPerSecond = 11100.8
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.16864648 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0229s; samplesPerSecond = 10928.0
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.18513623 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0228s; samplesPerSecond = 10968.3
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.16393555 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0226s; samplesPerSecond = 11067.8
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.15467676 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0228s; samplesPerSecond = 10969.2
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18951318 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0223s; samplesPerSecond = 11207.2
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13329639 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0232s; samplesPerSecond = 10793.1
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.14604785 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0229s; samplesPerSecond = 10894.2
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.13938086 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0229s; samplesPerSecond = 10896.6
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.19969873 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0226s; samplesPerSecond = 11040.9
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.12584180 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0228s; samplesPerSecond = 10949.1
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.18373438 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0232s; samplesPerSecond = 10780.0
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15064795 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0234s; samplesPerSecond = 10683.8
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.11991260 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0229s; samplesPerSecond = 10911.3
08/16/2016 03:04:19: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.13070557 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0230s; samplesPerSecond = 10857.8
08/16/2016 03:04:19: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15755114 * 10000; EvalErrorPrediction = 0.07370000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.918193s
08/16/2016 03:04:19: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu/Models/simple.dnn'
08/16/2016 03:04:19: CNTKCommandTrainEnd: Simple_Demo_Train
08/16/2016 03:04:19: Action "train" complete.
08/16/2016 03:04:19: ##############################################################################
08/16/2016 03:04:19: # #
08/16/2016 03:04:19: # Action "test" #
08/16/2016 03:04:19: # #
08/16/2016 03:04:19: ##############################################################################
Post-processing network...
@ -657,43 +687,23 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 25 matrices, 2 are shared as 1, and 23 are not shared.
0000000000000000: {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalErrorPrediction Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
00000070343C5200: {[InvStdOfFeatures Value[2]] }
00000070343C5340: {[Prior Value[2]] }
00000070343C53E0: {[W0 Value[50 x 2]] }
00000070343C5520: {[W1 Value[50 x 50]] }
00000070343C5980: {[labels Value[2 x *1]] }
00000070343C5AC0: {[MeanOfFeatures Value[2]] }
000000703442CE50: {[MVNormalizedFeatures Value[2 x *1]] }
000000703442CF90: {[W1*H1 Value[50 x 1 x *1]] }
000000703442D030: {[HLast Value[2 x 1 x *1]] }
000000703442D0D0: {[W0*features Value[50 x *1]] }
000000703442D170: {[W1*H1+B1 Value[50 x 1 x *1]] }
000000703442D2B0: {[EvalErrorPrediction Value[1]] }
000000703442D530: {[CrossEntropyWithSoftmax Value[1]] }
000000703442D5D0: {[W2 Value[2 x 50]] }
000000703442D670: {[LogOfPrior Value[2]] }
000000703442D7B0: {[W0*features+B0 Value[50 x 1 x *1]] }
000000703442D850: {[W2*H1 Value[2 x 1 x *1]] }
000000703442DAD0: {[H1 Value[50 x 1 x *1]] }
000000703442DB70: {[H2 Value[50 x 1 x *1]] }
0000007034431EE0: {[features Value[2 x *1]] }
00000070344320C0: {[B1 Value[50 x 1]] }
0000007034432340: {[B0 Value[50 x 1]] }
0000007034432480: {[B2 Value[2 x 1]] }
{ PosteriorProb : [2 x 1 x *1]
ScaledLogLikelihood : [2 x 1 x *1] }
05/03/2016 13:12:50: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.05638474 * 603; CrossEntropyWithSoftmax = 0.12474995 * 603; perplexity = 1.13286515
BlockRandomizer::StartEpoch: epoch 0: frames [0..603] (first sequence at sample 0), data subset 0 of 1
08/16/2016 03:04:19: Minibatch[1-1]: EvalErrorPrediction = 0.05140962 * 603; CrossEntropyWithSoftmax = 0.10734609 * 603
08/16/2016 03:04:19: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.05140962 * 603; CrossEntropyWithSoftmax = 0.10734609 * 603; perplexity = 1.11331949
05/03/2016 13:12:50: Action "test" complete.
08/16/2016 03:04:19: Action "test" complete.
05/03/2016 13:12:50: ##############################################################################
05/03/2016 13:12:50: # #
05/03/2016 13:12:50: # Action "write" #
05/03/2016 13:12:50: # #
05/03/2016 13:12:50: ##############################################################################
08/16/2016 03:04:19: ##############################################################################
08/16/2016 03:04:19: # #
08/16/2016 03:04:19: # Action "write" #
08/16/2016 03:04:19: # #
08/16/2016 03:04:19: ##############################################################################
Post-processing network...
@ -751,36 +761,16 @@ Post-processing network complete.
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 25 matrices, 3 are shared as 1, and 22 are not shared.
0000000000000000: {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [CrossEntropyWithSoftmax Value[1]] [EvalErrorPrediction Gradient[1]] [EvalErrorPrediction Value[1]] [H1 Gradient[50 x 1 x *2]] [H2 Gradient[50 x 1 x *2]] [HLast Gradient[2 x 1 x *2]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *2]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *2]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *2]] [ScaledLogLikelihood Value[2 x 1 x *2]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *2]] [W0*features+B0 Gradient[50 x 1 x *2]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *2]] [W1*H1+B1 Gradient[50 x 1 x *2]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *2]] [features Gradient[2 x *2]] [labels Gradient[2 x *2]] }
000000702E3275E0: {[H2 Value[50 x 1 x *2]] }
000000702E327680: {[W2*H1 Value[2 x 1 x *2]] }
000000702E3277C0: {[LogOfPrior Value[2]] }
000000702E327860: {[HLast Value[2 x 1 x *2]] }
000000702E327A40: {[W2 Value[2 x 50]] }
000000702E327CC0: {[W0*features Value[50 x *2]] }
000000702E327D60: {[W0*features+B0 Value[50 x 1 x *2]] }
000000702E327E00: {[H1 Value[50 x 1 x *2]] }
000000702E327FE0: {[PosteriorProb Value[2 x 1 x *2]] }
000000702E328120: {[MVNormalizedFeatures Value[2 x *2]] }
000000702E328260: {[W1*H1 Value[50 x 1 x *2]] }
000000702E3283A0: {[W1*H1+B1 Value[50 x 1 x *2]] }
00000070343C4E40: {[labels Value[2 x *2]] }
00000070343C4EE0: {[Prior Value[2]] }
00000070343C52A0: {[InvStdOfFeatures Value[2]] }
00000070343C53E0: {[W1 Value[50 x 50]] }
00000070343C58E0: {[W0 Value[50 x 2]] }
00000070343C5980: {[MeanOfFeatures Value[2]] }
0000007034431770: {[features Value[2 x *2]] }
0000007034431A90: {[B1 Value[50 x 1]] }
0000007034431B30: {[B2 Value[2 x 1]] }
0000007034431C70: {[B0 Value[50 x 1]] }
{ CrossEntropyWithSoftmax : [1]
EvalErrorPrediction : [1]
ScaledLogLikelihood : [2 x 1 x *2] }
Minibatch[0]: ActualMBSize = 603
Written to E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu/SimpleOutput*
Written to C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_cpu/SimpleOutput*
Total Samples Evaluated = 603
05/03/2016 13:12:50: Action "write" complete.
08/16/2016 03:04:19: Action "write" complete.
05/03/2016 13:12:50: __COMPLETED__
08/16/2016 03:04:19: __COMPLETED__

Просмотреть файл

@ -1,46 +1,61 @@
=== Running /cygdrive/c/src/cntk_github/x64/release/cntk.exe configFile=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config/Simple.cntk currentDirectory=C:\src\cntk_github\Examples\Other\Simple2d\Data RunDir=E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu DataDir=C:\src\cntk_github\Examples\Other\Simple2d\Data ConfigDir=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config OutputDir=E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu DeviceId=0 timestamping=true Simple_Demo_Train=[SGD=[maxEpochs=3]]
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 268381192 kB
-------------------------------------------------------------------
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config/Simple.cntk currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu DeviceId=0 timestamping=true Simple_Demo_Train=[SGD=[maxEpochs=3]]
-------------------------------------------------------------------
Build info:
Built time: May 3 2016 12:19:59
Last modified date: Thu Apr 7 11:05:47 2016
Built time: Aug 16 2016 02:54:53
Last modified date: Fri Aug 12 05:31:21 2016
Build type: Release
Build target: GPU
With 1bit-SGD: no
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.0
CUB_PATH: E:\lib\cub-1.4.1
CUDNN_PATH: E:\lib\cuDNN_v4
Build Branch: alrezni/examples_text
Build SHA1: d5e576046e2fa850c4296da155f15c2b08b7927a
Built by alrezni on DIFFENG
Build Path: C:\src\cntk_github\Source\CNTK\
Math lib: mkl
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
CUB_PATH: c:\src\cub-1.4.1
CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
Build Branch: HEAD
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by svcphil on Philly-Pool3
Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
-------------------------------------------------------------------
Changed current directory to C:\src\cntk_github\Examples\Other\Simple2d\Data
05/03/2016 13:01:58: -------------------------------------------------------------------
05/03/2016 13:01:58: Build info:
Changed current directory to C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
08/16/2016 03:04:23: -------------------------------------------------------------------
08/16/2016 03:04:23: Build info:
05/03/2016 13:01:58: Built time: May 3 2016 12:19:59
05/03/2016 13:01:58: Last modified date: Thu Apr 7 11:05:47 2016
05/03/2016 13:01:58: Build type: Release
05/03/2016 13:01:58: Build target: GPU
05/03/2016 13:01:58: With 1bit-SGD: no
05/03/2016 13:01:58: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.0
05/03/2016 13:01:58: CUB_PATH: E:\lib\cub-1.4.1
05/03/2016 13:01:58: CUDNN_PATH: E:\lib\cuDNN_v4
05/03/2016 13:01:58: Build Branch: alrezni/examples_text
05/03/2016 13:01:58: Build SHA1: d5e576046e2fa850c4296da155f15c2b08b7927a
05/03/2016 13:01:58: Built by alrezni on DIFFENG
05/03/2016 13:01:58: Build Path: C:\src\cntk_github\Source\CNTK\
05/03/2016 13:01:58: -------------------------------------------------------------------
08/16/2016 03:04:23: Built time: Aug 16 2016 02:54:53
08/16/2016 03:04:23: Last modified date: Fri Aug 12 05:31:21 2016
08/16/2016 03:04:23: Build type: Release
08/16/2016 03:04:23: Build target: GPU
08/16/2016 03:04:23: With 1bit-SGD: no
08/16/2016 03:04:23: Math lib: mkl
08/16/2016 03:04:23: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
08/16/2016 03:04:23: CUB_PATH: c:\src\cub-1.4.1
08/16/2016 03:04:23: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
08/16/2016 03:04:23: Build Branch: HEAD
08/16/2016 03:04:23: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 03:04:23: Built by svcphil on Philly-Pool3
08/16/2016 03:04:23: Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
08/16/2016 03:04:23: -------------------------------------------------------------------
08/16/2016 03:04:26: -------------------------------------------------------------------
08/16/2016 03:04:26: GPU info:
05/03/2016 13:01:58: Running on DIFFENG at 2016/05/03 13:01:58
05/03/2016 13:01:58: Command line:
C:\src\cntk_github\x64\release\cntk.exe configFile=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config/Simple.cntk currentDirectory=C:\src\cntk_github\Examples\Other\Simple2d\Data RunDir=E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu DataDir=C:\src\cntk_github\Examples\Other\Simple2d\Data ConfigDir=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config OutputDir=E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu DeviceId=0 timestamping=true Simple_Demo_Train=[SGD=[maxEpochs=3]]
08/16/2016 03:04:26: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:04:26: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:04:26: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:04:26: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:04:26: -------------------------------------------------------------------
08/16/2016 03:04:26: Running on DPHAIM-24 at 2016/08/16 03:04:26
08/16/2016 03:04:26: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config/Simple.cntk currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu DeviceId=0 timestamping=true Simple_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 13:01:58: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/03/2016 13:01:58: RootDir = ".."
08/16/2016 03:04:26: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:04:26: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
@ -127,28 +142,28 @@ labelMappingFile = "$DataDir$/SimpleMapping.txt"
sequenceEpilogue = "\t// %s\n"
]
]
currentDirectory=C:\src\cntk_github\Examples\Other\Simple2d\Data
RunDir=E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu
DataDir=C:\src\cntk_github\Examples\Other\Simple2d\Data
ConfigDir=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config
OutputDir=E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu
currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu
DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu
DeviceId=0
timestamping=true
Simple_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 13:01:58: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:04:26: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/03/2016 13:01:58: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/03/2016 13:01:58: RootDir = ".."
08/16/2016 03:04:26: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:04:26: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu/Models"
ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu/Models"
deviceId = -1
command = Simple_Demo_Train:Simple_Demo_Test:Simple_Demo_Output
precision = "float"
traceLevel = 1
modelPath = "E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu/Models/simple.dnn"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu/Models/simple.dnn"
outputNodeNames = ScaledLogLikelihood
Simple_Demo_Train = [
action = "train"
@ -172,7 +187,7 @@ Simple_Demo_Train = [
]
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTrain_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTrain_cntk_text.txt"
input = [
features = [
dim = 2
@ -189,7 +204,7 @@ Simple_Demo_Test = [
action = "test"
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -206,7 +221,7 @@ Simple_Demo_Output=[
action = "write"
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -219,42 +234,42 @@ dim = 2
]
]
outputNodeNames = PosteriorProb : labels
outputPath = "E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu/SimpleOutput"
outputPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu/SimpleOutput"
format = [
type = "category"
labelMappingFile = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleMapping.txt"
labelMappingFile = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleMapping.txt"
sequenceEpilogue = "\t// %s\n"
]
]
currentDirectory=C:\src\cntk_github\Examples\Other\Simple2d\Data
RunDir=E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu
DataDir=C:\src\cntk_github\Examples\Other\Simple2d\Data
ConfigDir=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config
OutputDir=E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu
currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu
DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu
DeviceId=0
timestamping=true
Simple_Demo_Train=[SGD=[maxEpochs=3]]
05/03/2016 13:01:58: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:04:26: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 13:01:58: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:04:26: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: Simple.cntk:command=Simple_Demo_Train:Simple_Demo_Test:Simple_Demo_Output
configparameters: Simple.cntk:ConfigDir=C:\src\cntk_github\Tests\EndToEndTests\CNTKTextFormatReader\Examples\Other\Simple2d\Config
configparameters: Simple.cntk:currentDirectory=C:\src\cntk_github\Examples\Other\Simple2d\Data
configparameters: Simple.cntk:DataDir=C:\src\cntk_github\Examples\Other\Simple2d\Data
configparameters: Simple.cntk:ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Config
configparameters: Simple.cntk:currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
configparameters: Simple.cntk:DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data
configparameters: Simple.cntk:deviceId=0
configparameters: Simple.cntk:ModelDir=E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu/Models
configparameters: Simple.cntk:modelPath=E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu/Models/simple.dnn
configparameters: Simple.cntk:OutputDir=E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu
configparameters: Simple.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu/Models
configparameters: Simple.cntk:modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu/Models/simple.dnn
configparameters: Simple.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu
configparameters: Simple.cntk:outputNodeNames=ScaledLogLikelihood
configparameters: Simple.cntk:precision=float
configparameters: Simple.cntk:RootDir=..
configparameters: Simple.cntk:RunDir=E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu
configparameters: Simple.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu
configparameters: Simple.cntk:Simple_Demo_Output=[
action = "write"
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -267,10 +282,10 @@ dim = 2
]
]
outputNodeNames = PosteriorProb : labels
outputPath = "E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu/SimpleOutput"
outputPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu/SimpleOutput"
format = [
type = "category"
labelMappingFile = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleMapping.txt"
labelMappingFile = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleMapping.txt"
sequenceEpilogue = "\t// %s\n"
]
]
@ -279,7 +294,7 @@ configparameters: Simple.cntk:Simple_Demo_Test=[
action = "test"
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTest_cntk_text.txt"
input = [
features = [
dim = 2
@ -315,7 +330,7 @@ configparameters: Simple.cntk:Simple_Demo_Train=[
]
reader = [
readerType = "CNTKTextFormatReader"
file = "C:\src\cntk_github\Examples\Other\Simple2d\Data/SimpleDataTrain_cntk_text.txt"
file = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Other\Simple2d\Data/SimpleDataTrain_cntk_text.txt"
input = [
features = [
dim = 2
@ -331,24 +346,36 @@ dim = 2
configparameters: Simple.cntk:timestamping=true
configparameters: Simple.cntk:traceLevel=1
05/03/2016 13:01:58: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 13:01:58: Commands: Simple_Demo_Train Simple_Demo_Test Simple_Demo_Output
05/03/2016 13:01:58: Precision = "float"
05/03/2016 13:01:58: CNTKModelPath: E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu/Models/simple.dnn
05/03/2016 13:01:58: CNTKCommandTrainInfo: Simple_Demo_Train : 3
05/03/2016 13:01:58: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
08/16/2016 03:04:26: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:04:26: Commands: Simple_Demo_Train Simple_Demo_Test Simple_Demo_Output
08/16/2016 03:04:26: Precision = "float"
08/16/2016 03:04:26: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu/Models/simple.dnn
08/16/2016 03:04:26: CNTKCommandTrainInfo: Simple_Demo_Train : 3
08/16/2016 03:04:26: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
05/03/2016 13:01:58: ##############################################################################
05/03/2016 13:01:58: # #
05/03/2016 13:01:58: # Action "train" #
05/03/2016 13:01:58: # #
05/03/2016 13:01:58: ##############################################################################
08/16/2016 03:04:26: ##############################################################################
08/16/2016 03:04:26: # #
08/16/2016 03:04:26: # Action "train" #
08/16/2016 03:04:26: # #
08/16/2016 03:04:26: ##############################################################################
05/03/2016 13:01:58: CNTKCommandTrainBegin: Simple_Demo_Train
08/16/2016 03:04:26: CNTKCommandTrainBegin: Simple_Demo_Train
SimpleNetworkBuilder Using GPU 0
05/03/2016 13:01:58: Creating virgin network.
08/16/2016 03:04:26: Creating virgin network.
Node 'W0' (LearnableParameter operation): Initializing Parameter[50 x 2] <- 0.000000.
Node 'W0' (LearnableParameter operation): Initializing Parameter[50 x 2] <- uniform(seed=1, range=0.050000*1.000000, onCPU=false).
Microsoft::MSR::CNTK::GPUMatrix<ElemType>::SetUniformRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4
Node 'B0' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'B0' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[50 x 50] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[50 x 50] <- uniform(seed=2, range=0.050000*1.000000, onCPU=false).
Node 'B1' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'B1' (LearnableParameter operation): Initializing Parameter[50 x 1] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[2 x 50] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[2 x 50] <- uniform(seed=3, range=0.050000*1.000000, onCPU=false).
Node 'B2' (LearnableParameter operation): Initializing Parameter[2 x 1] <- 0.000000.
Node 'B2' (LearnableParameter operation): Initializing Parameter[2 x 1] <- 0.000000.
Post-processing network...
@ -400,207 +427,210 @@ Validating network, final pass.
Post-processing network complete.
05/03/2016 13:01:59: Created model with 25 nodes on GPU 0.
08/16/2016 03:04:26: Created model with 25 nodes on GPU 0.
05/03/2016 13:01:59: Training criterion node(s):
05/03/2016 13:01:59: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
08/16/2016 03:04:26: Training criterion node(s):
08/16/2016 03:04:26: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
05/03/2016 13:01:59: Evaluation criterion node(s):
05/03/2016 13:01:59: EvalErrorPrediction = ErrorPrediction
08/16/2016 03:04:26: Evaluation criterion node(s):
08/16/2016 03:04:26: EvalErrorPrediction = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 40 matrices, 19 are shared as 8, and 21 are not shared.
0000000000000000: {[EvalErrorPrediction Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
000000501A590FF0: {[W2 Value[2 x 50]] }
000000501A591090: {[W0 Value[50 x 2]] }
000000501A5919F0: {[B1 Value[50 x 1]] }
000000501A591A90: {[InvStdOfFeatures Value[2]] }
000000501A591E50: {[B0 Value[50 x 1]] }
000000501A591EF0: {[W1 Value[50 x 50]] }
000000501A592350: {[B2 Value[2 x 1]] }
000000501A592530: {[labels Value[2 x *]] }
000000501A592670: {[Prior Value[2]] }
000000501A5A1180: {[ScaledLogLikelihood Value[2 x 1 x *]] }
000000501A5A1220: {[B0 Gradient[50 x 1]] [H1 Gradient[50 x 1 x *]] [W1*H1+B1 Gradient[50 x 1 x *]] [W2*H1 Value[2 x 1 x *]] }
000000501A5A17C0: {[W0 Gradient[50 x 2]] [W0*features+B0 Value[50 x 1 x *]] }
000000501A5A1900: {[EvalErrorPrediction Value[1]] }
000000501A5A19A0: {[W0*features Value[50 x *]] }
000000501A5A1A40: {[W2*H1 Gradient[2 x 1 x *]] }
000000501A5A1F40: {[MVNormalizedFeatures Value[2 x *]] }
000000501A5A2080: {[H1 Value[50 x 1 x *]] [W0*features Gradient[50 x *]] }
000000501A5A2120: {[W1 Gradient[50 x 50]] [W1*H1+B1 Value[50 x 1 x *]] }
000000501A5A21C0: {[W0*features+B0 Gradient[50 x 1 x *]] [W1*H1 Value[50 x 1 x *]] }
000000501A5A2260: {[LogOfPrior Value[2]] }
000000501A5A2300: {[HLast Value[2 x 1 x *]] [W2 Gradient[2 x 50]] }
000000501A5A2800: {[H2 Value[50 x 1 x *]] [W1*H1 Gradient[50 x 1 x *]] }
000000501A5A2940: {[CrossEntropyWithSoftmax Gradient[1]] }
000000501A5A2A80: {[B2 Gradient[2 x 1]] }
000000501A5A2B20: {[CrossEntropyWithSoftmax Value[1]] }
000000501A5A2C60: {[B1 Gradient[50 x 1]] [H2 Gradient[50 x 1 x *]] [HLast Gradient[2 x 1 x *]] }
000000507C5F0E90: {[features Value[2 x *]] }
000000507F44EB10: {[MeanOfFeatures Value[2]] }
{ W1 : [50 x 50] (gradient)
W1*H1+B1 : [50 x 1 x *] }
{ W0*features+B0 : [50 x 1 x *] (gradient)
W1*H1 : [50 x 1 x *] }
{ B0 : [50 x 1] (gradient)
H1 : [50 x 1 x *] (gradient)
W1*H1+B1 : [50 x 1 x *] (gradient)
W2*H1 : [2 x 1 x *] }
{ H2 : [50 x 1 x *]
W1*H1 : [50 x 1 x *] (gradient) }
{ B1 : [50 x 1] (gradient)
H2 : [50 x 1 x *] (gradient)
HLast : [2 x 1 x *] (gradient) }
{ H1 : [50 x 1 x *]
W0*features : [50 x *] (gradient) }
{ W0 : [50 x 2] (gradient)
W0*features+B0 : [50 x 1 x *] }
{ HLast : [2 x 1 x *]
W2 : [2 x 50] (gradient) }
05/03/2016 13:01:59: Precomputing --> 3 PreCompute nodes found.
08/16/2016 03:04:26: Training 2802 parameters in 6 out of 6 parameter tensors and 15 nodes with gradient:
05/03/2016 13:01:59: MeanOfFeatures = Mean()
05/03/2016 13:01:59: InvStdOfFeatures = InvStdDev()
05/03/2016 13:01:59: Prior = Mean()
05/03/2016 13:01:59: Precomputing --> Completed.
08/16/2016 03:04:26: Node 'B0' (LearnableParameter operation) : [50 x 1]
08/16/2016 03:04:26: Node 'B1' (LearnableParameter operation) : [50 x 1]
08/16/2016 03:04:26: Node 'B2' (LearnableParameter operation) : [2 x 1]
08/16/2016 03:04:26: Node 'W0' (LearnableParameter operation) : [50 x 2]
08/16/2016 03:04:26: Node 'W1' (LearnableParameter operation) : [50 x 50]
08/16/2016 03:04:26: Node 'W2' (LearnableParameter operation) : [2 x 50]
05/03/2016 13:01:59: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
08/16/2016 03:04:26: Precomputing --> 3 PreCompute nodes found.
05/03/2016 13:01:59: Starting minibatch loop.
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70650452 * 250; EvalErrorPrediction = 0.55200000 * 250; time = 0.0123s; samplesPerSecond = 20247.8
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.69701831 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0112s; samplesPerSecond = 22393.4
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.71089587 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0126s; samplesPerSecond = 19907.6
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.72980273 * 250; EvalErrorPrediction = 0.56000000 * 250; time = 0.0113s; samplesPerSecond = 22042.0
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70902783 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0131s; samplesPerSecond = 19088.3
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72657300 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0138s; samplesPerSecond = 18059.7
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.69319678 * 250; EvalErrorPrediction = 0.43200000 * 250; time = 0.0148s; samplesPerSecond = 16917.0
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.73563477 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0164s; samplesPerSecond = 15236.5
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.71463281 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0123s; samplesPerSecond = 20321.9
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.75213428 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0167s; samplesPerSecond = 14944.1
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.75931445 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0131s; samplesPerSecond = 19105.8
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.73075293 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0132s; samplesPerSecond = 18886.5
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.76701953 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0128s; samplesPerSecond = 19574.1
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.70451270 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0128s; samplesPerSecond = 19467.4
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70539941 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0143s; samplesPerSecond = 17444.7
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.72700293 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0123s; samplesPerSecond = 20391.5
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70096191 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0143s; samplesPerSecond = 17465.4
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.69437305 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0117s; samplesPerSecond = 21367.5
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.69161621 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0137s; samplesPerSecond = 18200.3
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.73388281 * 250; EvalErrorPrediction = 0.55200000 * 250; time = 0.0115s; samplesPerSecond = 21782.7
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.72255664 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0127s; samplesPerSecond = 19745.7
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70414551 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0131s; samplesPerSecond = 19017.2
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69976758 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0137s; samplesPerSecond = 18191.1
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.72419141 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0143s; samplesPerSecond = 17444.7
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69943945 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0109s; samplesPerSecond = 22891.7
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69206445 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0133s; samplesPerSecond = 18739.2
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.68771680 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0130s; samplesPerSecond = 19291.6
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69878516 * 250; EvalErrorPrediction = 0.44000000 * 250; time = 0.0130s; samplesPerSecond = 19230.8
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.71889844 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0118s; samplesPerSecond = 21168.5
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.70086523 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0128s; samplesPerSecond = 19577.1
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.70878320 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0129s; samplesPerSecond = 19432.6
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.70674414 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0126s; samplesPerSecond = 19767.5
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69707422 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0121s; samplesPerSecond = 20736.6
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.68588281 * 250; EvalErrorPrediction = 0.40800000 * 250; time = 0.0124s; samplesPerSecond = 20109.4
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.67734766 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0127s; samplesPerSecond = 19727.0
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.67958008 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0127s; samplesPerSecond = 19615.5
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.66424805 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0117s; samplesPerSecond = 21292.9
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.62412500 * 250; EvalErrorPrediction = 0.20400000 * 250; time = 0.0127s; samplesPerSecond = 19624.8
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.58007422 * 250; EvalErrorPrediction = 0.16000000 * 250; time = 0.0130s; samplesPerSecond = 19157.1
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.52764648 * 250; EvalErrorPrediction = 0.19200000 * 250; time = 0.0143s; samplesPerSecond = 17521.7
05/03/2016 13:02:00: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.69975483 * 10000; EvalErrorPrediction = 0.46850000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=0.526194s
05/03/2016 13:02:00: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu/Models/simple.dnn.1'
08/16/2016 03:04:26: MeanOfFeatures = Mean()
08/16/2016 03:04:26: InvStdOfFeatures = InvStdDev()
08/16/2016 03:04:26: Prior = Mean()
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
05/03/2016 13:02:00: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
05/03/2016 13:02:00: Starting minibatch loop.
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.44832977 * 250; EvalErrorPrediction = 0.15200000 * 250; time = 0.0124s; samplesPerSecond = 20205.3
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.40085291 * 250; EvalErrorPrediction = 0.12400000 * 250; time = 0.0142s; samplesPerSecond = 17631.7
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.33487201 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0129s; samplesPerSecond = 19405.4
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.29081885 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0125s; samplesPerSecond = 20016.0
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.26279236 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0118s; samplesPerSecond = 21188.2
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.25220630 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0138s; samplesPerSecond = 18158.0
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.20988293 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0129s; samplesPerSecond = 19447.7
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.21577441 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0148s; samplesPerSecond = 16846.4
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.16622900 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0157s; samplesPerSecond = 15967.3
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.17637866 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0144s; samplesPerSecond = 17315.4
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.22185278 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0123s; samplesPerSecond = 20366.6
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.17055811 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0151s; samplesPerSecond = 16564.0
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.16481055 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0140s; samplesPerSecond = 17910.9
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13871704 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0156s; samplesPerSecond = 16005.1
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16922363 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0143s; samplesPerSecond = 17454.4
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.15403345 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0135s; samplesPerSecond = 18485.7
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.22255859 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0108s; samplesPerSecond = 23079.8
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18146851 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0133s; samplesPerSecond = 18843.7
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.15611523 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0131s; samplesPerSecond = 19081.1
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.17320215 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0137s; samplesPerSecond = 18192.4
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15727930 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0117s; samplesPerSecond = 21404.1
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.16195410 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0119s; samplesPerSecond = 21088.1
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.16121338 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0128s; samplesPerSecond = 19546.5
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.15427100 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0125s; samplesPerSecond = 20011.2
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.14844775 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0141s; samplesPerSecond = 17743.1
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.15055713 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0108s; samplesPerSecond = 23067.0
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.15467627 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0132s; samplesPerSecond = 18965.3
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.17615869 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0140s; samplesPerSecond = 17872.5
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.22356104 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0121s; samplesPerSecond = 20650.9
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16514209 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0109s; samplesPerSecond = 22946.3
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17355859 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0129s; samplesPerSecond = 19372.3
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13117578 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0138s; samplesPerSecond = 18151.5
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.13956104 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0121s; samplesPerSecond = 20743.4
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.18397363 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0105s; samplesPerSecond = 23741.7
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.15222656 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0126s; samplesPerSecond = 19909.2
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.18856396 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0145s; samplesPerSecond = 17207.0
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.17513330 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0130s; samplesPerSecond = 19199.8
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15008252 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0108s; samplesPerSecond = 23043.6
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.12125342 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0127s; samplesPerSecond = 19668.0
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15408496 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0141s; samplesPerSecond = 17788.5
05/03/2016 13:02:00: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.19333879 * 10000; EvalErrorPrediction = 0.07700000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.525411s
05/03/2016 13:02:00: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu/Models/simple.dnn.2'
05/03/2016 13:02:00: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
05/03/2016 13:02:00: Starting minibatch loop.
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.10746781 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0126s; samplesPerSecond = 19806.7
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.17648278 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0122s; samplesPerSecond = 20429.8
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14106094 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0126s; samplesPerSecond = 19838.1
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.16348077 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0127s; samplesPerSecond = 19745.7
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.11767151 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0110s; samplesPerSecond = 22787.3
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.16217944 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0137s; samplesPerSecond = 18292.2
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.16171204 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0147s; samplesPerSecond = 16977.9
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.19844067 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0130s; samplesPerSecond = 19285.7
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.19984509 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0116s; samplesPerSecond = 21585.2
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.13727051 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0133s; samplesPerSecond = 18839.5
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.20126648 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0150s; samplesPerSecond = 16709.0
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.17913672 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0138s; samplesPerSecond = 18066.2
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.15983582 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0138s; samplesPerSecond = 18131.7
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16260010 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0126s; samplesPerSecond = 19798.8
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.19813428 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0122s; samplesPerSecond = 20453.2
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.10295117 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0124s; samplesPerSecond = 20091.6
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17117065 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0127s; samplesPerSecond = 19762.8
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16661938 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0127s; samplesPerSecond = 19620.2
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.12718042 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0108s; samplesPerSecond = 23156.7
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.11923853 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0139s; samplesPerSecond = 17989.5
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.12890332 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0129s; samplesPerSecond = 19340.9
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.18205469 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0124s; samplesPerSecond = 20182.4
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.13154199 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0111s; samplesPerSecond = 22599.9
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.19668359 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0139s; samplesPerSecond = 17922.4
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.15817578 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0126s; samplesPerSecond = 19915.6
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.11871240 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0136s; samplesPerSecond = 18378.3
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.13730908 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0107s; samplesPerSecond = 23384.2
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.20024854 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0134s; samplesPerSecond = 18719.6
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.18850244 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0131s; samplesPerSecond = 19151.2
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16640479 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0108s; samplesPerSecond = 23086.2
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.11872168 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0107s; samplesPerSecond = 23347.0
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.16090430 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0127s; samplesPerSecond = 19730.1
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.16162939 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0137s; samplesPerSecond = 18205.7
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.12408594 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0109s; samplesPerSecond = 22839.4
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13544434 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0126s; samplesPerSecond = 19893.4
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.20890771 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0129s; samplesPerSecond = 19366.3
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16674365 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0146s; samplesPerSecond = 17116.3
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15033398 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0131s; samplesPerSecond = 19152.7
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.16547705 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0120s; samplesPerSecond = 20752.1
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.16792480 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0129s; samplesPerSecond = 19450.7
05/03/2016 13:02:01: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15806136 * 10000; EvalErrorPrediction = 0.07470000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.511151s
05/03/2016 13:02:01: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu/Models/simple.dnn'
05/03/2016 13:02:01: CNTKCommandTrainEnd: Simple_Demo_Train
05/03/2016 13:02:01: Action "train" complete.
08/16/2016 03:04:27: Precomputing --> Completed.
05/03/2016 13:02:01: ##############################################################################
05/03/2016 13:02:01: # #
05/03/2016 13:02:01: # Action "test" #
05/03/2016 13:02:01: # #
05/03/2016 13:02:01: ##############################################################################
08/16/2016 03:04:27: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..10000] (first sequence at sample 0), data subset 0 of 1
08/16/2016 03:04:27: Starting minibatch loop.
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70124231 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0194s; samplesPerSecond = 12887.9
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.76372424 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0179s; samplesPerSecond = 13952.5
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.72703027 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0181s; samplesPerSecond = 13829.0
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.73895923 * 250; EvalErrorPrediction = 0.56800000 * 250; time = 0.0178s; samplesPerSecond = 14035.5
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70621924 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0178s; samplesPerSecond = 14078.2
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.74767041 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0177s; samplesPerSecond = 14152.3
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.75094434 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0181s; samplesPerSecond = 13803.8
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.78058936 * 250; EvalErrorPrediction = 0.48400000 * 250; time = 0.0176s; samplesPerSecond = 14213.4
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.70407129 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0180s; samplesPerSecond = 13910.5
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.69555762 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0178s; samplesPerSecond = 14074.2
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.70626123 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0178s; samplesPerSecond = 14061.5
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.74540430 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0178s; samplesPerSecond = 14030.8
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.70824414 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0179s; samplesPerSecond = 14003.2
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.69895020 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0179s; samplesPerSecond = 13995.4
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70353223 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0176s; samplesPerSecond = 14198.1
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.69346387 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0177s; samplesPerSecond = 14153.9
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.74449902 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0177s; samplesPerSecond = 14157.1
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.73767969 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0176s; samplesPerSecond = 14175.6
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71876855 * 250; EvalErrorPrediction = 0.48400000 * 250; time = 0.0179s; samplesPerSecond = 13987.6
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.71509473 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0180s; samplesPerSecond = 13914.4
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.69956152 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0179s; samplesPerSecond = 13953.2
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.69785937 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0179s; samplesPerSecond = 13960.2
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.70736035 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0177s; samplesPerSecond = 14094.8
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.69820508 * 250; EvalErrorPrediction = 0.56800000 * 250; time = 0.0176s; samplesPerSecond = 14205.4
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69537109 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0178s; samplesPerSecond = 14067.1
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69347266 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0179s; samplesPerSecond = 13982.1
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.70801172 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0178s; samplesPerSecond = 14023.7
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69131641 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0177s; samplesPerSecond = 14152.3
08/16/2016 03:04:27: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.70370312 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0178s; samplesPerSecond = 14023.7
08/16/2016 03:04:28: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.71200195 * 250; EvalErrorPrediction = 0.43600000 * 250; time = 0.0177s; samplesPerSecond = 14133.1
08/16/2016 03:04:28: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.69506836 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0178s; samplesPerSecond = 14056.0
08/16/2016 03:04:28: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.69935352 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0179s; samplesPerSecond = 13976.6
08/16/2016 03:04:28: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69887109 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0178s; samplesPerSecond = 14018.2
08/16/2016 03:04:28: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.69604492 * 250; EvalErrorPrediction = 0.49200000 * 250; time = 0.0180s; samplesPerSecond = 13874.2
08/16/2016 03:04:28: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.69011719 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0181s; samplesPerSecond = 13820.6
08/16/2016 03:04:28: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.68419531 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0181s; samplesPerSecond = 13831.3
08/16/2016 03:04:28: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.67551367 * 250; EvalErrorPrediction = 0.32400000 * 250; time = 0.0177s; samplesPerSecond = 14140.3
08/16/2016 03:04:28: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.67028516 * 250; EvalErrorPrediction = 0.40000000 * 250; time = 0.0180s; samplesPerSecond = 13868.1
08/16/2016 03:04:28: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.65152734 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0179s; samplesPerSecond = 13937.7
08/16/2016 03:04:28: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.63594727 * 250; EvalErrorPrediction = 0.22000000 * 250; time = 0.0178s; samplesPerSecond = 14028.4
08/16/2016 03:04:28: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.70729233 * 10000; EvalErrorPrediction = 0.47740000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=0.717672s
08/16/2016 03:04:28: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu/Models/simple.dnn.1'
08/16/2016 03:04:28: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 1: frames [10000..20000] (first sequence at sample 10000), data subset 0 of 1
08/16/2016 03:04:28: Starting minibatch loop.
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.61492108 * 250; EvalErrorPrediction = 0.26800000 * 250; time = 0.0183s; samplesPerSecond = 13687.4
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.59171271 * 250; EvalErrorPrediction = 0.28400000 * 250; time = 0.0180s; samplesPerSecond = 13905.9
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.53591638 * 250; EvalErrorPrediction = 0.20000000 * 250; time = 0.0178s; samplesPerSecond = 14045.7
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.51872742 * 250; EvalErrorPrediction = 0.14000000 * 250; time = 0.0181s; samplesPerSecond = 13821.3
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.48384375 * 250; EvalErrorPrediction = 0.12400000 * 250; time = 0.0177s; samplesPerSecond = 14094.0
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.43163501 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0181s; samplesPerSecond = 13790.8
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.38970386 * 250; EvalErrorPrediction = 0.12400000 * 250; time = 0.0180s; samplesPerSecond = 13915.9
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.33681616 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0180s; samplesPerSecond = 13862.7
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.31352393 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0178s; samplesPerSecond = 14010.3
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.26829492 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0179s; samplesPerSecond = 13966.5
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.24240820 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0177s; samplesPerSecond = 14094.0
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.21015820 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0179s; samplesPerSecond = 13976.6
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.22358789 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0177s; samplesPerSecond = 14153.1
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.20496631 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0181s; samplesPerSecond = 13776.4
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.20070508 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0175s; samplesPerSecond = 14307.0
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.19224707 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0180s; samplesPerSecond = 13886.6
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.19326563 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0176s; samplesPerSecond = 14189.2
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.21712451 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0177s; samplesPerSecond = 14109.1
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.17562354 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0177s; samplesPerSecond = 14125.9
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.18186035 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0177s; samplesPerSecond = 14111.5
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.14065234 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0179s; samplesPerSecond = 13957.9
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.17710254 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0177s; samplesPerSecond = 14107.6
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.13001953 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0176s; samplesPerSecond = 14178.0
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.21622949 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0179s; samplesPerSecond = 13949.3
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.21902246 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0182s; samplesPerSecond = 13726.5
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.18068799 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0179s; samplesPerSecond = 13998.5
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.16232471 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0176s; samplesPerSecond = 14165.1
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.13792139 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0177s; samplesPerSecond = 14102.8
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.16526709 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0181s; samplesPerSecond = 13800.7
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14743457 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0177s; samplesPerSecond = 14108.4
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.15089160 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0178s; samplesPerSecond = 14053.6
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.12636230 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0179s; samplesPerSecond = 13932.2
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.16735547 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0176s; samplesPerSecond = 14164.3
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.14530957 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0178s; samplesPerSecond = 14006.4
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13859570 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0176s; samplesPerSecond = 14166.7
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.14215234 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0179s; samplesPerSecond = 13940.0
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.15903027 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0178s; samplesPerSecond = 14069.4
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.16232520 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0177s; samplesPerSecond = 14160.3
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.13596484 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0176s; samplesPerSecond = 14198.9
08/16/2016 03:04:28: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15469434 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0176s; samplesPerSecond = 14185.2
08/16/2016 03:04:28: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.24215964 * 10000; EvalErrorPrediction = 0.09440000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.71504s
08/16/2016 03:04:28: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu/Models/simple.dnn.2'
08/16/2016 03:04:28: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
BlockRandomizer::StartEpoch: epoch 2: frames [20000..30000] (first sequence at sample 20000), data subset 0 of 1
08/16/2016 03:04:28: Starting minibatch loop.
08/16/2016 03:04:28: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.18305315 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0183s; samplesPerSecond = 13632.2
08/16/2016 03:04:28: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.12945729 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0177s; samplesPerSecond = 14137.9
08/16/2016 03:04:28: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.17735931 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0180s; samplesPerSecond = 13886.6
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.14128339 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0180s; samplesPerSecond = 13903.6
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.16558209 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0176s; samplesPerSecond = 14173.9
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.19102692 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0178s; samplesPerSecond = 14036.3
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.12279083 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0181s; samplesPerSecond = 13844.3
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16642798 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0178s; samplesPerSecond = 14033.9
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.12386572 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0177s; samplesPerSecond = 14110.7
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.19928418 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0177s; samplesPerSecond = 14102.8
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.14213635 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0179s; samplesPerSecond = 13957.9
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.12377087 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0177s; samplesPerSecond = 14088.5
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.16361621 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0178s; samplesPerSecond = 14026.0
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.19886914 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0178s; samplesPerSecond = 14015.8
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.17207544 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0179s; samplesPerSecond = 13935.3
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.13323437 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0180s; samplesPerSecond = 13901.2
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.14397510 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0180s; samplesPerSecond = 13905.9
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.20777515 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0179s; samplesPerSecond = 13964.1
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.19094092 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0180s; samplesPerSecond = 13874.2
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.14731372 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0179s; samplesPerSecond = 13942.3
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15483569 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0177s; samplesPerSecond = 14117.1
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.13625415 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0177s; samplesPerSecond = 14162.7
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.17354004 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0177s; samplesPerSecond = 14094.0
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14408350 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0179s; samplesPerSecond = 13929.9
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.13720044 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0180s; samplesPerSecond = 13895.8
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.14236426 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0178s; samplesPerSecond = 14027.6
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.16857861 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0179s; samplesPerSecond = 13968.8
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.18606982 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0180s; samplesPerSecond = 13861.9
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.16334619 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0177s; samplesPerSecond = 14094.8
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.15598535 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0179s; samplesPerSecond = 13979.0
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18848584 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0178s; samplesPerSecond = 14073.4
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13281348 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0178s; samplesPerSecond = 14067.1
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.14679150 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0178s; samplesPerSecond = 14047.3
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.13977344 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0178s; samplesPerSecond = 14027.6
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.20015137 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0181s; samplesPerSecond = 13831.3
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.12582129 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0178s; samplesPerSecond = 14022.1
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.18500098 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0180s; samplesPerSecond = 13907.4
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15147754 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0181s; samplesPerSecond = 13800.0
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.11988379 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0177s; samplesPerSecond = 14089.3
08/16/2016 03:04:29: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.13059082 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0181s; samplesPerSecond = 13797.7
08/16/2016 03:04:29: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15767216 * 10000; EvalErrorPrediction = 0.07330000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.716967s
08/16/2016 03:04:29: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu/Models/simple.dnn'
08/16/2016 03:04:29: CNTKCommandTrainEnd: Simple_Demo_Train
08/16/2016 03:04:29: Action "train" complete.
08/16/2016 03:04:29: ##############################################################################
08/16/2016 03:04:29: # #
08/16/2016 03:04:29: # Action "test" #
08/16/2016 03:04:29: # #
08/16/2016 03:04:29: ##############################################################################
Post-processing network...
@ -658,43 +688,23 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 25 matrices, 2 are shared as 1, and 23 are not shared.
0000000000000000: {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalErrorPrediction Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
000000501A591090: {[W0*features+B0 Value[50 x 1 x *1]] }
000000501A591130: {[W1*H1 Value[50 x 1 x *1]] }
000000501A5916D0: {[W1*H1+B1 Value[50 x 1 x *1]] }
000000501A591770: {[W2*H1 Value[2 x 1 x *1]] }
000000501A5919F0: {[MVNormalizedFeatures Value[2 x *1]] }
000000501A591E50: {[W0*features Value[50 x *1]] }
000000501A592030: {[H1 Value[50 x 1 x *1]] }
000000501A592170: {[HLast Value[2 x 1 x *1]] }
000000501A592850: {[LogOfPrior Value[2]] }
000000501A5928F0: {[H2 Value[50 x 1 x *1]] }
000000501A592B70: {[W2 Value[2 x 50]] }
000000501A592D50: {[EvalErrorPrediction Value[1]] }
000000501A592DF0: {[CrossEntropyWithSoftmax Value[1]] }
0000005024E60C70: {[W1 Value[50 x 50]] }
0000005024E613F0: {[W0 Value[50 x 2]] }
0000005024E61490: {[Prior Value[2]] }
0000005024E615D0: {[MeanOfFeatures Value[2]] }
0000005024E61C10: {[B0 Value[50 x 1]] }
0000005024E61CB0: {[B2 Value[2 x 1]] }
0000005024E622F0: {[InvStdOfFeatures Value[2]] }
0000005024E62390: {[labels Value[2 x *1]] }
0000005024E62430: {[features Value[2 x *1]] }
0000005024E624D0: {[B1 Value[50 x 1]] }
{ PosteriorProb : [2 x 1 x *1]
ScaledLogLikelihood : [2 x 1 x *1] }
05/03/2016 13:02:01: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.05638474 * 603; CrossEntropyWithSoftmax = 0.12740351 * 603; perplexity = 1.13587526
BlockRandomizer::StartEpoch: epoch 0: frames [0..603] (first sequence at sample 0), data subset 0 of 1
08/16/2016 03:04:29: Minibatch[1-1]: EvalErrorPrediction = 0.04975124 * 603; CrossEntropyWithSoftmax = 0.10845041 * 603
08/16/2016 03:04:29: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.04975124 * 603; CrossEntropyWithSoftmax = 0.10845041 * 603; perplexity = 1.11454964
05/03/2016 13:02:01: Action "test" complete.
08/16/2016 03:04:29: Action "test" complete.
05/03/2016 13:02:01: ##############################################################################
05/03/2016 13:02:01: # #
05/03/2016 13:02:01: # Action "write" #
05/03/2016 13:02:01: # #
05/03/2016 13:02:01: ##############################################################################
08/16/2016 03:04:29: ##############################################################################
08/16/2016 03:04:29: # #
08/16/2016 03:04:29: # Action "write" #
08/16/2016 03:04:29: # #
08/16/2016 03:04:29: ##############################################################################
Post-processing network...
@ -752,36 +762,16 @@ Post-processing network complete.
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 25 matrices, 3 are shared as 1, and 22 are not shared.
0000000000000000: {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [CrossEntropyWithSoftmax Value[1]] [EvalErrorPrediction Gradient[1]] [EvalErrorPrediction Value[1]] [H1 Gradient[50 x 1 x *2]] [H2 Gradient[50 x 1 x *2]] [HLast Gradient[2 x 1 x *2]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *2]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *2]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *2]] [ScaledLogLikelihood Value[2 x 1 x *2]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *2]] [W0*features+B0 Gradient[50 x 1 x *2]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *2]] [W1*H1+B1 Gradient[50 x 1 x *2]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *2]] [features Gradient[2 x *2]] [labels Gradient[2 x *2]] }
000000501A5914F0: {[InvStdOfFeatures Value[2]] }
000000501A591590: {[MeanOfFeatures Value[2]] }
000000501A5916D0: {[labels Value[2 x *2]] }
000000501A591810: {[B2 Value[2 x 1]] }
000000501A591B30: {[B1 Value[50 x 1]] }
000000501A592030: {[Prior Value[2]] }
000000501A592170: {[W0 Value[50 x 2]] }
000000501A5922B0: {[W1 Value[50 x 50]] }
000000501A592490: {[features Value[2 x *2]] }
000000501A592C10: {[B0 Value[50 x 1]] }
0000005024E60950: {[PosteriorProb Value[2 x 1 x *2]] }
0000005024E609F0: {[W0*features+B0 Value[50 x 1 x *2]] }
0000005024E60A90: {[W2*H1 Value[2 x 1 x *2]] }
0000005024E60BD0: {[W2 Value[2 x 50]] }
0000005024E60C70: {[W0*features Value[50 x *2]] }
0000005024E60DB0: {[MVNormalizedFeatures Value[2 x *2]] }
0000005024E60EF0: {[HLast Value[2 x 1 x *2]] }
0000005024E61990: {[LogOfPrior Value[2]] }
0000005024E61D50: {[H1 Value[50 x 1 x *2]] }
0000005024E62110: {[W1*H1+B1 Value[50 x 1 x *2]] }
0000005024E62390: {[W1*H1 Value[50 x 1 x *2]] }
0000005024E62430: {[H2 Value[50 x 1 x *2]] }
{ CrossEntropyWithSoftmax : [1]
EvalErrorPrediction : [1]
ScaledLogLikelihood : [2 x 1 x *2] }
Minibatch[0]: ActualMBSize = 603
Written to E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu/SimpleOutput*
Written to C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030038.674053\Examples\Other\Simple2d_Simple@release_gpu/SimpleOutput*
Total Samples Evaluated = 603
05/03/2016 13:02:01: Action "write" complete.
08/16/2016 03:04:29: Action "write" complete.
05/03/2016 13:02:01: __COMPLETED__
08/16/2016 03:04:29: __COMPLETED__

Просмотреть файл

@ -0,0 +1,434 @@
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 264172964 kB
-------------------------------------------------------------------
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/1bitsgd/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/../../../../../../Examples/Speech/AN4/Config/FeedForward.cntk currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_cpu DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/../../../../../../Examples/Speech/AN4/Config OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_cpu DeviceId=-1 timestamping=true speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=2048]] speechTrain=[reader=[useMersenneTwisterRand=true]]
-------------------------------------------------------------------
Build info:
Built time: Aug 16 2016 09:41:57
Last modified date: Mon Aug 15 23:39:17 2016
Build type: release
Build target: GPU
With 1bit-SGD: yes
Math lib: mkl
CUDA_PATH: /usr/local/cuda-7.5
CUB_PATH: /usr/local/cub-1.4.1
CUDNN_PATH: /usr/local/cudnn-4.0
Build Branch: HEAD
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by philly on 643085f7f8c2
Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
-------------------------------------------------------------------
Changed current directory to /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
MPIWrapper: initializing MPI
ping [requestnodes (before change)]: 1 nodes pinging each other
ping [requestnodes (before change)]: all 1 nodes responded
requestnodes [MPIWrapper]: using 1 out of 1 MPI nodes (1 requested); we (0) are in (participating)
ping [requestnodes (after change)]: 1 nodes pinging each other
ping [requestnodes (after change)]: all 1 nodes responded
mpihelper: only one MPI process: MPI operation will be boring
ping [mpihelper]: 1 nodes pinging each other
ping [mpihelper]: all 1 nodes responded
08/16/2016 10:01:41: -------------------------------------------------------------------
08/16/2016 10:01:41: Build info:
08/16/2016 10:01:41: Built time: Aug 16 2016 09:41:57
08/16/2016 10:01:41: Last modified date: Mon Aug 15 23:39:17 2016
08/16/2016 10:01:41: Build type: release
08/16/2016 10:01:41: Build target: GPU
08/16/2016 10:01:41: With 1bit-SGD: yes
08/16/2016 10:01:41: Math lib: mkl
08/16/2016 10:01:41: CUDA_PATH: /usr/local/cuda-7.5
08/16/2016 10:01:41: CUB_PATH: /usr/local/cub-1.4.1
08/16/2016 10:01:41: CUDNN_PATH: /usr/local/cudnn-4.0
08/16/2016 10:01:41: Build Branch: HEAD
08/16/2016 10:01:41: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 10:01:41: Built by philly on 643085f7f8c2
08/16/2016 10:01:41: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
08/16/2016 10:01:41: -------------------------------------------------------------------
08/16/2016 10:01:42: -------------------------------------------------------------------
08/16/2016 10:01:42: GPU info:
08/16/2016 10:01:42: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:01:42: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:01:42: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:01:42: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:01:42: -------------------------------------------------------------------
08/16/2016 10:01:42: Running on localhost at 2016/08/16 10:01:42
08/16/2016 10:01:42: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/1bitsgd/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/../../../../../../Examples/Speech/AN4/Config/FeedForward.cntk currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_cpu DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/../../../../../../Examples/Speech/AN4/Config OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_cpu DeviceId=-1 timestamping=true speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=2048]] speechTrain=[reader=[useMersenneTwisterRand=true]]
08/16/2016 10:01:42: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:01:42: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
ModelDir = "$OutputDir$/Models"
deviceId = -1
command = speechTrain
precision = "float"
traceLevel = "1"
modelPath = "$ModelDir$/cntkSpeechFF.dnn"
parallelTrain = true
speechTrain = [
action = "train"
SimpleNetworkBuilder = [
layerSizes = 363:512:512:132
trainingCriterion = "CrossEntropyWithSoftmax"
evalCriterion = "ErrorPrediction"
layerTypes = "Sigmoid"
applyMeanVarNorm = true
needPrior = true
]
SGD = [
epochSize = 20480
minibatchSize = 256:1024:2048
learningRatesPerMB = 1.0:0.5:0.1
numMBsToShowResult = 10
momentumPerMB = 0.9:0.656119
maxEpochs = 3
keepCheckPointFiles = true
parallelTrain = [
parallelizationMethod = "DataParallelSGD"
distributedMBReading = true
dataParallelSGD = [
gradientBits = 1
]
]
autoAdjust=[
autoAdjustMinibatch = true
minibatchSizeTuningFrequency = 1
minibatchSearchCriterionErrorMargin = 2
]
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
features = [
dim = 363
type = "real"
scpFile = "$DataDir$/glob_0000.scp"
]
labels = [
mlfFile = "$DataDir$/glob_0000.mlf"
labelMappingFile = "$DataDir$/state.list"
labelDim = 132
labelType = "category"
]
]
]
currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_cpu
DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/../../../../../../Examples/Speech/AN4/Config
OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_cpu
DeviceId=-1
timestamping=true
speechTrain=[SGD=[maxEpochs=1]]
speechTrain=[SGD=[epochSize=2048]]
speechTrain=[reader=[useMersenneTwisterRand=true]]
08/16/2016 10:01:42: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:01:42: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:01:42: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_cpu/Models"
deviceId = -1
command = speechTrain
precision = "float"
traceLevel = "1"
modelPath = "/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_cpu/Models/cntkSpeechFF.dnn"
parallelTrain = true
speechTrain = [
action = "train"
SimpleNetworkBuilder = [
layerSizes = 363:512:512:132
trainingCriterion = "CrossEntropyWithSoftmax"
evalCriterion = "ErrorPrediction"
layerTypes = "Sigmoid"
applyMeanVarNorm = true
needPrior = true
]
SGD = [
epochSize = 20480
minibatchSize = 256:1024:2048
learningRatesPerMB = 1.0:0.5:0.1
numMBsToShowResult = 10
momentumPerMB = 0.9:0.656119
maxEpochs = 3
keepCheckPointFiles = true
parallelTrain = [
parallelizationMethod = "DataParallelSGD"
distributedMBReading = true
dataParallelSGD = [
gradientBits = 1
]
]
autoAdjust=[
autoAdjustMinibatch = true
minibatchSizeTuningFrequency = 1
minibatchSearchCriterionErrorMargin = 2
]
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
features = [
dim = 363
type = "real"
scpFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.scp"
]
labels = [
mlfFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.mlf"
labelMappingFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/state.list"
labelDim = 132
labelType = "category"
]
]
]
currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_cpu
DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/../../../../../../Examples/Speech/AN4/Config
OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_cpu
DeviceId=-1
timestamping=true
speechTrain=[SGD=[maxEpochs=1]]
speechTrain=[SGD=[epochSize=2048]]
speechTrain=[reader=[useMersenneTwisterRand=true]]
08/16/2016 10:01:42: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:01:42: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: FeedForward.cntk:command=speechTrain
configparameters: FeedForward.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/../../../../../../Examples/Speech/AN4/Config
configparameters: FeedForward.cntk:currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
configparameters: FeedForward.cntk:DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
configparameters: FeedForward.cntk:deviceId=-1
configparameters: FeedForward.cntk:ModelDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_cpu/Models
configparameters: FeedForward.cntk:modelPath=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_cpu/Models/cntkSpeechFF.dnn
configparameters: FeedForward.cntk:OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_cpu
configparameters: FeedForward.cntk:parallelTrain=true
configparameters: FeedForward.cntk:precision=float
configparameters: FeedForward.cntk:RootDir=..
configparameters: FeedForward.cntk:RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_cpu
configparameters: FeedForward.cntk:speechTrain=[
action = "train"
SimpleNetworkBuilder = [
layerSizes = 363:512:512:132
trainingCriterion = "CrossEntropyWithSoftmax"
evalCriterion = "ErrorPrediction"
layerTypes = "Sigmoid"
applyMeanVarNorm = true
needPrior = true
]
SGD = [
epochSize = 20480
minibatchSize = 256:1024:2048
learningRatesPerMB = 1.0:0.5:0.1
numMBsToShowResult = 10
momentumPerMB = 0.9:0.656119
maxEpochs = 3
keepCheckPointFiles = true
parallelTrain = [
parallelizationMethod = "DataParallelSGD"
distributedMBReading = true
dataParallelSGD = [
gradientBits = 1
]
]
autoAdjust=[
autoAdjustMinibatch = true
minibatchSizeTuningFrequency = 1
minibatchSearchCriterionErrorMargin = 2
]
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
features = [
dim = 363
type = "real"
scpFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.scp"
]
labels = [
mlfFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.mlf"
labelMappingFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/state.list"
labelDim = 132
labelType = "category"
]
]
] [SGD=[maxEpochs=1]] [SGD=[epochSize=2048]] [reader=[useMersenneTwisterRand=true]]
configparameters: FeedForward.cntk:timestamping=true
configparameters: FeedForward.cntk:traceLevel=1
08/16/2016 10:01:42: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:01:42: Commands: speechTrain
08/16/2016 10:01:42: Precision = "float"
08/16/2016 10:01:42: CNTKModelPath: /tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_cpu/Models/cntkSpeechFF.dnn
08/16/2016 10:01:42: CNTKCommandTrainInfo: speechTrain : 1
08/16/2016 10:01:42: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 1
08/16/2016 10:01:42: ##############################################################################
08/16/2016 10:01:42: # #
08/16/2016 10:01:42: # Action "train" #
08/16/2016 10:01:42: # #
08/16/2016 10:01:42: ##############################################################################
08/16/2016 10:01:42: CNTKCommandTrainBegin: speechTrain
SimpleNetworkBuilder Using CPU
reading script file /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.scp ... 948 entries
total 132 state names in state list /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/state.list
htkmlfreader: reading MLF file /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.mlf ... total 948 entries
...............................................................................................feature set 0: 252734 frames in 948 out of 948 utterances
label set 0: 129 classes
minibatchutterancesource: 948 utterances grouped into 3 chunks, av. chunk size: 316.0 utterances, 84244.7 frames
08/16/2016 10:01:42: Creating virgin network.
Node 'W0' (LearnableParameter operation): Initializing Parameter[512 x 363] <- 0.000000.
Node 'W0' (LearnableParameter operation): Initializing Parameter[512 x 363] <- uniform(seed=1, range=0.050000*1.000000, onCPU=false).
Node 'B0' (LearnableParameter operation): Initializing Parameter[512 x 1] <- 0.000000.
Node 'B0' (LearnableParameter operation): Initializing Parameter[512 x 1] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[512 x 512] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[512 x 512] <- uniform(seed=2, range=0.050000*1.000000, onCPU=false).
Node 'B1' (LearnableParameter operation): Initializing Parameter[512 x 1] <- 0.000000.
Node 'B1' (LearnableParameter operation): Initializing Parameter[512 x 1] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[132 x 512] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[132 x 512] <- uniform(seed=3, range=0.050000*1.000000, onCPU=false).
Node 'B2' (LearnableParameter operation): Initializing Parameter[132 x 1] <- 0.000000.
Node 'B2' (LearnableParameter operation): Initializing Parameter[132 x 1] <- 0.000000.
Post-processing network...
7 roots:
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
EvalErrorPrediction = ErrorPrediction()
InvStdOfFeatures = InvStdDev()
MeanOfFeatures = Mean()
PosteriorProb = Softmax()
Prior = Mean()
ScaledLogLikelihood = Minus()
Validating network. 25 nodes to process in pass 1.
Validating --> labels = InputValue() : -> [132 x *]
Validating --> W2 = LearnableParameter() : -> [132 x 512]
Validating --> W1 = LearnableParameter() : -> [512 x 512]
Validating --> W0 = LearnableParameter() : -> [512 x 363]
Validating --> features = InputValue() : -> [363 x *]
Validating --> MeanOfFeatures = Mean (features) : [363 x *] -> [363]
Validating --> InvStdOfFeatures = InvStdDev (features) : [363 x *] -> [363]
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization (features, MeanOfFeatures, InvStdOfFeatures) : [363 x *], [363], [363] -> [363 x *]
Validating --> W0*features = Times (W0, MVNormalizedFeatures) : [512 x 363], [363 x *] -> [512 x *]
Validating --> B0 = LearnableParameter() : -> [512 x 1]
Validating --> W0*features+B0 = Plus (W0*features, B0) : [512 x *], [512 x 1] -> [512 x 1 x *]
Validating --> H1 = Sigmoid (W0*features+B0) : [512 x 1 x *] -> [512 x 1 x *]
Validating --> W1*H1 = Times (W1, H1) : [512 x 512], [512 x 1 x *] -> [512 x 1 x *]
Validating --> B1 = LearnableParameter() : -> [512 x 1]
Validating --> W1*H1+B1 = Plus (W1*H1, B1) : [512 x 1 x *], [512 x 1] -> [512 x 1 x *]
Validating --> H2 = Sigmoid (W1*H1+B1) : [512 x 1 x *] -> [512 x 1 x *]
Validating --> W2*H1 = Times (W2, H2) : [132 x 512], [512 x 1 x *] -> [132 x 1 x *]
Validating --> B2 = LearnableParameter() : -> [132 x 1]
Validating --> HLast = Plus (W2*H1, B2) : [132 x 1 x *], [132 x 1] -> [132 x 1 x *]
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [132 x *], [132 x 1 x *] -> [1]
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [132 x *], [132 x 1 x *] -> [1]
Validating --> PosteriorProb = Softmax (HLast) : [132 x 1 x *] -> [132 x 1 x *]
Validating --> Prior = Mean (labels) : [132 x *] -> [132]
Validating --> LogOfPrior = Log (Prior) : [132] -> [132]
Validating --> ScaledLogLikelihood = Minus (HLast, LogOfPrior) : [132 x 1 x *], [132] -> [132 x 1 x *]
Validating network. 17 nodes to process in pass 2.
Validating network, final pass.
12 out of 25 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
08/16/2016 10:01:42: Created model with 25 nodes on CPU.
08/16/2016 10:01:42: Training criterion node(s):
08/16/2016 10:01:42: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
08/16/2016 10:01:42: Evaluation criterion node(s):
08/16/2016 10:01:42: EvalErrorPrediction = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing: Out of 40 matrices, 19 are shared as 8, and 21 are not shared.
{ W1 : [512 x 512] (gradient)
W1*H1+B1 : [512 x 1 x *] }
{ H2 : [512 x 1 x *]
W1*H1 : [512 x 1 x *] (gradient) }
{ B0 : [512 x 1] (gradient)
H1 : [512 x 1 x *] (gradient)
W1*H1+B1 : [512 x 1 x *] (gradient)
W2*H1 : [132 x 1 x *] }
{ HLast : [132 x 1 x *]
W2 : [132 x 512] (gradient) }
{ B1 : [512 x 1] (gradient)
H2 : [512 x 1 x *] (gradient)
HLast : [132 x 1 x *] (gradient) }
{ W0 : [512 x 363] (gradient)
W0*features+B0 : [512 x 1 x *] }
{ H1 : [512 x 1 x *]
W0*features : [512 x *] (gradient) }
{ W0*features+B0 : [512 x 1 x *] (gradient)
W1*H1 : [512 x 1 x *] }
08/16/2016 10:01:42: Training 516740 parameters in 6 out of 6 parameter tensors and 15 nodes with gradient:
08/16/2016 10:01:42: Node 'B0' (LearnableParameter operation) : [512 x 1]
08/16/2016 10:01:42: Node 'B1' (LearnableParameter operation) : [512 x 1]
08/16/2016 10:01:42: Node 'B2' (LearnableParameter operation) : [132 x 1]
08/16/2016 10:01:42: Node 'W0' (LearnableParameter operation) : [512 x 363]
08/16/2016 10:01:42: Node 'W1' (LearnableParameter operation) : [512 x 512]
08/16/2016 10:01:42: Node 'W2' (LearnableParameter operation) : [132 x 512]
08/16/2016 10:01:42: Precomputing --> 3 PreCompute nodes found.
08/16/2016 10:01:42: MeanOfFeatures = Mean()
08/16/2016 10:01:42: InvStdOfFeatures = InvStdDev()
08/16/2016 10:01:42: Prior = Mean()
minibatchiterator: epoch 0: frames [0..252734] (first utterance at frame 0), data subset 0 of 1, with 1 datapasses
requiredata: determined feature kind as 33-dimensional 'USER' with frame shift 10.0 ms
08/16/2016 10:01:43: Precomputing --> Completed.
08/16/2016 10:01:43: Starting Epoch 1: learning rate per sample = 0.003906 effective momentum = 0.900000 momentum as time constant = 2429.8 samples
minibatchiterator: epoch 0: frames [0..2048] (first utterance at frame 0), data subset 0 of 1, with 1 datapasses
08/16/2016 10:01:43: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1), distributed reading is ENABLED.
08/16/2016 10:01:44: Finished Epoch[ 1 of 1]: [Training] CrossEntropyWithSoftmax = 4.45117986 * 2048; EvalErrorPrediction = 0.92187500 * 2048; totalSamplesSeen = 2048; learningRatePerSample = 0.00390625; epochTime=0.209966s
08/16/2016 10:01:44: SGD: Saving checkpoint model '/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_cpu/Models/cntkSpeechFF.dnn'
08/16/2016 10:01:44: CNTKCommandTrainEnd: speechTrain
08/16/2016 10:01:44: Action "train" complete.
08/16/2016 10:01:44: __COMPLETED__
~MPIWrapper

Просмотреть файл

@ -1 +0,0 @@
__COMPLETED__

Просмотреть файл

@ -1 +0,0 @@
__COMPLETED__

Просмотреть файл

@ -0,0 +1,435 @@
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 264172964 kB
-------------------------------------------------------------------
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/1bitsgd/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/../../../../../../Examples/Speech/AN4/Config/FeedForward.cntk currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_gpu DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/../../../../../../Examples/Speech/AN4/Config OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_gpu DeviceId=0 timestamping=true speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=2048]] speechTrain=[reader=[useMersenneTwisterRand=true]]
-------------------------------------------------------------------
Build info:
Built time: Aug 16 2016 09:41:57
Last modified date: Mon Aug 15 23:39:17 2016
Build type: release
Build target: GPU
With 1bit-SGD: yes
Math lib: mkl
CUDA_PATH: /usr/local/cuda-7.5
CUB_PATH: /usr/local/cub-1.4.1
CUDNN_PATH: /usr/local/cudnn-4.0
Build Branch: HEAD
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by philly on 643085f7f8c2
Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
-------------------------------------------------------------------
Changed current directory to /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
MPIWrapper: initializing MPI
ping [requestnodes (before change)]: 1 nodes pinging each other
ping [requestnodes (before change)]: all 1 nodes responded
requestnodes [MPIWrapper]: using 1 out of 1 MPI nodes (1 requested); we (0) are in (participating)
ping [requestnodes (after change)]: 1 nodes pinging each other
ping [requestnodes (after change)]: all 1 nodes responded
mpihelper: only one MPI process: MPI operation will be boring
ping [mpihelper]: 1 nodes pinging each other
ping [mpihelper]: all 1 nodes responded
08/16/2016 10:01:45: -------------------------------------------------------------------
08/16/2016 10:01:45: Build info:
08/16/2016 10:01:45: Built time: Aug 16 2016 09:41:57
08/16/2016 10:01:45: Last modified date: Mon Aug 15 23:39:17 2016
08/16/2016 10:01:45: Build type: release
08/16/2016 10:01:45: Build target: GPU
08/16/2016 10:01:45: With 1bit-SGD: yes
08/16/2016 10:01:45: Math lib: mkl
08/16/2016 10:01:45: CUDA_PATH: /usr/local/cuda-7.5
08/16/2016 10:01:45: CUB_PATH: /usr/local/cub-1.4.1
08/16/2016 10:01:45: CUDNN_PATH: /usr/local/cudnn-4.0
08/16/2016 10:01:45: Build Branch: HEAD
08/16/2016 10:01:45: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 10:01:45: Built by philly on 643085f7f8c2
08/16/2016 10:01:45: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
08/16/2016 10:01:45: -------------------------------------------------------------------
08/16/2016 10:01:46: -------------------------------------------------------------------
08/16/2016 10:01:46: GPU info:
08/16/2016 10:01:46: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:01:46: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:01:46: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:01:46: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:01:46: -------------------------------------------------------------------
08/16/2016 10:01:46: Running on localhost at 2016/08/16 10:01:46
08/16/2016 10:01:46: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/1bitsgd/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/../../../../../../Examples/Speech/AN4/Config/FeedForward.cntk currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_gpu DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/../../../../../../Examples/Speech/AN4/Config OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_gpu DeviceId=0 timestamping=true speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=2048]] speechTrain=[reader=[useMersenneTwisterRand=true]]
08/16/2016 10:01:46: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:01:46: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
ModelDir = "$OutputDir$/Models"
deviceId = -1
command = speechTrain
precision = "float"
traceLevel = "1"
modelPath = "$ModelDir$/cntkSpeechFF.dnn"
parallelTrain = true
speechTrain = [
action = "train"
SimpleNetworkBuilder = [
layerSizes = 363:512:512:132
trainingCriterion = "CrossEntropyWithSoftmax"
evalCriterion = "ErrorPrediction"
layerTypes = "Sigmoid"
applyMeanVarNorm = true
needPrior = true
]
SGD = [
epochSize = 20480
minibatchSize = 256:1024:2048
learningRatesPerMB = 1.0:0.5:0.1
numMBsToShowResult = 10
momentumPerMB = 0.9:0.656119
maxEpochs = 3
keepCheckPointFiles = true
parallelTrain = [
parallelizationMethod = "DataParallelSGD"
distributedMBReading = true
dataParallelSGD = [
gradientBits = 1
]
]
autoAdjust=[
autoAdjustMinibatch = true
minibatchSizeTuningFrequency = 1
minibatchSearchCriterionErrorMargin = 2
]
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
features = [
dim = 363
type = "real"
scpFile = "$DataDir$/glob_0000.scp"
]
labels = [
mlfFile = "$DataDir$/glob_0000.mlf"
labelMappingFile = "$DataDir$/state.list"
labelDim = 132
labelType = "category"
]
]
]
currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_gpu
DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/../../../../../../Examples/Speech/AN4/Config
OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_gpu
DeviceId=0
timestamping=true
speechTrain=[SGD=[maxEpochs=1]]
speechTrain=[SGD=[epochSize=2048]]
speechTrain=[reader=[useMersenneTwisterRand=true]]
08/16/2016 10:01:46: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:01:46: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:01:46: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_gpu/Models"
deviceId = -1
command = speechTrain
precision = "float"
traceLevel = "1"
modelPath = "/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_gpu/Models/cntkSpeechFF.dnn"
parallelTrain = true
speechTrain = [
action = "train"
SimpleNetworkBuilder = [
layerSizes = 363:512:512:132
trainingCriterion = "CrossEntropyWithSoftmax"
evalCriterion = "ErrorPrediction"
layerTypes = "Sigmoid"
applyMeanVarNorm = true
needPrior = true
]
SGD = [
epochSize = 20480
minibatchSize = 256:1024:2048
learningRatesPerMB = 1.0:0.5:0.1
numMBsToShowResult = 10
momentumPerMB = 0.9:0.656119
maxEpochs = 3
keepCheckPointFiles = true
parallelTrain = [
parallelizationMethod = "DataParallelSGD"
distributedMBReading = true
dataParallelSGD = [
gradientBits = 1
]
]
autoAdjust=[
autoAdjustMinibatch = true
minibatchSizeTuningFrequency = 1
minibatchSearchCriterionErrorMargin = 2
]
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
features = [
dim = 363
type = "real"
scpFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.scp"
]
labels = [
mlfFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.mlf"
labelMappingFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/state.list"
labelDim = 132
labelType = "category"
]
]
]
currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_gpu
DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/../../../../../../Examples/Speech/AN4/Config
OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_gpu
DeviceId=0
timestamping=true
speechTrain=[SGD=[maxEpochs=1]]
speechTrain=[SGD=[epochSize=2048]]
speechTrain=[reader=[useMersenneTwisterRand=true]]
08/16/2016 10:01:46: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:01:46: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: FeedForward.cntk:command=speechTrain
configparameters: FeedForward.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/FeedForward/../../../../../../Examples/Speech/AN4/Config
configparameters: FeedForward.cntk:currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
configparameters: FeedForward.cntk:DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
configparameters: FeedForward.cntk:deviceId=0
configparameters: FeedForward.cntk:ModelDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_gpu/Models
configparameters: FeedForward.cntk:modelPath=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_gpu/Models/cntkSpeechFF.dnn
configparameters: FeedForward.cntk:OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_gpu
configparameters: FeedForward.cntk:parallelTrain=true
configparameters: FeedForward.cntk:precision=float
configparameters: FeedForward.cntk:RootDir=..
configparameters: FeedForward.cntk:RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_gpu
configparameters: FeedForward.cntk:speechTrain=[
action = "train"
SimpleNetworkBuilder = [
layerSizes = 363:512:512:132
trainingCriterion = "CrossEntropyWithSoftmax"
evalCriterion = "ErrorPrediction"
layerTypes = "Sigmoid"
applyMeanVarNorm = true
needPrior = true
]
SGD = [
epochSize = 20480
minibatchSize = 256:1024:2048
learningRatesPerMB = 1.0:0.5:0.1
numMBsToShowResult = 10
momentumPerMB = 0.9:0.656119
maxEpochs = 3
keepCheckPointFiles = true
parallelTrain = [
parallelizationMethod = "DataParallelSGD"
distributedMBReading = true
dataParallelSGD = [
gradientBits = 1
]
]
autoAdjust=[
autoAdjustMinibatch = true
minibatchSizeTuningFrequency = 1
minibatchSearchCriterionErrorMargin = 2
]
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
features = [
dim = 363
type = "real"
scpFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.scp"
]
labels = [
mlfFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.mlf"
labelMappingFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/state.list"
labelDim = 132
labelType = "category"
]
]
] [SGD=[maxEpochs=1]] [SGD=[epochSize=2048]] [reader=[useMersenneTwisterRand=true]]
configparameters: FeedForward.cntk:timestamping=true
configparameters: FeedForward.cntk:traceLevel=1
08/16/2016 10:01:46: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:01:46: Commands: speechTrain
08/16/2016 10:01:46: Precision = "float"
08/16/2016 10:01:46: CNTKModelPath: /tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_gpu/Models/cntkSpeechFF.dnn
08/16/2016 10:01:46: CNTKCommandTrainInfo: speechTrain : 1
08/16/2016 10:01:46: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 1
08/16/2016 10:01:46: ##############################################################################
08/16/2016 10:01:46: # #
08/16/2016 10:01:46: # Action "train" #
08/16/2016 10:01:46: # #
08/16/2016 10:01:46: ##############################################################################
08/16/2016 10:01:46: CNTKCommandTrainBegin: speechTrain
SimpleNetworkBuilder Using GPU 0
reading script file /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.scp ... 948 entries
total 132 state names in state list /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/state.list
htkmlfreader: reading MLF file /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.mlf ... total 948 entries
...............................................................................................feature set 0: 252734 frames in 948 out of 948 utterances
label set 0: 129 classes
minibatchutterancesource: 948 utterances grouped into 3 chunks, av. chunk size: 316.0 utterances, 84244.7 frames
08/16/2016 10:01:46: Creating virgin network.
Node 'W0' (LearnableParameter operation): Initializing Parameter[512 x 363] <- 0.000000.
Node 'W0' (LearnableParameter operation): Initializing Parameter[512 x 363] <- uniform(seed=1, range=0.050000*1.000000, onCPU=false).
SetUniformRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4
Node 'B0' (LearnableParameter operation): Initializing Parameter[512 x 1] <- 0.000000.
Node 'B0' (LearnableParameter operation): Initializing Parameter[512 x 1] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[512 x 512] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[512 x 512] <- uniform(seed=2, range=0.050000*1.000000, onCPU=false).
Node 'B1' (LearnableParameter operation): Initializing Parameter[512 x 1] <- 0.000000.
Node 'B1' (LearnableParameter operation): Initializing Parameter[512 x 1] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[132 x 512] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[132 x 512] <- uniform(seed=3, range=0.050000*1.000000, onCPU=false).
Node 'B2' (LearnableParameter operation): Initializing Parameter[132 x 1] <- 0.000000.
Node 'B2' (LearnableParameter operation): Initializing Parameter[132 x 1] <- 0.000000.
Post-processing network...
7 roots:
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
EvalErrorPrediction = ErrorPrediction()
InvStdOfFeatures = InvStdDev()
MeanOfFeatures = Mean()
PosteriorProb = Softmax()
Prior = Mean()
ScaledLogLikelihood = Minus()
Validating network. 25 nodes to process in pass 1.
Validating --> labels = InputValue() : -> [132 x *]
Validating --> W2 = LearnableParameter() : -> [132 x 512]
Validating --> W1 = LearnableParameter() : -> [512 x 512]
Validating --> W0 = LearnableParameter() : -> [512 x 363]
Validating --> features = InputValue() : -> [363 x *]
Validating --> MeanOfFeatures = Mean (features) : [363 x *] -> [363]
Validating --> InvStdOfFeatures = InvStdDev (features) : [363 x *] -> [363]
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization (features, MeanOfFeatures, InvStdOfFeatures) : [363 x *], [363], [363] -> [363 x *]
Validating --> W0*features = Times (W0, MVNormalizedFeatures) : [512 x 363], [363 x *] -> [512 x *]
Validating --> B0 = LearnableParameter() : -> [512 x 1]
Validating --> W0*features+B0 = Plus (W0*features, B0) : [512 x *], [512 x 1] -> [512 x 1 x *]
Validating --> H1 = Sigmoid (W0*features+B0) : [512 x 1 x *] -> [512 x 1 x *]
Validating --> W1*H1 = Times (W1, H1) : [512 x 512], [512 x 1 x *] -> [512 x 1 x *]
Validating --> B1 = LearnableParameter() : -> [512 x 1]
Validating --> W1*H1+B1 = Plus (W1*H1, B1) : [512 x 1 x *], [512 x 1] -> [512 x 1 x *]
Validating --> H2 = Sigmoid (W1*H1+B1) : [512 x 1 x *] -> [512 x 1 x *]
Validating --> W2*H1 = Times (W2, H2) : [132 x 512], [512 x 1 x *] -> [132 x 1 x *]
Validating --> B2 = LearnableParameter() : -> [132 x 1]
Validating --> HLast = Plus (W2*H1, B2) : [132 x 1 x *], [132 x 1] -> [132 x 1 x *]
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [132 x *], [132 x 1 x *] -> [1]
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [132 x *], [132 x 1 x *] -> [1]
Validating --> PosteriorProb = Softmax (HLast) : [132 x 1 x *] -> [132 x 1 x *]
Validating --> Prior = Mean (labels) : [132 x *] -> [132]
Validating --> LogOfPrior = Log (Prior) : [132] -> [132]
Validating --> ScaledLogLikelihood = Minus (HLast, LogOfPrior) : [132 x 1 x *], [132] -> [132 x 1 x *]
Validating network. 17 nodes to process in pass 2.
Validating network, final pass.
12 out of 25 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
08/16/2016 10:01:46: Created model with 25 nodes on GPU 0.
08/16/2016 10:01:46: Training criterion node(s):
08/16/2016 10:01:46: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
08/16/2016 10:01:46: Evaluation criterion node(s):
08/16/2016 10:01:46: EvalErrorPrediction = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing: Out of 40 matrices, 19 are shared as 8, and 21 are not shared.
{ W0 : [512 x 363] (gradient)
W0*features+B0 : [512 x 1 x *] }
{ H1 : [512 x 1 x *]
W0*features : [512 x *] (gradient) }
{ W0*features+B0 : [512 x 1 x *] (gradient)
W1*H1 : [512 x 1 x *] }
{ W1 : [512 x 512] (gradient)
W1*H1+B1 : [512 x 1 x *] }
{ H2 : [512 x 1 x *]
W1*H1 : [512 x 1 x *] (gradient) }
{ B0 : [512 x 1] (gradient)
H1 : [512 x 1 x *] (gradient)
W1*H1+B1 : [512 x 1 x *] (gradient)
W2*H1 : [132 x 1 x *] }
{ HLast : [132 x 1 x *]
W2 : [132 x 512] (gradient) }
{ B1 : [512 x 1] (gradient)
H2 : [512 x 1 x *] (gradient)
HLast : [132 x 1 x *] (gradient) }
08/16/2016 10:01:46: Training 516740 parameters in 6 out of 6 parameter tensors and 15 nodes with gradient:
08/16/2016 10:01:46: Node 'B0' (LearnableParameter operation) : [512 x 1]
08/16/2016 10:01:46: Node 'B1' (LearnableParameter operation) : [512 x 1]
08/16/2016 10:01:46: Node 'B2' (LearnableParameter operation) : [132 x 1]
08/16/2016 10:01:46: Node 'W0' (LearnableParameter operation) : [512 x 363]
08/16/2016 10:01:46: Node 'W1' (LearnableParameter operation) : [512 x 512]
08/16/2016 10:01:46: Node 'W2' (LearnableParameter operation) : [132 x 512]
08/16/2016 10:01:46: Precomputing --> 3 PreCompute nodes found.
08/16/2016 10:01:46: MeanOfFeatures = Mean()
08/16/2016 10:01:46: InvStdOfFeatures = InvStdDev()
08/16/2016 10:01:46: Prior = Mean()
minibatchiterator: epoch 0: frames [0..252734] (first utterance at frame 0), data subset 0 of 1, with 1 datapasses
requiredata: determined feature kind as 33-dimensional 'USER' with frame shift 10.0 ms
08/16/2016 10:01:46: Precomputing --> Completed.
08/16/2016 10:01:46: Starting Epoch 1: learning rate per sample = 0.003906 effective momentum = 0.900000 momentum as time constant = 2429.8 samples
minibatchiterator: epoch 0: frames [0..2048] (first utterance at frame 0), data subset 0 of 1, with 1 datapasses
08/16/2016 10:01:46: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1), distributed reading is ENABLED.
08/16/2016 10:01:46: Finished Epoch[ 1 of 1]: [Training] CrossEntropyWithSoftmax = 4.41144794 * 2048; EvalErrorPrediction = 0.92773438 * 2048; totalSamplesSeen = 2048; learningRatePerSample = 0.00390625; epochTime=0.023072s
08/16/2016 10:01:46: SGD: Saving checkpoint model '/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_FeedForward@release_gpu/Models/cntkSpeechFF.dnn'
08/16/2016 10:01:46: CNTKCommandTrainEnd: speechTrain
08/16/2016 10:01:46: Action "train" complete.
08/16/2016 10:01:46: __COMPLETED__
~MPIWrapper

Просмотреть файл

@ -1 +0,0 @@
__COMPLETED__

Просмотреть файл

@ -1 +0,0 @@
__COMPLETED__

Просмотреть файл

@ -1,18 +1,24 @@
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config/FeedForward.cntk currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_cpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_cpu DeviceId=-1 timestamping=true speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=2048]]
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 268381192 kB
-------------------------------------------------------------------
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config/FeedForward.cntk currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_cpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_cpu DeviceId=-1 timestamping=true speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=2048]] speechTrain=[reader=[useMersenneTwisterRand=true]]
-------------------------------------------------------------------
Build info:
Built time: May 3 2016 13:15:46
Last modified date: Tue Apr 26 23:35:31 2016
Built time: Aug 16 2016 03:09:16
Last modified date: Fri Aug 12 05:28:23 2016
Build type: Release
Build target: GPU
With 1bit-SGD: no
With 1bit-SGD: yes
Math lib: mkl
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
CUB_PATH: c:\src\cub-1.4.1
CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
Build Branch: HEAD
Build SHA1: af96f7cce6c3c78a4f1e9315e061291c79360e12
Built by svcphil on cntk-muc01
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by svcphil on Philly-Pool1
Build Path: c:\jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
-------------------------------------------------------------------
Changed current directory to C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
@ -25,31 +31,39 @@ ping [requestnodes (after change)]: all 1 nodes responded
mpihelper: only one MPI process: MPI operation will be boring
ping [mpihelper]: 1 nodes pinging each other
ping [mpihelper]: all 1 nodes responded
05/03/2016 13:22:22: -------------------------------------------------------------------
05/03/2016 13:22:22: Build info:
08/16/2016 03:20:10: -------------------------------------------------------------------
08/16/2016 03:20:10: Build info:
05/03/2016 13:22:22: Built time: May 3 2016 13:15:46
05/03/2016 13:22:22: Last modified date: Tue Apr 26 23:35:31 2016
05/03/2016 13:22:22: Build type: Release
05/03/2016 13:22:22: Build target: GPU
05/03/2016 13:22:22: With 1bit-SGD: no
05/03/2016 13:22:22: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
05/03/2016 13:22:22: CUB_PATH: c:\src\cub-1.4.1
05/03/2016 13:22:22: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
05/03/2016 13:22:22: Build Branch: HEAD
05/03/2016 13:22:22: Build SHA1: af96f7cce6c3c78a4f1e9315e061291c79360e12
05/03/2016 13:22:22: Built by svcphil on cntk-muc01
05/03/2016 13:22:22: Build Path: c:\jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
05/03/2016 13:22:22: -------------------------------------------------------------------
08/16/2016 03:20:10: Built time: Aug 16 2016 03:09:16
08/16/2016 03:20:10: Last modified date: Fri Aug 12 05:28:23 2016
08/16/2016 03:20:10: Build type: Release
08/16/2016 03:20:10: Build target: GPU
08/16/2016 03:20:10: With 1bit-SGD: yes
08/16/2016 03:20:10: Math lib: mkl
08/16/2016 03:20:10: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
08/16/2016 03:20:10: CUB_PATH: c:\src\cub-1.4.1
08/16/2016 03:20:10: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
08/16/2016 03:20:10: Build Branch: HEAD
08/16/2016 03:20:10: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 03:20:10: Built by svcphil on Philly-Pool1
08/16/2016 03:20:10: Build Path: c:\jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
08/16/2016 03:20:10: -------------------------------------------------------------------
08/16/2016 03:20:12: -------------------------------------------------------------------
08/16/2016 03:20:12: GPU info:
05/03/2016 13:22:22: Running on DPHAIM-22 at 2016/05/03 13:22:22
05/03/2016 13:22:22: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config/FeedForward.cntk currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_cpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_cpu DeviceId=-1 timestamping=true speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=2048]]
08/16/2016 03:20:12: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:20:12: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:20:12: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:20:12: -------------------------------------------------------------------
08/16/2016 03:20:12: Running on DPHAIM-25 at 2016/08/16 03:20:12
08/16/2016 03:20:12: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config/FeedForward.cntk currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_cpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_cpu DeviceId=-1 timestamping=true speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=2048]] speechTrain=[reader=[useMersenneTwisterRand=true]]
05/03/2016 13:22:22: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/03/2016 13:22:22: RootDir = ".."
08/16/2016 03:20:12: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:20:12: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
@ -111,28 +125,29 @@ speechTrain = [
]
]
currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_cpu
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_cpu
DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_cpu
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_cpu
DeviceId=-1
timestamping=true
speechTrain=[SGD=[maxEpochs=1]]
speechTrain=[SGD=[epochSize=2048]]
speechTrain=[reader=[useMersenneTwisterRand=true]]
05/03/2016 13:22:22: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:20:12: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/03/2016 13:22:22: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/03/2016 13:22:22: RootDir = ".."
08/16/2016 03:20:12: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:20:12: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_cpu/Models"
ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_cpu/Models"
deviceId = -1
command = speechTrain
precision = "float"
traceLevel = "1"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_cpu/Models/cntkSpeechFF.dnn"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_cpu/Models/cntkSpeechFF.dnn"
parallelTrain = true
speechTrain = [
action = "train"
@ -185,30 +200,31 @@ speechTrain = [
]
]
currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_cpu
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_cpu
DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_cpu
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_cpu
DeviceId=-1
timestamping=true
speechTrain=[SGD=[maxEpochs=1]]
speechTrain=[SGD=[epochSize=2048]]
speechTrain=[reader=[useMersenneTwisterRand=true]]
05/03/2016 13:22:22: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:20:12: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 13:22:22: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:20:12: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: FeedForward.cntk:command=speechTrain
configparameters: FeedForward.cntk:ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config
configparameters: FeedForward.cntk:currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
configparameters: FeedForward.cntk:DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
configparameters: FeedForward.cntk:deviceId=-1
configparameters: FeedForward.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_cpu/Models
configparameters: FeedForward.cntk:modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_cpu/Models/cntkSpeechFF.dnn
configparameters: FeedForward.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_cpu
configparameters: FeedForward.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_cpu/Models
configparameters: FeedForward.cntk:modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_cpu/Models/cntkSpeechFF.dnn
configparameters: FeedForward.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_cpu
configparameters: FeedForward.cntk:parallelTrain=true
configparameters: FeedForward.cntk:precision=float
configparameters: FeedForward.cntk:RootDir=..
configparameters: FeedForward.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_cpu
configparameters: FeedForward.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_cpu
configparameters: FeedForward.cntk:speechTrain=[
action = "train"
SimpleNetworkBuilder = [
@ -258,24 +274,24 @@ configparameters: FeedForward.cntk:speechTrain=[
labelType = "category"
]
]
] [SGD=[maxEpochs=1]] [SGD=[epochSize=2048]]
] [SGD=[maxEpochs=1]] [SGD=[epochSize=2048]] [reader=[useMersenneTwisterRand=true]]
configparameters: FeedForward.cntk:timestamping=true
configparameters: FeedForward.cntk:traceLevel=1
05/03/2016 13:22:22: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 13:22:22: Commands: speechTrain
05/03/2016 13:22:22: Precision = "float"
05/03/2016 13:22:22: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_cpu/Models/cntkSpeechFF.dnn
05/03/2016 13:22:22: CNTKCommandTrainInfo: speechTrain : 1
05/03/2016 13:22:22: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 1
08/16/2016 03:20:12: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:20:12: Commands: speechTrain
08/16/2016 03:20:12: Precision = "float"
08/16/2016 03:20:12: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_cpu/Models/cntkSpeechFF.dnn
08/16/2016 03:20:12: CNTKCommandTrainInfo: speechTrain : 1
08/16/2016 03:20:12: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 1
05/03/2016 13:22:22: ##############################################################################
05/03/2016 13:22:22: # #
05/03/2016 13:22:22: # Action "train" #
05/03/2016 13:22:22: # #
05/03/2016 13:22:22: ##############################################################################
08/16/2016 03:20:12: ##############################################################################
08/16/2016 03:20:12: # #
08/16/2016 03:20:12: # Action "train" #
08/16/2016 03:20:12: # #
08/16/2016 03:20:12: ##############################################################################
05/03/2016 13:22:22: CNTKCommandTrainBegin: speechTrain
08/16/2016 03:20:12: CNTKCommandTrainBegin: speechTrain
SimpleNetworkBuilder Using CPU
reading script file C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/glob_0000.scp ... 948 entries
total 132 state names in state list C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/state.list
@ -284,7 +300,19 @@ htkmlfreader: reading MLF file C:\jenkins\workspace\CNTK-Test-Windows-W1\Example
label set 0: 129 classes
minibatchutterancesource: 948 utterances grouped into 3 chunks, av. chunk size: 316.0 utterances, 84244.7 frames
05/03/2016 13:22:23: Creating virgin network.
08/16/2016 03:20:12: Creating virgin network.
Node 'W0' (LearnableParameter operation): Initializing Parameter[512 x 363] <- 0.000000.
Node 'W0' (LearnableParameter operation): Initializing Parameter[512 x 363] <- uniform(seed=1, range=0.050000*1.000000, onCPU=false).
Node 'B0' (LearnableParameter operation): Initializing Parameter[512 x 1] <- 0.000000.
Node 'B0' (LearnableParameter operation): Initializing Parameter[512 x 1] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[512 x 512] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[512 x 512] <- uniform(seed=2, range=0.050000*1.000000, onCPU=false).
Node 'B1' (LearnableParameter operation): Initializing Parameter[512 x 1] <- 0.000000.
Node 'B1' (LearnableParameter operation): Initializing Parameter[512 x 1] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[132 x 512] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[132 x 512] <- uniform(seed=3, range=0.050000*1.000000, onCPU=false).
Node 'B2' (LearnableParameter operation): Initializing Parameter[132 x 1] <- 0.000000.
Node 'B2' (LearnableParameter operation): Initializing Parameter[132 x 1] <- 0.000000.
Post-processing network...
@ -336,70 +364,70 @@ Validating network, final pass.
Post-processing network complete.
05/03/2016 13:22:23: Created model with 25 nodes on CPU.
08/16/2016 03:20:12: Created model with 25 nodes on CPU.
05/03/2016 13:22:23: Training criterion node(s):
05/03/2016 13:22:23: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
08/16/2016 03:20:12: Training criterion node(s):
08/16/2016 03:20:12: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
05/03/2016 13:22:23: Evaluation criterion node(s):
05/03/2016 13:22:23: EvalErrorPrediction = ErrorPrediction
08/16/2016 03:20:12: Evaluation criterion node(s):
08/16/2016 03:20:12: EvalErrorPrediction = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 40 matrices, 19 are shared as 8, and 21 are not shared.
0000000000000000: {[EvalErrorPrediction Gradient[1]] [InvStdOfFeatures Gradient[363]] [LogOfPrior Gradient[132]] [MVNormalizedFeatures Gradient[363 x *]] [MeanOfFeatures Gradient[363]] [PosteriorProb Gradient[132 x 1 x *]] [PosteriorProb Value[132 x 1 x *]] [Prior Gradient[132]] [ScaledLogLikelihood Gradient[132 x 1 x *]] [features Gradient[363 x *]] [labels Gradient[132 x *]] }
000000BDD334C430: {[features Value[363 x *]] }
000000BDD334C4D0: {[W0 Value[512 x 363]] }
000000BDD334C610: {[MeanOfFeatures Value[363]] }
000000BDD334C890: {[B0 Value[512 x 1]] }
000000BDD334CCF0: {[W1 Value[512 x 512]] }
000000BDD334CE30: {[B1 Value[512 x 1]] }
000000BDD334D1F0: {[InvStdOfFeatures Value[363]] }
000000BDD5BCA080: {[Prior Value[132]] }
000000BDD5BCA120: {[EvalErrorPrediction Value[1]] }
000000BDD5BCA260: {[W2 Value[132 x 512]] }
000000BDD5BCA440: {[labels Value[132 x *]] }
000000BDD5BCA6C0: {[MVNormalizedFeatures Value[363 x *]] }
000000BDD5BCAE40: {[B0 Gradient[512 x 1]] [H1 Gradient[512 x 1 x *]] [W1*H1+B1 Gradient[512 x 1 x *]] [W2*H1 Value[132 x 1 x *]] }
000000BDD5BCAEE0: {[CrossEntropyWithSoftmax Gradient[1]] }
000000BDD5BCAF80: {[B1 Gradient[512 x 1]] [H2 Gradient[512 x 1 x *]] [HLast Gradient[132 x 1 x *]] }
000000BDD5BCB0C0: {[H1 Value[512 x 1 x *]] [W0*features Gradient[512 x *]] }
000000BDD5BCB160: {[ScaledLogLikelihood Value[132 x 1 x *]] }
000000BDD5BCB340: {[W0 Gradient[512 x 363]] [W0*features+B0 Value[512 x 1 x *]] }
000000BDD5BCB520: {[W1 Gradient[512 x 512]] [W1*H1+B1 Value[512 x 1 x *]] }
000000BDD5BCB5C0: {[B2 Gradient[132 x 1]] }
000000BDD5BCB700: {[W0*features Value[512 x *]] }
000000BDD5BCB7A0: {[HLast Value[132 x 1 x *]] [W2 Gradient[132 x 512]] }
000000BDD5BCB8E0: {[LogOfPrior Value[132]] }
000000BDD5BCB980: {[H2 Value[512 x 1 x *]] [W1*H1 Gradient[512 x 1 x *]] }
000000BDD5BCBAC0: {[B2 Value[132 x 1]] }
000000BDD5BCBB60: {[CrossEntropyWithSoftmax Value[1]] }
000000BDD5BCBC00: {[W0*features+B0 Gradient[512 x 1 x *]] [W1*H1 Value[512 x 1 x *]] }
000000BDD5BCBCA0: {[W2*H1 Gradient[132 x 1 x *]] }
{ W0*features+B0 : [512 x 1 x *] (gradient)
W1*H1 : [512 x 1 x *] }
{ W0 : [512 x 363] (gradient)
W0*features+B0 : [512 x 1 x *] }
{ H1 : [512 x 1 x *]
W0*features : [512 x *] (gradient) }
{ W1 : [512 x 512] (gradient)
W1*H1+B1 : [512 x 1 x *] }
{ H2 : [512 x 1 x *]
W1*H1 : [512 x 1 x *] (gradient) }
{ HLast : [132 x 1 x *]
W2 : [132 x 512] (gradient) }
{ B0 : [512 x 1] (gradient)
H1 : [512 x 1 x *] (gradient)
W1*H1+B1 : [512 x 1 x *] (gradient)
W2*H1 : [132 x 1 x *] }
{ B1 : [512 x 1] (gradient)
H2 : [512 x 1 x *] (gradient)
HLast : [132 x 1 x *] (gradient) }
05/03/2016 13:22:23: Precomputing --> 3 PreCompute nodes found.
08/16/2016 03:20:12: Training 516740 parameters in 6 out of 6 parameter tensors and 15 nodes with gradient:
05/03/2016 13:22:23: MeanOfFeatures = Mean()
05/03/2016 13:22:23: InvStdOfFeatures = InvStdDev()
05/03/2016 13:22:23: Prior = Mean()
08/16/2016 03:20:12: Node 'B0' (LearnableParameter operation) : [512 x 1]
08/16/2016 03:20:12: Node 'B1' (LearnableParameter operation) : [512 x 1]
08/16/2016 03:20:12: Node 'B2' (LearnableParameter operation) : [132 x 1]
08/16/2016 03:20:12: Node 'W0' (LearnableParameter operation) : [512 x 363]
08/16/2016 03:20:12: Node 'W1' (LearnableParameter operation) : [512 x 512]
08/16/2016 03:20:12: Node 'W2' (LearnableParameter operation) : [132 x 512]
08/16/2016 03:20:12: Precomputing --> 3 PreCompute nodes found.
08/16/2016 03:20:12: MeanOfFeatures = Mean()
08/16/2016 03:20:12: InvStdOfFeatures = InvStdDev()
08/16/2016 03:20:12: Prior = Mean()
minibatchiterator: epoch 0: frames [0..252734] (first utterance at frame 0), data subset 0 of 1, with 1 datapasses
requiredata: determined feature kind as 33-dimensional 'USER' with frame shift 10.0 ms
05/03/2016 13:22:24: Precomputing --> Completed.
08/16/2016 03:20:15: Precomputing --> Completed.
05/03/2016 13:22:24: Starting Epoch 1: learning rate per sample = 0.003906 effective momentum = 0.900000 momentum as time constant = 2429.8 samples
08/16/2016 03:20:15: Starting Epoch 1: learning rate per sample = 0.003906 effective momentum = 0.900000 momentum as time constant = 2429.8 samples
minibatchiterator: epoch 0: frames [0..2048] (first utterance at frame 0), data subset 0 of 1, with 1 datapasses
05/03/2016 13:22:24: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1), distributed reading is ENABLED.
05/03/2016 13:22:25: Finished Epoch[ 1 of 1]: [Training] CrossEntropyWithSoftmax = 4.48531419 * 2048; EvalErrorPrediction = 0.90722656 * 2048; totalSamplesSeen = 2048; learningRatePerSample = 0.00390625; epochTime=0.288909s
05/03/2016 13:22:25: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_cpu/Models/cntkSpeechFF.dnn'
05/03/2016 13:22:25: CNTKCommandTrainEnd: speechTrain
08/16/2016 03:20:15: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1), distributed reading is ENABLED.
08/16/2016 03:20:15: Finished Epoch[ 1 of 1]: [Training] CrossEntropyWithSoftmax = 4.46427900 * 2048; EvalErrorPrediction = 0.91259766 * 2048; totalSamplesSeen = 2048; learningRatePerSample = 0.00390625; epochTime=0.28059s
08/16/2016 03:20:15: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_cpu/Models/cntkSpeechFF.dnn'
08/16/2016 03:20:15: CNTKCommandTrainEnd: speechTrain
05/03/2016 13:22:25: Action "train" complete.
08/16/2016 03:20:15: Action "train" complete.
05/03/2016 13:22:25: __COMPLETED__
08/16/2016 03:20:15: __COMPLETED__
~MPIWrapper

Просмотреть файл

@ -1 +0,0 @@
__COMPLETED__

Просмотреть файл

@ -1 +0,0 @@
__COMPLETED__

Просмотреть файл

@ -1,18 +1,24 @@
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config/FeedForward.cntk currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_gpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_gpu DeviceId=0 timestamping=true speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=2048]]
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 268381192 kB
-------------------------------------------------------------------
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config/FeedForward.cntk currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_gpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_gpu DeviceId=0 timestamping=true speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=2048]] speechTrain=[reader=[useMersenneTwisterRand=true]]
-------------------------------------------------------------------
Build info:
Built time: May 3 2016 13:15:46
Last modified date: Tue Apr 26 23:35:31 2016
Built time: Aug 16 2016 03:09:16
Last modified date: Fri Aug 12 05:28:23 2016
Build type: Release
Build target: GPU
With 1bit-SGD: no
With 1bit-SGD: yes
Math lib: mkl
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
CUB_PATH: c:\src\cub-1.4.1
CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
Build Branch: HEAD
Build SHA1: af96f7cce6c3c78a4f1e9315e061291c79360e12
Built by svcphil on cntk-muc01
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by svcphil on Philly-Pool1
Build Path: c:\jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
-------------------------------------------------------------------
Changed current directory to C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
@ -25,31 +31,39 @@ ping [requestnodes (after change)]: all 1 nodes responded
mpihelper: only one MPI process: MPI operation will be boring
ping [mpihelper]: 1 nodes pinging each other
ping [mpihelper]: all 1 nodes responded
05/03/2016 13:22:25: -------------------------------------------------------------------
05/03/2016 13:22:25: Build info:
08/16/2016 03:20:17: -------------------------------------------------------------------
08/16/2016 03:20:17: Build info:
05/03/2016 13:22:25: Built time: May 3 2016 13:15:46
05/03/2016 13:22:25: Last modified date: Tue Apr 26 23:35:31 2016
05/03/2016 13:22:25: Build type: Release
05/03/2016 13:22:25: Build target: GPU
05/03/2016 13:22:25: With 1bit-SGD: no
05/03/2016 13:22:25: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
05/03/2016 13:22:25: CUB_PATH: c:\src\cub-1.4.1
05/03/2016 13:22:25: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
05/03/2016 13:22:25: Build Branch: HEAD
05/03/2016 13:22:25: Build SHA1: af96f7cce6c3c78a4f1e9315e061291c79360e12
05/03/2016 13:22:25: Built by svcphil on cntk-muc01
05/03/2016 13:22:25: Build Path: c:\jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
05/03/2016 13:22:25: -------------------------------------------------------------------
08/16/2016 03:20:17: Built time: Aug 16 2016 03:09:16
08/16/2016 03:20:17: Last modified date: Fri Aug 12 05:28:23 2016
08/16/2016 03:20:17: Build type: Release
08/16/2016 03:20:17: Build target: GPU
08/16/2016 03:20:17: With 1bit-SGD: yes
08/16/2016 03:20:17: Math lib: mkl
08/16/2016 03:20:17: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
08/16/2016 03:20:17: CUB_PATH: c:\src\cub-1.4.1
08/16/2016 03:20:17: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
08/16/2016 03:20:17: Build Branch: HEAD
08/16/2016 03:20:17: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 03:20:17: Built by svcphil on Philly-Pool1
08/16/2016 03:20:17: Build Path: c:\jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
08/16/2016 03:20:17: -------------------------------------------------------------------
08/16/2016 03:20:19: -------------------------------------------------------------------
08/16/2016 03:20:19: GPU info:
05/03/2016 13:22:25: Running on DPHAIM-22 at 2016/05/03 13:22:25
05/03/2016 13:22:25: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config/FeedForward.cntk currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_gpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_gpu DeviceId=0 timestamping=true speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=2048]]
08/16/2016 03:20:19: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:20:19: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:20:19: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:20:19: -------------------------------------------------------------------
08/16/2016 03:20:19: Running on DPHAIM-25 at 2016/08/16 03:20:19
08/16/2016 03:20:19: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config/FeedForward.cntk currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_gpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_gpu DeviceId=0 timestamping=true speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=2048]] speechTrain=[reader=[useMersenneTwisterRand=true]]
05/03/2016 13:22:25: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/03/2016 13:22:25: RootDir = ".."
08/16/2016 03:20:19: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:20:19: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
@ -111,28 +125,29 @@ speechTrain = [
]
]
currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_gpu
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_gpu
DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_gpu
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_gpu
DeviceId=0
timestamping=true
speechTrain=[SGD=[maxEpochs=1]]
speechTrain=[SGD=[epochSize=2048]]
speechTrain=[reader=[useMersenneTwisterRand=true]]
05/03/2016 13:22:25: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:20:19: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/03/2016 13:22:25: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/03/2016 13:22:25: RootDir = ".."
08/16/2016 03:20:19: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:20:19: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_gpu/Models"
ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_gpu/Models"
deviceId = -1
command = speechTrain
precision = "float"
traceLevel = "1"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_gpu/Models/cntkSpeechFF.dnn"
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_gpu/Models/cntkSpeechFF.dnn"
parallelTrain = true
speechTrain = [
action = "train"
@ -185,30 +200,31 @@ speechTrain = [
]
]
currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_gpu
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_gpu
DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_gpu
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_gpu
DeviceId=0
timestamping=true
speechTrain=[SGD=[maxEpochs=1]]
speechTrain=[SGD=[epochSize=2048]]
speechTrain=[reader=[useMersenneTwisterRand=true]]
05/03/2016 13:22:25: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:20:19: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 13:22:25: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:20:19: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: FeedForward.cntk:command=speechTrain
configparameters: FeedForward.cntk:ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config
configparameters: FeedForward.cntk:currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
configparameters: FeedForward.cntk:DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
configparameters: FeedForward.cntk:deviceId=0
configparameters: FeedForward.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_gpu/Models
configparameters: FeedForward.cntk:modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_gpu/Models/cntkSpeechFF.dnn
configparameters: FeedForward.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_gpu
configparameters: FeedForward.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_gpu/Models
configparameters: FeedForward.cntk:modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_gpu/Models/cntkSpeechFF.dnn
configparameters: FeedForward.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_gpu
configparameters: FeedForward.cntk:parallelTrain=true
configparameters: FeedForward.cntk:precision=float
configparameters: FeedForward.cntk:RootDir=..
configparameters: FeedForward.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_gpu
configparameters: FeedForward.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_gpu
configparameters: FeedForward.cntk:speechTrain=[
action = "train"
SimpleNetworkBuilder = [
@ -258,24 +274,24 @@ configparameters: FeedForward.cntk:speechTrain=[
labelType = "category"
]
]
] [SGD=[maxEpochs=1]] [SGD=[epochSize=2048]]
] [SGD=[maxEpochs=1]] [SGD=[epochSize=2048]] [reader=[useMersenneTwisterRand=true]]
configparameters: FeedForward.cntk:timestamping=true
configparameters: FeedForward.cntk:traceLevel=1
05/03/2016 13:22:25: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 13:22:25: Commands: speechTrain
05/03/2016 13:22:25: Precision = "float"
05/03/2016 13:22:25: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_gpu/Models/cntkSpeechFF.dnn
05/03/2016 13:22:25: CNTKCommandTrainInfo: speechTrain : 1
05/03/2016 13:22:25: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 1
08/16/2016 03:20:19: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:20:19: Commands: speechTrain
08/16/2016 03:20:19: Precision = "float"
08/16/2016 03:20:19: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_gpu/Models/cntkSpeechFF.dnn
08/16/2016 03:20:19: CNTKCommandTrainInfo: speechTrain : 1
08/16/2016 03:20:19: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 1
05/03/2016 13:22:25: ##############################################################################
05/03/2016 13:22:25: # #
05/03/2016 13:22:25: # Action "train" #
05/03/2016 13:22:25: # #
05/03/2016 13:22:25: ##############################################################################
08/16/2016 03:20:19: ##############################################################################
08/16/2016 03:20:19: # #
08/16/2016 03:20:19: # Action "train" #
08/16/2016 03:20:19: # #
08/16/2016 03:20:19: ##############################################################################
05/03/2016 13:22:25: CNTKCommandTrainBegin: speechTrain
08/16/2016 03:20:19: CNTKCommandTrainBegin: speechTrain
SimpleNetworkBuilder Using GPU 0
reading script file C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/glob_0000.scp ... 948 entries
total 132 state names in state list C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/state.list
@ -284,8 +300,20 @@ htkmlfreader: reading MLF file C:\jenkins\workspace\CNTK-Test-Windows-W1\Example
label set 0: 129 classes
minibatchutterancesource: 948 utterances grouped into 3 chunks, av. chunk size: 316.0 utterances, 84244.7 frames
05/03/2016 13:22:25: Creating virgin network.
08/16/2016 03:20:19: Creating virgin network.
Node 'W0' (LearnableParameter operation): Initializing Parameter[512 x 363] <- 0.000000.
Node 'W0' (LearnableParameter operation): Initializing Parameter[512 x 363] <- uniform(seed=1, range=0.050000*1.000000, onCPU=false).
Microsoft::MSR::CNTK::GPUMatrix<ElemType>::SetUniformRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4
Node 'B0' (LearnableParameter operation): Initializing Parameter[512 x 1] <- 0.000000.
Node 'B0' (LearnableParameter operation): Initializing Parameter[512 x 1] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[512 x 512] <- 0.000000.
Node 'W1' (LearnableParameter operation): Initializing Parameter[512 x 512] <- uniform(seed=2, range=0.050000*1.000000, onCPU=false).
Node 'B1' (LearnableParameter operation): Initializing Parameter[512 x 1] <- 0.000000.
Node 'B1' (LearnableParameter operation): Initializing Parameter[512 x 1] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[132 x 512] <- 0.000000.
Node 'W2' (LearnableParameter operation): Initializing Parameter[132 x 512] <- uniform(seed=3, range=0.050000*1.000000, onCPU=false).
Node 'B2' (LearnableParameter operation): Initializing Parameter[132 x 1] <- 0.000000.
Node 'B2' (LearnableParameter operation): Initializing Parameter[132 x 1] <- 0.000000.
Post-processing network...
@ -337,70 +365,70 @@ Validating network, final pass.
Post-processing network complete.
05/03/2016 13:22:26: Created model with 25 nodes on GPU 0.
08/16/2016 03:20:20: Created model with 25 nodes on GPU 0.
05/03/2016 13:22:26: Training criterion node(s):
05/03/2016 13:22:26: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
08/16/2016 03:20:20: Training criterion node(s):
08/16/2016 03:20:20: CrossEntropyWithSoftmax = CrossEntropyWithSoftmax
05/03/2016 13:22:26: Evaluation criterion node(s):
05/03/2016 13:22:26: EvalErrorPrediction = ErrorPrediction
08/16/2016 03:20:20: Evaluation criterion node(s):
08/16/2016 03:20:20: EvalErrorPrediction = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 40 matrices, 19 are shared as 8, and 21 are not shared.
0000000000000000: {[EvalErrorPrediction Gradient[1]] [InvStdOfFeatures Gradient[363]] [LogOfPrior Gradient[132]] [MVNormalizedFeatures Gradient[363 x *]] [MeanOfFeatures Gradient[363]] [PosteriorProb Gradient[132 x 1 x *]] [PosteriorProb Value[132 x 1 x *]] [Prior Gradient[132]] [ScaledLogLikelihood Gradient[132 x 1 x *]] [features Gradient[363 x *]] [labels Gradient[132 x *]] }
00000087D360C610: {[features Value[363 x *]] }
00000087EB4FEEF0: {[W0 Value[512 x 363]] }
00000087EB4FF530: {[B1 Value[512 x 1]] }
00000087EB4FF850: {[W1 Value[512 x 512]] }
00000087EB4FFC10: {[W2 Value[132 x 512]] }
00000087EB500070: {[B2 Value[132 x 1]] }
00000087EB5001B0: {[MeanOfFeatures Value[363]] }
00000087EB500250: {[InvStdOfFeatures Value[363]] }
00000087EB5004D0: {[B0 Value[512 x 1]] }
00000087EDA2B150: {[labels Value[132 x *]] }
00000087EDA2B330: {[B1 Gradient[512 x 1]] [H2 Gradient[512 x 1 x *]] [HLast Gradient[132 x 1 x *]] }
00000087EDA2B3D0: {[Prior Value[132]] }
00000087EDA2B6F0: {[HLast Value[132 x 1 x *]] [W2 Gradient[132 x 512]] }
00000087EDA2B8D0: {[W0 Gradient[512 x 363]] [W0*features+B0 Value[512 x 1 x *]] }
00000087EDA2BB50: {[CrossEntropyWithSoftmax Value[1]] }
00000087EDA2BC90: {[W0*features+B0 Gradient[512 x 1 x *]] [W1*H1 Value[512 x 1 x *]] }
00000087EDA2C0F0: {[EvalErrorPrediction Value[1]] }
00000087EDA2C190: {[W0*features Value[512 x *]] }
00000087EDA2C2D0: {[H1 Value[512 x 1 x *]] [W0*features Gradient[512 x *]] }
00000087EDA2C370: {[W2*H1 Gradient[132 x 1 x *]] }
00000087EDA2C410: {[B2 Gradient[132 x 1]] }
00000087EDA2C730: {[ScaledLogLikelihood Value[132 x 1 x *]] }
00000087EDA2C7D0: {[LogOfPrior Value[132]] }
00000087EDA2CAF0: {[MVNormalizedFeatures Value[363 x *]] }
00000087EDA2CB90: {[H2 Value[512 x 1 x *]] [W1*H1 Gradient[512 x 1 x *]] }
00000087EDA2CCD0: {[B0 Gradient[512 x 1]] [H1 Gradient[512 x 1 x *]] [W1*H1+B1 Gradient[512 x 1 x *]] [W2*H1 Value[132 x 1 x *]] }
00000087EDA2CEB0: {[CrossEntropyWithSoftmax Gradient[1]] }
00000087EDA2CFF0: {[W1 Gradient[512 x 512]] [W1*H1+B1 Value[512 x 1 x *]] }
{ W0*features+B0 : [512 x 1 x *] (gradient)
W1*H1 : [512 x 1 x *] }
{ H2 : [512 x 1 x *]
W1*H1 : [512 x 1 x *] (gradient) }
{ HLast : [132 x 1 x *]
W2 : [132 x 512] (gradient) }
{ W0 : [512 x 363] (gradient)
W0*features+B0 : [512 x 1 x *] }
{ B0 : [512 x 1] (gradient)
H1 : [512 x 1 x *] (gradient)
W1*H1+B1 : [512 x 1 x *] (gradient)
W2*H1 : [132 x 1 x *] }
{ H1 : [512 x 1 x *]
W0*features : [512 x *] (gradient) }
{ W1 : [512 x 512] (gradient)
W1*H1+B1 : [512 x 1 x *] }
{ B1 : [512 x 1] (gradient)
H2 : [512 x 1 x *] (gradient)
HLast : [132 x 1 x *] (gradient) }
05/03/2016 13:22:26: Precomputing --> 3 PreCompute nodes found.
08/16/2016 03:20:20: Training 516740 parameters in 6 out of 6 parameter tensors and 15 nodes with gradient:
05/03/2016 13:22:26: MeanOfFeatures = Mean()
05/03/2016 13:22:26: InvStdOfFeatures = InvStdDev()
05/03/2016 13:22:26: Prior = Mean()
08/16/2016 03:20:20: Node 'B0' (LearnableParameter operation) : [512 x 1]
08/16/2016 03:20:20: Node 'B1' (LearnableParameter operation) : [512 x 1]
08/16/2016 03:20:20: Node 'B2' (LearnableParameter operation) : [132 x 1]
08/16/2016 03:20:20: Node 'W0' (LearnableParameter operation) : [512 x 363]
08/16/2016 03:20:20: Node 'W1' (LearnableParameter operation) : [512 x 512]
08/16/2016 03:20:20: Node 'W2' (LearnableParameter operation) : [132 x 512]
08/16/2016 03:20:20: Precomputing --> 3 PreCompute nodes found.
08/16/2016 03:20:20: MeanOfFeatures = Mean()
08/16/2016 03:20:20: InvStdOfFeatures = InvStdDev()
08/16/2016 03:20:20: Prior = Mean()
minibatchiterator: epoch 0: frames [0..252734] (first utterance at frame 0), data subset 0 of 1, with 1 datapasses
requiredata: determined feature kind as 33-dimensional 'USER' with frame shift 10.0 ms
05/03/2016 13:22:27: Precomputing --> Completed.
08/16/2016 03:20:21: Precomputing --> Completed.
05/03/2016 13:22:27: Starting Epoch 1: learning rate per sample = 0.003906 effective momentum = 0.900000 momentum as time constant = 2429.8 samples
08/16/2016 03:20:21: Starting Epoch 1: learning rate per sample = 0.003906 effective momentum = 0.900000 momentum as time constant = 2429.8 samples
minibatchiterator: epoch 0: frames [0..2048] (first utterance at frame 0), data subset 0 of 1, with 1 datapasses
05/03/2016 13:22:27: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1), distributed reading is ENABLED.
05/03/2016 13:22:27: Finished Epoch[ 1 of 1]: [Training] CrossEntropyWithSoftmax = 4.42832291 * 2048; EvalErrorPrediction = 0.91357422 * 2048; totalSamplesSeen = 2048; learningRatePerSample = 0.00390625; epochTime=0.052947s
05/03/2016 13:22:27: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_gpu/Models/cntkSpeechFF.dnn'
05/03/2016 13:22:27: CNTKCommandTrainEnd: speechTrain
08/16/2016 03:20:21: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1), distributed reading is ENABLED.
08/16/2016 03:20:21: Finished Epoch[ 1 of 1]: [Training] CrossEntropyWithSoftmax = 4.41144794 * 2048; EvalErrorPrediction = 0.92773438 * 2048; totalSamplesSeen = 2048; learningRatePerSample = 0.00390625; epochTime=0.05551s
08/16/2016 03:20:21: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_FeedForward@release_gpu/Models/cntkSpeechFF.dnn'
08/16/2016 03:20:21: CNTKCommandTrainEnd: speechTrain
05/03/2016 13:22:27: Action "train" complete.
08/16/2016 03:20:21: Action "train" complete.
05/03/2016 13:22:27: __COMPLETED__
08/16/2016 03:20:21: __COMPLETED__
~MPIWrapper

Просмотреть файл

@ -5,5 +5,5 @@
ConfigDir=$TEST_DIR/../../../../../../Examples/Speech/AN4/Config
# cntkrun <CNTK config file name> <additional CNTK args>
cntkrun FeedForward.cntk "speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=2048]]" || exit $?
cntkrun FeedForward.cntk "speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=2048]] speechTrain=[reader=[useMersenneTwisterRand=true]]" || exit $?

Просмотреть файл

@ -0,0 +1,682 @@
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 264172964 kB
-------------------------------------------------------------------
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/1bitsgd/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/../../../../../../Examples/Speech/AN4/Config/LSTM-NDL.cntk currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_cpu DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/../../../../../../Examples/Speech/AN4/Config OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_cpu DeviceId=-1 timestamping=true speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=64]] speechTrain=[reader=[useMersenneTwisterRand=true]] parallelTrain=false
-------------------------------------------------------------------
Build info:
Built time: Aug 16 2016 09:41:57
Last modified date: Mon Aug 15 23:39:17 2016
Build type: release
Build target: GPU
With 1bit-SGD: yes
Math lib: mkl
CUDA_PATH: /usr/local/cuda-7.5
CUB_PATH: /usr/local/cub-1.4.1
CUDNN_PATH: /usr/local/cudnn-4.0
Build Branch: HEAD
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by philly on 643085f7f8c2
Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
-------------------------------------------------------------------
Changed current directory to /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
08/16/2016 10:01:47: -------------------------------------------------------------------
08/16/2016 10:01:47: Build info:
08/16/2016 10:01:47: Built time: Aug 16 2016 09:41:57
08/16/2016 10:01:47: Last modified date: Mon Aug 15 23:39:17 2016
08/16/2016 10:01:47: Build type: release
08/16/2016 10:01:47: Build target: GPU
08/16/2016 10:01:47: With 1bit-SGD: yes
08/16/2016 10:01:47: Math lib: mkl
08/16/2016 10:01:47: CUDA_PATH: /usr/local/cuda-7.5
08/16/2016 10:01:47: CUB_PATH: /usr/local/cub-1.4.1
08/16/2016 10:01:47: CUDNN_PATH: /usr/local/cudnn-4.0
08/16/2016 10:01:47: Build Branch: HEAD
08/16/2016 10:01:47: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 10:01:47: Built by philly on 643085f7f8c2
08/16/2016 10:01:47: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
08/16/2016 10:01:47: -------------------------------------------------------------------
08/16/2016 10:01:47: -------------------------------------------------------------------
08/16/2016 10:01:47: GPU info:
08/16/2016 10:01:47: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:01:47: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:01:47: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:01:47: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:01:47: -------------------------------------------------------------------
08/16/2016 10:01:47: Running on localhost at 2016/08/16 10:01:47
08/16/2016 10:01:47: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/1bitsgd/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/../../../../../../Examples/Speech/AN4/Config/LSTM-NDL.cntk currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_cpu DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/../../../../../../Examples/Speech/AN4/Config OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_cpu DeviceId=-1 timestamping=true speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=64]] speechTrain=[reader=[useMersenneTwisterRand=true]] parallelTrain=false
08/16/2016 10:01:47: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:01:47: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
ModelDir = "$OutputDir$/Models"
deviceId = -1
command = speechTrain
precision = "float"
traceLevel = 1
modelPath = "$ModelDir$/cntkSpeechLSTM.dnn"
parallelTrain = true
frameMode = false
truncated = true
speechTrain = [
action = "train"
nbrUttsIneachRecurrentIter = 16
NDLNetworkBuilder = [
networkDescription = "$ConfigDir$/lstmp-3layer-opt.ndl"
]
SGD = [
epochSize = 0
minibatchSize = 16
learningRatesPerMB = 0.5
numMBsToShowResult = 10
momentumPerMB = 0:0.9
maxEpochs = 4
keepCheckPointFiles = true
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
features = [
dim = 363
type = "real"
scpFile = "$DataDir$/glob_0000.scp"
]
labels = [
mlfFile = "$DataDir$/glob_0000.mlf"
labelMappingFile = "$DataDir$/state.list"
labelDim = 132
labelType = "category"
]
]
]
currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_cpu
DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/../../../../../../Examples/Speech/AN4/Config
OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_cpu
DeviceId=-1
timestamping=true
speechTrain=[SGD=[maxEpochs=1]]
speechTrain=[SGD=[epochSize=64]]
speechTrain=[reader=[useMersenneTwisterRand=true]]
parallelTrain=false
08/16/2016 10:01:47: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:01:47: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:01:47: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_cpu/Models"
deviceId = -1
command = speechTrain
precision = "float"
traceLevel = 1
modelPath = "/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_cpu/Models/cntkSpeechLSTM.dnn"
parallelTrain = true
frameMode = false
truncated = true
speechTrain = [
action = "train"
nbrUttsIneachRecurrentIter = 16
NDLNetworkBuilder = [
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/../../../../../../Examples/Speech/AN4/Config/lstmp-3layer-opt.ndl"
]
SGD = [
epochSize = 0
minibatchSize = 16
learningRatesPerMB = 0.5
numMBsToShowResult = 10
momentumPerMB = 0:0.9
maxEpochs = 4
keepCheckPointFiles = true
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
features = [
dim = 363
type = "real"
scpFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.scp"
]
labels = [
mlfFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.mlf"
labelMappingFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/state.list"
labelDim = 132
labelType = "category"
]
]
]
currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_cpu
DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/../../../../../../Examples/Speech/AN4/Config
OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_cpu
DeviceId=-1
timestamping=true
speechTrain=[SGD=[maxEpochs=1]]
speechTrain=[SGD=[epochSize=64]]
speechTrain=[reader=[useMersenneTwisterRand=true]]
parallelTrain=false
08/16/2016 10:01:47: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:01:47: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: LSTM-NDL.cntk:command=speechTrain
configparameters: LSTM-NDL.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/../../../../../../Examples/Speech/AN4/Config
configparameters: LSTM-NDL.cntk:currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
configparameters: LSTM-NDL.cntk:DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
configparameters: LSTM-NDL.cntk:deviceId=-1
configparameters: LSTM-NDL.cntk:frameMode=false
configparameters: LSTM-NDL.cntk:ModelDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_cpu/Models
configparameters: LSTM-NDL.cntk:modelPath=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_cpu/Models/cntkSpeechLSTM.dnn
configparameters: LSTM-NDL.cntk:OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_cpu
configparameters: LSTM-NDL.cntk:parallelTrain=false
configparameters: LSTM-NDL.cntk:precision=float
configparameters: LSTM-NDL.cntk:RootDir=..
configparameters: LSTM-NDL.cntk:RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_cpu
configparameters: LSTM-NDL.cntk:speechTrain=[
action = "train"
nbrUttsIneachRecurrentIter = 16
NDLNetworkBuilder = [
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/../../../../../../Examples/Speech/AN4/Config/lstmp-3layer-opt.ndl"
]
SGD = [
epochSize = 0
minibatchSize = 16
learningRatesPerMB = 0.5
numMBsToShowResult = 10
momentumPerMB = 0:0.9
maxEpochs = 4
keepCheckPointFiles = true
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
features = [
dim = 363
type = "real"
scpFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.scp"
]
labels = [
mlfFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.mlf"
labelMappingFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/state.list"
labelDim = 132
labelType = "category"
]
]
] [SGD=[maxEpochs=1]] [SGD=[epochSize=64]] [reader=[useMersenneTwisterRand=true]]
configparameters: LSTM-NDL.cntk:timestamping=true
configparameters: LSTM-NDL.cntk:traceLevel=1
configparameters: LSTM-NDL.cntk:truncated=true
08/16/2016 10:01:47: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:01:47: Commands: speechTrain
08/16/2016 10:01:47: Precision = "float"
08/16/2016 10:01:47: CNTKModelPath: /tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_cpu/Models/cntkSpeechLSTM.dnn
08/16/2016 10:01:47: CNTKCommandTrainInfo: speechTrain : 1
08/16/2016 10:01:47: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 1
08/16/2016 10:01:47: ##############################################################################
08/16/2016 10:01:47: # #
08/16/2016 10:01:47: # Action "train" #
08/16/2016 10:01:47: # #
08/16/2016 10:01:47: ##############################################################################
08/16/2016 10:01:47: CNTKCommandTrainBegin: speechTrain
NDLBuilder Using CPU
reading script file /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.scp ... 948 entries
total 132 state names in state list /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/state.list
htkmlfreader: reading MLF file /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.mlf ... total 948 entries
...............................................................................................feature set 0: 252734 frames in 948 out of 948 utterances
label set 0: 129 classes
minibatchutterancesource: 948 utterances grouped into 3 chunks, av. chunk size: 316.0 utterances, 84244.7 frames
useParallelTrain option is not enabled. ParallelTrain config will be ignored.
08/16/2016 10:01:48: Creating virgin network.
Node 'LSTMoutput1.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput1.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput1.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput1.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput1.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- 0.000000.
Node 'LSTMoutput2.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput2.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput2.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput2.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput2.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- 0.000000.
Node 'LSTMoutput3.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput3.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput3.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput3.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput3.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- 0.000000.
Node 'b' (LearnableParameter operation): Initializing Parameter[132 x 1] <- 0.000000.
Node 'LSTMoutput1.wx' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput1.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput1.Wh' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput1.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=3, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput1.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=4, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput1.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=5, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput1.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- uniform(seed=6, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput2.wx' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput2.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput2.Wh' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput2.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=9, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput2.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=10, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput2.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=11, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput2.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- uniform(seed=12, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput3.wx' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput3.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput3.Wh' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput3.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=15, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput3.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=16, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput3.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=17, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput3.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- uniform(seed=18, range=0.050000*1.000000, onCPU=false).
Node 'W' (LearnableParameter operation): Initializating Parameter[132 x 0] as uniform later when dimensions are fully known.
Node 'b' (LearnableParameter operation): Initializing Parameter[132 x 1] <- 0.000000.
Post-processing network...
6 roots:
ce = CrossEntropyWithSoftmax()
err = ErrorPrediction()
featNorm.xMean = Mean()
featNorm.xStdDev = InvStdDev()
logPrior.prior = Mean()
scaledLogLikelihood = Minus()
Loop[0] --> Loop_LSTMoutput1.output -> 24 nodes
LSTMoutput1.dh LSTMoutput1.whh LSTMoutput1.wxxpbpwhh
LSTMoutput1.G4 LSTMoutput1.G3 LSTMoutput1.dc
LSTMoutput1.Wcfdc LSTMoutput1.unnamed165 LSTMoutput1.ft
LSTMoutput1.bft LSTMoutput1.G1 LSTMoutput1.Wcidc
LSTMoutput1.unnamed163 LSTMoutput1.it LSTMoutput1.G2
LSTMoutput1.unnamed164 LSTMoutput1.bit LSTMoutput1.ct
LSTMoutput1.Wcoct LSTMoutput1.unnamed166 LSTMoutput1.ot
LSTMoutput1.unnamed167 LSTMoutput1.mt LSTMoutput1.output
Loop[1] --> Loop_LSTMoutput2.output -> 24 nodes
LSTMoutput2.dh LSTMoutput2.whh LSTMoutput2.wxxpbpwhh
LSTMoutput2.G4 LSTMoutput2.G3 LSTMoutput2.dc
LSTMoutput2.Wcfdc LSTMoutput2.unnamed175 LSTMoutput2.ft
LSTMoutput2.bft LSTMoutput2.G1 LSTMoutput2.Wcidc
LSTMoutput2.unnamed173 LSTMoutput2.it LSTMoutput2.G2
LSTMoutput2.unnamed174 LSTMoutput2.bit LSTMoutput2.ct
LSTMoutput2.Wcoct LSTMoutput2.unnamed176 LSTMoutput2.ot
LSTMoutput2.unnamed177 LSTMoutput2.mt LSTMoutput2.output
Loop[2] --> Loop_LSTMoutput3.output -> 24 nodes
LSTMoutput3.dh LSTMoutput3.whh LSTMoutput3.wxxpbpwhh
LSTMoutput3.G4 LSTMoutput3.G3 LSTMoutput3.dc
LSTMoutput3.Wcfdc LSTMoutput3.unnamed185 LSTMoutput3.ft
LSTMoutput3.bft LSTMoutput3.G1 LSTMoutput3.Wcidc
LSTMoutput3.unnamed183 LSTMoutput3.it LSTMoutput3.G2
LSTMoutput3.unnamed184 LSTMoutput3.bit LSTMoutput3.ct
LSTMoutput3.Wcoct LSTMoutput3.unnamed186 LSTMoutput3.ot
LSTMoutput3.unnamed187 LSTMoutput3.mt LSTMoutput3.output
Validating network. 113 nodes to process in pass 1.
Validating --> labels = InputValue() : -> [132 x *]
Validating --> W = LearnableParameter() : -> [132 x 0]
Validating --> LSTMoutput3.Wmr = LearnableParameter() : -> [512 x 1024]
Validating --> LSTMoutput3.wx = LearnableParameter() : -> [4096 x 0]
Validating --> LSTMoutput2.Wmr = LearnableParameter() : -> [512 x 1024]
Validating --> LSTMoutput2.wx = LearnableParameter() : -> [4096 x 0]
Validating --> LSTMoutput1.Wmr = LearnableParameter() : -> [512 x 1024]
Validating --> LSTMoutput1.wx = LearnableParameter() : -> [4096 x 0]
Validating --> features = InputValue() : -> [363 x *]
Validating --> featNorm.xMean = Mean (features) : [363 x *] -> [363]
Validating --> featNorm.xStdDev = InvStdDev (features) : [363 x *] -> [363]
Validating --> featNorm.xNorm = PerDimMeanVarNormalization (features, featNorm.xMean, featNorm.xStdDev) : [363 x *], [363], [363] -> [363 x *]
Node 'LSTMoutput1.wx' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 363].
Node 'LSTMoutput1.wx' (LearnableParameter operation): Initializing Parameter[4096 x 363] <- uniform(seed=1, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput1.wxx = Times (LSTMoutput1.wx, featNorm.xNorm) : [4096 x 363], [363 x *] -> [4096 x *]
Validating --> LSTMoutput1.b = LearnableParameter() : -> [4096 x 1]
Validating --> LSTMoutput1.wxxpb = Plus (LSTMoutput1.wxx, LSTMoutput1.b) : [4096 x *], [4096 x 1] -> [4096 x 1 x *]
Validating --> LSTMoutput1.Wh = LearnableParameter() : -> [4096 x 0]
Validating --> LSTMoutput1.Wco = LearnableParameter() : -> [1024]
Validating --> LSTMoutput1.Wcf = LearnableParameter() : -> [1024]
Validating --> LSTMoutput1.Wci = LearnableParameter() : -> [1024]
Node 'LSTMoutput1.Wh' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 512].
Node 'LSTMoutput1.Wh' (LearnableParameter operation): Initializing Parameter[4096 x 512] <- uniform(seed=2, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput1.whh = Times (LSTMoutput1.Wh, LSTMoutput1.dh) : [4096 x 512], [512] -> [4096]
Validating --> LSTMoutput1.wxxpbpwhh = Plus (LSTMoutput1.wxxpb, LSTMoutput1.whh) : [4096 x 1 x *], [4096] -> [4096 x 1 x *]
Validating --> LSTMoutput1.G4 = Slice (LSTMoutput1.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.G3 = Slice (LSTMoutput1.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.Wcfdc = DiagTimes (LSTMoutput1.Wcf, LSTMoutput1.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput1.unnamed165 = Plus (LSTMoutput1.G3, LSTMoutput1.Wcfdc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput1.ft = Sigmoid (LSTMoutput1.unnamed165) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.bft = ElementTimes (LSTMoutput1.ft, LSTMoutput1.dc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput1.G1 = Slice (LSTMoutput1.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.Wcidc = DiagTimes (LSTMoutput1.Wci, LSTMoutput1.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput1.unnamed163 = Plus (LSTMoutput1.G1, LSTMoutput1.Wcidc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput1.it = Sigmoid (LSTMoutput1.unnamed163) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.G2 = Slice (LSTMoutput1.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.unnamed164 = Tanh (LSTMoutput1.G2) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.bit = ElementTimes (LSTMoutput1.it, LSTMoutput1.unnamed164) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.ct = Plus (LSTMoutput1.bft, LSTMoutput1.bit) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.Wcoct = DiagTimes (LSTMoutput1.Wco, LSTMoutput1.ct) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.unnamed166 = Plus (LSTMoutput1.G4, LSTMoutput1.Wcoct) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.ot = Sigmoid (LSTMoutput1.unnamed166) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.unnamed167 = Tanh (LSTMoutput1.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.mt = ElementTimes (LSTMoutput1.ot, LSTMoutput1.unnamed167) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.output = Times (LSTMoutput1.Wmr, LSTMoutput1.mt) : [512 x 1024], [1024 x 1 x *] -> [512 x 1 x *]
Node 'LSTMoutput2.wx' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 512 x 1].
Node 'LSTMoutput2.wx' (LearnableParameter operation): Initializing Parameter[4096 x 512 x 1] <- uniform(seed=7, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput2.wxx = Times (LSTMoutput2.wx, LSTMoutput1.output) : [4096 x 512 x 1], [512 x 1 x *] -> [4096 x *]
Validating --> LSTMoutput2.b = LearnableParameter() : -> [4096 x 1]
Validating --> LSTMoutput2.wxxpb = Plus (LSTMoutput2.wxx, LSTMoutput2.b) : [4096 x *], [4096 x 1] -> [4096 x 1 x *]
Validating --> LSTMoutput2.Wh = LearnableParameter() : -> [4096 x 0]
Validating --> LSTMoutput2.Wco = LearnableParameter() : -> [1024]
Validating --> LSTMoutput2.Wcf = LearnableParameter() : -> [1024]
Validating --> LSTMoutput2.Wci = LearnableParameter() : -> [1024]
Node 'LSTMoutput2.Wh' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 512].
Node 'LSTMoutput2.Wh' (LearnableParameter operation): Initializing Parameter[4096 x 512] <- uniform(seed=8, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput2.whh = Times (LSTMoutput2.Wh, LSTMoutput2.dh) : [4096 x 512], [512] -> [4096]
Validating --> LSTMoutput2.wxxpbpwhh = Plus (LSTMoutput2.wxxpb, LSTMoutput2.whh) : [4096 x 1 x *], [4096] -> [4096 x 1 x *]
Validating --> LSTMoutput2.G4 = Slice (LSTMoutput2.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.G3 = Slice (LSTMoutput2.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.Wcfdc = DiagTimes (LSTMoutput2.Wcf, LSTMoutput2.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput2.unnamed175 = Plus (LSTMoutput2.G3, LSTMoutput2.Wcfdc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput2.ft = Sigmoid (LSTMoutput2.unnamed175) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.bft = ElementTimes (LSTMoutput2.ft, LSTMoutput2.dc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput2.G1 = Slice (LSTMoutput2.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.Wcidc = DiagTimes (LSTMoutput2.Wci, LSTMoutput2.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput2.unnamed173 = Plus (LSTMoutput2.G1, LSTMoutput2.Wcidc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput2.it = Sigmoid (LSTMoutput2.unnamed173) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.G2 = Slice (LSTMoutput2.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.unnamed174 = Tanh (LSTMoutput2.G2) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.bit = ElementTimes (LSTMoutput2.it, LSTMoutput2.unnamed174) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.ct = Plus (LSTMoutput2.bft, LSTMoutput2.bit) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.Wcoct = DiagTimes (LSTMoutput2.Wco, LSTMoutput2.ct) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.unnamed176 = Plus (LSTMoutput2.G4, LSTMoutput2.Wcoct) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.ot = Sigmoid (LSTMoutput2.unnamed176) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.unnamed177 = Tanh (LSTMoutput2.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.mt = ElementTimes (LSTMoutput2.ot, LSTMoutput2.unnamed177) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.output = Times (LSTMoutput2.Wmr, LSTMoutput2.mt) : [512 x 1024], [1024 x 1 x *] -> [512 x 1 x *]
Node 'LSTMoutput3.wx' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 512 x 1].
Node 'LSTMoutput3.wx' (LearnableParameter operation): Initializing Parameter[4096 x 512 x 1] <- uniform(seed=13, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput3.wxx = Times (LSTMoutput3.wx, LSTMoutput2.output) : [4096 x 512 x 1], [512 x 1 x *] -> [4096 x *]
Validating --> LSTMoutput3.b = LearnableParameter() : -> [4096 x 1]
Validating --> LSTMoutput3.wxxpb = Plus (LSTMoutput3.wxx, LSTMoutput3.b) : [4096 x *], [4096 x 1] -> [4096 x 1 x *]
Validating --> LSTMoutput3.Wh = LearnableParameter() : -> [4096 x 0]
Validating --> LSTMoutput3.Wco = LearnableParameter() : -> [1024]
Validating --> LSTMoutput3.Wcf = LearnableParameter() : -> [1024]
Validating --> LSTMoutput3.Wci = LearnableParameter() : -> [1024]
Node 'LSTMoutput3.Wh' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 512].
Node 'LSTMoutput3.Wh' (LearnableParameter operation): Initializing Parameter[4096 x 512] <- uniform(seed=14, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput3.whh = Times (LSTMoutput3.Wh, LSTMoutput3.dh) : [4096 x 512], [512] -> [4096]
Validating --> LSTMoutput3.wxxpbpwhh = Plus (LSTMoutput3.wxxpb, LSTMoutput3.whh) : [4096 x 1 x *], [4096] -> [4096 x 1 x *]
Validating --> LSTMoutput3.G4 = Slice (LSTMoutput3.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.G3 = Slice (LSTMoutput3.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.Wcfdc = DiagTimes (LSTMoutput3.Wcf, LSTMoutput3.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput3.unnamed185 = Plus (LSTMoutput3.G3, LSTMoutput3.Wcfdc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput3.ft = Sigmoid (LSTMoutput3.unnamed185) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.bft = ElementTimes (LSTMoutput3.ft, LSTMoutput3.dc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput3.G1 = Slice (LSTMoutput3.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.Wcidc = DiagTimes (LSTMoutput3.Wci, LSTMoutput3.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput3.unnamed183 = Plus (LSTMoutput3.G1, LSTMoutput3.Wcidc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput3.it = Sigmoid (LSTMoutput3.unnamed183) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.G2 = Slice (LSTMoutput3.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.unnamed184 = Tanh (LSTMoutput3.G2) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.bit = ElementTimes (LSTMoutput3.it, LSTMoutput3.unnamed184) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.ct = Plus (LSTMoutput3.bft, LSTMoutput3.bit) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.Wcoct = DiagTimes (LSTMoutput3.Wco, LSTMoutput3.ct) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.unnamed186 = Plus (LSTMoutput3.G4, LSTMoutput3.Wcoct) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.ot = Sigmoid (LSTMoutput3.unnamed186) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.unnamed187 = Tanh (LSTMoutput3.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.mt = ElementTimes (LSTMoutput3.ot, LSTMoutput3.unnamed187) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.output = Times (LSTMoutput3.Wmr, LSTMoutput3.mt) : [512 x 1024], [1024 x 1 x *] -> [512 x 1 x *]
Node 'W' (LearnableParameter operation) operation: Tensor shape was inferred as [132 x 512 x 1].
Node 'W' (LearnableParameter operation): Initializing Parameter[132 x 512 x 1] <- uniform(seed=19, range=0.050000*1.000000, onCPU=false).
Validating --> unnamed193 = Times (W, LSTMoutput3.output) : [132 x 512 x 1], [512 x 1 x *] -> [132 x *]
Validating --> b = LearnableParameter() : -> [132 x 1]
Validating --> LSTMoutputW = Plus (unnamed193, b) : [132 x *], [132 x 1] -> [132 x 1 x *]
Validating --> ce = CrossEntropyWithSoftmax (labels, LSTMoutputW) : [132 x *], [132 x 1 x *] -> [1]
Validating --> err = ErrorPrediction (labels, LSTMoutputW) : [132 x *], [132 x 1 x *] -> [1]
Validating --> logPrior.prior = Mean (labels) : [132 x *] -> [132]
Validating --> logPrior.logPrior = Log (logPrior.prior) : [132] -> [132]
Validating --> scaledLogLikelihood = Minus (LSTMoutputW, logPrior.logPrior) : [132 x 1 x *], [132] -> [132 x 1 x *]
Validating network. 88 nodes to process in pass 2.
Validating --> LSTMoutput1.dh = PastValue (LSTMoutput1.output) : [512 x 1 x *] -> [512 x 1 x *]
Validating --> LSTMoutput1.whh = Times (LSTMoutput1.Wh, LSTMoutput1.dh) : [4096 x 512], [512 x 1 x *] -> [4096 x 1 x *]
Validating --> LSTMoutput1.dc = PastValue (LSTMoutput1.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.Wcfdc = DiagTimes (LSTMoutput1.Wcf, LSTMoutput1.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.Wcidc = DiagTimes (LSTMoutput1.Wci, LSTMoutput1.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.dh = PastValue (LSTMoutput2.output) : [512 x 1 x *] -> [512 x 1 x *]
Validating --> LSTMoutput2.whh = Times (LSTMoutput2.Wh, LSTMoutput2.dh) : [4096 x 512], [512 x 1 x *] -> [4096 x 1 x *]
Validating --> LSTMoutput2.dc = PastValue (LSTMoutput2.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.Wcfdc = DiagTimes (LSTMoutput2.Wcf, LSTMoutput2.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.Wcidc = DiagTimes (LSTMoutput2.Wci, LSTMoutput2.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.dh = PastValue (LSTMoutput3.output) : [512 x 1 x *] -> [512 x 1 x *]
Validating --> LSTMoutput3.whh = Times (LSTMoutput3.Wh, LSTMoutput3.dh) : [4096 x 512], [512 x 1 x *] -> [4096 x 1 x *]
Validating --> LSTMoutput3.dc = PastValue (LSTMoutput3.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.Wcfdc = DiagTimes (LSTMoutput3.Wcf, LSTMoutput3.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.Wcidc = DiagTimes (LSTMoutput3.Wci, LSTMoutput3.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating network. 15 nodes to process in pass 3.
Validating network, final pass.
29 out of 113 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
08/16/2016 10:01:48: Created model with 113 nodes on CPU.
08/16/2016 10:01:48: Training criterion node(s):
08/16/2016 10:01:48: ce = CrossEntropyWithSoftmax
08/16/2016 10:01:48: Evaluation criterion node(s):
08/16/2016 10:01:48: err = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing: Out of 217 matrices, 125 are shared as 56, and 92 are not shared.
{ LSTMoutput1.dh : [512 x 1 x *]
LSTMoutput1.wxx : [4096 x *] (gradient) }
{ LSTMoutput2.Wco : [1024] (gradient)
LSTMoutput3.dc : [1024 x 1 x *] }
{ LSTMoutput1.Wmr : [512 x 1024] (gradient)
LSTMoutput2.wxx : [4096 x *] }
{ LSTMoutput2.wx : [4096 x 512 x 1] (gradient)
LSTMoutput2.wxxpb : [4096 x 1 x *] }
{ LSTMoutput1.ot : [1024 x 1 x *] (gradient)
LSTMoutput2.whh : [4096 x 1 x *] }
{ LSTMoutput1.ct : [1024 x 1 x *] (gradient)
LSTMoutput2.wxxpbpwhh : [4096 x 1 x *] }
{ LSTMoutput1.G4 : [1024 x 1 x *] (gradient)
LSTMoutput2.G4 : [1024 x 1 x *] }
{ LSTMoutput1.unnamed164 : [1024 x 1 x *] (gradient)
LSTMoutput2.Wcfdc : [1024 x 1 x *] }
{ LSTMoutput1.wxxpbpwhh : [4096 x 1 x *] (gradient)
LSTMoutput2.unnamed175 : [1024 x 1 x *] }
{ LSTMoutput1.G1 : [1024 x 1 x *] (gradient)
LSTMoutput2.ft : [1024 x 1 x *] }
{ LSTMoutput1.Wci : [1024] (gradient)
LSTMoutput2.G1 : [1024 x 1 x *] }
{ LSTMoutput1.G3 : [1024 x 1 x *] (gradient)
LSTMoutput2.Wcidc : [1024 x 1 x *] }
{ LSTMoutput1.Wcf : [1024] (gradient)
LSTMoutput2.it : [1024 x 1 x *] }
{ LSTMoutput1.whh : [4096 x 1 x *] (gradient)
LSTMoutput2.G2 : [1024 x 1 x *] }
{ LSTMoutput1.b : [4096 x 1] (gradient)
LSTMoutput1.dh : [512 x 1 x *] (gradient)
LSTMoutput2.unnamed174 : [1024 x 1 x *] }
{ LSTMoutput2.Wmr : [512 x 1024] (gradient)
LSTMoutput3.wxx : [4096 x *] }
{ LSTMoutput3.wx : [4096 x 512 x 1] (gradient)
LSTMoutput3.wxxpb : [4096 x 1 x *] }
{ LSTMoutput2.ot : [1024 x 1 x *] (gradient)
LSTMoutput3.whh : [4096 x 1 x *] }
{ LSTMoutput2.ct : [1024 x 1 x *] (gradient)
LSTMoutput3.wxxpbpwhh : [4096 x 1 x *] }
{ LSTMoutput1.Wcoct : [1024 x 1 x *] (gradient)
LSTMoutput2.G4 : [1024 x 1 x *] (gradient)
LSTMoutput3.G4 : [1024 x 1 x *] }
{ LSTMoutput2.unnamed174 : [1024 x 1 x *] (gradient)
LSTMoutput3.Wcfdc : [1024 x 1 x *] }
{ LSTMoutput1.unnamed166 : [1024 x 1 x *] (gradient)
LSTMoutput2.wxxpbpwhh : [4096 x 1 x *] (gradient)
LSTMoutput3.unnamed185 : [1024 x 1 x *] }
{ LSTMoutput1.dc : [1024 x 1 x *] (gradient)
LSTMoutput2.G1 : [1024 x 1 x *] (gradient)
LSTMoutput3.ft : [1024 x 1 x *] }
{ LSTMoutput1.unnamed165 : [1024 x 1 x *] (gradient)
LSTMoutput3.bft : [1024 x 1 x *] }
{ LSTMoutput2.Wci : [1024] (gradient)
LSTMoutput3.G1 : [1024 x 1 x *] }
{ LSTMoutput2.G3 : [1024 x 1 x *] (gradient)
LSTMoutput3.Wcidc : [1024 x 1 x *] }
{ LSTMoutput1.it : [1024 x 1 x *] (gradient)
LSTMoutput3.unnamed183 : [1024 x 1 x *] }
{ LSTMoutput2.Wcf : [1024] (gradient)
LSTMoutput3.it : [1024 x 1 x *] }
{ LSTMoutput1.unnamed167 : [1024 x 1 x *] (gradient)
LSTMoutput2.whh : [4096 x 1 x *] (gradient)
LSTMoutput3.G2 : [1024 x 1 x *] }
{ LSTMoutput2.b : [4096 x 1] (gradient)
LSTMoutput2.dh : [512 x 1 x *] (gradient)
LSTMoutput3.unnamed184 : [1024 x 1 x *] }
{ LSTMoutput3.Wmr : [512 x 1024] (gradient)
unnamed193 : [132 x *] }
{ LSTMoutputW : [132 x 1 x *]
W : [132 x 512 x 1] (gradient) }
{ LSTMoutput1.mt : [1024 x 1 x *] (gradient)
LSTMoutput2.dh : [512 x 1 x *]
LSTMoutput2.wxx : [4096 x *] (gradient) }
{ LSTMoutput1.wx : [4096 x 363] (gradient)
LSTMoutput1.wxxpb : [4096 x 1 x *] }
{ LSTMoutput2.mt : [1024 x 1 x *] (gradient)
LSTMoutput3.dh : [512 x 1 x *]
LSTMoutput3.wxx : [4096 x *] (gradient) }
{ LSTMoutput3.output : [512 x 1 x *] (gradient)
LSTMoutputW : [132 x 1 x *] (gradient) }
{ LSTMoutput3.mt : [1024 x 1 x *] (gradient)
unnamed193 : [132 x *] (gradient) }
{ LSTMoutput2.Wcoct : [1024 x 1 x *] (gradient)
LSTMoutput3.G4 : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.ft : [1024 x 1 x *] (gradient)
LSTMoutput3.bft : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.output : [512 x 1 x *] (gradient)
LSTMoutput2.wxxpb : [4096 x 1 x *] (gradient)
LSTMoutput3.it : [1024 x 1 x *] (gradient) }
{ LSTMoutput2.Wh : [4096 x 512] (gradient)
LSTMoutput3.G2 : [1024 x 1 x *] (gradient) }
{ LSTMoutput2.unnamed176 : [1024 x 1 x *] (gradient)
LSTMoutput3.wxxpbpwhh : [4096 x 1 x *] (gradient) }
{ LSTMoutput1.bit : [1024 x 1 x *] (gradient)
LSTMoutput3.unnamed183 : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.bft : [1024 x 1 x *] (gradient)
LSTMoutput2.dc : [1024 x 1 x *] (gradient)
LSTMoutput3.G1 : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.G2 : [1024 x 1 x *] (gradient)
LSTMoutput2.Wcfdc : [1024 x 1 x *] (gradient)
LSTMoutput3.Wcidc : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.unnamed163 : [1024 x 1 x *] (gradient)
LSTMoutput2.unnamed175 : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.Wcidc : [1024 x 1 x *] (gradient)
LSTMoutput2.ft : [1024 x 1 x *] (gradient) }
{ LSTMoutput2.bft : [1024 x 1 x *] (gradient)
LSTMoutput3.dc : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.Wcfdc : [1024 x 1 x *] (gradient)
LSTMoutput2.Wcidc : [1024 x 1 x *] (gradient)
LSTMoutput3.ft : [1024 x 1 x *] (gradient) }
{ LSTMoutput2.unnamed173 : [1024 x 1 x *] (gradient)
LSTMoutput3.unnamed185 : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.Wh : [4096 x 512] (gradient)
LSTMoutput2.G2 : [1024 x 1 x *] (gradient)
LSTMoutput3.Wcfdc : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.wxxpb : [4096 x 1 x *] (gradient)
LSTMoutput2.it : [1024 x 1 x *] (gradient) }
{ LSTMoutput2.output : [512 x 1 x *] (gradient)
LSTMoutput3.wxxpb : [4096 x 1 x *] (gradient) }
{ LSTMoutput2.unnamed177 : [1024 x 1 x *] (gradient)
LSTMoutput3.whh : [4096 x 1 x *] (gradient) }
{ LSTMoutput3.b : [4096 x 1] (gradient)
LSTMoutput3.dh : [512 x 1 x *] (gradient) }
{ LSTMoutput1.Wco : [1024] (gradient)
LSTMoutput2.dc : [1024 x 1 x *] }
08/16/2016 10:01:48: Training 13634692 parameters in 23 out of 23 parameter tensors and 104 nodes with gradient:
08/16/2016 10:01:48: Node 'LSTMoutput1.Wcf' (LearnableParameter operation) : [1024]
08/16/2016 10:01:48: Node 'LSTMoutput1.Wci' (LearnableParameter operation) : [1024]
08/16/2016 10:01:48: Node 'LSTMoutput1.Wco' (LearnableParameter operation) : [1024]
08/16/2016 10:01:48: Node 'LSTMoutput1.Wh' (LearnableParameter operation) : [4096 x 512]
08/16/2016 10:01:48: Node 'LSTMoutput1.Wmr' (LearnableParameter operation) : [512 x 1024]
08/16/2016 10:01:48: Node 'LSTMoutput1.b' (LearnableParameter operation) : [4096 x 1]
08/16/2016 10:01:48: Node 'LSTMoutput1.wx' (LearnableParameter operation) : [4096 x 363]
08/16/2016 10:01:48: Node 'LSTMoutput2.Wcf' (LearnableParameter operation) : [1024]
08/16/2016 10:01:48: Node 'LSTMoutput2.Wci' (LearnableParameter operation) : [1024]
08/16/2016 10:01:48: Node 'LSTMoutput2.Wco' (LearnableParameter operation) : [1024]
08/16/2016 10:01:48: Node 'LSTMoutput2.Wh' (LearnableParameter operation) : [4096 x 512]
08/16/2016 10:01:48: Node 'LSTMoutput2.Wmr' (LearnableParameter operation) : [512 x 1024]
08/16/2016 10:01:48: Node 'LSTMoutput2.b' (LearnableParameter operation) : [4096 x 1]
08/16/2016 10:01:48: Node 'LSTMoutput2.wx' (LearnableParameter operation) : [4096 x 512 x 1]
08/16/2016 10:01:48: Node 'LSTMoutput3.Wcf' (LearnableParameter operation) : [1024]
08/16/2016 10:01:48: Node 'LSTMoutput3.Wci' (LearnableParameter operation) : [1024]
08/16/2016 10:01:48: Node 'LSTMoutput3.Wco' (LearnableParameter operation) : [1024]
08/16/2016 10:01:48: Node 'LSTMoutput3.Wh' (LearnableParameter operation) : [4096 x 512]
08/16/2016 10:01:48: Node 'LSTMoutput3.Wmr' (LearnableParameter operation) : [512 x 1024]
08/16/2016 10:01:48: Node 'LSTMoutput3.b' (LearnableParameter operation) : [4096 x 1]
08/16/2016 10:01:48: Node 'LSTMoutput3.wx' (LearnableParameter operation) : [4096 x 512 x 1]
08/16/2016 10:01:48: Node 'W' (LearnableParameter operation) : [132 x 512 x 1]
08/16/2016 10:01:48: Node 'b' (LearnableParameter operation) : [132 x 1]
08/16/2016 10:01:48: Precomputing --> 3 PreCompute nodes found.
08/16/2016 10:01:48: featNorm.xMean = Mean()
08/16/2016 10:01:48: featNorm.xStdDev = InvStdDev()
08/16/2016 10:01:48: logPrior.prior = Mean()
minibatchiterator: epoch 0: frames [0..252734] (first utterance at frame 0), data subset 0 of 1, with 1 datapasses
requiredata: determined feature kind as 33-dimensional 'USER' with frame shift 10.0 ms
08/16/2016 10:01:49: Precomputing --> Completed.
08/16/2016 10:01:50: Starting Epoch 1: learning rate per sample = 0.001953 effective momentum = 0.000000 momentum as time constant = 0.0 samples
minibatchiterator: epoch 0: frames [0..64] (first utterance at frame 0), data subset 0 of 1, with 1 datapasses
08/16/2016 10:01:50: Starting minibatch loop.
08/16/2016 10:01:53: Epoch[ 1 of 1]-Minibatch[ 1- 10, 250.00%]: ce = 4.87313957 * 160; err = 0.90625000 * 160; time = 3.3910s; samplesPerSecond = 47.2
08/16/2016 10:01:56: Epoch[ 1 of 1]-Minibatch[ 11- 20, 500.00%]: ce = 4.84521751 * 160; err = 0.69375000 * 160; time = 2.9626s; samplesPerSecond = 54.0
08/16/2016 10:01:58: Finished Epoch[ 1 of 1]: [Training] ce = 4.85644356 * 418; err = 0.80382775 * 418; totalSamplesSeen = 418; learningRatePerSample = 0.001953125; epochTime=8.39953s
08/16/2016 10:01:59: SGD: Saving checkpoint model '/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_cpu/Models/cntkSpeechLSTM.dnn'
08/16/2016 10:01:59: CNTKCommandTrainEnd: speechTrain
08/16/2016 10:01:59: Action "train" complete.
08/16/2016 10:01:59: __COMPLETED__

Просмотреть файл

@ -1 +0,0 @@
__COMPLETED__

Просмотреть файл

@ -1 +0,0 @@
__COMPLETED__

Просмотреть файл

@ -0,0 +1,683 @@
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 264172964 kB
-------------------------------------------------------------------
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/1bitsgd/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/../../../../../../Examples/Speech/AN4/Config/LSTM-NDL.cntk currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_gpu DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/../../../../../../Examples/Speech/AN4/Config OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_gpu DeviceId=0 timestamping=true speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=64]] speechTrain=[reader=[useMersenneTwisterRand=true]] parallelTrain=false
-------------------------------------------------------------------
Build info:
Built time: Aug 16 2016 09:41:57
Last modified date: Mon Aug 15 23:39:17 2016
Build type: release
Build target: GPU
With 1bit-SGD: yes
Math lib: mkl
CUDA_PATH: /usr/local/cuda-7.5
CUB_PATH: /usr/local/cub-1.4.1
CUDNN_PATH: /usr/local/cudnn-4.0
Build Branch: HEAD
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by philly on 643085f7f8c2
Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
-------------------------------------------------------------------
Changed current directory to /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
08/16/2016 10:02:00: -------------------------------------------------------------------
08/16/2016 10:02:00: Build info:
08/16/2016 10:02:00: Built time: Aug 16 2016 09:41:57
08/16/2016 10:02:00: Last modified date: Mon Aug 15 23:39:17 2016
08/16/2016 10:02:00: Build type: release
08/16/2016 10:02:00: Build target: GPU
08/16/2016 10:02:00: With 1bit-SGD: yes
08/16/2016 10:02:00: Math lib: mkl
08/16/2016 10:02:00: CUDA_PATH: /usr/local/cuda-7.5
08/16/2016 10:02:00: CUB_PATH: /usr/local/cub-1.4.1
08/16/2016 10:02:00: CUDNN_PATH: /usr/local/cudnn-4.0
08/16/2016 10:02:00: Build Branch: HEAD
08/16/2016 10:02:00: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 10:02:00: Built by philly on 643085f7f8c2
08/16/2016 10:02:00: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
08/16/2016 10:02:00: -------------------------------------------------------------------
08/16/2016 10:02:01: -------------------------------------------------------------------
08/16/2016 10:02:01: GPU info:
08/16/2016 10:02:01: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:02:01: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:02:01: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:02:01: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 10:02:01: -------------------------------------------------------------------
08/16/2016 10:02:01: Running on localhost at 2016/08/16 10:02:01
08/16/2016 10:02:01: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/1bitsgd/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/../../../../../../Examples/Speech/AN4/Config/LSTM-NDL.cntk currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_gpu DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/../../../../../../Examples/Speech/AN4/Config OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_gpu DeviceId=0 timestamping=true speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=64]] speechTrain=[reader=[useMersenneTwisterRand=true]] parallelTrain=false
08/16/2016 10:02:01: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:02:01: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
ModelDir = "$OutputDir$/Models"
deviceId = -1
command = speechTrain
precision = "float"
traceLevel = 1
modelPath = "$ModelDir$/cntkSpeechLSTM.dnn"
parallelTrain = true
frameMode = false
truncated = true
speechTrain = [
action = "train"
nbrUttsIneachRecurrentIter = 16
NDLNetworkBuilder = [
networkDescription = "$ConfigDir$/lstmp-3layer-opt.ndl"
]
SGD = [
epochSize = 0
minibatchSize = 16
learningRatesPerMB = 0.5
numMBsToShowResult = 10
momentumPerMB = 0:0.9
maxEpochs = 4
keepCheckPointFiles = true
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
features = [
dim = 363
type = "real"
scpFile = "$DataDir$/glob_0000.scp"
]
labels = [
mlfFile = "$DataDir$/glob_0000.mlf"
labelMappingFile = "$DataDir$/state.list"
labelDim = 132
labelType = "category"
]
]
]
currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_gpu
DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/../../../../../../Examples/Speech/AN4/Config
OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_gpu
DeviceId=0
timestamping=true
speechTrain=[SGD=[maxEpochs=1]]
speechTrain=[SGD=[epochSize=64]]
speechTrain=[reader=[useMersenneTwisterRand=true]]
parallelTrain=false
08/16/2016 10:02:01: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:02:01: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 10:02:01: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_gpu/Models"
deviceId = -1
command = speechTrain
precision = "float"
traceLevel = 1
modelPath = "/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_gpu/Models/cntkSpeechLSTM.dnn"
parallelTrain = true
frameMode = false
truncated = true
speechTrain = [
action = "train"
nbrUttsIneachRecurrentIter = 16
NDLNetworkBuilder = [
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/../../../../../../Examples/Speech/AN4/Config/lstmp-3layer-opt.ndl"
]
SGD = [
epochSize = 0
minibatchSize = 16
learningRatesPerMB = 0.5
numMBsToShowResult = 10
momentumPerMB = 0:0.9
maxEpochs = 4
keepCheckPointFiles = true
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
features = [
dim = 363
type = "real"
scpFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.scp"
]
labels = [
mlfFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.mlf"
labelMappingFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/state.list"
labelDim = 132
labelType = "category"
]
]
]
currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_gpu
DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/../../../../../../Examples/Speech/AN4/Config
OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_gpu
DeviceId=0
timestamping=true
speechTrain=[SGD=[maxEpochs=1]]
speechTrain=[SGD=[epochSize=64]]
speechTrain=[reader=[useMersenneTwisterRand=true]]
parallelTrain=false
08/16/2016 10:02:01: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:02:01: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: LSTM-NDL.cntk:command=speechTrain
configparameters: LSTM-NDL.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/../../../../../../Examples/Speech/AN4/Config
configparameters: LSTM-NDL.cntk:currentDirectory=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
configparameters: LSTM-NDL.cntk:DataDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data
configparameters: LSTM-NDL.cntk:deviceId=0
configparameters: LSTM-NDL.cntk:frameMode=false
configparameters: LSTM-NDL.cntk:ModelDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_gpu/Models
configparameters: LSTM-NDL.cntk:modelPath=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_gpu/Models/cntkSpeechLSTM.dnn
configparameters: LSTM-NDL.cntk:OutputDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_gpu
configparameters: LSTM-NDL.cntk:parallelTrain=false
configparameters: LSTM-NDL.cntk:precision=float
configparameters: LSTM-NDL.cntk:RootDir=..
configparameters: LSTM-NDL.cntk:RunDir=/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_gpu
configparameters: LSTM-NDL.cntk:speechTrain=[
action = "train"
nbrUttsIneachRecurrentIter = 16
NDLNetworkBuilder = [
networkDescription = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Examples/Speech/AN4/LSTM/../../../../../../Examples/Speech/AN4/Config/lstmp-3layer-opt.ndl"
]
SGD = [
epochSize = 0
minibatchSize = 16
learningRatesPerMB = 0.5
numMBsToShowResult = 10
momentumPerMB = 0:0.9
maxEpochs = 4
keepCheckPointFiles = true
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
features = [
dim = 363
type = "real"
scpFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.scp"
]
labels = [
mlfFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.mlf"
labelMappingFile = "/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/state.list"
labelDim = 132
labelType = "category"
]
]
] [SGD=[maxEpochs=1]] [SGD=[epochSize=64]] [reader=[useMersenneTwisterRand=true]]
configparameters: LSTM-NDL.cntk:timestamping=true
configparameters: LSTM-NDL.cntk:traceLevel=1
configparameters: LSTM-NDL.cntk:truncated=true
08/16/2016 10:02:01: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 10:02:01: Commands: speechTrain
08/16/2016 10:02:01: Precision = "float"
08/16/2016 10:02:01: CNTKModelPath: /tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_gpu/Models/cntkSpeechLSTM.dnn
08/16/2016 10:02:01: CNTKCommandTrainInfo: speechTrain : 1
08/16/2016 10:02:01: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 1
08/16/2016 10:02:01: ##############################################################################
08/16/2016 10:02:01: # #
08/16/2016 10:02:01: # Action "train" #
08/16/2016 10:02:01: # #
08/16/2016 10:02:01: ##############################################################################
08/16/2016 10:02:01: CNTKCommandTrainBegin: speechTrain
NDLBuilder Using GPU 0
reading script file /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.scp ... 948 entries
total 132 state names in state list /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/state.list
htkmlfreader: reading MLF file /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Examples/Speech/AN4/Data/glob_0000.mlf ... total 948 entries
...............................................................................................feature set 0: 252734 frames in 948 out of 948 utterances
label set 0: 129 classes
minibatchutterancesource: 948 utterances grouped into 3 chunks, av. chunk size: 316.0 utterances, 84244.7 frames
useParallelTrain option is not enabled. ParallelTrain config will be ignored.
08/16/2016 10:02:01: Creating virgin network.
Node 'LSTMoutput1.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput1.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput1.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput1.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput1.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- 0.000000.
Node 'LSTMoutput2.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput2.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput2.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput2.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput2.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- 0.000000.
Node 'LSTMoutput3.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput3.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput3.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput3.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput3.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- 0.000000.
Node 'b' (LearnableParameter operation): Initializing Parameter[132 x 1] <- 0.000000.
Node 'LSTMoutput1.wx' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput1.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput1.Wh' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput1.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=3, range=0.050000*1.000000, onCPU=false).
SetUniformRandomValue (GPU): creating curand object with seed 3, sizeof(ElemType)==4
Node 'LSTMoutput1.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=4, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput1.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=5, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput1.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- uniform(seed=6, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput2.wx' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput2.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput2.Wh' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput2.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=9, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput2.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=10, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput2.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=11, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput2.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- uniform(seed=12, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput3.wx' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput3.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput3.Wh' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput3.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=15, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput3.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=16, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput3.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=17, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput3.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- uniform(seed=18, range=0.050000*1.000000, onCPU=false).
Node 'W' (LearnableParameter operation): Initializating Parameter[132 x 0] as uniform later when dimensions are fully known.
Node 'b' (LearnableParameter operation): Initializing Parameter[132 x 1] <- 0.000000.
Post-processing network...
6 roots:
ce = CrossEntropyWithSoftmax()
err = ErrorPrediction()
featNorm.xMean = Mean()
featNorm.xStdDev = InvStdDev()
logPrior.prior = Mean()
scaledLogLikelihood = Minus()
Loop[0] --> Loop_LSTMoutput1.output -> 24 nodes
LSTMoutput1.dh LSTMoutput1.whh LSTMoutput1.wxxpbpwhh
LSTMoutput1.G4 LSTMoutput1.G3 LSTMoutput1.dc
LSTMoutput1.Wcfdc LSTMoutput1.unnamed165 LSTMoutput1.ft
LSTMoutput1.bft LSTMoutput1.G1 LSTMoutput1.Wcidc
LSTMoutput1.unnamed163 LSTMoutput1.it LSTMoutput1.G2
LSTMoutput1.unnamed164 LSTMoutput1.bit LSTMoutput1.ct
LSTMoutput1.Wcoct LSTMoutput1.unnamed166 LSTMoutput1.ot
LSTMoutput1.unnamed167 LSTMoutput1.mt LSTMoutput1.output
Loop[1] --> Loop_LSTMoutput2.output -> 24 nodes
LSTMoutput2.dh LSTMoutput2.whh LSTMoutput2.wxxpbpwhh
LSTMoutput2.G4 LSTMoutput2.G3 LSTMoutput2.dc
LSTMoutput2.Wcfdc LSTMoutput2.unnamed175 LSTMoutput2.ft
LSTMoutput2.bft LSTMoutput2.G1 LSTMoutput2.Wcidc
LSTMoutput2.unnamed173 LSTMoutput2.it LSTMoutput2.G2
LSTMoutput2.unnamed174 LSTMoutput2.bit LSTMoutput2.ct
LSTMoutput2.Wcoct LSTMoutput2.unnamed176 LSTMoutput2.ot
LSTMoutput2.unnamed177 LSTMoutput2.mt LSTMoutput2.output
Loop[2] --> Loop_LSTMoutput3.output -> 24 nodes
LSTMoutput3.dh LSTMoutput3.whh LSTMoutput3.wxxpbpwhh
LSTMoutput3.G4 LSTMoutput3.G3 LSTMoutput3.dc
LSTMoutput3.Wcfdc LSTMoutput3.unnamed185 LSTMoutput3.ft
LSTMoutput3.bft LSTMoutput3.G1 LSTMoutput3.Wcidc
LSTMoutput3.unnamed183 LSTMoutput3.it LSTMoutput3.G2
LSTMoutput3.unnamed184 LSTMoutput3.bit LSTMoutput3.ct
LSTMoutput3.Wcoct LSTMoutput3.unnamed186 LSTMoutput3.ot
LSTMoutput3.unnamed187 LSTMoutput3.mt LSTMoutput3.output
Validating network. 113 nodes to process in pass 1.
Validating --> labels = InputValue() : -> [132 x *]
Validating --> W = LearnableParameter() : -> [132 x 0]
Validating --> LSTMoutput3.Wmr = LearnableParameter() : -> [512 x 1024]
Validating --> LSTMoutput3.wx = LearnableParameter() : -> [4096 x 0]
Validating --> LSTMoutput2.Wmr = LearnableParameter() : -> [512 x 1024]
Validating --> LSTMoutput2.wx = LearnableParameter() : -> [4096 x 0]
Validating --> LSTMoutput1.Wmr = LearnableParameter() : -> [512 x 1024]
Validating --> LSTMoutput1.wx = LearnableParameter() : -> [4096 x 0]
Validating --> features = InputValue() : -> [363 x *]
Validating --> featNorm.xMean = Mean (features) : [363 x *] -> [363]
Validating --> featNorm.xStdDev = InvStdDev (features) : [363 x *] -> [363]
Validating --> featNorm.xNorm = PerDimMeanVarNormalization (features, featNorm.xMean, featNorm.xStdDev) : [363 x *], [363], [363] -> [363 x *]
Node 'LSTMoutput1.wx' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 363].
Node 'LSTMoutput1.wx' (LearnableParameter operation): Initializing Parameter[4096 x 363] <- uniform(seed=1, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput1.wxx = Times (LSTMoutput1.wx, featNorm.xNorm) : [4096 x 363], [363 x *] -> [4096 x *]
Validating --> LSTMoutput1.b = LearnableParameter() : -> [4096 x 1]
Validating --> LSTMoutput1.wxxpb = Plus (LSTMoutput1.wxx, LSTMoutput1.b) : [4096 x *], [4096 x 1] -> [4096 x 1 x *]
Validating --> LSTMoutput1.Wh = LearnableParameter() : -> [4096 x 0]
Validating --> LSTMoutput1.Wco = LearnableParameter() : -> [1024]
Validating --> LSTMoutput1.Wcf = LearnableParameter() : -> [1024]
Validating --> LSTMoutput1.Wci = LearnableParameter() : -> [1024]
Node 'LSTMoutput1.Wh' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 512].
Node 'LSTMoutput1.Wh' (LearnableParameter operation): Initializing Parameter[4096 x 512] <- uniform(seed=2, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput1.whh = Times (LSTMoutput1.Wh, LSTMoutput1.dh) : [4096 x 512], [512] -> [4096]
Validating --> LSTMoutput1.wxxpbpwhh = Plus (LSTMoutput1.wxxpb, LSTMoutput1.whh) : [4096 x 1 x *], [4096] -> [4096 x 1 x *]
Validating --> LSTMoutput1.G4 = Slice (LSTMoutput1.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.G3 = Slice (LSTMoutput1.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.Wcfdc = DiagTimes (LSTMoutput1.Wcf, LSTMoutput1.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput1.unnamed165 = Plus (LSTMoutput1.G3, LSTMoutput1.Wcfdc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput1.ft = Sigmoid (LSTMoutput1.unnamed165) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.bft = ElementTimes (LSTMoutput1.ft, LSTMoutput1.dc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput1.G1 = Slice (LSTMoutput1.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.Wcidc = DiagTimes (LSTMoutput1.Wci, LSTMoutput1.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput1.unnamed163 = Plus (LSTMoutput1.G1, LSTMoutput1.Wcidc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput1.it = Sigmoid (LSTMoutput1.unnamed163) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.G2 = Slice (LSTMoutput1.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.unnamed164 = Tanh (LSTMoutput1.G2) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.bit = ElementTimes (LSTMoutput1.it, LSTMoutput1.unnamed164) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.ct = Plus (LSTMoutput1.bft, LSTMoutput1.bit) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.Wcoct = DiagTimes (LSTMoutput1.Wco, LSTMoutput1.ct) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.unnamed166 = Plus (LSTMoutput1.G4, LSTMoutput1.Wcoct) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.ot = Sigmoid (LSTMoutput1.unnamed166) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.unnamed167 = Tanh (LSTMoutput1.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.mt = ElementTimes (LSTMoutput1.ot, LSTMoutput1.unnamed167) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.output = Times (LSTMoutput1.Wmr, LSTMoutput1.mt) : [512 x 1024], [1024 x 1 x *] -> [512 x 1 x *]
Node 'LSTMoutput2.wx' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 512 x 1].
Node 'LSTMoutput2.wx' (LearnableParameter operation): Initializing Parameter[4096 x 512 x 1] <- uniform(seed=7, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput2.wxx = Times (LSTMoutput2.wx, LSTMoutput1.output) : [4096 x 512 x 1], [512 x 1 x *] -> [4096 x *]
Validating --> LSTMoutput2.b = LearnableParameter() : -> [4096 x 1]
Validating --> LSTMoutput2.wxxpb = Plus (LSTMoutput2.wxx, LSTMoutput2.b) : [4096 x *], [4096 x 1] -> [4096 x 1 x *]
Validating --> LSTMoutput2.Wh = LearnableParameter() : -> [4096 x 0]
Validating --> LSTMoutput2.Wco = LearnableParameter() : -> [1024]
Validating --> LSTMoutput2.Wcf = LearnableParameter() : -> [1024]
Validating --> LSTMoutput2.Wci = LearnableParameter() : -> [1024]
Node 'LSTMoutput2.Wh' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 512].
Node 'LSTMoutput2.Wh' (LearnableParameter operation): Initializing Parameter[4096 x 512] <- uniform(seed=8, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput2.whh = Times (LSTMoutput2.Wh, LSTMoutput2.dh) : [4096 x 512], [512] -> [4096]
Validating --> LSTMoutput2.wxxpbpwhh = Plus (LSTMoutput2.wxxpb, LSTMoutput2.whh) : [4096 x 1 x *], [4096] -> [4096 x 1 x *]
Validating --> LSTMoutput2.G4 = Slice (LSTMoutput2.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.G3 = Slice (LSTMoutput2.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.Wcfdc = DiagTimes (LSTMoutput2.Wcf, LSTMoutput2.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput2.unnamed175 = Plus (LSTMoutput2.G3, LSTMoutput2.Wcfdc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput2.ft = Sigmoid (LSTMoutput2.unnamed175) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.bft = ElementTimes (LSTMoutput2.ft, LSTMoutput2.dc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput2.G1 = Slice (LSTMoutput2.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.Wcidc = DiagTimes (LSTMoutput2.Wci, LSTMoutput2.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput2.unnamed173 = Plus (LSTMoutput2.G1, LSTMoutput2.Wcidc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput2.it = Sigmoid (LSTMoutput2.unnamed173) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.G2 = Slice (LSTMoutput2.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.unnamed174 = Tanh (LSTMoutput2.G2) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.bit = ElementTimes (LSTMoutput2.it, LSTMoutput2.unnamed174) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.ct = Plus (LSTMoutput2.bft, LSTMoutput2.bit) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.Wcoct = DiagTimes (LSTMoutput2.Wco, LSTMoutput2.ct) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.unnamed176 = Plus (LSTMoutput2.G4, LSTMoutput2.Wcoct) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.ot = Sigmoid (LSTMoutput2.unnamed176) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.unnamed177 = Tanh (LSTMoutput2.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.mt = ElementTimes (LSTMoutput2.ot, LSTMoutput2.unnamed177) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.output = Times (LSTMoutput2.Wmr, LSTMoutput2.mt) : [512 x 1024], [1024 x 1 x *] -> [512 x 1 x *]
Node 'LSTMoutput3.wx' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 512 x 1].
Node 'LSTMoutput3.wx' (LearnableParameter operation): Initializing Parameter[4096 x 512 x 1] <- uniform(seed=13, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput3.wxx = Times (LSTMoutput3.wx, LSTMoutput2.output) : [4096 x 512 x 1], [512 x 1 x *] -> [4096 x *]
Validating --> LSTMoutput3.b = LearnableParameter() : -> [4096 x 1]
Validating --> LSTMoutput3.wxxpb = Plus (LSTMoutput3.wxx, LSTMoutput3.b) : [4096 x *], [4096 x 1] -> [4096 x 1 x *]
Validating --> LSTMoutput3.Wh = LearnableParameter() : -> [4096 x 0]
Validating --> LSTMoutput3.Wco = LearnableParameter() : -> [1024]
Validating --> LSTMoutput3.Wcf = LearnableParameter() : -> [1024]
Validating --> LSTMoutput3.Wci = LearnableParameter() : -> [1024]
Node 'LSTMoutput3.Wh' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 512].
Node 'LSTMoutput3.Wh' (LearnableParameter operation): Initializing Parameter[4096 x 512] <- uniform(seed=14, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput3.whh = Times (LSTMoutput3.Wh, LSTMoutput3.dh) : [4096 x 512], [512] -> [4096]
Validating --> LSTMoutput3.wxxpbpwhh = Plus (LSTMoutput3.wxxpb, LSTMoutput3.whh) : [4096 x 1 x *], [4096] -> [4096 x 1 x *]
Validating --> LSTMoutput3.G4 = Slice (LSTMoutput3.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.G3 = Slice (LSTMoutput3.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.Wcfdc = DiagTimes (LSTMoutput3.Wcf, LSTMoutput3.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput3.unnamed185 = Plus (LSTMoutput3.G3, LSTMoutput3.Wcfdc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput3.ft = Sigmoid (LSTMoutput3.unnamed185) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.bft = ElementTimes (LSTMoutput3.ft, LSTMoutput3.dc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput3.G1 = Slice (LSTMoutput3.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.Wcidc = DiagTimes (LSTMoutput3.Wci, LSTMoutput3.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput3.unnamed183 = Plus (LSTMoutput3.G1, LSTMoutput3.Wcidc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput3.it = Sigmoid (LSTMoutput3.unnamed183) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.G2 = Slice (LSTMoutput3.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.unnamed184 = Tanh (LSTMoutput3.G2) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.bit = ElementTimes (LSTMoutput3.it, LSTMoutput3.unnamed184) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.ct = Plus (LSTMoutput3.bft, LSTMoutput3.bit) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.Wcoct = DiagTimes (LSTMoutput3.Wco, LSTMoutput3.ct) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.unnamed186 = Plus (LSTMoutput3.G4, LSTMoutput3.Wcoct) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.ot = Sigmoid (LSTMoutput3.unnamed186) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.unnamed187 = Tanh (LSTMoutput3.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.mt = ElementTimes (LSTMoutput3.ot, LSTMoutput3.unnamed187) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.output = Times (LSTMoutput3.Wmr, LSTMoutput3.mt) : [512 x 1024], [1024 x 1 x *] -> [512 x 1 x *]
Node 'W' (LearnableParameter operation) operation: Tensor shape was inferred as [132 x 512 x 1].
Node 'W' (LearnableParameter operation): Initializing Parameter[132 x 512 x 1] <- uniform(seed=19, range=0.050000*1.000000, onCPU=false).
Validating --> unnamed193 = Times (W, LSTMoutput3.output) : [132 x 512 x 1], [512 x 1 x *] -> [132 x *]
Validating --> b = LearnableParameter() : -> [132 x 1]
Validating --> LSTMoutputW = Plus (unnamed193, b) : [132 x *], [132 x 1] -> [132 x 1 x *]
Validating --> ce = CrossEntropyWithSoftmax (labels, LSTMoutputW) : [132 x *], [132 x 1 x *] -> [1]
Validating --> err = ErrorPrediction (labels, LSTMoutputW) : [132 x *], [132 x 1 x *] -> [1]
Validating --> logPrior.prior = Mean (labels) : [132 x *] -> [132]
Validating --> logPrior.logPrior = Log (logPrior.prior) : [132] -> [132]
Validating --> scaledLogLikelihood = Minus (LSTMoutputW, logPrior.logPrior) : [132 x 1 x *], [132] -> [132 x 1 x *]
Validating network. 88 nodes to process in pass 2.
Validating --> LSTMoutput1.dh = PastValue (LSTMoutput1.output) : [512 x 1 x *] -> [512 x 1 x *]
Validating --> LSTMoutput1.whh = Times (LSTMoutput1.Wh, LSTMoutput1.dh) : [4096 x 512], [512 x 1 x *] -> [4096 x 1 x *]
Validating --> LSTMoutput1.dc = PastValue (LSTMoutput1.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.Wcfdc = DiagTimes (LSTMoutput1.Wcf, LSTMoutput1.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.Wcidc = DiagTimes (LSTMoutput1.Wci, LSTMoutput1.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.dh = PastValue (LSTMoutput2.output) : [512 x 1 x *] -> [512 x 1 x *]
Validating --> LSTMoutput2.whh = Times (LSTMoutput2.Wh, LSTMoutput2.dh) : [4096 x 512], [512 x 1 x *] -> [4096 x 1 x *]
Validating --> LSTMoutput2.dc = PastValue (LSTMoutput2.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.Wcfdc = DiagTimes (LSTMoutput2.Wcf, LSTMoutput2.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.Wcidc = DiagTimes (LSTMoutput2.Wci, LSTMoutput2.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.dh = PastValue (LSTMoutput3.output) : [512 x 1 x *] -> [512 x 1 x *]
Validating --> LSTMoutput3.whh = Times (LSTMoutput3.Wh, LSTMoutput3.dh) : [4096 x 512], [512 x 1 x *] -> [4096 x 1 x *]
Validating --> LSTMoutput3.dc = PastValue (LSTMoutput3.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.Wcfdc = DiagTimes (LSTMoutput3.Wcf, LSTMoutput3.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.Wcidc = DiagTimes (LSTMoutput3.Wci, LSTMoutput3.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating network. 15 nodes to process in pass 3.
Validating network, final pass.
29 out of 113 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
08/16/2016 10:02:01: Created model with 113 nodes on GPU 0.
08/16/2016 10:02:01: Training criterion node(s):
08/16/2016 10:02:01: ce = CrossEntropyWithSoftmax
08/16/2016 10:02:01: Evaluation criterion node(s):
08/16/2016 10:02:01: err = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing: Out of 217 matrices, 125 are shared as 56, and 92 are not shared.
{ LSTMoutput2.mt : [1024 x 1 x *] (gradient)
LSTMoutput3.dh : [512 x 1 x *]
LSTMoutput3.wxx : [4096 x *] (gradient) }
{ LSTMoutput2.Wco : [1024] (gradient)
LSTMoutput3.dc : [1024 x 1 x *] }
{ LSTMoutput1.wx : [4096 x 363] (gradient)
LSTMoutput1.wxxpb : [4096 x 1 x *] }
{ LSTMoutput1.Wmr : [512 x 1024] (gradient)
LSTMoutput2.wxx : [4096 x *] }
{ LSTMoutput2.wx : [4096 x 512 x 1] (gradient)
LSTMoutput2.wxxpb : [4096 x 1 x *] }
{ LSTMoutput1.ot : [1024 x 1 x *] (gradient)
LSTMoutput2.whh : [4096 x 1 x *] }
{ LSTMoutput1.ct : [1024 x 1 x *] (gradient)
LSTMoutput2.wxxpbpwhh : [4096 x 1 x *] }
{ LSTMoutput1.G4 : [1024 x 1 x *] (gradient)
LSTMoutput2.G4 : [1024 x 1 x *] }
{ LSTMoutput1.unnamed164 : [1024 x 1 x *] (gradient)
LSTMoutput2.Wcfdc : [1024 x 1 x *] }
{ LSTMoutput1.wxxpbpwhh : [4096 x 1 x *] (gradient)
LSTMoutput2.unnamed175 : [1024 x 1 x *] }
{ LSTMoutput1.G1 : [1024 x 1 x *] (gradient)
LSTMoutput2.ft : [1024 x 1 x *] }
{ LSTMoutput1.Wci : [1024] (gradient)
LSTMoutput2.G1 : [1024 x 1 x *] }
{ LSTMoutput1.G3 : [1024 x 1 x *] (gradient)
LSTMoutput2.Wcidc : [1024 x 1 x *] }
{ LSTMoutput1.Wcf : [1024] (gradient)
LSTMoutput2.it : [1024 x 1 x *] }
{ LSTMoutput1.whh : [4096 x 1 x *] (gradient)
LSTMoutput2.G2 : [1024 x 1 x *] }
{ LSTMoutput1.b : [4096 x 1] (gradient)
LSTMoutput1.dh : [512 x 1 x *] (gradient)
LSTMoutput2.unnamed174 : [1024 x 1 x *] }
{ LSTMoutput2.Wmr : [512 x 1024] (gradient)
LSTMoutput3.wxx : [4096 x *] }
{ LSTMoutput3.wx : [4096 x 512 x 1] (gradient)
LSTMoutput3.wxxpb : [4096 x 1 x *] }
{ LSTMoutput2.ot : [1024 x 1 x *] (gradient)
LSTMoutput3.whh : [4096 x 1 x *] }
{ LSTMoutput2.ct : [1024 x 1 x *] (gradient)
LSTMoutput3.wxxpbpwhh : [4096 x 1 x *] }
{ LSTMoutput1.Wcoct : [1024 x 1 x *] (gradient)
LSTMoutput2.G4 : [1024 x 1 x *] (gradient)
LSTMoutput3.G4 : [1024 x 1 x *] }
{ LSTMoutput2.unnamed174 : [1024 x 1 x *] (gradient)
LSTMoutput3.Wcfdc : [1024 x 1 x *] }
{ LSTMoutput1.unnamed166 : [1024 x 1 x *] (gradient)
LSTMoutput2.wxxpbpwhh : [4096 x 1 x *] (gradient)
LSTMoutput3.unnamed185 : [1024 x 1 x *] }
{ LSTMoutput1.dc : [1024 x 1 x *] (gradient)
LSTMoutput2.G1 : [1024 x 1 x *] (gradient)
LSTMoutput3.ft : [1024 x 1 x *] }
{ LSTMoutput1.unnamed165 : [1024 x 1 x *] (gradient)
LSTMoutput3.bft : [1024 x 1 x *] }
{ LSTMoutput2.Wci : [1024] (gradient)
LSTMoutput3.G1 : [1024 x 1 x *] }
{ LSTMoutput2.G3 : [1024 x 1 x *] (gradient)
LSTMoutput3.Wcidc : [1024 x 1 x *] }
{ LSTMoutput1.it : [1024 x 1 x *] (gradient)
LSTMoutput3.unnamed183 : [1024 x 1 x *] }
{ LSTMoutput2.Wcf : [1024] (gradient)
LSTMoutput3.it : [1024 x 1 x *] }
{ LSTMoutput1.unnamed167 : [1024 x 1 x *] (gradient)
LSTMoutput2.whh : [4096 x 1 x *] (gradient)
LSTMoutput3.G2 : [1024 x 1 x *] }
{ LSTMoutput2.b : [4096 x 1] (gradient)
LSTMoutput2.dh : [512 x 1 x *] (gradient)
LSTMoutput3.unnamed184 : [1024 x 1 x *] }
{ LSTMoutput3.Wmr : [512 x 1024] (gradient)
unnamed193 : [132 x *] }
{ LSTMoutputW : [132 x 1 x *]
W : [132 x 512 x 1] (gradient) }
{ LSTMoutput3.output : [512 x 1 x *] (gradient)
LSTMoutputW : [132 x 1 x *] (gradient) }
{ LSTMoutput3.mt : [1024 x 1 x *] (gradient)
unnamed193 : [132 x *] (gradient) }
{ LSTMoutput2.Wcoct : [1024 x 1 x *] (gradient)
LSTMoutput3.G4 : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.ft : [1024 x 1 x *] (gradient)
LSTMoutput3.bft : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.output : [512 x 1 x *] (gradient)
LSTMoutput2.wxxpb : [4096 x 1 x *] (gradient)
LSTMoutput3.it : [1024 x 1 x *] (gradient) }
{ LSTMoutput2.Wh : [4096 x 512] (gradient)
LSTMoutput3.G2 : [1024 x 1 x *] (gradient) }
{ LSTMoutput2.unnamed176 : [1024 x 1 x *] (gradient)
LSTMoutput3.wxxpbpwhh : [4096 x 1 x *] (gradient) }
{ LSTMoutput1.bit : [1024 x 1 x *] (gradient)
LSTMoutput3.unnamed183 : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.bft : [1024 x 1 x *] (gradient)
LSTMoutput2.dc : [1024 x 1 x *] (gradient)
LSTMoutput3.G1 : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.G2 : [1024 x 1 x *] (gradient)
LSTMoutput2.Wcfdc : [1024 x 1 x *] (gradient)
LSTMoutput3.Wcidc : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.unnamed163 : [1024 x 1 x *] (gradient)
LSTMoutput2.unnamed175 : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.Wcidc : [1024 x 1 x *] (gradient)
LSTMoutput2.ft : [1024 x 1 x *] (gradient) }
{ LSTMoutput2.bft : [1024 x 1 x *] (gradient)
LSTMoutput3.dc : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.Wcfdc : [1024 x 1 x *] (gradient)
LSTMoutput2.Wcidc : [1024 x 1 x *] (gradient)
LSTMoutput3.ft : [1024 x 1 x *] (gradient) }
{ LSTMoutput2.unnamed173 : [1024 x 1 x *] (gradient)
LSTMoutput3.unnamed185 : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.Wh : [4096 x 512] (gradient)
LSTMoutput2.G2 : [1024 x 1 x *] (gradient)
LSTMoutput3.Wcfdc : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.wxxpb : [4096 x 1 x *] (gradient)
LSTMoutput2.it : [1024 x 1 x *] (gradient) }
{ LSTMoutput2.output : [512 x 1 x *] (gradient)
LSTMoutput3.wxxpb : [4096 x 1 x *] (gradient) }
{ LSTMoutput2.unnamed177 : [1024 x 1 x *] (gradient)
LSTMoutput3.whh : [4096 x 1 x *] (gradient) }
{ LSTMoutput3.b : [4096 x 1] (gradient)
LSTMoutput3.dh : [512 x 1 x *] (gradient) }
{ LSTMoutput1.dh : [512 x 1 x *]
LSTMoutput1.wxx : [4096 x *] (gradient) }
{ LSTMoutput1.mt : [1024 x 1 x *] (gradient)
LSTMoutput2.dh : [512 x 1 x *]
LSTMoutput2.wxx : [4096 x *] (gradient) }
{ LSTMoutput1.Wco : [1024] (gradient)
LSTMoutput2.dc : [1024 x 1 x *] }
08/16/2016 10:02:01: Training 13634692 parameters in 23 out of 23 parameter tensors and 104 nodes with gradient:
08/16/2016 10:02:01: Node 'LSTMoutput1.Wcf' (LearnableParameter operation) : [1024]
08/16/2016 10:02:01: Node 'LSTMoutput1.Wci' (LearnableParameter operation) : [1024]
08/16/2016 10:02:01: Node 'LSTMoutput1.Wco' (LearnableParameter operation) : [1024]
08/16/2016 10:02:01: Node 'LSTMoutput1.Wh' (LearnableParameter operation) : [4096 x 512]
08/16/2016 10:02:01: Node 'LSTMoutput1.Wmr' (LearnableParameter operation) : [512 x 1024]
08/16/2016 10:02:01: Node 'LSTMoutput1.b' (LearnableParameter operation) : [4096 x 1]
08/16/2016 10:02:01: Node 'LSTMoutput1.wx' (LearnableParameter operation) : [4096 x 363]
08/16/2016 10:02:01: Node 'LSTMoutput2.Wcf' (LearnableParameter operation) : [1024]
08/16/2016 10:02:01: Node 'LSTMoutput2.Wci' (LearnableParameter operation) : [1024]
08/16/2016 10:02:01: Node 'LSTMoutput2.Wco' (LearnableParameter operation) : [1024]
08/16/2016 10:02:01: Node 'LSTMoutput2.Wh' (LearnableParameter operation) : [4096 x 512]
08/16/2016 10:02:01: Node 'LSTMoutput2.Wmr' (LearnableParameter operation) : [512 x 1024]
08/16/2016 10:02:01: Node 'LSTMoutput2.b' (LearnableParameter operation) : [4096 x 1]
08/16/2016 10:02:01: Node 'LSTMoutput2.wx' (LearnableParameter operation) : [4096 x 512 x 1]
08/16/2016 10:02:01: Node 'LSTMoutput3.Wcf' (LearnableParameter operation) : [1024]
08/16/2016 10:02:01: Node 'LSTMoutput3.Wci' (LearnableParameter operation) : [1024]
08/16/2016 10:02:01: Node 'LSTMoutput3.Wco' (LearnableParameter operation) : [1024]
08/16/2016 10:02:01: Node 'LSTMoutput3.Wh' (LearnableParameter operation) : [4096 x 512]
08/16/2016 10:02:01: Node 'LSTMoutput3.Wmr' (LearnableParameter operation) : [512 x 1024]
08/16/2016 10:02:01: Node 'LSTMoutput3.b' (LearnableParameter operation) : [4096 x 1]
08/16/2016 10:02:01: Node 'LSTMoutput3.wx' (LearnableParameter operation) : [4096 x 512 x 1]
08/16/2016 10:02:01: Node 'W' (LearnableParameter operation) : [132 x 512 x 1]
08/16/2016 10:02:01: Node 'b' (LearnableParameter operation) : [132 x 1]
08/16/2016 10:02:01: Precomputing --> 3 PreCompute nodes found.
08/16/2016 10:02:01: featNorm.xMean = Mean()
08/16/2016 10:02:01: featNorm.xStdDev = InvStdDev()
08/16/2016 10:02:01: logPrior.prior = Mean()
minibatchiterator: epoch 0: frames [0..252734] (first utterance at frame 0), data subset 0 of 1, with 1 datapasses
requiredata: determined feature kind as 33-dimensional 'USER' with frame shift 10.0 ms
08/16/2016 10:02:02: Precomputing --> Completed.
08/16/2016 10:02:02: Starting Epoch 1: learning rate per sample = 0.001953 effective momentum = 0.000000 momentum as time constant = 0.0 samples
minibatchiterator: epoch 0: frames [0..64] (first utterance at frame 0), data subset 0 of 1, with 1 datapasses
08/16/2016 10:02:03: Starting minibatch loop.
08/16/2016 10:02:03: Epoch[ 1 of 1]-Minibatch[ 1- 10, 250.00%]: ce = 4.87453079 * 160; err = 0.90625000 * 160; time = 0.5069s; samplesPerSecond = 315.6
08/16/2016 10:02:03: Epoch[ 1 of 1]-Minibatch[ 11- 20, 500.00%]: ce = 4.84628143 * 160; err = 0.69375000 * 160; time = 0.4852s; samplesPerSecond = 329.8
08/16/2016 10:02:04: Finished Epoch[ 1 of 1]: [Training] ce = 4.85708837 * 418; err = 0.80382775 * 418; totalSamplesSeen = 418; learningRatePerSample = 0.001953125; epochTime=1.33633s
08/16/2016 10:02:04: SGD: Saving checkpoint model '/tmp/cntk-test-20160816100054.995555/Examples/Speech/AN4_LSTM@release_gpu/Models/cntkSpeechLSTM.dnn'
08/16/2016 10:02:05: CNTKCommandTrainEnd: speechTrain
08/16/2016 10:02:05: Action "train" complete.
08/16/2016 10:02:05: __COMPLETED__

Просмотреть файл

@ -1 +0,0 @@
__COMPLETED__

Просмотреть файл

@ -1 +0,0 @@
__COMPLETED__

Просмотреть файл

@ -0,0 +1,681 @@
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 268381192 kB
-------------------------------------------------------------------
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config/LSTM-NDL.cntk currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_cpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_cpu DeviceId=-1 timestamping=true speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=64]] speechTrain=[reader=[useMersenneTwisterRand=true]] parallelTrain=false
-------------------------------------------------------------------
Build info:
Built time: Aug 16 2016 03:09:16
Last modified date: Fri Aug 12 05:28:23 2016
Build type: Release
Build target: GPU
With 1bit-SGD: yes
Math lib: mkl
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
CUB_PATH: c:\src\cub-1.4.1
CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
Build Branch: HEAD
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by svcphil on Philly-Pool1
Build Path: c:\jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
-------------------------------------------------------------------
Changed current directory to C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
08/16/2016 03:20:22: -------------------------------------------------------------------
08/16/2016 03:20:22: Build info:
08/16/2016 03:20:22: Built time: Aug 16 2016 03:09:16
08/16/2016 03:20:22: Last modified date: Fri Aug 12 05:28:23 2016
08/16/2016 03:20:22: Build type: Release
08/16/2016 03:20:22: Build target: GPU
08/16/2016 03:20:22: With 1bit-SGD: yes
08/16/2016 03:20:22: Math lib: mkl
08/16/2016 03:20:22: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
08/16/2016 03:20:22: CUB_PATH: c:\src\cub-1.4.1
08/16/2016 03:20:22: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
08/16/2016 03:20:22: Build Branch: HEAD
08/16/2016 03:20:22: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 03:20:22: Built by svcphil on Philly-Pool1
08/16/2016 03:20:22: Build Path: c:\jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
08/16/2016 03:20:22: -------------------------------------------------------------------
08/16/2016 03:20:23: -------------------------------------------------------------------
08/16/2016 03:20:23: GPU info:
08/16/2016 03:20:23: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:20:23: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:20:23: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:20:23: -------------------------------------------------------------------
08/16/2016 03:20:23: Running on DPHAIM-25 at 2016/08/16 03:20:23
08/16/2016 03:20:23: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config/LSTM-NDL.cntk currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_cpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_cpu DeviceId=-1 timestamping=true speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=64]] speechTrain=[reader=[useMersenneTwisterRand=true]] parallelTrain=false
08/16/2016 03:20:23: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:20:23: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
ModelDir = "$OutputDir$/Models"
deviceId = -1
command = speechTrain
precision = "float"
traceLevel = 1
modelPath = "$ModelDir$/cntkSpeechLSTM.dnn"
parallelTrain = true
frameMode = false
truncated = true
speechTrain = [
action = "train"
nbrUttsIneachRecurrentIter = 16
NDLNetworkBuilder = [
networkDescription = "$ConfigDir$/lstmp-3layer-opt.ndl"
]
SGD = [
epochSize = 0
minibatchSize = 16
learningRatesPerMB = 0.5
numMBsToShowResult = 10
momentumPerMB = 0:0.9
maxEpochs = 4
keepCheckPointFiles = true
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
features = [
dim = 363
type = "real"
scpFile = "$DataDir$/glob_0000.scp"
]
labels = [
mlfFile = "$DataDir$/glob_0000.mlf"
labelMappingFile = "$DataDir$/state.list"
labelDim = 132
labelType = "category"
]
]
]
currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_cpu
DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_cpu
DeviceId=-1
timestamping=true
speechTrain=[SGD=[maxEpochs=1]]
speechTrain=[SGD=[epochSize=64]]
speechTrain=[reader=[useMersenneTwisterRand=true]]
parallelTrain=false
08/16/2016 03:20:23: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:20:23: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:20:23: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_cpu/Models"
deviceId = -1
command = speechTrain
precision = "float"
traceLevel = 1
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_cpu/Models/cntkSpeechLSTM.dnn"
parallelTrain = true
frameMode = false
truncated = true
speechTrain = [
action = "train"
nbrUttsIneachRecurrentIter = 16
NDLNetworkBuilder = [
networkDescription = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config/lstmp-3layer-opt.ndl"
]
SGD = [
epochSize = 0
minibatchSize = 16
learningRatesPerMB = 0.5
numMBsToShowResult = 10
momentumPerMB = 0:0.9
maxEpochs = 4
keepCheckPointFiles = true
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
features = [
dim = 363
type = "real"
scpFile = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/glob_0000.scp"
]
labels = [
mlfFile = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/glob_0000.mlf"
labelMappingFile = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/state.list"
labelDim = 132
labelType = "category"
]
]
]
currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_cpu
DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_cpu
DeviceId=-1
timestamping=true
speechTrain=[SGD=[maxEpochs=1]]
speechTrain=[SGD=[epochSize=64]]
speechTrain=[reader=[useMersenneTwisterRand=true]]
parallelTrain=false
08/16/2016 03:20:23: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:20:23: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: LSTM-NDL.cntk:command=speechTrain
configparameters: LSTM-NDL.cntk:ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config
configparameters: LSTM-NDL.cntk:currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
configparameters: LSTM-NDL.cntk:DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
configparameters: LSTM-NDL.cntk:deviceId=-1
configparameters: LSTM-NDL.cntk:frameMode=false
configparameters: LSTM-NDL.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_cpu/Models
configparameters: LSTM-NDL.cntk:modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_cpu/Models/cntkSpeechLSTM.dnn
configparameters: LSTM-NDL.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_cpu
configparameters: LSTM-NDL.cntk:parallelTrain=false
configparameters: LSTM-NDL.cntk:precision=float
configparameters: LSTM-NDL.cntk:RootDir=..
configparameters: LSTM-NDL.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_cpu
configparameters: LSTM-NDL.cntk:speechTrain=[
action = "train"
nbrUttsIneachRecurrentIter = 16
NDLNetworkBuilder = [
networkDescription = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config/lstmp-3layer-opt.ndl"
]
SGD = [
epochSize = 0
minibatchSize = 16
learningRatesPerMB = 0.5
numMBsToShowResult = 10
momentumPerMB = 0:0.9
maxEpochs = 4
keepCheckPointFiles = true
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
features = [
dim = 363
type = "real"
scpFile = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/glob_0000.scp"
]
labels = [
mlfFile = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/glob_0000.mlf"
labelMappingFile = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/state.list"
labelDim = 132
labelType = "category"
]
]
] [SGD=[maxEpochs=1]] [SGD=[epochSize=64]] [reader=[useMersenneTwisterRand=true]]
configparameters: LSTM-NDL.cntk:timestamping=true
configparameters: LSTM-NDL.cntk:traceLevel=1
configparameters: LSTM-NDL.cntk:truncated=true
08/16/2016 03:20:23: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:20:23: Commands: speechTrain
08/16/2016 03:20:23: Precision = "float"
08/16/2016 03:20:23: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_cpu/Models/cntkSpeechLSTM.dnn
08/16/2016 03:20:23: CNTKCommandTrainInfo: speechTrain : 1
08/16/2016 03:20:23: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 1
08/16/2016 03:20:23: ##############################################################################
08/16/2016 03:20:23: # #
08/16/2016 03:20:23: # Action "train" #
08/16/2016 03:20:23: # #
08/16/2016 03:20:23: ##############################################################################
08/16/2016 03:20:23: CNTKCommandTrainBegin: speechTrain
NDLBuilder Using CPU
reading script file C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/glob_0000.scp ... 948 entries
total 132 state names in state list C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/state.list
htkmlfreader: reading MLF file C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/glob_0000.mlf ... total 948 entries
...............................................................................................feature set 0: 252734 frames in 948 out of 948 utterances
label set 0: 129 classes
minibatchutterancesource: 948 utterances grouped into 3 chunks, av. chunk size: 316.0 utterances, 84244.7 frames
useParallelTrain option is not enabled. ParallelTrain config will be ignored.
08/16/2016 03:20:24: Creating virgin network.
Node 'LSTMoutput1.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput1.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput1.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput1.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput1.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- 0.000000.
Node 'LSTMoutput2.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput2.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput2.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput2.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput2.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- 0.000000.
Node 'LSTMoutput3.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput3.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput3.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput3.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput3.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- 0.000000.
Node 'b' (LearnableParameter operation): Initializing Parameter[132 x 1] <- 0.000000.
Node 'LSTMoutput1.wx' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput1.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput1.Wh' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput1.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=3, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput1.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=4, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput1.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=5, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput1.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- uniform(seed=6, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput2.wx' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput2.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput2.Wh' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput2.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=9, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput2.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=10, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput2.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=11, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput2.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- uniform(seed=12, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput3.wx' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput3.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput3.Wh' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput3.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=15, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput3.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=16, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput3.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=17, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput3.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- uniform(seed=18, range=0.050000*1.000000, onCPU=false).
Node 'W' (LearnableParameter operation): Initializating Parameter[132 x 0] as uniform later when dimensions are fully known.
Node 'b' (LearnableParameter operation): Initializing Parameter[132 x 1] <- 0.000000.
Post-processing network...
6 roots:
ce = CrossEntropyWithSoftmax()
err = ErrorPrediction()
featNorm.xMean = Mean()
featNorm.xStdDev = InvStdDev()
logPrior.prior = Mean()
scaledLogLikelihood = Minus()
Loop[0] --> Loop_LSTMoutput1.output -> 24 nodes
LSTMoutput1.dh LSTMoutput1.whh LSTMoutput1.wxxpbpwhh
LSTMoutput1.G4 LSTMoutput1.G3 LSTMoutput1.dc
LSTMoutput1.Wcfdc LSTMoutput1.unnamed165 LSTMoutput1.ft
LSTMoutput1.bft LSTMoutput1.G1 LSTMoutput1.Wcidc
LSTMoutput1.unnamed163 LSTMoutput1.it LSTMoutput1.G2
LSTMoutput1.unnamed164 LSTMoutput1.bit LSTMoutput1.ct
LSTMoutput1.Wcoct LSTMoutput1.unnamed166 LSTMoutput1.ot
LSTMoutput1.unnamed167 LSTMoutput1.mt LSTMoutput1.output
Loop[1] --> Loop_LSTMoutput2.output -> 24 nodes
LSTMoutput2.dh LSTMoutput2.whh LSTMoutput2.wxxpbpwhh
LSTMoutput2.G4 LSTMoutput2.G3 LSTMoutput2.dc
LSTMoutput2.Wcfdc LSTMoutput2.unnamed175 LSTMoutput2.ft
LSTMoutput2.bft LSTMoutput2.G1 LSTMoutput2.Wcidc
LSTMoutput2.unnamed173 LSTMoutput2.it LSTMoutput2.G2
LSTMoutput2.unnamed174 LSTMoutput2.bit LSTMoutput2.ct
LSTMoutput2.Wcoct LSTMoutput2.unnamed176 LSTMoutput2.ot
LSTMoutput2.unnamed177 LSTMoutput2.mt LSTMoutput2.output
Loop[2] --> Loop_LSTMoutput3.output -> 24 nodes
LSTMoutput3.dh LSTMoutput3.whh LSTMoutput3.wxxpbpwhh
LSTMoutput3.G4 LSTMoutput3.G3 LSTMoutput3.dc
LSTMoutput3.Wcfdc LSTMoutput3.unnamed185 LSTMoutput3.ft
LSTMoutput3.bft LSTMoutput3.G1 LSTMoutput3.Wcidc
LSTMoutput3.unnamed183 LSTMoutput3.it LSTMoutput3.G2
LSTMoutput3.unnamed184 LSTMoutput3.bit LSTMoutput3.ct
LSTMoutput3.Wcoct LSTMoutput3.unnamed186 LSTMoutput3.ot
LSTMoutput3.unnamed187 LSTMoutput3.mt LSTMoutput3.output
Validating network. 113 nodes to process in pass 1.
Validating --> labels = InputValue() : -> [132 x *]
Validating --> W = LearnableParameter() : -> [132 x 0]
Validating --> LSTMoutput3.Wmr = LearnableParameter() : -> [512 x 1024]
Validating --> LSTMoutput3.wx = LearnableParameter() : -> [4096 x 0]
Validating --> LSTMoutput2.Wmr = LearnableParameter() : -> [512 x 1024]
Validating --> LSTMoutput2.wx = LearnableParameter() : -> [4096 x 0]
Validating --> LSTMoutput1.Wmr = LearnableParameter() : -> [512 x 1024]
Validating --> LSTMoutput1.wx = LearnableParameter() : -> [4096 x 0]
Validating --> features = InputValue() : -> [363 x *]
Validating --> featNorm.xMean = Mean (features) : [363 x *] -> [363]
Validating --> featNorm.xStdDev = InvStdDev (features) : [363 x *] -> [363]
Validating --> featNorm.xNorm = PerDimMeanVarNormalization (features, featNorm.xMean, featNorm.xStdDev) : [363 x *], [363], [363] -> [363 x *]
Node 'LSTMoutput1.wx' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 363].
Node 'LSTMoutput1.wx' (LearnableParameter operation): Initializing Parameter[4096 x 363] <- uniform(seed=1, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput1.wxx = Times (LSTMoutput1.wx, featNorm.xNorm) : [4096 x 363], [363 x *] -> [4096 x *]
Validating --> LSTMoutput1.b = LearnableParameter() : -> [4096 x 1]
Validating --> LSTMoutput1.wxxpb = Plus (LSTMoutput1.wxx, LSTMoutput1.b) : [4096 x *], [4096 x 1] -> [4096 x 1 x *]
Validating --> LSTMoutput1.Wh = LearnableParameter() : -> [4096 x 0]
Validating --> LSTMoutput1.Wco = LearnableParameter() : -> [1024]
Validating --> LSTMoutput1.Wcf = LearnableParameter() : -> [1024]
Validating --> LSTMoutput1.Wci = LearnableParameter() : -> [1024]
Node 'LSTMoutput1.Wh' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 512].
Node 'LSTMoutput1.Wh' (LearnableParameter operation): Initializing Parameter[4096 x 512] <- uniform(seed=2, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput1.whh = Times (LSTMoutput1.Wh, LSTMoutput1.dh) : [4096 x 512], [512] -> [4096]
Validating --> LSTMoutput1.wxxpbpwhh = Plus (LSTMoutput1.wxxpb, LSTMoutput1.whh) : [4096 x 1 x *], [4096] -> [4096 x 1 x *]
Validating --> LSTMoutput1.G4 = Slice (LSTMoutput1.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.G3 = Slice (LSTMoutput1.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.Wcfdc = DiagTimes (LSTMoutput1.Wcf, LSTMoutput1.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput1.unnamed165 = Plus (LSTMoutput1.G3, LSTMoutput1.Wcfdc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput1.ft = Sigmoid (LSTMoutput1.unnamed165) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.bft = ElementTimes (LSTMoutput1.ft, LSTMoutput1.dc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput1.G1 = Slice (LSTMoutput1.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.Wcidc = DiagTimes (LSTMoutput1.Wci, LSTMoutput1.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput1.unnamed163 = Plus (LSTMoutput1.G1, LSTMoutput1.Wcidc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput1.it = Sigmoid (LSTMoutput1.unnamed163) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.G2 = Slice (LSTMoutput1.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.unnamed164 = Tanh (LSTMoutput1.G2) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.bit = ElementTimes (LSTMoutput1.it, LSTMoutput1.unnamed164) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.ct = Plus (LSTMoutput1.bft, LSTMoutput1.bit) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.Wcoct = DiagTimes (LSTMoutput1.Wco, LSTMoutput1.ct) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.unnamed166 = Plus (LSTMoutput1.G4, LSTMoutput1.Wcoct) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.ot = Sigmoid (LSTMoutput1.unnamed166) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.unnamed167 = Tanh (LSTMoutput1.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.mt = ElementTimes (LSTMoutput1.ot, LSTMoutput1.unnamed167) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.output = Times (LSTMoutput1.Wmr, LSTMoutput1.mt) : [512 x 1024], [1024 x 1 x *] -> [512 x 1 x *]
Node 'LSTMoutput2.wx' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 512 x 1].
Node 'LSTMoutput2.wx' (LearnableParameter operation): Initializing Parameter[4096 x 512 x 1] <- uniform(seed=7, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput2.wxx = Times (LSTMoutput2.wx, LSTMoutput1.output) : [4096 x 512 x 1], [512 x 1 x *] -> [4096 x *]
Validating --> LSTMoutput2.b = LearnableParameter() : -> [4096 x 1]
Validating --> LSTMoutput2.wxxpb = Plus (LSTMoutput2.wxx, LSTMoutput2.b) : [4096 x *], [4096 x 1] -> [4096 x 1 x *]
Validating --> LSTMoutput2.Wh = LearnableParameter() : -> [4096 x 0]
Validating --> LSTMoutput2.Wco = LearnableParameter() : -> [1024]
Validating --> LSTMoutput2.Wcf = LearnableParameter() : -> [1024]
Validating --> LSTMoutput2.Wci = LearnableParameter() : -> [1024]
Node 'LSTMoutput2.Wh' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 512].
Node 'LSTMoutput2.Wh' (LearnableParameter operation): Initializing Parameter[4096 x 512] <- uniform(seed=8, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput2.whh = Times (LSTMoutput2.Wh, LSTMoutput2.dh) : [4096 x 512], [512] -> [4096]
Validating --> LSTMoutput2.wxxpbpwhh = Plus (LSTMoutput2.wxxpb, LSTMoutput2.whh) : [4096 x 1 x *], [4096] -> [4096 x 1 x *]
Validating --> LSTMoutput2.G4 = Slice (LSTMoutput2.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.G3 = Slice (LSTMoutput2.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.Wcfdc = DiagTimes (LSTMoutput2.Wcf, LSTMoutput2.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput2.unnamed175 = Plus (LSTMoutput2.G3, LSTMoutput2.Wcfdc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput2.ft = Sigmoid (LSTMoutput2.unnamed175) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.bft = ElementTimes (LSTMoutput2.ft, LSTMoutput2.dc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput2.G1 = Slice (LSTMoutput2.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.Wcidc = DiagTimes (LSTMoutput2.Wci, LSTMoutput2.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput2.unnamed173 = Plus (LSTMoutput2.G1, LSTMoutput2.Wcidc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput2.it = Sigmoid (LSTMoutput2.unnamed173) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.G2 = Slice (LSTMoutput2.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.unnamed174 = Tanh (LSTMoutput2.G2) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.bit = ElementTimes (LSTMoutput2.it, LSTMoutput2.unnamed174) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.ct = Plus (LSTMoutput2.bft, LSTMoutput2.bit) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.Wcoct = DiagTimes (LSTMoutput2.Wco, LSTMoutput2.ct) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.unnamed176 = Plus (LSTMoutput2.G4, LSTMoutput2.Wcoct) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.ot = Sigmoid (LSTMoutput2.unnamed176) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.unnamed177 = Tanh (LSTMoutput2.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.mt = ElementTimes (LSTMoutput2.ot, LSTMoutput2.unnamed177) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.output = Times (LSTMoutput2.Wmr, LSTMoutput2.mt) : [512 x 1024], [1024 x 1 x *] -> [512 x 1 x *]
Node 'LSTMoutput3.wx' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 512 x 1].
Node 'LSTMoutput3.wx' (LearnableParameter operation): Initializing Parameter[4096 x 512 x 1] <- uniform(seed=13, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput3.wxx = Times (LSTMoutput3.wx, LSTMoutput2.output) : [4096 x 512 x 1], [512 x 1 x *] -> [4096 x *]
Validating --> LSTMoutput3.b = LearnableParameter() : -> [4096 x 1]
Validating --> LSTMoutput3.wxxpb = Plus (LSTMoutput3.wxx, LSTMoutput3.b) : [4096 x *], [4096 x 1] -> [4096 x 1 x *]
Validating --> LSTMoutput3.Wh = LearnableParameter() : -> [4096 x 0]
Validating --> LSTMoutput3.Wco = LearnableParameter() : -> [1024]
Validating --> LSTMoutput3.Wcf = LearnableParameter() : -> [1024]
Validating --> LSTMoutput3.Wci = LearnableParameter() : -> [1024]
Node 'LSTMoutput3.Wh' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 512].
Node 'LSTMoutput3.Wh' (LearnableParameter operation): Initializing Parameter[4096 x 512] <- uniform(seed=14, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput3.whh = Times (LSTMoutput3.Wh, LSTMoutput3.dh) : [4096 x 512], [512] -> [4096]
Validating --> LSTMoutput3.wxxpbpwhh = Plus (LSTMoutput3.wxxpb, LSTMoutput3.whh) : [4096 x 1 x *], [4096] -> [4096 x 1 x *]
Validating --> LSTMoutput3.G4 = Slice (LSTMoutput3.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.G3 = Slice (LSTMoutput3.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.Wcfdc = DiagTimes (LSTMoutput3.Wcf, LSTMoutput3.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput3.unnamed185 = Plus (LSTMoutput3.G3, LSTMoutput3.Wcfdc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput3.ft = Sigmoid (LSTMoutput3.unnamed185) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.bft = ElementTimes (LSTMoutput3.ft, LSTMoutput3.dc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput3.G1 = Slice (LSTMoutput3.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.Wcidc = DiagTimes (LSTMoutput3.Wci, LSTMoutput3.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput3.unnamed183 = Plus (LSTMoutput3.G1, LSTMoutput3.Wcidc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput3.it = Sigmoid (LSTMoutput3.unnamed183) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.G2 = Slice (LSTMoutput3.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.unnamed184 = Tanh (LSTMoutput3.G2) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.bit = ElementTimes (LSTMoutput3.it, LSTMoutput3.unnamed184) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.ct = Plus (LSTMoutput3.bft, LSTMoutput3.bit) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.Wcoct = DiagTimes (LSTMoutput3.Wco, LSTMoutput3.ct) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.unnamed186 = Plus (LSTMoutput3.G4, LSTMoutput3.Wcoct) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.ot = Sigmoid (LSTMoutput3.unnamed186) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.unnamed187 = Tanh (LSTMoutput3.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.mt = ElementTimes (LSTMoutput3.ot, LSTMoutput3.unnamed187) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.output = Times (LSTMoutput3.Wmr, LSTMoutput3.mt) : [512 x 1024], [1024 x 1 x *] -> [512 x 1 x *]
Node 'W' (LearnableParameter operation) operation: Tensor shape was inferred as [132 x 512 x 1].
Node 'W' (LearnableParameter operation): Initializing Parameter[132 x 512 x 1] <- uniform(seed=19, range=0.050000*1.000000, onCPU=false).
Validating --> unnamed193 = Times (W, LSTMoutput3.output) : [132 x 512 x 1], [512 x 1 x *] -> [132 x *]
Validating --> b = LearnableParameter() : -> [132 x 1]
Validating --> LSTMoutputW = Plus (unnamed193, b) : [132 x *], [132 x 1] -> [132 x 1 x *]
Validating --> ce = CrossEntropyWithSoftmax (labels, LSTMoutputW) : [132 x *], [132 x 1 x *] -> [1]
Validating --> err = ErrorPrediction (labels, LSTMoutputW) : [132 x *], [132 x 1 x *] -> [1]
Validating --> logPrior.prior = Mean (labels) : [132 x *] -> [132]
Validating --> logPrior.logPrior = Log (logPrior.prior) : [132] -> [132]
Validating --> scaledLogLikelihood = Minus (LSTMoutputW, logPrior.logPrior) : [132 x 1 x *], [132] -> [132 x 1 x *]
Validating network. 88 nodes to process in pass 2.
Validating --> LSTMoutput1.dh = PastValue (LSTMoutput1.output) : [512 x 1 x *] -> [512 x 1 x *]
Validating --> LSTMoutput1.whh = Times (LSTMoutput1.Wh, LSTMoutput1.dh) : [4096 x 512], [512 x 1 x *] -> [4096 x 1 x *]
Validating --> LSTMoutput1.dc = PastValue (LSTMoutput1.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.Wcfdc = DiagTimes (LSTMoutput1.Wcf, LSTMoutput1.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.Wcidc = DiagTimes (LSTMoutput1.Wci, LSTMoutput1.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.dh = PastValue (LSTMoutput2.output) : [512 x 1 x *] -> [512 x 1 x *]
Validating --> LSTMoutput2.whh = Times (LSTMoutput2.Wh, LSTMoutput2.dh) : [4096 x 512], [512 x 1 x *] -> [4096 x 1 x *]
Validating --> LSTMoutput2.dc = PastValue (LSTMoutput2.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.Wcfdc = DiagTimes (LSTMoutput2.Wcf, LSTMoutput2.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.Wcidc = DiagTimes (LSTMoutput2.Wci, LSTMoutput2.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.dh = PastValue (LSTMoutput3.output) : [512 x 1 x *] -> [512 x 1 x *]
Validating --> LSTMoutput3.whh = Times (LSTMoutput3.Wh, LSTMoutput3.dh) : [4096 x 512], [512 x 1 x *] -> [4096 x 1 x *]
Validating --> LSTMoutput3.dc = PastValue (LSTMoutput3.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.Wcfdc = DiagTimes (LSTMoutput3.Wcf, LSTMoutput3.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.Wcidc = DiagTimes (LSTMoutput3.Wci, LSTMoutput3.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating network. 15 nodes to process in pass 3.
Validating network, final pass.
29 out of 113 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
08/16/2016 03:20:24: Created model with 113 nodes on CPU.
08/16/2016 03:20:24: Training criterion node(s):
08/16/2016 03:20:24: ce = CrossEntropyWithSoftmax
08/16/2016 03:20:24: Evaluation criterion node(s):
08/16/2016 03:20:24: err = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing: Out of 217 matrices, 125 are shared as 56, and 92 are not shared.
{ LSTMoutput1.dh : [512 x 1 x *]
LSTMoutput1.wxx : [4096 x *] (gradient) }
{ LSTMoutput2.mt : [1024 x 1 x *] (gradient)
LSTMoutput3.dh : [512 x 1 x *]
LSTMoutput3.wxx : [4096 x *] (gradient) }
{ LSTMoutput2.Wco : [1024] (gradient)
LSTMoutput3.dc : [1024 x 1 x *] }
{ LSTMoutput1.mt : [1024 x 1 x *] (gradient)
LSTMoutput2.dh : [512 x 1 x *]
LSTMoutput2.wxx : [4096 x *] (gradient) }
{ LSTMoutput1.Wco : [1024] (gradient)
LSTMoutput2.dc : [1024 x 1 x *] }
{ LSTMoutput1.G3 : [1024 x 1 x *] (gradient)
LSTMoutput2.Wcidc : [1024 x 1 x *] }
{ LSTMoutput1.unnamed164 : [1024 x 1 x *] (gradient)
LSTMoutput2.Wcfdc : [1024 x 1 x *] }
{ LSTMoutput1.Wci : [1024] (gradient)
LSTMoutput2.G1 : [1024 x 1 x *] }
{ LSTMoutput1.wxxpbpwhh : [4096 x 1 x *] (gradient)
LSTMoutput2.unnamed175 : [1024 x 1 x *] }
{ LSTMoutput2.Wcf : [1024] (gradient)
LSTMoutput3.it : [1024 x 1 x *] }
{ LSTMoutput1.ct : [1024 x 1 x *] (gradient)
LSTMoutput2.wxxpbpwhh : [4096 x 1 x *] }
{ LSTMoutput3.wx : [4096 x 512 x 1] (gradient)
LSTMoutput3.wxxpb : [4096 x 1 x *] }
{ LSTMoutput1.Wmr : [512 x 1024] (gradient)
LSTMoutput2.wxx : [4096 x *] }
{ LSTMoutput1.Wcoct : [1024 x 1 x *] (gradient)
LSTMoutput2.G4 : [1024 x 1 x *] (gradient)
LSTMoutput3.G4 : [1024 x 1 x *] }
{ LSTMoutput1.Wcf : [1024] (gradient)
LSTMoutput2.it : [1024 x 1 x *] }
{ LSTMoutput2.unnamed174 : [1024 x 1 x *] (gradient)
LSTMoutput3.Wcfdc : [1024 x 1 x *] }
{ LSTMoutput1.G1 : [1024 x 1 x *] (gradient)
LSTMoutput2.ft : [1024 x 1 x *] }
{ LSTMoutput1.dc : [1024 x 1 x *] (gradient)
LSTMoutput2.G1 : [1024 x 1 x *] (gradient)
LSTMoutput3.ft : [1024 x 1 x *] }
{ LSTMoutput1.unnamed165 : [1024 x 1 x *] (gradient)
LSTMoutput3.bft : [1024 x 1 x *] }
{ LSTMoutput2.G3 : [1024 x 1 x *] (gradient)
LSTMoutput3.Wcidc : [1024 x 1 x *] }
{ LSTMoutput1.ot : [1024 x 1 x *] (gradient)
LSTMoutput2.whh : [4096 x 1 x *] }
{ LSTMoutput2.ot : [1024 x 1 x *] (gradient)
LSTMoutput3.whh : [4096 x 1 x *] }
{ LSTMoutput2.ct : [1024 x 1 x *] (gradient)
LSTMoutput3.wxxpbpwhh : [4096 x 1 x *] }
{ LSTMoutput1.whh : [4096 x 1 x *] (gradient)
LSTMoutput2.G2 : [1024 x 1 x *] }
{ LSTMoutput2.wx : [4096 x 512 x 1] (gradient)
LSTMoutput2.wxxpb : [4096 x 1 x *] }
{ LSTMoutput1.b : [4096 x 1] (gradient)
LSTMoutput1.dh : [512 x 1 x *] (gradient)
LSTMoutput2.unnamed174 : [1024 x 1 x *] }
{ LSTMoutput1.unnamed166 : [1024 x 1 x *] (gradient)
LSTMoutput2.wxxpbpwhh : [4096 x 1 x *] (gradient)
LSTMoutput3.unnamed185 : [1024 x 1 x *] }
{ LSTMoutput2.Wci : [1024] (gradient)
LSTMoutput3.G1 : [1024 x 1 x *] }
{ LSTMoutput1.it : [1024 x 1 x *] (gradient)
LSTMoutput3.unnamed183 : [1024 x 1 x *] }
{ LSTMoutput1.unnamed167 : [1024 x 1 x *] (gradient)
LSTMoutput2.whh : [4096 x 1 x *] (gradient)
LSTMoutput3.G2 : [1024 x 1 x *] }
{ LSTMoutput2.Wmr : [512 x 1024] (gradient)
LSTMoutput3.wxx : [4096 x *] }
{ LSTMoutput2.b : [4096 x 1] (gradient)
LSTMoutput2.dh : [512 x 1 x *] (gradient)
LSTMoutput3.unnamed184 : [1024 x 1 x *] }
{ LSTMoutput1.G4 : [1024 x 1 x *] (gradient)
LSTMoutput2.G4 : [1024 x 1 x *] }
{ LSTMoutput2.unnamed176 : [1024 x 1 x *] (gradient)
LSTMoutput3.wxxpbpwhh : [4096 x 1 x *] (gradient) }
{ LSTMoutput1.bit : [1024 x 1 x *] (gradient)
LSTMoutput3.unnamed183 : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.Wh : [4096 x 512] (gradient)
LSTMoutput2.G2 : [1024 x 1 x *] (gradient)
LSTMoutput3.Wcfdc : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.wxxpb : [4096 x 1 x *] (gradient)
LSTMoutput2.it : [1024 x 1 x *] (gradient) }
{ LSTMoutput2.unnamed177 : [1024 x 1 x *] (gradient)
LSTMoutput3.whh : [4096 x 1 x *] (gradient) }
{ LSTMoutput3.output : [512 x 1 x *] (gradient)
LSTMoutputW : [132 x 1 x *] (gradient) }
{ LSTMoutput2.bft : [1024 x 1 x *] (gradient)
LSTMoutput3.dc : [1024 x 1 x *] (gradient) }
{ LSTMoutput2.Wh : [4096 x 512] (gradient)
LSTMoutput3.G2 : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.bft : [1024 x 1 x *] (gradient)
LSTMoutput2.dc : [1024 x 1 x *] (gradient)
LSTMoutput3.G1 : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.unnamed163 : [1024 x 1 x *] (gradient)
LSTMoutput2.unnamed175 : [1024 x 1 x *] (gradient) }
{ LSTMoutput2.unnamed173 : [1024 x 1 x *] (gradient)
LSTMoutput3.unnamed185 : [1024 x 1 x *] (gradient) }
{ LSTMoutput2.output : [512 x 1 x *] (gradient)
LSTMoutput3.wxxpb : [4096 x 1 x *] (gradient) }
{ LSTMoutput3.b : [4096 x 1] (gradient)
LSTMoutput3.dh : [512 x 1 x *] (gradient) }
{ LSTMoutput2.Wcoct : [1024 x 1 x *] (gradient)
LSTMoutput3.G4 : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.Wcidc : [1024 x 1 x *] (gradient)
LSTMoutput2.ft : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.G2 : [1024 x 1 x *] (gradient)
LSTMoutput2.Wcfdc : [1024 x 1 x *] (gradient)
LSTMoutput3.Wcidc : [1024 x 1 x *] (gradient) }
{ LSTMoutput3.Wmr : [512 x 1024] (gradient)
unnamed193 : [132 x *] }
{ LSTMoutput1.output : [512 x 1 x *] (gradient)
LSTMoutput2.wxxpb : [4096 x 1 x *] (gradient)
LSTMoutput3.it : [1024 x 1 x *] (gradient) }
{ LSTMoutput3.mt : [1024 x 1 x *] (gradient)
unnamed193 : [132 x *] (gradient) }
{ LSTMoutput1.Wcfdc : [1024 x 1 x *] (gradient)
LSTMoutput2.Wcidc : [1024 x 1 x *] (gradient)
LSTMoutput3.ft : [1024 x 1 x *] (gradient) }
{ LSTMoutputW : [132 x 1 x *]
W : [132 x 512 x 1] (gradient) }
{ LSTMoutput1.ft : [1024 x 1 x *] (gradient)
LSTMoutput3.bft : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.wx : [4096 x 363] (gradient)
LSTMoutput1.wxxpb : [4096 x 1 x *] }
08/16/2016 03:20:24: Training 13634692 parameters in 23 out of 23 parameter tensors and 104 nodes with gradient:
08/16/2016 03:20:24: Node 'LSTMoutput1.Wcf' (LearnableParameter operation) : [1024]
08/16/2016 03:20:24: Node 'LSTMoutput1.Wci' (LearnableParameter operation) : [1024]
08/16/2016 03:20:24: Node 'LSTMoutput1.Wco' (LearnableParameter operation) : [1024]
08/16/2016 03:20:24: Node 'LSTMoutput1.Wh' (LearnableParameter operation) : [4096 x 512]
08/16/2016 03:20:24: Node 'LSTMoutput1.Wmr' (LearnableParameter operation) : [512 x 1024]
08/16/2016 03:20:24: Node 'LSTMoutput1.b' (LearnableParameter operation) : [4096 x 1]
08/16/2016 03:20:24: Node 'LSTMoutput1.wx' (LearnableParameter operation) : [4096 x 363]
08/16/2016 03:20:24: Node 'LSTMoutput2.Wcf' (LearnableParameter operation) : [1024]
08/16/2016 03:20:24: Node 'LSTMoutput2.Wci' (LearnableParameter operation) : [1024]
08/16/2016 03:20:24: Node 'LSTMoutput2.Wco' (LearnableParameter operation) : [1024]
08/16/2016 03:20:24: Node 'LSTMoutput2.Wh' (LearnableParameter operation) : [4096 x 512]
08/16/2016 03:20:24: Node 'LSTMoutput2.Wmr' (LearnableParameter operation) : [512 x 1024]
08/16/2016 03:20:24: Node 'LSTMoutput2.b' (LearnableParameter operation) : [4096 x 1]
08/16/2016 03:20:24: Node 'LSTMoutput2.wx' (LearnableParameter operation) : [4096 x 512 x 1]
08/16/2016 03:20:24: Node 'LSTMoutput3.Wcf' (LearnableParameter operation) : [1024]
08/16/2016 03:20:24: Node 'LSTMoutput3.Wci' (LearnableParameter operation) : [1024]
08/16/2016 03:20:24: Node 'LSTMoutput3.Wco' (LearnableParameter operation) : [1024]
08/16/2016 03:20:24: Node 'LSTMoutput3.Wh' (LearnableParameter operation) : [4096 x 512]
08/16/2016 03:20:24: Node 'LSTMoutput3.Wmr' (LearnableParameter operation) : [512 x 1024]
08/16/2016 03:20:24: Node 'LSTMoutput3.b' (LearnableParameter operation) : [4096 x 1]
08/16/2016 03:20:24: Node 'LSTMoutput3.wx' (LearnableParameter operation) : [4096 x 512 x 1]
08/16/2016 03:20:24: Node 'W' (LearnableParameter operation) : [132 x 512 x 1]
08/16/2016 03:20:24: Node 'b' (LearnableParameter operation) : [132 x 1]
08/16/2016 03:20:24: Precomputing --> 3 PreCompute nodes found.
08/16/2016 03:20:24: featNorm.xMean = Mean()
08/16/2016 03:20:24: featNorm.xStdDev = InvStdDev()
08/16/2016 03:20:24: logPrior.prior = Mean()
minibatchiterator: epoch 0: frames [0..252734] (first utterance at frame 0), data subset 0 of 1, with 1 datapasses
requiredata: determined feature kind as 33-dimensional 'USER' with frame shift 10.0 ms
08/16/2016 03:20:27: Precomputing --> Completed.
08/16/2016 03:20:28: Starting Epoch 1: learning rate per sample = 0.001953 effective momentum = 0.000000 momentum as time constant = 0.0 samples
minibatchiterator: epoch 0: frames [0..64] (first utterance at frame 0), data subset 0 of 1, with 1 datapasses
08/16/2016 03:20:28: Starting minibatch loop.
08/16/2016 03:20:31: Epoch[ 1 of 1]-Minibatch[ 1- 10, 250.00%]: ce = 4.87950134 * 160; err = 0.90625000 * 160; time = 3.6415s; samplesPerSecond = 43.9
08/16/2016 03:20:35: Epoch[ 1 of 1]-Minibatch[ 11- 20, 500.00%]: ce = 4.84555817 * 160; err = 0.69375000 * 160; time = 3.6742s; samplesPerSecond = 43.5
08/16/2016 03:20:38: Finished Epoch[ 1 of 1]: [Training] ce = 4.85900003 * 418; err = 0.80382775 * 418; totalSamplesSeen = 418; learningRatePerSample = 0.001953125; epochTime=9.76851s
08/16/2016 03:20:38: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_cpu/Models/cntkSpeechLSTM.dnn'
08/16/2016 03:20:39: CNTKCommandTrainEnd: speechTrain
08/16/2016 03:20:39: Action "train" complete.
08/16/2016 03:20:39: __COMPLETED__

Просмотреть файл

@ -0,0 +1,682 @@
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 268381192 kB
-------------------------------------------------------------------
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config/LSTM-NDL.cntk currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_gpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_gpu DeviceId=0 timestamping=true speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=64]] speechTrain=[reader=[useMersenneTwisterRand=true]] parallelTrain=false
-------------------------------------------------------------------
Build info:
Built time: Aug 16 2016 03:09:16
Last modified date: Fri Aug 12 05:28:23 2016
Build type: Release
Build target: GPU
With 1bit-SGD: yes
Math lib: mkl
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
CUB_PATH: c:\src\cub-1.4.1
CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
Build Branch: HEAD
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by svcphil on Philly-Pool1
Build Path: c:\jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
-------------------------------------------------------------------
Changed current directory to C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
08/16/2016 03:20:41: -------------------------------------------------------------------
08/16/2016 03:20:41: Build info:
08/16/2016 03:20:41: Built time: Aug 16 2016 03:09:16
08/16/2016 03:20:41: Last modified date: Fri Aug 12 05:28:23 2016
08/16/2016 03:20:41: Build type: Release
08/16/2016 03:20:41: Build target: GPU
08/16/2016 03:20:41: With 1bit-SGD: yes
08/16/2016 03:20:41: Math lib: mkl
08/16/2016 03:20:41: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
08/16/2016 03:20:41: CUB_PATH: c:\src\cub-1.4.1
08/16/2016 03:20:41: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
08/16/2016 03:20:41: Build Branch: HEAD
08/16/2016 03:20:41: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 03:20:41: Built by svcphil on Philly-Pool1
08/16/2016 03:20:41: Build Path: c:\jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
08/16/2016 03:20:41: -------------------------------------------------------------------
08/16/2016 03:20:43: -------------------------------------------------------------------
08/16/2016 03:20:43: GPU info:
08/16/2016 03:20:43: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:20:43: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:20:43: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3072 MB
08/16/2016 03:20:43: -------------------------------------------------------------------
08/16/2016 03:20:43: Running on DPHAIM-25 at 2016/08/16 03:20:43
08/16/2016 03:20:43: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config/LSTM-NDL.cntk currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_gpu DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_gpu DeviceId=0 timestamping=true speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=64]] speechTrain=[reader=[useMersenneTwisterRand=true]] parallelTrain=false
08/16/2016 03:20:43: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:20:43: RootDir = ".."
ConfigDir = "$RootDir$/Config"
DataDir = "$RootDir$/Data"
OutputDir = "$RootDir$/Output"
ModelDir = "$OutputDir$/Models"
deviceId = -1
command = speechTrain
precision = "float"
traceLevel = 1
modelPath = "$ModelDir$/cntkSpeechLSTM.dnn"
parallelTrain = true
frameMode = false
truncated = true
speechTrain = [
action = "train"
nbrUttsIneachRecurrentIter = 16
NDLNetworkBuilder = [
networkDescription = "$ConfigDir$/lstmp-3layer-opt.ndl"
]
SGD = [
epochSize = 0
minibatchSize = 16
learningRatesPerMB = 0.5
numMBsToShowResult = 10
momentumPerMB = 0:0.9
maxEpochs = 4
keepCheckPointFiles = true
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
features = [
dim = 363
type = "real"
scpFile = "$DataDir$/glob_0000.scp"
]
labels = [
mlfFile = "$DataDir$/glob_0000.mlf"
labelMappingFile = "$DataDir$/state.list"
labelDim = 132
labelType = "category"
]
]
]
currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_gpu
DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_gpu
DeviceId=0
timestamping=true
speechTrain=[SGD=[maxEpochs=1]]
speechTrain=[SGD=[epochSize=64]]
speechTrain=[reader=[useMersenneTwisterRand=true]]
parallelTrain=false
08/16/2016 03:20:43: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:20:43: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:20:43: RootDir = ".."
ConfigDir = "../Config"
DataDir = "../Data"
OutputDir = "../Output"
ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_gpu/Models"
deviceId = -1
command = speechTrain
precision = "float"
traceLevel = 1
modelPath = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_gpu/Models/cntkSpeechLSTM.dnn"
parallelTrain = true
frameMode = false
truncated = true
speechTrain = [
action = "train"
nbrUttsIneachRecurrentIter = 16
NDLNetworkBuilder = [
networkDescription = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config/lstmp-3layer-opt.ndl"
]
SGD = [
epochSize = 0
minibatchSize = 16
learningRatesPerMB = 0.5
numMBsToShowResult = 10
momentumPerMB = 0:0.9
maxEpochs = 4
keepCheckPointFiles = true
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
features = [
dim = 363
type = "real"
scpFile = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/glob_0000.scp"
]
labels = [
mlfFile = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/glob_0000.mlf"
labelMappingFile = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/state.list"
labelDim = 132
labelType = "category"
]
]
]
currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_gpu
DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_gpu
DeviceId=0
timestamping=true
speechTrain=[SGD=[maxEpochs=1]]
speechTrain=[SGD=[epochSize=64]]
speechTrain=[reader=[useMersenneTwisterRand=true]]
parallelTrain=false
08/16/2016 03:20:43: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:20:43: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: LSTM-NDL.cntk:command=speechTrain
configparameters: LSTM-NDL.cntk:ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config
configparameters: LSTM-NDL.cntk:currentDirectory=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
configparameters: LSTM-NDL.cntk:DataDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data
configparameters: LSTM-NDL.cntk:deviceId=0
configparameters: LSTM-NDL.cntk:frameMode=false
configparameters: LSTM-NDL.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_gpu/Models
configparameters: LSTM-NDL.cntk:modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_gpu/Models/cntkSpeechLSTM.dnn
configparameters: LSTM-NDL.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_gpu
configparameters: LSTM-NDL.cntk:parallelTrain=false
configparameters: LSTM-NDL.cntk:precision=float
configparameters: LSTM-NDL.cntk:RootDir=..
configparameters: LSTM-NDL.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_gpu
configparameters: LSTM-NDL.cntk:speechTrain=[
action = "train"
nbrUttsIneachRecurrentIter = 16
NDLNetworkBuilder = [
networkDescription = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Config/lstmp-3layer-opt.ndl"
]
SGD = [
epochSize = 0
minibatchSize = 16
learningRatesPerMB = 0.5
numMBsToShowResult = 10
momentumPerMB = 0:0.9
maxEpochs = 4
keepCheckPointFiles = true
]
reader = [
readerType = "HTKMLFReader"
readMethod = "blockRandomize"
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
features = [
dim = 363
type = "real"
scpFile = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/glob_0000.scp"
]
labels = [
mlfFile = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/glob_0000.mlf"
labelMappingFile = "C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/state.list"
labelDim = 132
labelType = "category"
]
]
] [SGD=[maxEpochs=1]] [SGD=[epochSize=64]] [reader=[useMersenneTwisterRand=true]]
configparameters: LSTM-NDL.cntk:timestamping=true
configparameters: LSTM-NDL.cntk:traceLevel=1
configparameters: LSTM-NDL.cntk:truncated=true
08/16/2016 03:20:43: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:20:43: Commands: speechTrain
08/16/2016 03:20:43: Precision = "float"
08/16/2016 03:20:43: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_gpu/Models/cntkSpeechLSTM.dnn
08/16/2016 03:20:43: CNTKCommandTrainInfo: speechTrain : 1
08/16/2016 03:20:43: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 1
08/16/2016 03:20:43: ##############################################################################
08/16/2016 03:20:43: # #
08/16/2016 03:20:43: # Action "train" #
08/16/2016 03:20:43: # #
08/16/2016 03:20:43: ##############################################################################
08/16/2016 03:20:43: CNTKCommandTrainBegin: speechTrain
NDLBuilder Using GPU 0
reading script file C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/glob_0000.scp ... 948 entries
total 132 state names in state list C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/state.list
htkmlfreader: reading MLF file C:\jenkins\workspace\CNTK-Test-Windows-W1\Examples\Speech\AN4\Data/glob_0000.mlf ... total 948 entries
...............................................................................................feature set 0: 252734 frames in 948 out of 948 utterances
label set 0: 129 classes
minibatchutterancesource: 948 utterances grouped into 3 chunks, av. chunk size: 316.0 utterances, 84244.7 frames
useParallelTrain option is not enabled. ParallelTrain config will be ignored.
08/16/2016 03:20:43: Creating virgin network.
Node 'LSTMoutput1.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput1.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput1.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput1.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput1.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- 0.000000.
Node 'LSTMoutput2.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput2.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput2.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput2.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput2.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- 0.000000.
Node 'LSTMoutput3.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput3.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput3.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput3.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- 0.000000.
Node 'LSTMoutput3.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- 0.000000.
Node 'b' (LearnableParameter operation): Initializing Parameter[132 x 1] <- 0.000000.
Node 'LSTMoutput1.wx' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput1.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput1.Wh' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput1.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=3, range=0.050000*1.000000, onCPU=false).
Microsoft::MSR::CNTK::GPUMatrix<ElemType>::SetUniformRandomValue (GPU): creating curand object with seed 3, sizeof(ElemType)==4
Node 'LSTMoutput1.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=4, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput1.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=5, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput1.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- uniform(seed=6, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput2.wx' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput2.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput2.Wh' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput2.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=9, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput2.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=10, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput2.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=11, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput2.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- uniform(seed=12, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput3.wx' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput3.b' (LearnableParameter operation): Initializing Parameter[4096 x 1] <- 0.000000.
Node 'LSTMoutput3.Wh' (LearnableParameter operation): Initializating Parameter[4096 x 0] as uniform later when dimensions are fully known.
Node 'LSTMoutput3.Wci' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=15, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput3.Wcf' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=16, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput3.Wco' (LearnableParameter operation): Initializing Parameter[1024] <- uniform(seed=17, range=0.050000*1.000000, onCPU=false).
Node 'LSTMoutput3.Wmr' (LearnableParameter operation): Initializing Parameter[512 x 1024] <- uniform(seed=18, range=0.050000*1.000000, onCPU=false).
Node 'W' (LearnableParameter operation): Initializating Parameter[132 x 0] as uniform later when dimensions are fully known.
Node 'b' (LearnableParameter operation): Initializing Parameter[132 x 1] <- 0.000000.
Post-processing network...
6 roots:
ce = CrossEntropyWithSoftmax()
err = ErrorPrediction()
featNorm.xMean = Mean()
featNorm.xStdDev = InvStdDev()
logPrior.prior = Mean()
scaledLogLikelihood = Minus()
Loop[0] --> Loop_LSTMoutput1.output -> 24 nodes
LSTMoutput1.dh LSTMoutput1.whh LSTMoutput1.wxxpbpwhh
LSTMoutput1.G4 LSTMoutput1.G3 LSTMoutput1.dc
LSTMoutput1.Wcfdc LSTMoutput1.unnamed165 LSTMoutput1.ft
LSTMoutput1.bft LSTMoutput1.G1 LSTMoutput1.Wcidc
LSTMoutput1.unnamed163 LSTMoutput1.it LSTMoutput1.G2
LSTMoutput1.unnamed164 LSTMoutput1.bit LSTMoutput1.ct
LSTMoutput1.Wcoct LSTMoutput1.unnamed166 LSTMoutput1.ot
LSTMoutput1.unnamed167 LSTMoutput1.mt LSTMoutput1.output
Loop[1] --> Loop_LSTMoutput2.output -> 24 nodes
LSTMoutput2.dh LSTMoutput2.whh LSTMoutput2.wxxpbpwhh
LSTMoutput2.G4 LSTMoutput2.G3 LSTMoutput2.dc
LSTMoutput2.Wcfdc LSTMoutput2.unnamed175 LSTMoutput2.ft
LSTMoutput2.bft LSTMoutput2.G1 LSTMoutput2.Wcidc
LSTMoutput2.unnamed173 LSTMoutput2.it LSTMoutput2.G2
LSTMoutput2.unnamed174 LSTMoutput2.bit LSTMoutput2.ct
LSTMoutput2.Wcoct LSTMoutput2.unnamed176 LSTMoutput2.ot
LSTMoutput2.unnamed177 LSTMoutput2.mt LSTMoutput2.output
Loop[2] --> Loop_LSTMoutput3.output -> 24 nodes
LSTMoutput3.dh LSTMoutput3.whh LSTMoutput3.wxxpbpwhh
LSTMoutput3.G4 LSTMoutput3.G3 LSTMoutput3.dc
LSTMoutput3.Wcfdc LSTMoutput3.unnamed185 LSTMoutput3.ft
LSTMoutput3.bft LSTMoutput3.G1 LSTMoutput3.Wcidc
LSTMoutput3.unnamed183 LSTMoutput3.it LSTMoutput3.G2
LSTMoutput3.unnamed184 LSTMoutput3.bit LSTMoutput3.ct
LSTMoutput3.Wcoct LSTMoutput3.unnamed186 LSTMoutput3.ot
LSTMoutput3.unnamed187 LSTMoutput3.mt LSTMoutput3.output
Validating network. 113 nodes to process in pass 1.
Validating --> labels = InputValue() : -> [132 x *]
Validating --> W = LearnableParameter() : -> [132 x 0]
Validating --> LSTMoutput3.Wmr = LearnableParameter() : -> [512 x 1024]
Validating --> LSTMoutput3.wx = LearnableParameter() : -> [4096 x 0]
Validating --> LSTMoutput2.Wmr = LearnableParameter() : -> [512 x 1024]
Validating --> LSTMoutput2.wx = LearnableParameter() : -> [4096 x 0]
Validating --> LSTMoutput1.Wmr = LearnableParameter() : -> [512 x 1024]
Validating --> LSTMoutput1.wx = LearnableParameter() : -> [4096 x 0]
Validating --> features = InputValue() : -> [363 x *]
Validating --> featNorm.xMean = Mean (features) : [363 x *] -> [363]
Validating --> featNorm.xStdDev = InvStdDev (features) : [363 x *] -> [363]
Validating --> featNorm.xNorm = PerDimMeanVarNormalization (features, featNorm.xMean, featNorm.xStdDev) : [363 x *], [363], [363] -> [363 x *]
Node 'LSTMoutput1.wx' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 363].
Node 'LSTMoutput1.wx' (LearnableParameter operation): Initializing Parameter[4096 x 363] <- uniform(seed=1, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput1.wxx = Times (LSTMoutput1.wx, featNorm.xNorm) : [4096 x 363], [363 x *] -> [4096 x *]
Validating --> LSTMoutput1.b = LearnableParameter() : -> [4096 x 1]
Validating --> LSTMoutput1.wxxpb = Plus (LSTMoutput1.wxx, LSTMoutput1.b) : [4096 x *], [4096 x 1] -> [4096 x 1 x *]
Validating --> LSTMoutput1.Wh = LearnableParameter() : -> [4096 x 0]
Validating --> LSTMoutput1.Wco = LearnableParameter() : -> [1024]
Validating --> LSTMoutput1.Wcf = LearnableParameter() : -> [1024]
Validating --> LSTMoutput1.Wci = LearnableParameter() : -> [1024]
Node 'LSTMoutput1.Wh' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 512].
Node 'LSTMoutput1.Wh' (LearnableParameter operation): Initializing Parameter[4096 x 512] <- uniform(seed=2, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput1.whh = Times (LSTMoutput1.Wh, LSTMoutput1.dh) : [4096 x 512], [512] -> [4096]
Validating --> LSTMoutput1.wxxpbpwhh = Plus (LSTMoutput1.wxxpb, LSTMoutput1.whh) : [4096 x 1 x *], [4096] -> [4096 x 1 x *]
Validating --> LSTMoutput1.G4 = Slice (LSTMoutput1.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.G3 = Slice (LSTMoutput1.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.Wcfdc = DiagTimes (LSTMoutput1.Wcf, LSTMoutput1.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput1.unnamed165 = Plus (LSTMoutput1.G3, LSTMoutput1.Wcfdc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput1.ft = Sigmoid (LSTMoutput1.unnamed165) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.bft = ElementTimes (LSTMoutput1.ft, LSTMoutput1.dc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput1.G1 = Slice (LSTMoutput1.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.Wcidc = DiagTimes (LSTMoutput1.Wci, LSTMoutput1.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput1.unnamed163 = Plus (LSTMoutput1.G1, LSTMoutput1.Wcidc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput1.it = Sigmoid (LSTMoutput1.unnamed163) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.G2 = Slice (LSTMoutput1.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.unnamed164 = Tanh (LSTMoutput1.G2) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.bit = ElementTimes (LSTMoutput1.it, LSTMoutput1.unnamed164) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.ct = Plus (LSTMoutput1.bft, LSTMoutput1.bit) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.Wcoct = DiagTimes (LSTMoutput1.Wco, LSTMoutput1.ct) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.unnamed166 = Plus (LSTMoutput1.G4, LSTMoutput1.Wcoct) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.ot = Sigmoid (LSTMoutput1.unnamed166) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.unnamed167 = Tanh (LSTMoutput1.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.mt = ElementTimes (LSTMoutput1.ot, LSTMoutput1.unnamed167) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.output = Times (LSTMoutput1.Wmr, LSTMoutput1.mt) : [512 x 1024], [1024 x 1 x *] -> [512 x 1 x *]
Node 'LSTMoutput2.wx' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 512 x 1].
Node 'LSTMoutput2.wx' (LearnableParameter operation): Initializing Parameter[4096 x 512 x 1] <- uniform(seed=7, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput2.wxx = Times (LSTMoutput2.wx, LSTMoutput1.output) : [4096 x 512 x 1], [512 x 1 x *] -> [4096 x *]
Validating --> LSTMoutput2.b = LearnableParameter() : -> [4096 x 1]
Validating --> LSTMoutput2.wxxpb = Plus (LSTMoutput2.wxx, LSTMoutput2.b) : [4096 x *], [4096 x 1] -> [4096 x 1 x *]
Validating --> LSTMoutput2.Wh = LearnableParameter() : -> [4096 x 0]
Validating --> LSTMoutput2.Wco = LearnableParameter() : -> [1024]
Validating --> LSTMoutput2.Wcf = LearnableParameter() : -> [1024]
Validating --> LSTMoutput2.Wci = LearnableParameter() : -> [1024]
Node 'LSTMoutput2.Wh' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 512].
Node 'LSTMoutput2.Wh' (LearnableParameter operation): Initializing Parameter[4096 x 512] <- uniform(seed=8, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput2.whh = Times (LSTMoutput2.Wh, LSTMoutput2.dh) : [4096 x 512], [512] -> [4096]
Validating --> LSTMoutput2.wxxpbpwhh = Plus (LSTMoutput2.wxxpb, LSTMoutput2.whh) : [4096 x 1 x *], [4096] -> [4096 x 1 x *]
Validating --> LSTMoutput2.G4 = Slice (LSTMoutput2.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.G3 = Slice (LSTMoutput2.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.Wcfdc = DiagTimes (LSTMoutput2.Wcf, LSTMoutput2.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput2.unnamed175 = Plus (LSTMoutput2.G3, LSTMoutput2.Wcfdc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput2.ft = Sigmoid (LSTMoutput2.unnamed175) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.bft = ElementTimes (LSTMoutput2.ft, LSTMoutput2.dc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput2.G1 = Slice (LSTMoutput2.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.Wcidc = DiagTimes (LSTMoutput2.Wci, LSTMoutput2.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput2.unnamed173 = Plus (LSTMoutput2.G1, LSTMoutput2.Wcidc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput2.it = Sigmoid (LSTMoutput2.unnamed173) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.G2 = Slice (LSTMoutput2.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.unnamed174 = Tanh (LSTMoutput2.G2) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.bit = ElementTimes (LSTMoutput2.it, LSTMoutput2.unnamed174) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.ct = Plus (LSTMoutput2.bft, LSTMoutput2.bit) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.Wcoct = DiagTimes (LSTMoutput2.Wco, LSTMoutput2.ct) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.unnamed176 = Plus (LSTMoutput2.G4, LSTMoutput2.Wcoct) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.ot = Sigmoid (LSTMoutput2.unnamed176) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.unnamed177 = Tanh (LSTMoutput2.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.mt = ElementTimes (LSTMoutput2.ot, LSTMoutput2.unnamed177) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.output = Times (LSTMoutput2.Wmr, LSTMoutput2.mt) : [512 x 1024], [1024 x 1 x *] -> [512 x 1 x *]
Node 'LSTMoutput3.wx' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 512 x 1].
Node 'LSTMoutput3.wx' (LearnableParameter operation): Initializing Parameter[4096 x 512 x 1] <- uniform(seed=13, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput3.wxx = Times (LSTMoutput3.wx, LSTMoutput2.output) : [4096 x 512 x 1], [512 x 1 x *] -> [4096 x *]
Validating --> LSTMoutput3.b = LearnableParameter() : -> [4096 x 1]
Validating --> LSTMoutput3.wxxpb = Plus (LSTMoutput3.wxx, LSTMoutput3.b) : [4096 x *], [4096 x 1] -> [4096 x 1 x *]
Validating --> LSTMoutput3.Wh = LearnableParameter() : -> [4096 x 0]
Validating --> LSTMoutput3.Wco = LearnableParameter() : -> [1024]
Validating --> LSTMoutput3.Wcf = LearnableParameter() : -> [1024]
Validating --> LSTMoutput3.Wci = LearnableParameter() : -> [1024]
Node 'LSTMoutput3.Wh' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 512].
Node 'LSTMoutput3.Wh' (LearnableParameter operation): Initializing Parameter[4096 x 512] <- uniform(seed=14, range=0.050000*1.000000, onCPU=false).
Validating --> LSTMoutput3.whh = Times (LSTMoutput3.Wh, LSTMoutput3.dh) : [4096 x 512], [512] -> [4096]
Validating --> LSTMoutput3.wxxpbpwhh = Plus (LSTMoutput3.wxxpb, LSTMoutput3.whh) : [4096 x 1 x *], [4096] -> [4096 x 1 x *]
Validating --> LSTMoutput3.G4 = Slice (LSTMoutput3.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.G3 = Slice (LSTMoutput3.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.Wcfdc = DiagTimes (LSTMoutput3.Wcf, LSTMoutput3.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput3.unnamed185 = Plus (LSTMoutput3.G3, LSTMoutput3.Wcfdc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput3.ft = Sigmoid (LSTMoutput3.unnamed185) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.bft = ElementTimes (LSTMoutput3.ft, LSTMoutput3.dc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput3.G1 = Slice (LSTMoutput3.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.Wcidc = DiagTimes (LSTMoutput3.Wci, LSTMoutput3.dc) : [1024], [1024] -> [1024]
Validating --> LSTMoutput3.unnamed183 = Plus (LSTMoutput3.G1, LSTMoutput3.Wcidc) : [1024 x 1 x *], [1024] -> [1024 x 1 x *]
Validating --> LSTMoutput3.it = Sigmoid (LSTMoutput3.unnamed183) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.G2 = Slice (LSTMoutput3.wxxpbpwhh) : [4096 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.unnamed184 = Tanh (LSTMoutput3.G2) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.bit = ElementTimes (LSTMoutput3.it, LSTMoutput3.unnamed184) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.ct = Plus (LSTMoutput3.bft, LSTMoutput3.bit) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.Wcoct = DiagTimes (LSTMoutput3.Wco, LSTMoutput3.ct) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.unnamed186 = Plus (LSTMoutput3.G4, LSTMoutput3.Wcoct) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.ot = Sigmoid (LSTMoutput3.unnamed186) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.unnamed187 = Tanh (LSTMoutput3.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.mt = ElementTimes (LSTMoutput3.ot, LSTMoutput3.unnamed187) : [1024 x 1 x *], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.output = Times (LSTMoutput3.Wmr, LSTMoutput3.mt) : [512 x 1024], [1024 x 1 x *] -> [512 x 1 x *]
Node 'W' (LearnableParameter operation) operation: Tensor shape was inferred as [132 x 512 x 1].
Node 'W' (LearnableParameter operation): Initializing Parameter[132 x 512 x 1] <- uniform(seed=19, range=0.050000*1.000000, onCPU=false).
Validating --> unnamed193 = Times (W, LSTMoutput3.output) : [132 x 512 x 1], [512 x 1 x *] -> [132 x *]
Validating --> b = LearnableParameter() : -> [132 x 1]
Validating --> LSTMoutputW = Plus (unnamed193, b) : [132 x *], [132 x 1] -> [132 x 1 x *]
Validating --> ce = CrossEntropyWithSoftmax (labels, LSTMoutputW) : [132 x *], [132 x 1 x *] -> [1]
Validating --> err = ErrorPrediction (labels, LSTMoutputW) : [132 x *], [132 x 1 x *] -> [1]
Validating --> logPrior.prior = Mean (labels) : [132 x *] -> [132]
Validating --> logPrior.logPrior = Log (logPrior.prior) : [132] -> [132]
Validating --> scaledLogLikelihood = Minus (LSTMoutputW, logPrior.logPrior) : [132 x 1 x *], [132] -> [132 x 1 x *]
Validating network. 88 nodes to process in pass 2.
Validating --> LSTMoutput1.dh = PastValue (LSTMoutput1.output) : [512 x 1 x *] -> [512 x 1 x *]
Validating --> LSTMoutput1.whh = Times (LSTMoutput1.Wh, LSTMoutput1.dh) : [4096 x 512], [512 x 1 x *] -> [4096 x 1 x *]
Validating --> LSTMoutput1.dc = PastValue (LSTMoutput1.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.Wcfdc = DiagTimes (LSTMoutput1.Wcf, LSTMoutput1.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput1.Wcidc = DiagTimes (LSTMoutput1.Wci, LSTMoutput1.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.dh = PastValue (LSTMoutput2.output) : [512 x 1 x *] -> [512 x 1 x *]
Validating --> LSTMoutput2.whh = Times (LSTMoutput2.Wh, LSTMoutput2.dh) : [4096 x 512], [512 x 1 x *] -> [4096 x 1 x *]
Validating --> LSTMoutput2.dc = PastValue (LSTMoutput2.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.Wcfdc = DiagTimes (LSTMoutput2.Wcf, LSTMoutput2.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput2.Wcidc = DiagTimes (LSTMoutput2.Wci, LSTMoutput2.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.dh = PastValue (LSTMoutput3.output) : [512 x 1 x *] -> [512 x 1 x *]
Validating --> LSTMoutput3.whh = Times (LSTMoutput3.Wh, LSTMoutput3.dh) : [4096 x 512], [512 x 1 x *] -> [4096 x 1 x *]
Validating --> LSTMoutput3.dc = PastValue (LSTMoutput3.ct) : [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.Wcfdc = DiagTimes (LSTMoutput3.Wcf, LSTMoutput3.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating --> LSTMoutput3.Wcidc = DiagTimes (LSTMoutput3.Wci, LSTMoutput3.dc) : [1024], [1024 x 1 x *] -> [1024 x 1 x *]
Validating network. 15 nodes to process in pass 3.
Validating network, final pass.
29 out of 113 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
08/16/2016 03:20:44: Created model with 113 nodes on GPU 0.
08/16/2016 03:20:44: Training criterion node(s):
08/16/2016 03:20:44: ce = CrossEntropyWithSoftmax
08/16/2016 03:20:44: Evaluation criterion node(s):
08/16/2016 03:20:44: err = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing: Out of 217 matrices, 125 are shared as 56, and 92 are not shared.
{ LSTMoutput2.mt : [1024 x 1 x *] (gradient)
LSTMoutput3.dh : [512 x 1 x *]
LSTMoutput3.wxx : [4096 x *] (gradient) }
{ LSTMoutput2.Wco : [1024] (gradient)
LSTMoutput3.dc : [1024 x 1 x *] }
{ LSTMoutput1.dh : [512 x 1 x *]
LSTMoutput1.wxx : [4096 x *] (gradient) }
{ LSTMoutput1.mt : [1024 x 1 x *] (gradient)
LSTMoutput2.dh : [512 x 1 x *]
LSTMoutput2.wxx : [4096 x *] (gradient) }
{ LSTMoutput1.Wco : [1024] (gradient)
LSTMoutput2.dc : [1024 x 1 x *] }
{ LSTMoutput3.b : [4096 x 1] (gradient)
LSTMoutput3.dh : [512 x 1 x *] (gradient) }
{ LSTMoutput1.bft : [1024 x 1 x *] (gradient)
LSTMoutput2.dc : [1024 x 1 x *] (gradient)
LSTMoutput3.G1 : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.G2 : [1024 x 1 x *] (gradient)
LSTMoutput2.Wcfdc : [1024 x 1 x *] (gradient)
LSTMoutput3.Wcidc : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.unnamed163 : [1024 x 1 x *] (gradient)
LSTMoutput2.unnamed175 : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.Wh : [4096 x 512] (gradient)
LSTMoutput2.G2 : [1024 x 1 x *] (gradient)
LSTMoutput3.Wcfdc : [1024 x 1 x *] (gradient) }
{ LSTMoutput2.bft : [1024 x 1 x *] (gradient)
LSTMoutput3.dc : [1024 x 1 x *] (gradient) }
{ LSTMoutput2.unnamed173 : [1024 x 1 x *] (gradient)
LSTMoutput3.unnamed185 : [1024 x 1 x *] (gradient) }
{ LSTMoutput2.unnamed177 : [1024 x 1 x *] (gradient)
LSTMoutput3.whh : [4096 x 1 x *] (gradient) }
{ LSTMoutput1.Wcidc : [1024 x 1 x *] (gradient)
LSTMoutput2.ft : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.Wcfdc : [1024 x 1 x *] (gradient)
LSTMoutput2.Wcidc : [1024 x 1 x *] (gradient)
LSTMoutput3.ft : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.wxxpb : [4096 x 1 x *] (gradient)
LSTMoutput2.it : [1024 x 1 x *] (gradient) }
{ LSTMoutput2.output : [512 x 1 x *] (gradient)
LSTMoutput3.wxxpb : [4096 x 1 x *] (gradient) }
{ LSTMoutput2.wx : [4096 x 512 x 1] (gradient)
LSTMoutput2.wxxpb : [4096 x 1 x *] }
{ LSTMoutput1.ct : [1024 x 1 x *] (gradient)
LSTMoutput2.wxxpbpwhh : [4096 x 1 x *] }
{ LSTMoutput1.unnamed164 : [1024 x 1 x *] (gradient)
LSTMoutput2.Wcfdc : [1024 x 1 x *] }
{ LSTMoutput1.G1 : [1024 x 1 x *] (gradient)
LSTMoutput2.ft : [1024 x 1 x *] }
{ LSTMoutput1.Wci : [1024] (gradient)
LSTMoutput2.G1 : [1024 x 1 x *] }
{ LSTMoutput1.Wcf : [1024] (gradient)
LSTMoutput2.it : [1024 x 1 x *] }
{ LSTMoutput1.ot : [1024 x 1 x *] (gradient)
LSTMoutput2.whh : [4096 x 1 x *] }
{ LSTMoutput1.G4 : [1024 x 1 x *] (gradient)
LSTMoutput2.G4 : [1024 x 1 x *] }
{ LSTMoutput1.Wmr : [512 x 1024] (gradient)
LSTMoutput2.wxx : [4096 x *] }
{ LSTMoutput1.G3 : [1024 x 1 x *] (gradient)
LSTMoutput2.Wcidc : [1024 x 1 x *] }
{ LSTMoutput1.whh : [4096 x 1 x *] (gradient)
LSTMoutput2.G2 : [1024 x 1 x *] }
{ LSTMoutput1.b : [4096 x 1] (gradient)
LSTMoutput1.dh : [512 x 1 x *] (gradient)
LSTMoutput2.unnamed174 : [1024 x 1 x *] }
{ LSTMoutput2.Wmr : [512 x 1024] (gradient)
LSTMoutput3.wxx : [4096 x *] }
{ LSTMoutput1.wxxpbpwhh : [4096 x 1 x *] (gradient)
LSTMoutput2.unnamed175 : [1024 x 1 x *] }
{ LSTMoutput1.wx : [4096 x 363] (gradient)
LSTMoutput1.wxxpb : [4096 x 1 x *] }
{ LSTMoutput2.unnamed174 : [1024 x 1 x *] (gradient)
LSTMoutput3.Wcfdc : [1024 x 1 x *] }
{ LSTMoutput2.G3 : [1024 x 1 x *] (gradient)
LSTMoutput3.Wcidc : [1024 x 1 x *] }
{ LSTMoutput2.Wcoct : [1024 x 1 x *] (gradient)
LSTMoutput3.G4 : [1024 x 1 x *] (gradient) }
{ LSTMoutput2.b : [4096 x 1] (gradient)
LSTMoutput2.dh : [512 x 1 x *] (gradient)
LSTMoutput3.unnamed184 : [1024 x 1 x *] }
{ LSTMoutput3.output : [512 x 1 x *] (gradient)
LSTMoutputW : [132 x 1 x *] (gradient) }
{ LSTMoutput1.ft : [1024 x 1 x *] (gradient)
LSTMoutput3.bft : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.output : [512 x 1 x *] (gradient)
LSTMoutput2.wxxpb : [4096 x 1 x *] (gradient)
LSTMoutput3.it : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.unnamed167 : [1024 x 1 x *] (gradient)
LSTMoutput2.whh : [4096 x 1 x *] (gradient)
LSTMoutput3.G2 : [1024 x 1 x *] }
{ LSTMoutput1.unnamed166 : [1024 x 1 x *] (gradient)
LSTMoutput2.wxxpbpwhh : [4096 x 1 x *] (gradient)
LSTMoutput3.unnamed185 : [1024 x 1 x *] }
{ LSTMoutput2.unnamed176 : [1024 x 1 x *] (gradient)
LSTMoutput3.wxxpbpwhh : [4096 x 1 x *] (gradient) }
{ LSTMoutput3.wx : [4096 x 512 x 1] (gradient)
LSTMoutput3.wxxpb : [4096 x 1 x *] }
{ LSTMoutput2.ct : [1024 x 1 x *] (gradient)
LSTMoutput3.wxxpbpwhh : [4096 x 1 x *] }
{ LSTMoutput2.ot : [1024 x 1 x *] (gradient)
LSTMoutput3.whh : [4096 x 1 x *] }
{ LSTMoutput3.mt : [1024 x 1 x *] (gradient)
unnamed193 : [132 x *] (gradient) }
{ LSTMoutput2.Wh : [4096 x 512] (gradient)
LSTMoutput3.G2 : [1024 x 1 x *] (gradient) }
{ LSTMoutput1.bit : [1024 x 1 x *] (gradient)
LSTMoutput3.unnamed183 : [1024 x 1 x *] (gradient) }
{ LSTMoutput3.Wmr : [512 x 1024] (gradient)
unnamed193 : [132 x *] }
{ LSTMoutput1.unnamed165 : [1024 x 1 x *] (gradient)
LSTMoutput3.bft : [1024 x 1 x *] }
{ LSTMoutputW : [132 x 1 x *]
W : [132 x 512 x 1] (gradient) }
{ LSTMoutput2.Wci : [1024] (gradient)
LSTMoutput3.G1 : [1024 x 1 x *] }
{ LSTMoutput1.dc : [1024 x 1 x *] (gradient)
LSTMoutput2.G1 : [1024 x 1 x *] (gradient)
LSTMoutput3.ft : [1024 x 1 x *] }
{ LSTMoutput2.Wcf : [1024] (gradient)
LSTMoutput3.it : [1024 x 1 x *] }
{ LSTMoutput1.it : [1024 x 1 x *] (gradient)
LSTMoutput3.unnamed183 : [1024 x 1 x *] }
{ LSTMoutput1.Wcoct : [1024 x 1 x *] (gradient)
LSTMoutput2.G4 : [1024 x 1 x *] (gradient)
LSTMoutput3.G4 : [1024 x 1 x *] }
08/16/2016 03:20:44: Training 13634692 parameters in 23 out of 23 parameter tensors and 104 nodes with gradient:
08/16/2016 03:20:44: Node 'LSTMoutput1.Wcf' (LearnableParameter operation) : [1024]
08/16/2016 03:20:44: Node 'LSTMoutput1.Wci' (LearnableParameter operation) : [1024]
08/16/2016 03:20:44: Node 'LSTMoutput1.Wco' (LearnableParameter operation) : [1024]
08/16/2016 03:20:44: Node 'LSTMoutput1.Wh' (LearnableParameter operation) : [4096 x 512]
08/16/2016 03:20:44: Node 'LSTMoutput1.Wmr' (LearnableParameter operation) : [512 x 1024]
08/16/2016 03:20:44: Node 'LSTMoutput1.b' (LearnableParameter operation) : [4096 x 1]
08/16/2016 03:20:44: Node 'LSTMoutput1.wx' (LearnableParameter operation) : [4096 x 363]
08/16/2016 03:20:44: Node 'LSTMoutput2.Wcf' (LearnableParameter operation) : [1024]
08/16/2016 03:20:44: Node 'LSTMoutput2.Wci' (LearnableParameter operation) : [1024]
08/16/2016 03:20:44: Node 'LSTMoutput2.Wco' (LearnableParameter operation) : [1024]
08/16/2016 03:20:44: Node 'LSTMoutput2.Wh' (LearnableParameter operation) : [4096 x 512]
08/16/2016 03:20:44: Node 'LSTMoutput2.Wmr' (LearnableParameter operation) : [512 x 1024]
08/16/2016 03:20:44: Node 'LSTMoutput2.b' (LearnableParameter operation) : [4096 x 1]
08/16/2016 03:20:44: Node 'LSTMoutput2.wx' (LearnableParameter operation) : [4096 x 512 x 1]
08/16/2016 03:20:44: Node 'LSTMoutput3.Wcf' (LearnableParameter operation) : [1024]
08/16/2016 03:20:44: Node 'LSTMoutput3.Wci' (LearnableParameter operation) : [1024]
08/16/2016 03:20:44: Node 'LSTMoutput3.Wco' (LearnableParameter operation) : [1024]
08/16/2016 03:20:44: Node 'LSTMoutput3.Wh' (LearnableParameter operation) : [4096 x 512]
08/16/2016 03:20:44: Node 'LSTMoutput3.Wmr' (LearnableParameter operation) : [512 x 1024]
08/16/2016 03:20:44: Node 'LSTMoutput3.b' (LearnableParameter operation) : [4096 x 1]
08/16/2016 03:20:44: Node 'LSTMoutput3.wx' (LearnableParameter operation) : [4096 x 512 x 1]
08/16/2016 03:20:44: Node 'W' (LearnableParameter operation) : [132 x 512 x 1]
08/16/2016 03:20:44: Node 'b' (LearnableParameter operation) : [132 x 1]
08/16/2016 03:20:44: Precomputing --> 3 PreCompute nodes found.
08/16/2016 03:20:44: featNorm.xMean = Mean()
08/16/2016 03:20:44: featNorm.xStdDev = InvStdDev()
08/16/2016 03:20:44: logPrior.prior = Mean()
minibatchiterator: epoch 0: frames [0..252734] (first utterance at frame 0), data subset 0 of 1, with 1 datapasses
requiredata: determined feature kind as 33-dimensional 'USER' with frame shift 10.0 ms
08/16/2016 03:20:45: Precomputing --> Completed.
08/16/2016 03:20:46: Starting Epoch 1: learning rate per sample = 0.001953 effective momentum = 0.000000 momentum as time constant = 0.0 samples
minibatchiterator: epoch 0: frames [0..64] (first utterance at frame 0), data subset 0 of 1, with 1 datapasses
08/16/2016 03:20:46: Starting minibatch loop.
08/16/2016 03:20:47: Epoch[ 1 of 1]-Minibatch[ 1- 10, 250.00%]: ce = 4.87453079 * 160; err = 0.90625000 * 160; time = 1.1338s; samplesPerSecond = 141.1
08/16/2016 03:20:48: Epoch[ 1 of 1]-Minibatch[ 11- 20, 500.00%]: ce = 4.84628143 * 160; err = 0.69375000 * 160; time = 1.0409s; samplesPerSecond = 153.7
08/16/2016 03:20:49: Finished Epoch[ 1 of 1]: [Training] ce = 4.85708837 * 418; err = 0.80382775 * 418; totalSamplesSeen = 418; learningRatePerSample = 0.001953125; epochTime=2.90303s
08/16/2016 03:20:50: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816031849.416502\Examples\Speech\AN4_LSTM@release_gpu/Models/cntkSpeechLSTM.dnn'
08/16/2016 03:20:51: CNTKCommandTrainEnd: speechTrain
08/16/2016 03:20:51: Action "train" complete.
08/16/2016 03:20:51: __COMPLETED__

Просмотреть файл

@ -5,5 +5,5 @@
ConfigDir=$TEST_DIR/../../../../../../Examples/Speech/AN4/Config
# cntkrun <CNTK config file name> <additional CNTK args>
cntkrun LSTM-NDL.cntk "speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=64]] parallelTrain=false" || exit $?
cntkrun LSTM-NDL.cntk "speechTrain=[SGD=[maxEpochs=1]] speechTrain=[SGD=[epochSize=64]] speechTrain=[reader=[useMersenneTwisterRand=true]] parallelTrain=false" || exit $?

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -6,4 +6,4 @@
. $TEST_DIR/../run-timit-test-common
# cntkrun <CNTK config file name> <additional CNTK arg>
cntkrun TIMIT_AdaptLearnRate.cntk "$CntkArguments" || exit $?
cntkrun TIMIT_AdaptLearnRate.cntk "$CntkArguments TIMIT_TrainAdaptLR=[reader=[useMersenneTwisterRand=true]] TIMIT_TrainAdaptLR=[cvReader=[useMersenneTwisterRand=true]]" || exit $?

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -6,7 +6,7 @@
. $TEST_DIR/../run-timit-test-common
# Train:
cntkrun TIMIT_TrainSimpleNetwork.cntk "$CntkArguments" || exit $?
cntkrun TIMIT_TrainSimpleNetwork.cntk "$CntkArguments TIMIT_TrainSimple=[reader=[useMersenneTwisterRand=true]]" || exit $?
# Validate:
cntkrun TIMIT_CrossValidateSimpleNetwork.cntk "$CntkArguments" || exit $?
cntkrun TIMIT_CrossValidateSimpleNetwork.cntk "$CntkArguments" || exit $?

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -6,7 +6,7 @@
. $TEST_DIR/../run-timit-test-common
# Train:
cntkrun TIMIT_TrainSimpleNetwork.cntk "$CntkArguments" || exit $?
cntkrun TIMIT_TrainSimpleNetwork.cntk "$CntkArguments TIMIT_TrainSimple=[reader=[useMersenneTwisterRand=true]]" || exit $?
# Validate:
cntkrun TIMIT_EvalSimpleNetwork.cntk "$CntkArguments" || exit $?
cntkrun TIMIT_EvalSimpleNetwork.cntk "$CntkArguments" || exit $?

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -5,4 +5,4 @@
# specific TIMIT variables
. $TEST_DIR/../run-timit-test-common
cntkrun TIMIT_TrainAutoEncoder.cntk "$CntkArguments" || exit $?
cntkrun TIMIT_TrainAutoEncoder.cntk "$CntkArguments TIMIT_TrainAutoEncoder=[reader=[useMersenneTwisterRand=true]]" || exit $?

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -6,4 +6,4 @@
. $TEST_DIR/../run-timit-test-common
# Running only 3 epochs (~1000s gpu release), because full run takes a lot of time.
cntkrun TIMIT_TrainLSTM.cntk "$CntkArguments TIMIT_TrainLSTM=[SGD=[maxEpochs=3]]" || exit $?
cntkrun TIMIT_TrainLSTM.cntk "$CntkArguments TIMIT_TrainLSTM=[SGD=[maxEpochs=3]] TIMIT_TrainLSTM=[reader=[useMersenneTwisterRand=true]] TIMIT_TrainLSTM=[cvReader=[useMersenneTwisterRand=true]]" || exit $?

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -5,4 +5,4 @@
# specific TIMIT variables
. $TEST_DIR/../run-timit-test-common
cntkrun TIMIT_TrainMultiInput.cntk "$CntkArguments" || exit $?
cntkrun TIMIT_TrainMultiInput.cntk "$CntkArguments TIMIT_TrainMultiInput=[reader=[useMersenneTwisterRand=true]]" || exit $?

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -5,4 +5,4 @@
# specific TIMIT variables
. $TEST_DIR/../run-timit-test-common
cntkrun TIMIT_TrainMultiTask.cntk "$CntkArguments" || exit $?
cntkrun TIMIT_TrainMultiTask.cntk "$CntkArguments TIMIT_TrainMultiTask=[reader=[useMersenneTwisterRand=true]]" || exit $?

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -5,4 +5,4 @@
# specific TIMIT variables
. $TEST_DIR/../run-timit-test-common
cntkrun TIMIT_TrainNDLNetwork.cntk "$CntkArguments" || exit $?
cntkrun TIMIT_TrainNDLNetwork.cntk "$CntkArguments TIMIT_TrainNDL=[reader=[useMersenneTwisterRand=true]]" || exit $?

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -5,4 +5,4 @@
# specific TIMIT variables
. $TEST_DIR/../run-timit-test-common
cntkrun TIMIT_TrainSimpleNetwork.cntk "$CntkArguments" || exit $?
cntkrun TIMIT_TrainSimpleNetwork.cntk "$CntkArguments TIMIT_TrainSimple=[reader=[useMersenneTwisterRand=true]]" || exit $?

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -5,4 +5,4 @@
# specific TIMIT variables
. $TEST_DIR/../run-timit-test-common
cntkrun TIMIT_TrainWithPreTrain.cntk "$CntkArguments" || exit $?
cntkrun TIMIT_TrainWithPreTrain.cntk "$CntkArguments reader=[useMersenneTwisterRand=true]" || exit $?

Просмотреть файл

@ -6,7 +6,7 @@
. $TEST_DIR/../run-timit-test-common
# Train:
cntkrun TIMIT_TrainAutoEncoder.cntk "$CntkArguments" || exit $?
cntkrun TIMIT_TrainAutoEncoder.cntk "$CntkArguments TIMIT_TrainAutoEncoder=[reader=[useMersenneTwisterRand=true]]" || exit $?
# Copy the test data to the test run directory, so that we do not damage anything
DataDir=$TEST_RUN_DIR/TestData
@ -14,7 +14,7 @@ mkdir $DataDir
cp -R $DataSourceDir/* $DataDir || exit $?
# Write:
cntkrun TIMIT_WriteBottleneck.cntk "$CntkArguments"
cntkrun TIMIT_WriteBottleneck.cntk "$CntkArguments TIMIT_WriteBottleneck=[reader=[useMersenneTwisterRand=true]]"
ExitCode=$?
if [ $ExitCode == 0 ]; then

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -1,192 +1,192 @@
008199bc8de688c21c4337d79e5a2d54 *./test/dr6/fmgd0/test-dr6-fmgd0-sx214.mfc
a09454946bbae1fcd76a8e9e86e0dbce *./test/dr6/fmgd0/test-dr6-fmgd0-si1564.mfc
cda241d0dda0b2f48829af9e90ade6bd *./test/dr6/fmgd0/test-dr6-fmgd0-sx124.mfc
f3fa8f7569d4a61e8c9d57a2627e599a *./test/dr6/fmgd0/test-dr6-fmgd0-si934.mfc
8b9c8813a495e66e82a99e809b3e3e48 *./test/dr6/fmgd0/test-dr6-fmgd0-sx34.mfc
6e0a154ee5a70463299d028b509376d3 *./test/dr6/fmgd0/test-dr6-fmgd0-si2194.mfc
40c03da4f49736bb90d280620078e4ad *./test/dr6/fmgd0/test-dr6-fmgd0-sx304.mfc
5235543f7be1d0842e30951c2dd94646 *./test/dr6/fmgd0/test-dr6-fmgd0-sx394.mfc
36b39c1f8242fc5fb3a4abd93269f0fb *./test/dr6/mjdh0/test-dr6-mjdh0-sx94.mfc
60924645f6f9fc7b1f628ae0b0afeb43 *./test/dr6/mjdh0/test-dr6-mjdh0-si1984.mfc
fab29be1ddc1a639e2fc32c27ef5f7fd *./test/dr6/mjdh0/test-dr6-mjdh0-si724.mfc
9bf33afe6dd857990fdf9bd2fef7445c *./test/dr6/mjdh0/test-dr6-mjdh0-si1354.mfc
58978d83757b6c7a368a4741b52df6e9 *./test/dr6/mjdh0/test-dr6-mjdh0-sx184.mfc
911ce221f83e75801ad7ab66248119ac *./test/dr6/mjdh0/test-dr6-mjdh0-sx274.mfc
c030e2273100bb0a7aa8de910ab6d79e *./test/dr6/mjdh0/test-dr6-mjdh0-sx4.mfc
54e71a5b8ea778f7e5fc8485ef899b58 *./test/dr6/mjdh0/test-dr6-mjdh0-sx364.mfc
8968c27639613df928e02c1eadbabd7c *./test/dr6/mcmj0/test-dr6-mcmj0-si464.mfc
a02ebfce2f26fd27942944ce72d53545 *./test/dr6/mcmj0/test-dr6-mcmj0-si602.mfc
1593dae1d16b132aa45bafd135118d12 *./test/dr6/mcmj0/test-dr6-mcmj0-sx284.mfc
f682879d6969fb77f7fecf47122a6086 *./test/dr6/mcmj0/test-dr6-mcmj0-sx374.mfc
029a35db879f51bdcfc3cf36696e679f *./test/dr6/mcmj0/test-dr6-mcmj0-sx194.mfc
4430f105960f827ddcd65e679db92a0c *./test/dr6/mcmj0/test-dr6-mcmj0-sx14.mfc
e20f3bd86b74ac114adf450fa7979760 *./test/dr6/mcmj0/test-dr6-mcmj0-sx104.mfc
9e4f776518b246354c3e896946c1b087 *./test/dr6/mcmj0/test-dr6-mcmj0-si1094.mfc
0dbf102b2fb6e49e0bc3a2168c39a7a4 *./test/dr4/mlll0/test-dr4-mlll0-si733.mfc
1da967c0ca60ddc2ade51656adebefd4 *./test/dr4/mlll0/test-dr4-mlll0-si1993.mfc
e62d79867fff8a0dbbfccac83f7b9b94 *./test/dr4/mlll0/test-dr4-mlll0-sx283.mfc
e514efb114be7b4887d7d8e3a05db32f *./test/dr4/mlll0/test-dr4-mlll0-sx103.mfc
ca3463b42d4f6abac46fe402828eb5cb *./test/dr4/mlll0/test-dr4-mlll0-si1363.mfc
9e083cf50bd386ee092b5edb9d37792f *./test/dr4/mlll0/test-dr4-mlll0-sx193.mfc
683b4108b96f11e9acb07b3c400d13b6 *./test/dr4/mlll0/test-dr4-mlll0-sx13.mfc
54f241efad72d43f6c212559d880b6d4 *./test/dr4/mlll0/test-dr4-mlll0-sx373.mfc
cefca983fb158b599db45d458e73d7e2 *./test/dr4/fjlm0/test-dr4-fjlm0-si1043.mfc
4d64b945b3cdca3ed09c6519f7a61587 *./test/dr4/fjlm0/test-dr4-fjlm0-sx323.mfc
c2ffb046aa6471fcee7c991c51ad7f32 *./test/dr4/fjlm0/test-dr4-fjlm0-sx413.mfc
1f71221a5ae059ed429e0a44f0672583 *./test/dr4/fjlm0/test-dr4-fjlm0-si1673.mfc
1bcb4776ad609b3350f7fa09c47f5601 *./test/dr4/fjlm0/test-dr4-fjlm0-sx53.mfc
cca9dad22152de5f882d4fb592fb0bb6 *./test/dr4/fjlm0/test-dr4-fjlm0-sx143.mfc
3076b36964132ca361c327545c21fb7a *./test/dr4/fjlm0/test-dr4-fjlm0-si2303.mfc
6db1b910ef258ced9b7ad8b91890f88d *./test/dr4/fjlm0/test-dr4-fjlm0-sx233.mfc
447c990a84018e217af9a1b26dc6c7bf *./test/dr4/mtls0/test-dr4-mtls0-si740.mfc
d7e72ac62bb6fe2dad3d811f2115fe6f *./test/dr4/mtls0/test-dr4-mtls0-si1370.mfc
1e2876b76919b231093330ef9dd8b112 *./test/dr4/mtls0/test-dr4-mtls0-sx380.mfc
ddac5699320d12800ec22727e5df202e *./test/dr4/mtls0/test-dr4-mtls0-sx200.mfc
81fd1df548bdb101903a7b126b7cc001 *./test/dr4/mtls0/test-dr4-mtls0-sx110.mfc
70a84b62d6eabaecbc155b03d7f2b1c7 *./test/dr4/mtls0/test-dr4-mtls0-si2000.mfc
f0c78988063079215548f2471aa01430 *./test/dr4/mtls0/test-dr4-mtls0-sx20.mfc
9e91c73d9c2520d64fa01c654fb759e9 *./test/dr4/mtls0/test-dr4-mtls0-sx290.mfc
8a834dfcc67cb8b89267b93ebb15a130 *./test/dr2/mwew0/test-dr2-mwew0-sx281.mfc
8c81455edfa6f966b4734e53f23dc8b6 *./test/dr2/mwew0/test-dr2-mwew0-si1361.mfc
88880d1543e5fed8210ddb5b47b2c9b4 *./test/dr2/mwew0/test-dr2-mwew0-si731.mfc
6a2d4faa44d909dcacaa0697b8b5ca75 *./test/dr2/mwew0/test-dr2-mwew0-si1991.mfc
a8c92f05369916093b6c4003b3c218e5 *./test/dr2/mwew0/test-dr2-mwew0-sx371.mfc
b2ba0fc21dd4b8ff3da2daaed7405b85 *./test/dr2/mwew0/test-dr2-mwew0-sx101.mfc
7f7679dc5fcb62f293f5a0505dc41120 *./test/dr2/mwew0/test-dr2-mwew0-sx11.mfc
f7c0807de7e957e54fabdfa4dd515b68 *./test/dr2/mwew0/test-dr2-mwew0-sx191.mfc
3c0e06bc402b045db13f0a00cc88e60d *./test/dr2/fpas0/test-dr2-fpas0-si1272.mfc
44b81b626bb5fe4f3cbbb1aeab6d7123 *./test/dr2/fpas0/test-dr2-fpas0-sx404.mfc
974528370db8c1f4d45f66f3508104b5 *./test/dr2/fpas0/test-dr2-fpas0-sx224.mfc
9e20ebf987c3ca2760c9bc2b53a44669 *./test/dr2/fpas0/test-dr2-fpas0-si944.mfc
a286e3e0d89c1aa3b9b03ee22431cd82 *./test/dr2/fpas0/test-dr2-fpas0-si2204.mfc
8e35b333120bd9ed8d974fad1a5b2cf7 *./test/dr2/fpas0/test-dr2-fpas0-sx134.mfc
bbbfd97699365ddb38cf5cae52737c7a *./test/dr2/fpas0/test-dr2-fpas0-sx314.mfc
7f546e31fcd8d18101f319a2d3897706 *./test/dr2/fpas0/test-dr2-fpas0-sx44.mfc
647d5dd9f817bc32349f55a82256e169 *./test/dr2/mtas1/test-dr2-mtas1-sx298.mfc
cb3e118936cfca96f6334b2a54f490b2 *./test/dr2/mtas1/test-dr2-mtas1-sx388.mfc
7e5478a076b52944c3c1e99d71b1d6b8 *./test/dr2/mtas1/test-dr2-mtas1-si1473.mfc
7ca01ad520a5d512e2ba344e62cba222 *./test/dr2/mtas1/test-dr2-mtas1-sx208.mfc
140323d4f4ca92bb4b4e8078900ea543 *./test/dr2/mtas1/test-dr2-mtas1-si838.mfc
27b3a518a68f2660b005caaecc22c0e1 *./test/dr2/mtas1/test-dr2-mtas1-sx28.mfc
5a999b2a663309b0aa465bdaf7268ca3 *./test/dr2/mtas1/test-dr2-mtas1-si2098.mfc
062fbc0e54961731c91333d501e58a9f *./test/dr2/mtas1/test-dr2-mtas1-sx118.mfc
924815fb114abaecfd6cef1023a746f2 *./test/dr5/fnlp0/test-dr5-fnlp0-sx318.mfc
aeebe1234b63bc31e114adf7502c380e *./test/dr5/fnlp0/test-dr5-fnlp0-sx48.mfc
62e5b81fe11a9f1dcc1500eba6dece50 *./test/dr5/fnlp0/test-dr5-fnlp0-sx138.mfc
861409908ee0430362e3dbf3d851ba7d *./test/dr5/fnlp0/test-dr5-fnlp0-si1308.mfc
fb62d81b35b54aa39c08374414d575ff *./test/dr5/fnlp0/test-dr5-fnlp0-si678.mfc
6f4f98b45da068942f12eb216c3293b7 *./test/dr5/fnlp0/test-dr5-fnlp0-si1938.mfc
4e1176f25969dcf9d16d741f87d7f3c6 *./test/dr5/fnlp0/test-dr5-fnlp0-sx408.mfc
af64ba27116e9ca2c94110e6ea1d6193 *./test/dr5/fnlp0/test-dr5-fnlp0-sx228.mfc
b333633b2d9f468a36eed992d4732de8 *./test/dr5/mklt0/test-dr5-mklt0-si1843.mfc
0d067eb40753307483bb1c2e949e883d *./test/dr5/mklt0/test-dr5-mklt0-sx313.mfc
8d5aa3d8c6cb0958effc6b0d7b8bb08d *./test/dr5/mklt0/test-dr5-mklt0-sx403.mfc
6cfeac9e9883702e42dad3005cf20d13 *./test/dr5/mklt0/test-dr5-mklt0-sx43.mfc
c2557774237aba661b654b6679fc9f24 *./test/dr5/mklt0/test-dr5-mklt0-sx223.mfc
16a378457fd8927ddbac3c8691b7de3c *./test/dr5/mklt0/test-dr5-mklt0-sx133.mfc
417ad64b6e67b8bff0d38d7c3d8872c0 *./test/dr5/mklt0/test-dr5-mklt0-si1213.mfc
e093fb5e78bb772e324b3a93b608b6d6 *./test/dr5/mklt0/test-dr5-mklt0-si583.mfc
81d4c2ca418f57e8d2dd3fca1843e4aa *./test/dr5/mbpm0/test-dr5-mbpm0-sx47.mfc
30999743f1c335782b8a99cc59e40ab8 *./test/dr5/mbpm0/test-dr5-mbpm0-sx407.mfc
73891bfeb2c918223d5ab98747a08bfb *./test/dr5/mbpm0/test-dr5-mbpm0-sx137.mfc
21f85c04df7a63fffb902191f52d2d36 *./test/dr5/mbpm0/test-dr5-mbpm0-si1584.mfc
66121d0f1761ca1b9b610c3c249c532e *./test/dr5/mbpm0/test-dr5-mbpm0-si947.mfc
9b8eab44215bfe06c4feec05bf425b26 *./test/dr5/mbpm0/test-dr5-mbpm0-si1577.mfc
c59b8f9646c111251ce0c50dd384c2eb *./test/dr5/mbpm0/test-dr5-mbpm0-sx317.mfc
929b2b9ce14114856689847fb99cdb57 *./test/dr5/mbpm0/test-dr5-mbpm0-sx227.mfc
5ece7f6cc073c433415d419a107771f3 *./test/dr1/mwbt0/test-dr1-mwbt0-si1553.mfc
12269b7e28a9377e848b1f8d71c9107a *./test/dr1/mwbt0/test-dr1-mwbt0-sx293.mfc
ca6e2cd158e9bdea4b3cb96588fee9e7 *./test/dr1/mwbt0/test-dr1-mwbt0-sx203.mfc
6e01e230e76cc78c6e6d0c76aaa1b5e7 *./test/dr1/mwbt0/test-dr1-mwbt0-sx383.mfc
a44309d0711466684c2a45dc89f1fb18 *./test/dr1/mwbt0/test-dr1-mwbt0-sx113.mfc
b93673dbdfc9aa77b4c2a45863ad5a59 *./test/dr1/mwbt0/test-dr1-mwbt0-si923.mfc
c272c146ab82cebb96fe7bf0cbc0641d *./test/dr1/mwbt0/test-dr1-mwbt0-sx23.mfc
e2e1dc6714afaf661c6d2133f217a32c *./test/dr1/mwbt0/test-dr1-mwbt0-si2183.mfc
b6161b5f3eddf14e46737099079eb2f5 *./test/dr1/felc0/test-dr1-felc0-sx216.mfc
ce8fa844066519dab32a880ae159df1e *./test/dr1/felc0/test-dr1-felc0-si1386.mfc
fd0272cc2ca58ee0b39c099a4bfef3b4 *./test/dr1/felc0/test-dr1-felc0-sx36.mfc
8d4454b9cc1357f9c72a8d63914e9763 *./test/dr1/felc0/test-dr1-felc0-sx306.mfc
0eaf25920a21bc4c97ea0aad1eb1e0f0 *./test/dr1/felc0/test-dr1-felc0-sx126.mfc
2fe03ccbef1345402e7dd1394d7c3a52 *./test/dr1/felc0/test-dr1-felc0-sx396.mfc
5c3d0e5e3561bb9baca88f7f93b830bd *./test/dr1/felc0/test-dr1-felc0-si2016.mfc
9e6b407f1a569f07c3018e607d97b029 *./test/dr1/felc0/test-dr1-felc0-si756.mfc
bdc3575486a50bedf2a0c1ec5b2c61ab *./test/dr1/mdab0/test-dr1-mdab0-sx319.mfc
3a484f664b67f52a5fad0773ca155c17 *./test/dr1/mdab0/test-dr1-mdab0-sx409.mfc
9336d98d64c586878d962014ceb0b9c1 *./test/dr1/mdab0/test-dr1-mdab0-sx49.mfc
394267eb026cb93f14aff4c1b80b431d *./test/dr1/mdab0/test-dr1-mdab0-si1039.mfc
1a83225df3baa6ed925d37d228ac8892 *./test/dr1/mdab0/test-dr1-mdab0-sx139.mfc
390d7cdf8e040ef585202bea92a090ac *./test/dr1/mdab0/test-dr1-mdab0-sx229.mfc
eacb7f7afdaa3c5f5ce81893c2875660 *./test/dr1/mdab0/test-dr1-mdab0-si2299.mfc
9d5e358659b84c1466ef8e08d5076490 *./test/dr1/mdab0/test-dr1-mdab0-si1669.mfc
a718377d99525714aed4397a2b527275 *./test/dr3/mjmp0/test-dr3-mjmp0-si1535.mfc
1495b8fc45a4957d8e6fea3faa1f2736 *./test/dr3/mjmp0/test-dr3-mjmp0-sx185.mfc
d5fdf9e2f75e49b5c8f36657216e64aa *./test/dr3/mjmp0/test-dr3-mjmp0-si905.mfc
5bd3679ae219b07c2f5c3d1ea2e52b5e *./test/dr3/mjmp0/test-dr3-mjmp0-si1791.mfc
2ed17e351f8f7771858596bc64d89bba *./test/dr3/mjmp0/test-dr3-mjmp0-sx275.mfc
cbc1ef7fa4c1c953438599a886c06a4c *./test/dr3/mjmp0/test-dr3-mjmp0-sx365.mfc
e4e0a69315f35747c7b4d4502a92c0d5 *./test/dr3/mjmp0/test-dr3-mjmp0-sx5.mfc
925b9fffe853911d7ff96599ddeacac5 *./test/dr3/mjmp0/test-dr3-mjmp0-sx95.mfc
ad8d100175ac9c972f9e4ab8a0bce6ba *./test/dr3/fpkt0/test-dr3-fpkt0-sx188.mfc
1e0b979f3a74868b770cd5dd5338c797 *./test/dr3/fpkt0/test-dr3-fpkt0-sx8.mfc
027129dc52160f3e8ae72b85e6aaefd8 *./test/dr3/fpkt0/test-dr3-fpkt0-si2168.mfc
9def895c1d836cfc60377c41562cb417 *./test/dr3/fpkt0/test-dr3-fpkt0-sx368.mfc
55ac12d3d594c816c0247e8628ebee60 *./test/dr3/fpkt0/test-dr3-fpkt0-sx278.mfc
cd65be1bf1ea4b7d64b6f42fc12f40e5 *./test/dr3/fpkt0/test-dr3-fpkt0-sx98.mfc
b479ff6fed48fd9c912ce4754279d8ce *./test/dr3/fpkt0/test-dr3-fpkt0-si908.mfc
1996f043ef709354a67e18080ccb008c *./test/dr3/fpkt0/test-dr3-fpkt0-si1538.mfc
9fbaa1a0f138c61e08a62701ea6b3ef1 *./test/dr3/mlnt0/test-dr3-mlnt0-si1574.mfc
b27ec963d087eb7e4111a5b46724f4cb *./test/dr3/mlnt0/test-dr3-mlnt0-sx372.mfc
0de11a9047d3b751724a64eea1011613 *./test/dr3/mlnt0/test-dr3-mlnt0-si1902.mfc
d928d9c74b78100df740dfa6b42966a1 *./test/dr3/mlnt0/test-dr3-mlnt0-sx12.mfc
23951f69bcac074e948e5b51522c2645 *./test/dr3/mlnt0/test-dr3-mlnt0-sx102.mfc
c8ef0e56da8cfeabcdcf845af50d8a6c *./test/dr3/mlnt0/test-dr3-mlnt0-sx192.mfc
8811978c6da973f50fb0fd6ae2972b8a *./test/dr3/mlnt0/test-dr3-mlnt0-sx282.mfc
8385218511bc8e26c55a2b69f8ec3609 *./test/dr3/mlnt0/test-dr3-mlnt0-si642.mfc
688d620c7903a881162481a27a8b7c09 *./test/dr7/mgrt0/test-dr7-mgrt0-si820.mfc
51dd3429fa9d1b8cd6cf6518c7de8de9 *./test/dr7/mgrt0/test-dr7-mgrt0-sx280.mfc
bae55ae5080af76372ab0a6929e801b9 *./test/dr7/mgrt0/test-dr7-mgrt0-sx370.mfc
83f68583cb2f1b19d74a4c7046c6d62f *./test/dr7/mgrt0/test-dr7-mgrt0-si1450.mfc
3564132d9b76a6def1566394539629e1 *./test/dr7/mgrt0/test-dr7-mgrt0-sx190.mfc
d161cbe022fd4c806a323da921ce4d56 *./test/dr7/mgrt0/test-dr7-mgrt0-sx10.mfc
9a9ef7e4ab66da0c7ae498a3906c8a52 *./test/dr7/mgrt0/test-dr7-mgrt0-sx100.mfc
3c5967eff1e9fa115885651d79a5733b *./test/dr7/mgrt0/test-dr7-mgrt0-si2080.mfc
9a9e9470d8400ce27063e6d28ff1f15b *./test/dr7/mnjm0/test-dr7-mnjm0-sx320.mfc
9e7be5e7a1716f3a34b6971d726f20cb *./test/dr7/mnjm0/test-dr7-mnjm0-sx230.mfc
7a3de9626a8b8399d5b6370333e2e35d *./test/dr7/mnjm0/test-dr7-mnjm0-si1580.mfc
55ab6bc3f71b80b3b3c2fa8150167fa0 *./test/dr7/mnjm0/test-dr7-mnjm0-sx50.mfc
6d46e1cc0fd50fa477e671b140944b88 *./test/dr7/mnjm0/test-dr7-mnjm0-si2210.mfc
b423d4be8c113a5af7abe6ad97ed6da5 *./test/dr7/mnjm0/test-dr7-mnjm0-si950.mfc
c9bbbd2ca7ff68f01c2b9063c4d398c5 *./test/dr7/mnjm0/test-dr7-mnjm0-sx410.mfc
a69b03327312770c0e1702e39697be4a *./test/dr7/mnjm0/test-dr7-mnjm0-sx140.mfc
24923249a28636ae9a9b28b9bf965a94 *./test/dr7/fdhc0/test-dr7-fdhc0-si929.mfc
1a190740b7ca783d9df1906513f158ae *./test/dr7/fdhc0/test-dr7-fdhc0-si1559.mfc
f35c276dbb3368fb5fab5ba53946dd28 *./test/dr7/fdhc0/test-dr7-fdhc0-sx389.mfc
cf41463caea22607454d26938683748d *./test/dr7/fdhc0/test-dr7-fdhc0-sx209.mfc
fe02e1e36bb8e4be1f08c9d28f239f5d *./test/dr7/fdhc0/test-dr7-fdhc0-sx29.mfc
a246a323faa7e3f462c34399af4cf4bc *./test/dr7/fdhc0/test-dr7-fdhc0-sx119.mfc
690e2b399763139a22328eeee4c2b311 *./test/dr7/fdhc0/test-dr7-fdhc0-sx299.mfc
35ca97af9bdaf49842a8120987f151cb *./test/dr7/fdhc0/test-dr7-fdhc0-si2189.mfc
1bdc0ae811834afcf489fa21539223dd *./test/dr8/mpam0/test-dr8-mpam0-si1961.mfc
c245c8cd5a45e01d100e224650fa9b4f *./test/dr8/mpam0/test-dr8-mpam0-sx109.mfc
0d7e36c02f2f27d760879c9b80145c0a *./test/dr8/mpam0/test-dr8-mpam0-si1189.mfc
a748c297bbd31ad8debc9e38ec233910 *./test/dr8/mpam0/test-dr8-mpam0-sx199.mfc
9af2232dbd7e48d68bf8d0898ee35ffd *./test/dr8/mpam0/test-dr8-mpam0-sx289.mfc
859b63746ac8e00425381d108c82e790 *./test/dr8/mpam0/test-dr8-mpam0-sx19.mfc
6a3516280d03082cb0945b821f21f1d0 *./test/dr8/mpam0/test-dr8-mpam0-sx379.mfc
41fab34edd37aefef76aafc81d277d4d *./test/dr8/mpam0/test-dr8-mpam0-si1819.mfc
433782ab0866db919468a01ddde5da5e *./test/dr8/fmld0/test-dr8-fmld0-sx295.mfc
d90f96b83a6540e8738d4dd82544ab7a *./test/dr8/fmld0/test-dr8-fmld0-si2185.mfc
28a78f8fcbc102acc82b92b78be18ade *./test/dr8/fmld0/test-dr8-fmld0-sx25.mfc
250cf0e5a6a497465dd3b06db67d3936 *./test/dr8/fmld0/test-dr8-fmld0-sx115.mfc
99ef136e00ab2cfbc311256f1a760ab3 *./test/dr8/fmld0/test-dr8-fmld0-sx205.mfc
54a5c553a5cf4a95f97d0be07f5df387 *./test/dr8/fmld0/test-dr8-fmld0-si925.mfc
bfdb255edff890f5842d555d02caf893 *./test/dr8/fmld0/test-dr8-fmld0-si822.mfc
f00a1c191bda4912504ba78f676b1899 *./test/dr8/fmld0/test-dr8-fmld0-sx385.mfc
2c28c6da8d15b9686fc2ec2492958eed *./test/dr8/mjln0/test-dr8-mjln0-sx189.mfc
90bcd4128830cd1a2c2bd8b333ffc54b *./test/dr8/mjln0/test-dr8-mjln0-sx99.mfc
f85234706f1847a21ed74913b404a9be *./test/dr8/mjln0/test-dr8-mjln0-sx9.mfc
39cead4f5650a08c4ca6479449a610e9 *./test/dr8/mjln0/test-dr8-mjln0-si819.mfc
c9484df53aa6ba750ae94a4e13d6f21d *./test/dr8/mjln0/test-dr8-mjln0-si1449.mfc
92c3cf4ce7e1c281deb5904dc639dc2f *./test/dr8/mjln0/test-dr8-mjln0-si2079.mfc
a79393fe16771f0b1be83b6da534a07a *./test/dr8/mjln0/test-dr8-mjln0-sx279.mfc
0804a410e2d123c5488d711af5dac71a *./test/dr8/mjln0/test-dr8-mjln0-sx369.mfc
678b0d5bfef75745f7c439f05faaf4a0 *./test/dr1/mdab0/test-dr1-mdab0-sx139.mfc
ea0123c014719f549973805106a112f7 *./test/dr1/mdab0/test-dr1-mdab0-si1669.mfc
aafa0a2a28620dd0c31b15a9681033af *./test/dr1/mdab0/test-dr1-mdab0-si1039.mfc
8b43df02b27fa746e063b843652f51c8 *./test/dr1/mdab0/test-dr1-mdab0-si2299.mfc
90202493a294d8ab763080674c6092a2 *./test/dr1/mdab0/test-dr1-mdab0-sx49.mfc
3c10d45a0c3b63a44f2381494b615159 *./test/dr1/mdab0/test-dr1-mdab0-sx229.mfc
d8ebb351ed8a8a82cb3efbccfc492747 *./test/dr1/mdab0/test-dr1-mdab0-sx319.mfc
4b9936f5caa2eebf5a5730527693fdf8 *./test/dr1/mdab0/test-dr1-mdab0-sx409.mfc
fba6cda32b16545fd63f554702bcbfd1 *./test/dr1/felc0/test-dr1-felc0-sx396.mfc
cc1623ee2a25d9d2a3a887ae330c1426 *./test/dr1/felc0/test-dr1-felc0-si1386.mfc
ed8d4e3e62bd0317a830654ca4ef56b1 *./test/dr1/felc0/test-dr1-felc0-si2016.mfc
0666d4e677fecd9c23ae14fe4a2c543a *./test/dr1/felc0/test-dr1-felc0-sx126.mfc
ecc214f709f62a1513bf34a11bfd16e5 *./test/dr1/felc0/test-dr1-felc0-sx306.mfc
74ed8d4727853c9e90aed218975d06f4 *./test/dr1/felc0/test-dr1-felc0-si756.mfc
8254c8db07cf7c01f553405e65f9b11b *./test/dr1/felc0/test-dr1-felc0-sx216.mfc
da82160bdfaa059567fe5e4b1f1e9dfc *./test/dr1/felc0/test-dr1-felc0-sx36.mfc
8b7c6a53a366ef13693c7452dfc9cf2a *./test/dr1/mwbt0/test-dr1-mwbt0-si1553.mfc
00ef06aaa5825377f9bbf8fc4d71923e *./test/dr1/mwbt0/test-dr1-mwbt0-sx23.mfc
1ea782f8d9ebdd476c0d786827cae34b *./test/dr1/mwbt0/test-dr1-mwbt0-si2183.mfc
a118d83159b806ce50bac3ca72549e92 *./test/dr1/mwbt0/test-dr1-mwbt0-si923.mfc
569b88833a4da01e15724e4c6e95bfed *./test/dr1/mwbt0/test-dr1-mwbt0-sx383.mfc
58b1f7b399193bd80f8b6653cdb03652 *./test/dr1/mwbt0/test-dr1-mwbt0-sx203.mfc
407fb638a4790dcba65b1368e8e08d50 *./test/dr1/mwbt0/test-dr1-mwbt0-sx293.mfc
b6f88607cb6611b5ed027c88faaa6c93 *./test/dr1/mwbt0/test-dr1-mwbt0-sx113.mfc
1005106e85c2b2388c22e4492cb21b8d *./test/dr3/mjmp0/test-dr3-mjmp0-sx185.mfc
5b26cd0004f300b8e4e2585d91a792ff *./test/dr3/mjmp0/test-dr3-mjmp0-sx5.mfc
ceca906f0b4164d5f682c499c22ef0a4 *./test/dr3/mjmp0/test-dr3-mjmp0-si905.mfc
e9758e6fcbfcb72af6d69a8b1eb4fa7c *./test/dr3/mjmp0/test-dr3-mjmp0-sx275.mfc
eefa58e59c066d2de34fe5dde9b7014c *./test/dr3/mjmp0/test-dr3-mjmp0-si1791.mfc
dd805963a48ef1e2cdcfbc4f977cb894 *./test/dr3/mjmp0/test-dr3-mjmp0-sx95.mfc
59b6dcf1126eb07a5e3abfab42920cc9 *./test/dr3/mjmp0/test-dr3-mjmp0-si1535.mfc
a9443f9e91986be82614e8a4d60c8156 *./test/dr3/mjmp0/test-dr3-mjmp0-sx365.mfc
b233732febae3faf80ab7cadb19ff0e5 *./test/dr3/mlnt0/test-dr3-mlnt0-si1902.mfc
0cf8e4f83e9f5ab525113703094fee41 *./test/dr3/mlnt0/test-dr3-mlnt0-si642.mfc
1cf3e62c06cd5a9365cd0adfce6d06c3 *./test/dr3/mlnt0/test-dr3-mlnt0-sx102.mfc
c7d697fb5434186c4aada37904fe9f2a *./test/dr3/mlnt0/test-dr3-mlnt0-sx12.mfc
d37d590b506dd8e934649f93dcb54fd3 *./test/dr3/mlnt0/test-dr3-mlnt0-sx372.mfc
d9bb0340ee7e58269b2967dd382ad4a2 *./test/dr3/mlnt0/test-dr3-mlnt0-si1574.mfc
a12487372fed2de2875fb1a63d6269f2 *./test/dr3/mlnt0/test-dr3-mlnt0-sx192.mfc
66217b84955e2b5b711f2ddac4b2e8e3 *./test/dr3/mlnt0/test-dr3-mlnt0-sx282.mfc
cca8754cc10895f2f56a83c436331e4e *./test/dr3/fpkt0/test-dr3-fpkt0-sx188.mfc
c2bc75061d6fe1f1517b957584905565 *./test/dr3/fpkt0/test-dr3-fpkt0-sx368.mfc
707101da163bba7b755ac8d23ff86fa5 *./test/dr3/fpkt0/test-dr3-fpkt0-si2168.mfc
0116c675501b69bd9ca160ee2d404760 *./test/dr3/fpkt0/test-dr3-fpkt0-sx8.mfc
f04a79cc985a98de9e5d1cfe6a4c86ff *./test/dr3/fpkt0/test-dr3-fpkt0-si908.mfc
28da5617e9c1af623bc2e0c1d99589cf *./test/dr3/fpkt0/test-dr3-fpkt0-sx278.mfc
d49430a4d82095b727347b5e2fcaf6c2 *./test/dr3/fpkt0/test-dr3-fpkt0-sx98.mfc
098e99a50edb4ce2a5e096357c89fff2 *./test/dr3/fpkt0/test-dr3-fpkt0-si1538.mfc
6e590997178c69e1355ef7bf5dffa005 *./test/dr2/fpas0/test-dr2-fpas0-si2204.mfc
30aac0adba7f379d57f29274f52864fe *./test/dr2/fpas0/test-dr2-fpas0-sx314.mfc
bb894f6cb131cb500e0103ad8a3e789b *./test/dr2/fpas0/test-dr2-fpas0-sx404.mfc
3b9ee5caa3ce9f78fc2ee71343f7aa41 *./test/dr2/fpas0/test-dr2-fpas0-sx224.mfc
abf5b628f6b64a71449ff077c2f1f582 *./test/dr2/fpas0/test-dr2-fpas0-sx44.mfc
3459423b2ceff40f165603e1a0fa9427 *./test/dr2/fpas0/test-dr2-fpas0-si944.mfc
5a7b59b100d35b6e2e0cc950b15545c6 *./test/dr2/fpas0/test-dr2-fpas0-sx134.mfc
29a845b56c4cd6170d9b523d1de55e83 *./test/dr2/fpas0/test-dr2-fpas0-si1272.mfc
5c77cd5c112ad926f6c049c5d3437745 *./test/dr2/mwew0/test-dr2-mwew0-sx101.mfc
a4568e958324983d512c0ffd68b353e4 *./test/dr2/mwew0/test-dr2-mwew0-si731.mfc
c85526115f00236269ebfa9b8b3e74dc *./test/dr2/mwew0/test-dr2-mwew0-si1361.mfc
5aa7ed996a30f1701445b3e1f9cebb21 *./test/dr2/mwew0/test-dr2-mwew0-sx11.mfc
a901b23a44dba48bac3f63cb05472466 *./test/dr2/mwew0/test-dr2-mwew0-si1991.mfc
2d001415dcc0c13e095ed54e4a04d0ba *./test/dr2/mwew0/test-dr2-mwew0-sx371.mfc
b08674e36117624be782b67204031949 *./test/dr2/mwew0/test-dr2-mwew0-sx191.mfc
ea04d838c64a5c4b87b082d7c0948b68 *./test/dr2/mwew0/test-dr2-mwew0-sx281.mfc
2af6b995fdd1fc773c05bdec839cd2e7 *./test/dr2/mtas1/test-dr2-mtas1-sx388.mfc
4d1ebb56bfb84c36434c3280e5ace83a *./test/dr2/mtas1/test-dr2-mtas1-si1473.mfc
18d2d884cd5194af7423baac9b637849 *./test/dr2/mtas1/test-dr2-mtas1-sx298.mfc
fbd0b0bbe662675df11375cef1b5a253 *./test/dr2/mtas1/test-dr2-mtas1-sx118.mfc
e8bacc35d90947d9b19df6e8ee659c54 *./test/dr2/mtas1/test-dr2-mtas1-si2098.mfc
f6b17ff53923e862a40050259808c988 *./test/dr2/mtas1/test-dr2-mtas1-sx208.mfc
941b0d59d2f285063acaaf5f66d91a72 *./test/dr2/mtas1/test-dr2-mtas1-si838.mfc
faa5a46d1f0b6d502c963c05366c559a *./test/dr2/mtas1/test-dr2-mtas1-sx28.mfc
0f5c9efb8e860cdd7268c89e1544f45f *./test/dr5/mbpm0/test-dr5-mbpm0-sx227.mfc
f9a9b409aa50166dbe9fb6d979739365 *./test/dr5/mbpm0/test-dr5-mbpm0-si1584.mfc
6b45a90af2c5a1fa04bff2d7a41b2666 *./test/dr5/mbpm0/test-dr5-mbpm0-sx317.mfc
54fe99455f29499a4a0e809b6e2b8f0e *./test/dr5/mbpm0/test-dr5-mbpm0-si1577.mfc
362d6e5df4e68cea1812f663ec10de17 *./test/dr5/mbpm0/test-dr5-mbpm0-si947.mfc
f9b007a573fb3ce814908e173592ae4c *./test/dr5/mbpm0/test-dr5-mbpm0-sx47.mfc
b26cb72f2296d7d0cf5a67bda521fcdd *./test/dr5/mbpm0/test-dr5-mbpm0-sx407.mfc
5ce8b919635b9dd2b3f31c374718c393 *./test/dr5/mbpm0/test-dr5-mbpm0-sx137.mfc
89b5e922d36c28800dc642162029fe03 *./test/dr5/fnlp0/test-dr5-fnlp0-si678.mfc
37a38419a563509b2ba0e7e99d92c4fd *./test/dr5/fnlp0/test-dr5-fnlp0-sx138.mfc
ceb6f926da80c1da241e9b9077a16cdf *./test/dr5/fnlp0/test-dr5-fnlp0-si1308.mfc
0ceddeaf66f600b150392267f49459df *./test/dr5/fnlp0/test-dr5-fnlp0-sx48.mfc
80efcadb9b79bd6ef1547f00809f671f *./test/dr5/fnlp0/test-dr5-fnlp0-sx228.mfc
11734af4a80b58672c53573635fb812e *./test/dr5/fnlp0/test-dr5-fnlp0-sx408.mfc
f96279e68334eef016140cd19253a075 *./test/dr5/fnlp0/test-dr5-fnlp0-si1938.mfc
1d3f8491f88cb7c4297f745fd429ba78 *./test/dr5/fnlp0/test-dr5-fnlp0-sx318.mfc
b6cf55a805a9e208007758ad1efd1e73 *./test/dr5/mklt0/test-dr5-mklt0-sx403.mfc
fc501de222b8846757f4632b91b882d3 *./test/dr5/mklt0/test-dr5-mklt0-si583.mfc
f4a0c50719907638d2609d724890df24 *./test/dr5/mklt0/test-dr5-mklt0-si1843.mfc
57ca8e85220e0b0803616d49f586e98b *./test/dr5/mklt0/test-dr5-mklt0-si1213.mfc
fe40ec7361d62eb7be427bd866eafe7a *./test/dr5/mklt0/test-dr5-mklt0-sx133.mfc
95a8cf6a201bdbbacb7154f4bf668468 *./test/dr5/mklt0/test-dr5-mklt0-sx223.mfc
c62f471ce260e6ae53b39ca54e45a226 *./test/dr5/mklt0/test-dr5-mklt0-sx43.mfc
c1e4314c2616e7c62ee8bb27eb37d867 *./test/dr5/mklt0/test-dr5-mklt0-sx313.mfc
dd09a94e5ac40160b8f6b93ed05efbb6 *./test/dr4/mlll0/test-dr4-mlll0-si1993.mfc
a1898b9530522f92cc54b50009aa6abf *./test/dr4/mlll0/test-dr4-mlll0-sx283.mfc
4d984d3657b044c7f04e570bbc347332 *./test/dr4/mlll0/test-dr4-mlll0-sx13.mfc
051c1f4787ed5dfd64a6e93a0cc61299 *./test/dr4/mlll0/test-dr4-mlll0-sx193.mfc
e9611120533f80fd10e2fb7525f58310 *./test/dr4/mlll0/test-dr4-mlll0-si733.mfc
ae01c129272acc71e80a972e2369c83e *./test/dr4/mlll0/test-dr4-mlll0-sx373.mfc
a00f1c2cd4ec73854cce7c32ebaae7a3 *./test/dr4/mlll0/test-dr4-mlll0-si1363.mfc
3b77ee8722997d61c6e4559c8fb0b849 *./test/dr4/mlll0/test-dr4-mlll0-sx103.mfc
9a051584282a6c790cb2b75950172d19 *./test/dr4/mtls0/test-dr4-mtls0-si2000.mfc
a190bbc890607e4e15a0a5cce72ddb8a *./test/dr4/mtls0/test-dr4-mtls0-sx200.mfc
54ccd8d5f9c07ef5835b0930fc942a3f *./test/dr4/mtls0/test-dr4-mtls0-sx20.mfc
c995d1f28d106d640895c0a88b62c40a *./test/dr4/mtls0/test-dr4-mtls0-si740.mfc
4fe5e1abedfb9cdbae8ac69ec5594767 *./test/dr4/mtls0/test-dr4-mtls0-si1370.mfc
efd094f86ee4441a026262c5a8a0d915 *./test/dr4/mtls0/test-dr4-mtls0-sx290.mfc
4d4b02d83a5d30c3ebac8445a236fcab *./test/dr4/mtls0/test-dr4-mtls0-sx110.mfc
fcbd9a041fcfb321d19ee5e375858ef1 *./test/dr4/mtls0/test-dr4-mtls0-sx380.mfc
a9dec416a5819578b0e534a4bbc6ff32 *./test/dr4/fjlm0/test-dr4-fjlm0-sx413.mfc
645041575265a4f670829f654d1d06b9 *./test/dr4/fjlm0/test-dr4-fjlm0-sx323.mfc
8921dd5222a3476f68a0976ead09dd0b *./test/dr4/fjlm0/test-dr4-fjlm0-sx53.mfc
a743ae1b57186399604cb81c23a930f9 *./test/dr4/fjlm0/test-dr4-fjlm0-si1673.mfc
9062a2b55567e69b55391ae2b713471d *./test/dr4/fjlm0/test-dr4-fjlm0-si1043.mfc
786294b83085b1c1776f6263916515d5 *./test/dr4/fjlm0/test-dr4-fjlm0-sx143.mfc
78e08bd88ffdc6db5cad742fad4fe955 *./test/dr4/fjlm0/test-dr4-fjlm0-sx233.mfc
54e30d82c82b3f57e7e25aa90773382d *./test/dr4/fjlm0/test-dr4-fjlm0-si2303.mfc
026e9214c154952ed951f2f8efaaaf14 *./test/dr6/mjdh0/test-dr6-mjdh0-si1984.mfc
af98d75b7ef11ca9350c16c87654763f *./test/dr6/mjdh0/test-dr6-mjdh0-sx4.mfc
5042282d0ec4bc9b3465640464dbe075 *./test/dr6/mjdh0/test-dr6-mjdh0-sx274.mfc
a0c8f8eecd7f9d74e65fe6205f4097b0 *./test/dr6/mjdh0/test-dr6-mjdh0-sx364.mfc
3219f97dc48ea247c53e38f3793508f3 *./test/dr6/mjdh0/test-dr6-mjdh0-sx94.mfc
b446b7ebbccac01acbefeab34c52f3e6 *./test/dr6/mjdh0/test-dr6-mjdh0-sx184.mfc
f9c5d3f8ff5ffff3fb7026e6387b3b25 *./test/dr6/mjdh0/test-dr6-mjdh0-si724.mfc
c482a3078d5897bf7911c020e7836c16 *./test/dr6/mjdh0/test-dr6-mjdh0-si1354.mfc
e0d2b68dc88fe4fe8e88f6bfda1e09b3 *./test/dr6/mcmj0/test-dr6-mcmj0-si1094.mfc
0bcd3048c3e1f91743bf2ea95b78d7c1 *./test/dr6/mcmj0/test-dr6-mcmj0-sx14.mfc
0eccd9c8227d2c15a409ece069179433 *./test/dr6/mcmj0/test-dr6-mcmj0-sx104.mfc
4fcb58274af4ebc91131a50ef877bc6e *./test/dr6/mcmj0/test-dr6-mcmj0-sx194.mfc
074325a2c92f24f2209e2f58d801ae5c *./test/dr6/mcmj0/test-dr6-mcmj0-si464.mfc
93d0fb09071e068d66edaee943e40eab *./test/dr6/mcmj0/test-dr6-mcmj0-sx284.mfc
b03a93f5077e55df009be82ddcc982db *./test/dr6/mcmj0/test-dr6-mcmj0-sx374.mfc
15fcdc0399b1b67b566d187e5bc6d857 *./test/dr6/mcmj0/test-dr6-mcmj0-si602.mfc
706968ed5242f106fc6b40c4ce78e767 *./test/dr6/fmgd0/test-dr6-fmgd0-sx394.mfc
8b4ed154d663bcbb5f53e14ebe825f4f *./test/dr6/fmgd0/test-dr6-fmgd0-sx304.mfc
24bd7427b39f85aee397b528189d455a *./test/dr6/fmgd0/test-dr6-fmgd0-si934.mfc
ca5c01c02b00f52831b73d5dd2590075 *./test/dr6/fmgd0/test-dr6-fmgd0-si2194.mfc
d38d8a848e864cb4b4994e4614fe96ab *./test/dr6/fmgd0/test-dr6-fmgd0-si1564.mfc
2f2e60c98a3f67ee82b83a546da5764c *./test/dr6/fmgd0/test-dr6-fmgd0-sx34.mfc
6335ff1e1a1bab89dd6ab720a389272b *./test/dr6/fmgd0/test-dr6-fmgd0-sx124.mfc
c4276cbc65e125736e5d4321e2d580f7 *./test/dr6/fmgd0/test-dr6-fmgd0-sx214.mfc
614436c0c5ba820fff1a5999e4ee8e29 *./test/dr8/mpam0/test-dr8-mpam0-sx289.mfc
01d8a917183706b93c8781f3d39cc491 *./test/dr8/mpam0/test-dr8-mpam0-si1961.mfc
3b0f7b29fc52e1c4cd745063c69fc064 *./test/dr8/mpam0/test-dr8-mpam0-sx199.mfc
01f7338f621efa81ed046c0184b139cb *./test/dr8/mpam0/test-dr8-mpam0-si1189.mfc
45d266f03b7fcd1b2fb3e8ba59493b25 *./test/dr8/mpam0/test-dr8-mpam0-si1819.mfc
553ff05cdd58d2d7a99de856395dc660 *./test/dr8/mpam0/test-dr8-mpam0-sx19.mfc
0c71f3d072bac3c7a64fe59dac71e446 *./test/dr8/mpam0/test-dr8-mpam0-sx379.mfc
dd161c0fbd18fdb855e49214bcd75ab2 *./test/dr8/mpam0/test-dr8-mpam0-sx109.mfc
cfa379368e1ab8e853cc884cbb8d9e8f *./test/dr8/fmld0/test-dr8-fmld0-sx385.mfc
787db98d59d17cbfc3ad3db798aed4ef *./test/dr8/fmld0/test-dr8-fmld0-sx295.mfc
985f4c97a0cbc30f33bcabf5a1cf902b *./test/dr8/fmld0/test-dr8-fmld0-sx25.mfc
2e1b1d1cdfcef99630cb2a1e17a49625 *./test/dr8/fmld0/test-dr8-fmld0-si2185.mfc
5dcdbd992556ea9bd3d832954676462d *./test/dr8/fmld0/test-dr8-fmld0-si822.mfc
488c2f2db324dd809daf2ac824d15bdf *./test/dr8/fmld0/test-dr8-fmld0-sx205.mfc
2ae8bb07c1044be3a8abc274f4b04da3 *./test/dr8/fmld0/test-dr8-fmld0-sx115.mfc
33f48f91698c87fbaeefb52630e217a8 *./test/dr8/fmld0/test-dr8-fmld0-si925.mfc
a4e9ca6cb29af32406b8a162177df6f7 *./test/dr8/mjln0/test-dr8-mjln0-si2079.mfc
d0540ae9bfa8fcb5da1b17e0ba05969a *./test/dr8/mjln0/test-dr8-mjln0-sx279.mfc
9938e811371f5175500ac3bf6e0991e9 *./test/dr8/mjln0/test-dr8-mjln0-si1449.mfc
a8015747d2ddc473bb8f9503ea2741c5 *./test/dr8/mjln0/test-dr8-mjln0-si819.mfc
e400a7bd6535f707676211d23abb793f *./test/dr8/mjln0/test-dr8-mjln0-sx189.mfc
39ba509d439f101e0a712e3b27195074 *./test/dr8/mjln0/test-dr8-mjln0-sx369.mfc
5d6064d659f35a759281e202e641229d *./test/dr8/mjln0/test-dr8-mjln0-sx99.mfc
f3077d30442706cfaf253066ee51a2bd *./test/dr8/mjln0/test-dr8-mjln0-sx9.mfc
5a03cbc5aa89a92d8954d9453526218e *./test/dr7/mgrt0/test-dr7-mgrt0-sx370.mfc
50746ef37efea2af0cfb91fa9d47845a *./test/dr7/mgrt0/test-dr7-mgrt0-si2080.mfc
be89128a8e86dea11d092d39394ec93b *./test/dr7/mgrt0/test-dr7-mgrt0-sx100.mfc
d10cc81d6d4855275ee5ea0e065bc1ac *./test/dr7/mgrt0/test-dr7-mgrt0-si1450.mfc
6b587b59df1a6bcc360aa02ab3ef331b *./test/dr7/mgrt0/test-dr7-mgrt0-sx280.mfc
cf65506fa7be322a8ca66d50baca667e *./test/dr7/mgrt0/test-dr7-mgrt0-sx190.mfc
a97ac7406e1907bb417b13f710c74896 *./test/dr7/mgrt0/test-dr7-mgrt0-sx10.mfc
b4c20328a08d4c1b907cfb16dca97c81 *./test/dr7/mgrt0/test-dr7-mgrt0-si820.mfc
c30c6d42be1740015723db86764b8e13 *./test/dr7/fdhc0/test-dr7-fdhc0-sx299.mfc
5cffb4da01648a45dc65e16d5323c59e *./test/dr7/fdhc0/test-dr7-fdhc0-si1559.mfc
cb98f997d35420ffb69af59d7bedc5f3 *./test/dr7/fdhc0/test-dr7-fdhc0-sx29.mfc
e053d15fc8ef62097b976c4f61cc734c *./test/dr7/fdhc0/test-dr7-fdhc0-sx119.mfc
145008fe49136aa1225b72afd681afc4 *./test/dr7/fdhc0/test-dr7-fdhc0-sx209.mfc
40d4b1600d737b48bc0a55b7b823f7d6 *./test/dr7/fdhc0/test-dr7-fdhc0-si929.mfc
29bb39cb6b685f32b3f6220a4dbcfc08 *./test/dr7/fdhc0/test-dr7-fdhc0-sx389.mfc
9fb776d41d58f610e4c1c214332a94b2 *./test/dr7/fdhc0/test-dr7-fdhc0-si2189.mfc
f4557145e2a19ef5dcf99cde82837464 *./test/dr7/mnjm0/test-dr7-mnjm0-sx140.mfc
1a7a44d0da74136fefc5e7987987de01 *./test/dr7/mnjm0/test-dr7-mnjm0-sx410.mfc
33f7bc0bb628ee2214e251b7cc02fb81 *./test/dr7/mnjm0/test-dr7-mnjm0-sx320.mfc
90b468144ccaa3158a72cde2ab61528d *./test/dr7/mnjm0/test-dr7-mnjm0-si950.mfc
69d141b68eb5c5ed1509a9bc71b47f81 *./test/dr7/mnjm0/test-dr7-mnjm0-si1580.mfc
e92af753349772f61aff1772aad18095 *./test/dr7/mnjm0/test-dr7-mnjm0-si2210.mfc
af9a43ffbdcefa16a92cd61931b37da9 *./test/dr7/mnjm0/test-dr7-mnjm0-sx230.mfc
439bf2bddf24c36a0ce1ad8262a8565f *./test/dr7/mnjm0/test-dr7-mnjm0-sx50.mfc

Просмотреть файл

@ -6,7 +6,7 @@
. $TEST_DIR/../run-timit-test-common
# Train:
cntkrun TIMIT_TrainSimpleNetwork.cntk "$CntkArguments" || exit $?
cntkrun TIMIT_TrainSimpleNetwork.cntk "$CntkArguments TIMIT_TrainSimple=[reader=[useMersenneTwisterRand=true]]" || exit $?
# Copy the test data to the test run directory, so that we do not damage anything
DataDir=$TEST_RUN_DIR/TestData
@ -14,7 +14,7 @@ mkdir $DataDir
cp -R $DataSourceDir/* $DataDir || exit $?
# Write:
cntkrun TIMIT_WriteScaledLogLike.cntk "$CntkArguments"
cntkrun TIMIT_WriteScaledLogLike.cntk "$CntkArguments TIMIT_WriteScaledLogLike=[reader=[useMersenneTwisterRand=true]]"
ExitCode=$?
if [ $ExitCode == 0 ]; then

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -1,49 +1,62 @@
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 264172964 kB
-------------------------------------------------------------------
Copying test data to local directory
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNet.cntk currentDirectory=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData RunDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu DataDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet OutputDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu DeviceId=0 timestamping=true
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNetCommon.cntk currentDirectory=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData RunDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu DataDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet OutputDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu DeviceId=0 timestamping=true configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNet.cntk
-------------------------------------------------------------------
Build info:
Built time: May 3 2016 17:56:15
Last modified date: Tue May 3 11:36:22 2016
Built time: Aug 16 2016 09:41:56
Last modified date: Fri Aug 12 07:32:43 2016
Build type: release
Build target: GPU
With 1bit-SGD: no
Math lib: acml
Math lib: mkl
CUDA_PATH: /usr/local/cuda-7.5
CUB_PATH: /usr/local/cub-1.4.1
CUDNN_PATH: /usr/local/cudnn-4.0
Build Branch: HEAD
Build SHA1: 571b092d60e131fd529081a5ed52af2dc815dc82
Built by philly on 18750d26eb32
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by philly on f67b30a647de
Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
-------------------------------------------------------------------
Changed current directory to /tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData
05/03/2016 18:06:53: -------------------------------------------------------------------
05/03/2016 18:06:53: Build info:
Changed current directory to /tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData
08/16/2016 09:55:24: -------------------------------------------------------------------
08/16/2016 09:55:24: Build info:
05/03/2016 18:06:53: Built time: May 3 2016 17:56:15
05/03/2016 18:06:53: Last modified date: Tue May 3 11:36:22 2016
05/03/2016 18:06:53: Build type: release
05/03/2016 18:06:53: Build target: GPU
05/03/2016 18:06:53: With 1bit-SGD: no
05/03/2016 18:06:53: Math lib: acml
05/03/2016 18:06:53: CUDA_PATH: /usr/local/cuda-7.5
05/03/2016 18:06:53: CUB_PATH: /usr/local/cub-1.4.1
05/03/2016 18:06:53: CUDNN_PATH: /usr/local/cudnn-4.0
05/03/2016 18:06:53: Build Branch: HEAD
05/03/2016 18:06:53: Build SHA1: 571b092d60e131fd529081a5ed52af2dc815dc82
05/03/2016 18:06:53: Built by philly on 18750d26eb32
05/03/2016 18:06:53: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
05/03/2016 18:06:53: -------------------------------------------------------------------
08/16/2016 09:55:24: Built time: Aug 16 2016 09:41:56
08/16/2016 09:55:24: Last modified date: Fri Aug 12 07:32:43 2016
08/16/2016 09:55:24: Build type: release
08/16/2016 09:55:24: Build target: GPU
08/16/2016 09:55:24: With 1bit-SGD: no
08/16/2016 09:55:24: Math lib: mkl
08/16/2016 09:55:24: CUDA_PATH: /usr/local/cuda-7.5
08/16/2016 09:55:24: CUB_PATH: /usr/local/cub-1.4.1
08/16/2016 09:55:24: CUDNN_PATH: /usr/local/cudnn-4.0
08/16/2016 09:55:24: Build Branch: HEAD
08/16/2016 09:55:24: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 09:55:24: Built by philly on f67b30a647de
08/16/2016 09:55:24: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
08/16/2016 09:55:24: -------------------------------------------------------------------
08/16/2016 09:55:25: -------------------------------------------------------------------
08/16/2016 09:55:25: GPU info:
05/03/2016 18:06:53: Running on localhost at 2016/05/03 18:06:53
05/03/2016 18:06:53: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNet.cntk currentDirectory=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData RunDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu DataDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet OutputDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu DeviceId=0 timestamping=true
08/16/2016 09:55:25: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 09:55:25: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 09:55:25: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 09:55:25: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 09:55:25: -------------------------------------------------------------------
08/16/2016 09:55:25: Running on localhost at 2016/08/16 09:55:25
08/16/2016 09:55:25: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNetCommon.cntk currentDirectory=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData RunDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu DataDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet OutputDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu DeviceId=0 timestamping=true configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNet.cntk
05/03/2016 18:06:53: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/03/2016 18:06:53: ModelDir = "$RunDir$/models"
08/16/2016 09:55:25: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 09:55:25: ModelDir = "$RunDir$/models"
ndlMacros=$ConfigDir$/Macros.ndl
precision=float
deviceId=Auto
@ -76,6 +89,29 @@ Train=[
]
numMBsToShowResult=100
]
]
AddTop5Eval=[
action=edit
CurModel=$ModelDir$/AlexNet
NewModel=$ModelDir$/AlexNet.Top5
editPath=$ConfigDir$/add_top5_layer.mel
]
Test=[
action=test
modelPath=$ModelDir$/AlexNet.Top5
minibatchSize=16
NDLNetworkBuilder=[
networkDescription=$ConfigDir$/AlexNet.ndl
]
]
currentDirectory=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData
RunDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu
DataDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet
OutputDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu
DeviceId=0
timestamping=true
Train=[
reader=[
readerType=ImageReader
file=$ConfigDir$/train_map.txt
@ -95,19 +131,7 @@ Train=[
]
]
]
AddTop5Eval=[
action=edit
CurModel=$ModelDir$/AlexNet
NewModel=$ModelDir$/AlexNet.Top5
editPath=$ConfigDir$/add_top5_layer.mel
]
Test=[
action=test
modelPath=$ModelDir$/AlexNet.Top5
minibatchSize=16
NDLNetworkBuilder=[
networkDescription=$ConfigDir$/AlexNet.ndl
]
Test=[
reader=[
readerType=ImageReader
file=$ConfigDir$/val_map.txt
@ -124,18 +148,11 @@ Test=[
]
]
]
currentDirectory=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData
RunDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu
DataDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet
OutputDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu
DeviceId=0
timestamping=true
05/03/2016 18:06:53: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 09:55:25: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/03/2016 18:06:53: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/03/2016 18:06:53: ModelDir = "/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models"
08/16/2016 09:55:25: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 09:55:25: ModelDir = "/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models"
ndlMacros=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/Macros.ndl
precision=float
deviceId=Auto
@ -145,7 +162,7 @@ traceLevel=1
numMBsToShowResult=100
Train=[
action=train
modelPath=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet
modelPath=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet
NDLNetworkBuilder=[
networkDescription=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNet.ndl
]
@ -168,6 +185,29 @@ Train=[
]
numMBsToShowResult=100
]
]
AddTop5Eval=[
action=edit
CurModel=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet
NewModel=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet.Top5
editPath=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/add_top5_layer.mel
]
Test=[
action=test
modelPath=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet.Top5
minibatchSize=16
NDLNetworkBuilder=[
networkDescription=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNet.ndl
]
]
currentDirectory=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData
RunDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu
DataDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet
OutputDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu
DeviceId=0
timestamping=true
Train=[
reader=[
readerType=ImageReader
file=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/train_map.txt
@ -187,19 +227,7 @@ Train=[
]
]
]
AddTop5Eval=[
action=edit
CurModel=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet
NewModel=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet.Top5
editPath=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/add_top5_layer.mel
]
Test=[
action=test
modelPath=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet.Top5
minibatchSize=16
NDLNetworkBuilder=[
networkDescription=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNet.ndl
]
Test=[
reader=[
readerType=ImageReader
file=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/val_map.txt
@ -216,43 +244,37 @@ Test=[
]
]
]
currentDirectory=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData
RunDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu
DataDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet
OutputDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu
DeviceId=0
timestamping=true
05/03/2016 18:06:53: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 09:55:25: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 18:06:53: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 09:55:25: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: AlexNet.cntk:AddTop5Eval=[
action=edit
CurModel=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet
NewModel=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet.Top5
CurModel=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet
NewModel=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet.Top5
editPath=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/add_top5_layer.mel
]
configparameters: AlexNet.cntk:command=Train:AddTop5Eval:Test
configparameters: AlexNet.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet
configparameters: AlexNet.cntk:currentDirectory=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData
configparameters: AlexNet.cntk:DataDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData
configparameters: AlexNet.cntk:currentDirectory=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData
configparameters: AlexNet.cntk:DataDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData
configparameters: AlexNet.cntk:deviceId=0
configparameters: AlexNet.cntk:ModelDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models
configparameters: AlexNet.cntk:ModelDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models
configparameters: AlexNet.cntk:ndlMacros=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/Macros.ndl
configparameters: AlexNet.cntk:numMBsToShowResult=100
configparameters: AlexNet.cntk:OutputDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu
configparameters: AlexNet.cntk:OutputDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu
configparameters: AlexNet.cntk:parallelTrain=false
configparameters: AlexNet.cntk:precision=float
configparameters: AlexNet.cntk:RunDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu
configparameters: AlexNet.cntk:RunDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu
configparameters: AlexNet.cntk:Test=[
action=test
modelPath=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet.Top5
modelPath=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet.Top5
minibatchSize=16
NDLNetworkBuilder=[
networkDescription=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNet.ndl
]
] [
reader=[
readerType=ImageReader
file=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/val_map.txt
@ -274,7 +296,7 @@ configparameters: AlexNet.cntk:timestamping=true
configparameters: AlexNet.cntk:traceLevel=1
configparameters: AlexNet.cntk:Train=[
action=train
modelPath=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet
modelPath=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet
NDLNetworkBuilder=[
networkDescription=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNet.ndl
]
@ -297,6 +319,7 @@ configparameters: AlexNet.cntk:Train=[
]
numMBsToShowResult=100
]
] [
reader=[
readerType=ImageReader
file=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/train_map.txt
@ -317,24 +340,54 @@ configparameters: AlexNet.cntk:Train=[
]
]
05/03/2016 18:06:53: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 18:06:53: Commands: Train AddTop5Eval Test
05/03/2016 18:06:53: Precision = "float"
05/03/2016 18:06:53: CNTKModelPath: /tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet
05/03/2016 18:06:53: CNTKCommandTrainInfo: Train : 3
05/03/2016 18:06:53: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
08/16/2016 09:55:25: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 09:55:25: Commands: Train AddTop5Eval Test
08/16/2016 09:55:25: Precision = "float"
08/16/2016 09:55:25: CNTKModelPath: /tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet
08/16/2016 09:55:25: CNTKCommandTrainInfo: Train : 3
08/16/2016 09:55:25: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
05/03/2016 18:06:53: ##############################################################################
05/03/2016 18:06:53: # #
05/03/2016 18:06:53: # Action "train" #
05/03/2016 18:06:53: # #
05/03/2016 18:06:53: ##############################################################################
08/16/2016 09:55:25: ##############################################################################
08/16/2016 09:55:25: # #
08/16/2016 09:55:25: # Action "train" #
08/16/2016 09:55:25: # #
08/16/2016 09:55:25: ##############################################################################
05/03/2016 18:06:53: CNTKCommandTrainBegin: Train
08/16/2016 09:55:25: CNTKCommandTrainBegin: Train
NDLBuilder Using GPU 0
05/03/2016 18:06:53: Creating virgin network.
useParallelTrain option is not enabled. ParallelTrain config will be ignored.
08/16/2016 09:55:25: Creating virgin network.
Node 'conv1.W' (LearnableParameter operation): Initializing Parameter[64 x 363] <- 0.000000.
Node 'conv1.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv2.W' (LearnableParameter operation): Initializing Parameter[192 x 1600] <- 0.000000.
Node 'conv2.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 192] <- 0.000000.
Node 'conv3.W' (LearnableParameter operation): Initializing Parameter[384 x 1728] <- 0.000000.
Node 'conv3.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 384] <- 0.000000.
Node 'conv4.W' (LearnableParameter operation): Initializing Parameter[256 x 3456] <- 0.000000.
Node 'conv4.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 0.000000.
Node 'conv5.W' (LearnableParameter operation): Initializing Parameter[256 x 2304] <- 0.000000.
Node 'conv5.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[4096 x 6 x 6 x 256] <- 0.000000.
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[4096] <- 0.000000.
Node 'h2.b' (LearnableParameter operation): Initializing Parameter[4096] <- 0.000000.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[1000] <- 0.000000.
Node 'conv1.W' (LearnableParameter operation): Initializing Parameter[64 x 363] <- gaussian(seed=1, range=0.010497*0.950000, onCPU=false).
SetGaussianRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4
Node 'conv1.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv2.W' (LearnableParameter operation): Initializing Parameter[192 x 1600] <- gaussian(seed=2, range=0.005000*2.000000, onCPU=false).
Node 'conv2.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 192] <- 1.000000.
Node 'conv3.W' (LearnableParameter operation): Initializing Parameter[384 x 1728] <- gaussian(seed=3, range=0.004811*2.070000, onCPU=false).
Node 'conv3.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 384] <- 0.000000.
Node 'conv4.W' (LearnableParameter operation): Initializing Parameter[256 x 3456] <- gaussian(seed=4, range=0.003402*2.900000, onCPU=false).
Node 'conv4.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 1.000000.
Node 'conv5.W' (LearnableParameter operation): Initializing Parameter[256 x 2304] <- gaussian(seed=5, range=0.004167*2.400000, onCPU=false).
Node 'conv5.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 1.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[4096 x 6 x 6 x 256] <- gaussian(seed=6, range=0.002083*6.400000, onCPU=false).
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[4096] <- 1.000000.
Node 'h2.W' (LearnableParameter operation): Initializating Parameter[4096 x 0] as gaussian later when dimensions are fully known.
Node 'h2.b' (LearnableParameter operation): Initializing Parameter[4096] <- 1.000000.
Node 'OutputNodes.W' (LearnableParameter operation): Initializating Parameter[1000 x 0] as gaussian later when dimensions are fully known.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[1000] <- 1.000000.
Post-processing network...
@ -345,8 +398,8 @@ Post-processing network...
Validating network. 48 nodes to process in pass 1.
Validating --> OutputNodes.W = LearnableParameter() : -> [1000 x 4096]
Validating --> h2.W = LearnableParameter() : -> [4096 x 4096]
Validating --> OutputNodes.W = LearnableParameter() : -> [1000 x 0]
Validating --> h2.W = LearnableParameter() : -> [4096 x 0]
Validating --> h1.W = LearnableParameter() : -> [4096 x 6 x 6 x 256]
Validating --> conv5.W = LearnableParameter() : -> [256 x 2304]
Validating --> conv4.W = LearnableParameter() : -> [256 x 3456]
@ -382,11 +435,15 @@ Validating --> h1.b = LearnableParameter() : -> [4096]
Validating --> h1.z = Plus (h1.t, h1.b) : [4096 x *], [4096] -> [4096 x *]
Validating --> h1.y = RectifiedLinear (h1.z) : [4096 x *] -> [4096 x *]
Validating --> h1_d = Dropout (h1.y) : [4096 x *] -> [4096 x *]
Node 'h2.W' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 4096].
Node 'h2.W' (LearnableParameter operation): Initializing Parameter[4096 x 4096] <- gaussian(seed=7, range=0.003125*3.200000, onCPU=false).
Validating --> h2.t = Times (h2.W, h1_d) : [4096 x 4096], [4096 x *] -> [4096 x *]
Validating --> h2.b = LearnableParameter() : -> [4096]
Validating --> h2.z = Plus (h2.t, h2.b) : [4096 x *], [4096] -> [4096 x *]
Validating --> h2.y = RectifiedLinear (h2.z) : [4096 x *] -> [4096 x *]
Validating --> h2_d = Dropout (h2.y) : [4096 x *] -> [4096 x *]
Node 'OutputNodes.W' (LearnableParameter operation) operation: Tensor shape was inferred as [1000 x 4096].
Node 'OutputNodes.W' (LearnableParameter operation): Initializing Parameter[1000 x 4096] <- gaussian(seed=8, range=0.003125*3.200000, onCPU=false).
Validating --> OutputNodes.t = Times (OutputNodes.W, h2_d) : [1000 x 4096], [4096 x *] -> [1000 x *]
Validating --> OutputNodes.b = LearnableParameter() : -> [1000]
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [1000 x *], [1000] -> [1000 x *]
@ -400,134 +457,157 @@ Validating network. 30 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c: using cuDNN convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c: using cuDNN convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv4.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv5.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool3: using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
18 out of 48 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
05/03/2016 18:06:53: Created model with 48 nodes on GPU 0.
08/16/2016 09:55:25: Created model with 48 nodes on GPU 0.
05/03/2016 18:06:53: Training criterion node(s):
05/03/2016 18:06:53: ce = CrossEntropyWithSoftmax
08/16/2016 09:55:25: Training criterion node(s):
08/16/2016 09:55:25: ce = CrossEntropyWithSoftmax
05/03/2016 18:06:53: Evaluation criterion node(s):
05/03/2016 18:06:53: err = ErrorPrediction
08/16/2016 09:55:25: Evaluation criterion node(s):
08/16/2016 09:55:25: err = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 93 matrices, 61 are shared as 27, and 32 are not shared.
(nil): {[err Gradient[1]] [features Gradient[224 x 224 x 3 x *]] [labels Gradient[1000 x *]] }
0x1eb05c8: {[features Value[224 x 224 x 3 x *]] }
0x27d0c58: {[conv1.W Value[64 x 363]] }
0x27d1a38: {[conv1.b Value[1 x 1 x 64]] }
0x27d32a8: {[conv2.W Value[192 x 1600]] }
0x27d49b8: {[conv2.b Value[1 x 1 x 192]] }
0x27d5c88: {[conv3.W Value[384 x 1728]] }
0x27d7378: {[conv3.b Value[1 x 1 x 384]] }
0x27d8698: {[conv4.W Value[256 x 3456]] }
0x27d9798: {[OutputNodes.b Value[1000]] }
0x27d9b88: {[conv4.b Value[1 x 1 x 256]] }
0x27dadf8: {[conv5.W Value[256 x 2304]] }
0x27dbff8: {[conv5.b Value[1 x 1 x 256]] }
0x27dd778: {[h1.W Value[4096 x 6 x 6 x 256]] }
0x27de688: {[h1.b Value[4096]] }
0x2c0cab8: {[labels Value[1000 x *]] }
0x2ea6e78: {[h2.W Value[4096 x 4096]] }
0x2ea7c18: {[h2.b Value[4096]] }
0x2ea8838: {[OutputNodes.W Value[1000 x 4096]] }
0x7f47b2c352e8: {[conv1.c Gradient[56 x 56 x 64 x *]] [conv1.y Value[56 x 56 x 64 x *]] }
0x7f47b2c35448: {[conv1.W Gradient[64 x 363]] [conv1.z Value[56 x 56 x 64 x *]] }
0x7f47b2c35648: {[conv1.z Gradient[56 x 56 x 64 x *]] [pool1 Value[27 x 27 x 64 x *]] }
0x7f47b2c35948: {[conv1.c Value[56 x 56 x 64 x *]] }
0x7f47b2e95948: {[conv1.b Gradient[1 x 1 x 64]] [conv1.y Gradient[56 x 56 x 64 x *]] }
0x7f47b2e95b08: {[conv2.W Gradient[192 x 1600]] [conv2.z Value[27 x 27 x 192 x *]] }
0x7f47b2e95cc8: {[conv2.c Gradient[27 x 27 x 192 x *]] [conv2.y Value[27 x 27 x 192 x *]] }
0x7f47b2e95e88: {[conv2.z Gradient[27 x 27 x 192 x *]] [pool1 Gradient[27 x 27 x 64 x *]] [pool2 Value[13 x 13 x 192 x *]] }
0x7f47b2e96048: {[conv3.c Value[13 x 13 x 384 x *]] }
0x7f47b2e96208: {[conv2.b Gradient[1 x 1 x 192]] [conv2.y Gradient[27 x 27 x 192 x *]] }
0x7f47b2e963c8: {[conv3.W Gradient[384 x 1728]] [conv3.z Value[13 x 13 x 384 x *]] }
0x7f47b2e96588: {[conv3.c Gradient[13 x 13 x 384 x *]] [conv3.y Value[13 x 13 x 384 x *]] }
0x7f47b2e96748: {[conv4.c Value[13 x 13 x 256 x *]] }
0x7f47b2e96908: {[conv3.z Gradient[13 x 13 x 384 x *]] [pool2 Gradient[13 x 13 x 192 x *]] }
0x7f47b2e96ac8: {[conv4.W Gradient[256 x 3456]] [conv4.z Value[13 x 13 x 256 x *]] }
0x7f47b2e96c88: {[conv4.c Gradient[13 x 13 x 256 x *]] [conv4.y Value[13 x 13 x 256 x *]] }
0x7f47b2e96e48: {[conv5.c Value[13 x 13 x 256 x *]] }
0x7f47b2e97008: {[conv3.b Gradient[1 x 1 x 384]] [conv3.y Gradient[13 x 13 x 384 x *]] [conv4.z Gradient[13 x 13 x 256 x *]] }
0x7f47b2e971c8: {[conv5.W Gradient[256 x 2304]] [conv5.z Value[13 x 13 x 256 x *]] }
0x7f47b2e97388: {[conv5.c Gradient[13 x 13 x 256 x *]] [conv5.y Value[13 x 13 x 256 x *]] }
0x7f47b2e97548: {[conv4.b Gradient[1 x 1 x 256]] [conv4.y Gradient[13 x 13 x 256 x *]] [conv5.z Gradient[13 x 13 x 256 x *]] [pool3 Value[6 x 6 x 256 x *]] }
0x7f47b2e97708: {[conv5.b Gradient[1 x 1 x 256]] [conv5.y Gradient[13 x 13 x 256 x *]] [h1.t Value[4096 x *]] }
0x7f47b2e978c8: {[h1.W Gradient[4096 x 6 x 6 x 256]] [h1.z Value[4096 x *]] }
0x7f47b2e97a88: {[h1.t Gradient[4096 x *]] [h1.y Value[4096 x *]] }
0x7f47b2e97c48: {[h1_d Value[4096 x *]] }
0x7f47b2e97e08: {[h1.z Gradient[4096 x *]] [pool3 Gradient[6 x 6 x 256 x *]] }
0x7f47b2e97fc8: {[h1.b Gradient[4096]] [h1.y Gradient[4096 x *]] [h2.t Value[4096 x *]] }
0x7f47b2e98188: {[h2.W Gradient[4096 x 4096]] [h2.z Value[4096 x *]] }
0x7f47b2e98348: {[h2.t Gradient[4096 x *]] [h2.y Value[4096 x *]] }
0x7f47b2e98508: {[h2_d Value[4096 x *]] }
0x7f47b2e986c8: {[h1_d Gradient[4096 x *]] [h2.z Gradient[4096 x *]] }
0x7f47b2e98888: {[OutputNodes.t Value[1000 x *]] [h2.b Gradient[4096]] [h2.y Gradient[4096 x *]] }
0x7f47b2e99428: {[ce Gradient[1]] }
0x7f47b2e995e8: {[OutputNodes.W Gradient[1000 x 4096]] [OutputNodes.z Gradient[1000 x *]] }
0x7f47b2e997a8: {[OutputNodes.t Gradient[1000 x *]] }
0x7f47b2e99968: {[OutputNodes.b Gradient[1000]] }
0x7f47b2e99b28: {[h2_d Gradient[4096 x *]] }
0x7f47b2e9aa08: {[OutputNodes.z Value[1000 x *]] }
0x7f47b2e9abc8: {[ce Value[1]] }
0x7f47b2e9b2f8: {[conv2.c Value[27 x 27 x 192 x *]] }
0x7f47b2ef4ce8: {[err Value[1]] }
05/03/2016 18:06:53: No PreCompute nodes found, skipping PreCompute step.
05/03/2016 18:06:55: Starting Epoch 1: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
05/03/2016 18:06:55: Starting minibatch loop.
05/03/2016 18:07:02: Epoch[ 1 of 3]-Minibatch[ 1- 100]: ce = 7.41642395 * 1600; err = 1.00000000 * 1600; time = 7.0425s; samplesPerSecond = 227.2
05/03/2016 18:07:08: Finished Epoch[ 1 of 3]: [Training] ce = 7.22737918 * 2999; err = 0.99966656 * 2999; totalSamplesSeen = 2999; learningRatePerSample = 0.00062499999; epochTime=12.9259s
05/03/2016 18:07:10: SGD: Saving checkpoint model '/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet.1'
05/03/2016 18:07:13: Starting Epoch 2: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
05/03/2016 18:07:13: Starting minibatch loop.
05/03/2016 18:07:19: Epoch[ 2 of 3]-Minibatch[ 1- 100, 100.00%]: ce = 6.90983215 * 1600; err = 1.00000000 * 1600; time = 6.2320s; samplesPerSecond = 256.7
05/03/2016 18:07:25: Finished Epoch[ 2 of 3]: [Training] ce = 6.91963923 * 2999; err = 0.99866622 * 2999; totalSamplesSeen = 5998; learningRatePerSample = 0.00062499999; epochTime=12.2905s
05/03/2016 18:07:27: SGD: Saving checkpoint model '/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet.2'
05/03/2016 18:07:29: Starting Epoch 3: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
05/03/2016 18:07:29: Starting minibatch loop.
05/03/2016 18:07:36: Epoch[ 3 of 3]-Minibatch[ 1- 100, 100.00%]: ce = 6.87519836 * 1600; err = 0.99937500 * 1600; time = 6.4714s; samplesPerSecond = 247.2
05/03/2016 18:07:42: Finished Epoch[ 3 of 3]: [Training] ce = 6.88608052 * 2999; err = 0.99833278 * 2999; totalSamplesSeen = 8997; learningRatePerSample = 0.00062499999; epochTime=12.1425s
05/03/2016 18:07:44: SGD: Saving checkpoint model '/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet'
05/03/2016 18:07:46: CNTKCommandTrainEnd: Train
05/03/2016 18:07:46: Action "train" complete.
{ conv2.b : [1 x 1 x 192] (gradient)
conv2.y : [27 x 27 x 192 x *] (gradient) }
{ conv3.W : [384 x 1728] (gradient)
conv3.z : [13 x 13 x 384 x *] }
{ conv3.c : [13 x 13 x 384 x *] (gradient)
conv3.y : [13 x 13 x 384 x *] }
{ conv3.z : [13 x 13 x 384 x *] (gradient)
pool2 : [13 x 13 x 192 x *] (gradient) }
{ conv4.W : [256 x 3456] (gradient)
conv4.z : [13 x 13 x 256 x *] }
{ conv4.c : [13 x 13 x 256 x *] (gradient)
conv4.y : [13 x 13 x 256 x *] }
{ conv3.b : [1 x 1 x 384] (gradient)
conv3.y : [13 x 13 x 384 x *] (gradient)
conv4.z : [13 x 13 x 256 x *] (gradient) }
{ conv5.W : [256 x 2304] (gradient)
conv5.z : [13 x 13 x 256 x *] }
{ conv5.c : [13 x 13 x 256 x *] (gradient)
conv5.y : [13 x 13 x 256 x *] }
{ conv4.b : [1 x 1 x 256] (gradient)
conv4.y : [13 x 13 x 256 x *] (gradient)
conv5.z : [13 x 13 x 256 x *] (gradient)
pool3 : [6 x 6 x 256 x *] }
{ conv5.b : [1 x 1 x 256] (gradient)
conv5.y : [13 x 13 x 256 x *] (gradient)
h1.t : [4096 x *] }
{ h1.W : [4096 x 6 x 6 x 256] (gradient)
h1.z : [4096 x *] }
{ h1.t : [4096 x *] (gradient)
h1.y : [4096 x *] }
{ h1.z : [4096 x *] (gradient)
pool3 : [6 x 6 x 256 x *] (gradient) }
{ h1.b : [4096] (gradient)
h1.y : [4096 x *] (gradient)
h2.t : [4096 x *] }
{ h2.W : [4096 x 4096] (gradient)
h2.z : [4096 x *] }
{ h2.t : [4096 x *] (gradient)
h2.y : [4096 x *] }
{ h1_d : [4096 x *] (gradient)
h2.z : [4096 x *] (gradient) }
{ OutputNodes.t : [1000 x *]
h2.b : [4096] (gradient)
h2.y : [4096 x *] (gradient) }
{ OutputNodes.W : [1000 x 4096] (gradient)
OutputNodes.z : [1000 x *] (gradient) }
{ conv1.z : [56 x 56 x 64 x *] (gradient)
pool1 : [27 x 27 x 64 x *] }
{ conv1.c : [56 x 56 x 64 x *] (gradient)
conv1.y : [56 x 56 x 64 x *] }
{ conv1.W : [64 x 363] (gradient)
conv1.z : [56 x 56 x 64 x *] }
{ conv2.c : [27 x 27 x 192 x *] (gradient)
conv2.y : [27 x 27 x 192 x *] }
{ conv2.z : [27 x 27 x 192 x *] (gradient)
pool1 : [27 x 27 x 64 x *] (gradient)
pool2 : [13 x 13 x 192 x *] }
{ conv1.b : [1 x 1 x 64] (gradient)
conv1.y : [56 x 56 x 64 x *] (gradient) }
{ conv2.W : [192 x 1600] (gradient)
conv2.z : [27 x 27 x 192 x *] }
05/03/2016 18:07:46: ##############################################################################
05/03/2016 18:07:46: # #
05/03/2016 18:07:46: # Action "edit" #
05/03/2016 18:07:46: # #
05/03/2016 18:07:46: ##############################################################################
08/16/2016 09:55:25: Training 61100840 parameters in 16 out of 16 parameter tensors and 45 nodes with gradient:
08/16/2016 09:55:25: Node 'OutputNodes.W' (LearnableParameter operation) : [1000 x 4096]
08/16/2016 09:55:25: Node 'OutputNodes.b' (LearnableParameter operation) : [1000]
08/16/2016 09:55:25: Node 'conv1.W' (LearnableParameter operation) : [64 x 363]
08/16/2016 09:55:25: Node 'conv1.b' (LearnableParameter operation) : [1 x 1 x 64]
08/16/2016 09:55:25: Node 'conv2.W' (LearnableParameter operation) : [192 x 1600]
08/16/2016 09:55:25: Node 'conv2.b' (LearnableParameter operation) : [1 x 1 x 192]
08/16/2016 09:55:25: Node 'conv3.W' (LearnableParameter operation) : [384 x 1728]
08/16/2016 09:55:25: Node 'conv3.b' (LearnableParameter operation) : [1 x 1 x 384]
08/16/2016 09:55:25: Node 'conv4.W' (LearnableParameter operation) : [256 x 3456]
08/16/2016 09:55:25: Node 'conv4.b' (LearnableParameter operation) : [1 x 1 x 256]
08/16/2016 09:55:25: Node 'conv5.W' (LearnableParameter operation) : [256 x 2304]
08/16/2016 09:55:25: Node 'conv5.b' (LearnableParameter operation) : [1 x 1 x 256]
08/16/2016 09:55:25: Node 'h1.W' (LearnableParameter operation) : [4096 x 6 x 6 x 256]
08/16/2016 09:55:25: Node 'h1.b' (LearnableParameter operation) : [4096]
08/16/2016 09:55:25: Node 'h2.W' (LearnableParameter operation) : [4096 x 4096]
08/16/2016 09:55:25: Node 'h2.b' (LearnableParameter operation) : [4096]
08/16/2016 09:55:25: No PreCompute nodes found, or all already computed. Skipping pre-computation step.
08/16/2016 09:55:27: Starting Epoch 1: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..2999] (first sequence at sample 0), data subset 0 of 1
08/16/2016 09:55:27: Starting minibatch loop.
08/16/2016 09:55:36: Epoch[ 1 of 3]-Minibatch[ 1- 100]: ce = 7.41094299 * 1600; err = 0.99937500 * 1600; time = 8.3724s; samplesPerSecond = 191.1
08/16/2016 09:55:42: Finished Epoch[ 1 of 3]: [Training] ce = 7.23292074 * 2999; err = 0.99899967 * 2999; totalSamplesSeen = 2999; learningRatePerSample = 0.00062499999; epochTime=14.0535s
08/16/2016 09:55:44: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet.1'
08/16/2016 09:55:46: Starting Epoch 2: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
BlockRandomizer::StartEpoch: epoch 1: frames [2999..5998] (first sequence at sample 2999), data subset 0 of 1
08/16/2016 09:55:46: Starting minibatch loop.
08/16/2016 09:55:53: Epoch[ 2 of 3]-Minibatch[ 1- 100, 100.00%]: ce = 6.91068848 * 1600; err = 0.99875000 * 1600; time = 7.2054s; samplesPerSecond = 222.1
08/16/2016 09:56:00: Finished Epoch[ 2 of 3]: [Training] ce = 6.91553955 * 2999; err = 0.99933311 * 2999; totalSamplesSeen = 5998; learningRatePerSample = 0.00062499999; epochTime=13.8615s
08/16/2016 09:56:03: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet.2'
08/16/2016 09:56:05: Starting Epoch 3: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
BlockRandomizer::StartEpoch: epoch 2: frames [5998..8997] (first sequence at sample 5998), data subset 0 of 1
08/16/2016 09:56:05: Starting minibatch loop.
08/16/2016 09:56:12: Epoch[ 3 of 3]-Minibatch[ 1- 100, 100.00%]: ce = 6.88422668 * 1600; err = 0.99687500 * 1600; time = 7.1340s; samplesPerSecond = 224.3
08/16/2016 09:56:19: Finished Epoch[ 3 of 3]: [Training] ce = 6.88836513 * 2999; err = 0.99766589 * 2999; totalSamplesSeen = 8997; learningRatePerSample = 0.00062499999; epochTime=13.7378s
08/16/2016 09:56:21: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet'
08/16/2016 09:56:25: CNTKCommandTrainEnd: Train
08/16/2016 09:56:25: Action "train" complete.
08/16/2016 09:56:25: ##############################################################################
08/16/2016 09:56:25: # #
08/16/2016 09:56:25: # Action "edit" #
08/16/2016 09:56:25: # #
08/16/2016 09:56:25: ##############################################################################
Post-processing network...
@ -594,27 +674,29 @@ Validating network. 30 nodes to process in pass 2.
Validating network, final pass.
Using GEMM convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c: using GEMM convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using GEMM convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c: using GEMM convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using GEMM convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3.c: using GEMM convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv4.c: using GEMM convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv5.c: using GEMM convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool3: using GEMM convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
18 out of 48 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
Node 'unnamed143' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.000000.
Node 'unnamed143' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 5.000000.
Post-processing network...
@ -674,8 +756,8 @@ Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [1000 x *1]
Validating --> labels = InputValue() : -> [1000 x *1]
Validating --> ce = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [1000 x *1], [1000 x *1] -> [1]
Validating --> err = ErrorPrediction (labels, OutputNodes.z) : [1000 x *1], [1000 x *1] -> [1]
Validating --> unnamed137 = LearnableParameter() : -> [1 x 1]
Validating --> errTop5 = ErrorPrediction (labels, OutputNodes.z, unnamed137) : [1000 x *1], [1000 x *1], [1 x 1] -> [1]
Validating --> unnamed143 = LearnableParameter() : -> [1 x 1]
Validating --> errTop5 = ErrorPrediction (labels, OutputNodes.z, unnamed143) : [1000 x *1], [1000 x *1], [1 x 1] -> [1]
Validating network. 31 nodes to process in pass 2.
@ -689,28 +771,58 @@ Validating network, final pass.
Post-processing network complete.
05/03/2016 18:07:51: Action "edit" complete.
08/16/2016 09:56:31: Action "edit" complete.
05/03/2016 18:07:51: ##############################################################################
05/03/2016 18:07:51: # #
05/03/2016 18:07:51: # Action "test" #
05/03/2016 18:07:51: # #
05/03/2016 18:07:51: ##############################################################################
08/16/2016 09:56:31: ##############################################################################
08/16/2016 09:56:31: # #
08/16/2016 09:56:31: # Action "test" #
08/16/2016 09:56:31: # #
08/16/2016 09:56:31: ##############################################################################
NDLBuilder Using GPU 0
Node 'conv1.W' (LearnableParameter operation): Initializing Parameter[64 x 363] <- 0.000000.
Node 'conv1.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv2.W' (LearnableParameter operation): Initializing Parameter[192 x 1600] <- 0.000000.
Node 'conv2.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 192] <- 0.000000.
Node 'conv3.W' (LearnableParameter operation): Initializing Parameter[384 x 1728] <- 0.000000.
Node 'conv3.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 384] <- 0.000000.
Node 'conv4.W' (LearnableParameter operation): Initializing Parameter[256 x 3456] <- 0.000000.
Node 'conv4.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 0.000000.
Node 'conv5.W' (LearnableParameter operation): Initializing Parameter[256 x 2304] <- 0.000000.
Node 'conv5.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[4096 x 6 x 6 x 256] <- 0.000000.
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[4096] <- 0.000000.
Node 'h2.b' (LearnableParameter operation): Initializing Parameter[4096] <- 0.000000.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[1000] <- 0.000000.
Node 'conv1.W' (LearnableParameter operation): Initializing Parameter[64 x 363] <- gaussian(seed=9, range=0.010497*0.950000, onCPU=false).
Node 'conv1.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv2.W' (LearnableParameter operation): Initializing Parameter[192 x 1600] <- gaussian(seed=10, range=0.005000*2.000000, onCPU=false).
Node 'conv2.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 192] <- 1.000000.
Node 'conv3.W' (LearnableParameter operation): Initializing Parameter[384 x 1728] <- gaussian(seed=11, range=0.004811*2.070000, onCPU=false).
Node 'conv3.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 384] <- 0.000000.
Node 'conv4.W' (LearnableParameter operation): Initializing Parameter[256 x 3456] <- gaussian(seed=12, range=0.003402*2.900000, onCPU=false).
Node 'conv4.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 1.000000.
Node 'conv5.W' (LearnableParameter operation): Initializing Parameter[256 x 2304] <- gaussian(seed=13, range=0.004167*2.400000, onCPU=false).
Node 'conv5.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 1.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[4096 x 6 x 6 x 256] <- gaussian(seed=14, range=0.002083*6.400000, onCPU=false).
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[4096] <- 1.000000.
Node 'h2.W' (LearnableParameter operation): Initializating Parameter[4096 x 0] as gaussian later when dimensions are fully known.
Node 'h2.b' (LearnableParameter operation): Initializing Parameter[4096] <- 1.000000.
Node 'OutputNodes.W' (LearnableParameter operation): Initializating Parameter[1000 x 0] as gaussian later when dimensions are fully known.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[1000] <- 1.000000.
Post-processing network...
4 roots:
3 roots:
OutputNodes.z = Plus()
ce = CrossEntropyWithSoftmax()
err = ErrorPrediction()
errTop5 = ErrorPrediction()
Validating network. 50 nodes to process in pass 1.
Validating network. 48 nodes to process in pass 1.
Validating --> OutputNodes.W = LearnableParameter() : -> [1000 x 4096]
Validating --> h2.W = LearnableParameter() : -> [4096 x 4096]
Validating --> OutputNodes.W = LearnableParameter() : -> [1000 x 0]
Validating --> h2.W = LearnableParameter() : -> [4096 x 0]
Validating --> h1.W = LearnableParameter() : -> [4096 x 6 x 6 x 256]
Validating --> conv5.W = LearnableParameter() : -> [256 x 2304]
Validating --> conv4.W = LearnableParameter() : -> [256 x 3456]
@ -746,44 +858,46 @@ Validating --> h1.b = LearnableParameter() : -> [4096]
Validating --> h1.z = Plus (h1.t, h1.b) : [4096 x *2], [4096] -> [4096 x *2]
Validating --> h1.y = RectifiedLinear (h1.z) : [4096 x *2] -> [4096 x *2]
Validating --> h1_d = Dropout (h1.y) : [4096 x *2] -> [4096 x *2]
Node 'h2.W' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 4096].
Node 'h2.W' (LearnableParameter operation): Initializing Parameter[4096 x 4096] <- gaussian(seed=15, range=0.003125*3.200000, onCPU=false).
Validating --> h2.t = Times (h2.W, h1_d) : [4096 x 4096], [4096 x *2] -> [4096 x *2]
Validating --> h2.b = LearnableParameter() : -> [4096]
Validating --> h2.z = Plus (h2.t, h2.b) : [4096 x *2], [4096] -> [4096 x *2]
Validating --> h2.y = RectifiedLinear (h2.z) : [4096 x *2] -> [4096 x *2]
Validating --> h2_d = Dropout (h2.y) : [4096 x *2] -> [4096 x *2]
Node 'OutputNodes.W' (LearnableParameter operation) operation: Tensor shape was inferred as [1000 x 4096].
Node 'OutputNodes.W' (LearnableParameter operation): Initializing Parameter[1000 x 4096] <- gaussian(seed=16, range=0.003125*3.200000, onCPU=false).
Validating --> OutputNodes.t = Times (OutputNodes.W, h2_d) : [1000 x 4096], [4096 x *2] -> [1000 x *2]
Validating --> OutputNodes.b = LearnableParameter() : -> [1000]
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [1000 x *2], [1000] -> [1000 x *2]
Validating --> labels = InputValue() : -> [1000 x *2]
Validating --> ce = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [1000 x *2], [1000 x *2] -> [1]
Validating --> err = ErrorPrediction (labels, OutputNodes.z) : [1000 x *2], [1000 x *2] -> [1]
Validating --> unnamed137 = LearnableParameter() : -> [1 x 1]
Validating --> errTop5 = ErrorPrediction (labels, OutputNodes.z, unnamed137) : [1000 x *2], [1000 x *2], [1 x 1] -> [1]
Validating network. 31 nodes to process in pass 2.
Validating network. 30 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c: using cuDNN convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c: using cuDNN convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv4.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv5.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool3: using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
20 out of 50 nodes do not share the minibatch layout with the input data.
18 out of 48 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
@ -792,62 +906,12 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 48 matrices, 0 are shared as 0, and 48 are not shared.
(nil): {[OutputNodes.W Gradient[1000 x 4096]] [OutputNodes.b Gradient[1000]] [OutputNodes.t Gradient[1000 x *2]] [OutputNodes.z Gradient[1000 x *2]] [ce Gradient[1]] [conv1.W Gradient[64 x 363]] [conv1.b Gradient[1 x 1 x 64]] [conv1.c Gradient[56 x 56 x 64 x *2]] [conv1.y Gradient[56 x 56 x 64 x *2]] [conv1.z Gradient[56 x 56 x 64 x *2]] [conv2.W Gradient[192 x 1600]] [conv2.b Gradient[1 x 1 x 192]] [conv2.c Gradient[27 x 27 x 192 x *2]] [conv2.y Gradient[27 x 27 x 192 x *2]] [conv2.z Gradient[27 x 27 x 192 x *2]] [conv3.W Gradient[384 x 1728]] [conv3.b Gradient[1 x 1 x 384]] [conv3.c Gradient[13 x 13 x 384 x *2]] [conv3.y Gradient[13 x 13 x 384 x *2]] [conv3.z Gradient[13 x 13 x 384 x *2]] [conv4.W Gradient[256 x 3456]] [conv4.b Gradient[1 x 1 x 256]] [conv4.c Gradient[13 x 13 x 256 x *2]] [conv4.y Gradient[13 x 13 x 256 x *2]] [conv4.z Gradient[13 x 13 x 256 x *2]] [conv5.W Gradient[256 x 2304]] [conv5.b Gradient[1 x 1 x 256]] [conv5.c Gradient[13 x 13 x 256 x *2]] [conv5.y Gradient[13 x 13 x 256 x *2]] [conv5.z Gradient[13 x 13 x 256 x *2]] [err Gradient[1]] [errTop5 Gradient[1]] [features Gradient[224 x 224 x 3 x *2]] [h1.W Gradient[4096 x 6 x 6 x 256]] [h1.b Gradient[4096]] [h1.t Gradient[4096 x *2]] [h1.y Gradient[4096 x *2]] [h1.z Gradient[4096 x *2]] [h1_d Gradient[4096 x *2]] [h2.W Gradient[4096 x 4096]] [h2.b Gradient[4096]] [h2.t Gradient[4096 x *2]] [h2.y Gradient[4096 x *2]] [h2.z Gradient[4096 x *2]] [h2_d Gradient[4096 x *2]] [labels Gradient[1000 x *2]] [pool1 Gradient[27 x 27 x 64 x *2]] [pool2 Gradient[13 x 13 x 192 x *2]] [pool3 Gradient[6 x 6 x 256 x *2]] [unnamed137 Gradient[1 x 1]] }
0x7f479db02088: {[conv1.b Value[1 x 1 x 64]] }
0x7f479db2c418: {[conv1.W Value[64 x 363]] }
0x7f479db2d7a8: {[conv2.W Value[192 x 1600]] }
0x7f479db2dae8: {[conv2.b Value[1 x 1 x 192]] }
0x7f479db2fdd8: {[conv3.W Value[384 x 1728]] }
0x7f479db30118: {[conv3.b Value[1 x 1 x 384]] }
0x7f479db30908: {[conv4.b Value[1 x 1 x 256]] }
0x7f479db33f08: {[conv4.W Value[256 x 3456]] }
0x7f479db35358: {[conv5.b Value[1 x 1 x 256]] }
0x7f479db36608: {[conv5.W Value[256 x 2304]] }
0x7f479db37d68: {[features Value[224 x 224 x 3 x *2]] }
0x7f479db38858: {[h1.W Value[4096 x 6 x 6 x 256]] }
0x7f479db38b98: {[h1.b Value[4096]] }
0x7f479db3aa98: {[h2.b Value[4096]] }
0x7f479db3b5d8: {[h2.W Value[4096 x 4096]] }
0x7f479db3ca98: {[labels Value[1000 x *2]] }
0x7f479db3de18: {[OutputNodes.b Value[1000]] }
0x7f479db3e628: {[OutputNodes.W Value[1000 x 4096]] }
0x7f479db40748: {[unnamed137 Value[1 x 1]] }
0x7f479db413e8: {[errTop5 Value[1]] }
0x7f479db42138: {[ce Value[1]] }
0x7f479db48378: {[err Value[1]] }
0x7f479db53e18: {[pool3 Value[6 x 6 x 256 x *2]] }
0x7f479db53fd8: {[h1.t Value[4096 x *2]] }
0x7f479db54198: {[h1.z Value[4096 x *2]] }
0x7f479db54358: {[h1.y Value[4096 x *2]] }
0x7f479db54518: {[h1_d Value[4096 x *2]] }
0x7f479db54898: {[h2.t Value[4096 x *2]] }
0x7f479db54a58: {[h2.z Value[4096 x *2]] }
0x7f479db54c18: {[h2.y Value[4096 x *2]] }
0x7f479db54dd8: {[h2_d Value[4096 x *2]] }
0x7f479db55158: {[OutputNodes.t Value[1000 x *2]] }
0x7f479db55318: {[OutputNodes.z Value[1000 x *2]] }
0x7f47a644f258: {[conv1.z Value[56 x 56 x 64 x *2]] }
0x7f47a644f558: {[conv1.c Value[56 x 56 x 64 x *2]] }
0x7f47a6450068: {[conv1.y Value[56 x 56 x 64 x *2]] }
0x7f47a64506b8: {[pool1 Value[27 x 27 x 64 x *2]] }
0x7f47a6450878: {[conv2.c Value[27 x 27 x 192 x *2]] }
0x7f47a6450bf8: {[conv2.z Value[27 x 27 x 192 x *2]] }
0x7f47a6450db8: {[conv2.y Value[27 x 27 x 192 x *2]] }
0x7f47a6450f78: {[pool2 Value[13 x 13 x 192 x *2]] }
0x7f47a6451138: {[conv3.c Value[13 x 13 x 384 x *2]] }
0x7f47a64514b8: {[conv3.z Value[13 x 13 x 384 x *2]] }
0x7f47a6451678: {[conv3.y Value[13 x 13 x 384 x *2]] }
0x7f47a6451838: {[conv4.c Value[13 x 13 x 256 x *2]] }
0x7f47a6451bb8: {[conv4.z Value[13 x 13 x 256 x *2]] }
0x7f47a6451d78: {[conv4.y Value[13 x 13 x 256 x *2]] }
0x7f47a6451f38: {[conv5.c Value[13 x 13 x 256 x *2]] }
0x7f47a64522b8: {[conv5.z Value[13 x 13 x 256 x *2]] }
0x7f47a6452478: {[conv5.y Value[13 x 13 x 256 x *2]] }
05/03/2016 18:07:55: Final Results: Minibatch[1-32]: err = 0.99800000 * 500; errTop5 = 0.99400000 * 500; ce = 6.96324823 * 500; perplexity = 1057.06156985
08/16/2016 09:56:33: Minibatch[1-32]: err = 0.99800000 * 500; ce = 7.32804733 * 500
08/16/2016 09:56:33: Final Results: Minibatch[1-32]: err = 0.99800000 * 500; ce = 7.32804733 * 500; perplexity = 1522.40611516
05/03/2016 18:07:55: Action "test" complete.
08/16/2016 09:56:33: Action "test" complete.
05/03/2016 18:07:55: __COMPLETED__
08/16/2016 09:56:33: __COMPLETED__

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -1,47 +1,59 @@
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU W3530 @ 2.80GHz
Hardware threads: 4
Total Memory: 12580404 kB
-------------------------------------------------------------------
Copying test data to local directory
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNet.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu DeviceId=0 timestamping=true
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNetCommon.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu DeviceId=0 timestamping=true configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNet.cntk
-------------------------------------------------------------------
Build info:
Built time: May 3 2016 13:23:06
Last modified date: Mon Apr 18 00:00:12 2016
Built time: Aug 16 2016 02:54:53
Last modified date: Fri Aug 12 05:31:21 2016
Build type: Release
Build target: GPU
With 1bit-SGD: no
Math lib: mkl
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
CUB_PATH: C:\src\cub-1.4.1
CUB_PATH: c:\src\cub-1.4.1
CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
Build Branch: HEAD
Build SHA1: af96f7cce6c3c78a4f1e9315e061291c79360e12
Built by svcphil on LIANA-09-w
Build Path: c:\jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by svcphil on Philly-Pool3
Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
-------------------------------------------------------------------
Changed current directory to C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData
05/03/2016 14:11:01: -------------------------------------------------------------------
05/03/2016 14:11:01: Build info:
Changed current directory to C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData
08/16/2016 03:03:44: -------------------------------------------------------------------
08/16/2016 03:03:44: Build info:
05/03/2016 14:11:01: Built time: May 3 2016 13:23:06
05/03/2016 14:11:01: Last modified date: Mon Apr 18 00:00:12 2016
05/03/2016 14:11:01: Build type: Release
05/03/2016 14:11:01: Build target: GPU
05/03/2016 14:11:01: With 1bit-SGD: no
05/03/2016 14:11:01: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
05/03/2016 14:11:01: CUB_PATH: C:\src\cub-1.4.1
05/03/2016 14:11:01: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
05/03/2016 14:11:01: Build Branch: HEAD
05/03/2016 14:11:01: Build SHA1: af96f7cce6c3c78a4f1e9315e061291c79360e12
05/03/2016 14:11:01: Built by svcphil on LIANA-09-w
05/03/2016 14:11:01: Build Path: c:\jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
05/03/2016 14:11:01: -------------------------------------------------------------------
08/16/2016 03:03:44: Built time: Aug 16 2016 02:54:53
08/16/2016 03:03:44: Last modified date: Fri Aug 12 05:31:21 2016
08/16/2016 03:03:44: Build type: Release
08/16/2016 03:03:44: Build target: GPU
08/16/2016 03:03:44: With 1bit-SGD: no
08/16/2016 03:03:44: Math lib: mkl
08/16/2016 03:03:44: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
08/16/2016 03:03:44: CUB_PATH: c:\src\cub-1.4.1
08/16/2016 03:03:44: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
08/16/2016 03:03:44: Build Branch: HEAD
08/16/2016 03:03:44: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 03:03:44: Built by svcphil on Philly-Pool3
08/16/2016 03:03:44: Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
08/16/2016 03:03:44: -------------------------------------------------------------------
08/16/2016 03:03:45: -------------------------------------------------------------------
08/16/2016 03:03:45: GPU info:
05/03/2016 14:11:01: Running on DPHAIM-25 at 2016/05/03 14:11:01
05/03/2016 14:11:01: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNet.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu DeviceId=0 timestamping=true
08/16/2016 03:03:45: Device[0]: cores = 2496; computeCapability = 5.2; type = "Quadro M4000"; memory = 8090 MB
08/16/2016 03:03:45: -------------------------------------------------------------------
08/16/2016 03:03:45: Running on cntk-muc00 at 2016/08/16 03:03:45
08/16/2016 03:03:45: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNetCommon.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu DeviceId=0 timestamping=true configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNet.cntk
05/03/2016 14:11:01: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/03/2016 14:11:01: ModelDir = "$RunDir$/models"
08/16/2016 03:03:45: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:03:45: ModelDir = "$RunDir$/models"
ndlMacros=$ConfigDir$/Macros.ndl
precision=float
deviceId=Auto
@ -74,6 +86,29 @@ Train=[
]
numMBsToShowResult=100
]
]
AddTop5Eval=[
action=edit
CurModel=$ModelDir$/AlexNet
NewModel=$ModelDir$/AlexNet.Top5
editPath=$ConfigDir$/add_top5_layer.mel
]
Test=[
action=test
modelPath=$ModelDir$/AlexNet.Top5
minibatchSize=16
NDLNetworkBuilder=[
networkDescription=$ConfigDir$/AlexNet.ndl
]
]
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu
DeviceId=0
timestamping=true
Train=[
reader=[
readerType=ImageReader
file=$ConfigDir$/train_map.txt
@ -93,19 +128,7 @@ Train=[
]
]
]
AddTop5Eval=[
action=edit
CurModel=$ModelDir$/AlexNet
NewModel=$ModelDir$/AlexNet.Top5
editPath=$ConfigDir$/add_top5_layer.mel
]
Test=[
action=test
modelPath=$ModelDir$/AlexNet.Top5
minibatchSize=16
NDLNetworkBuilder=[
networkDescription=$ConfigDir$/AlexNet.ndl
]
Test=[
reader=[
readerType=ImageReader
file=$ConfigDir$/val_map.txt
@ -122,18 +145,11 @@ Test=[
]
]
]
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu
DeviceId=0
timestamping=true
05/03/2016 14:11:01: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:03:45: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/03/2016 14:11:01: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/03/2016 14:11:01: ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models"
08/16/2016 03:03:45: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:03:45: ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models"
ndlMacros=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/Macros.ndl
precision=float
deviceId=Auto
@ -143,7 +159,7 @@ traceLevel=1
numMBsToShowResult=100
Train=[
action=train
modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet
modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet
NDLNetworkBuilder=[
networkDescription=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNet.ndl
]
@ -166,6 +182,29 @@ Train=[
]
numMBsToShowResult=100
]
]
AddTop5Eval=[
action=edit
CurModel=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet
NewModel=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet.Top5
editPath=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/add_top5_layer.mel
]
Test=[
action=test
modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet.Top5
minibatchSize=16
NDLNetworkBuilder=[
networkDescription=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNet.ndl
]
]
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu
DeviceId=0
timestamping=true
Train=[
reader=[
readerType=ImageReader
file=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/train_map.txt
@ -185,19 +224,7 @@ Train=[
]
]
]
AddTop5Eval=[
action=edit
CurModel=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet
NewModel=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet.Top5
editPath=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/add_top5_layer.mel
]
Test=[
action=test
modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet.Top5
minibatchSize=16
NDLNetworkBuilder=[
networkDescription=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNet.ndl
]
Test=[
reader=[
readerType=ImageReader
file=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/val_map.txt
@ -214,43 +241,37 @@ Test=[
]
]
]
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu
DeviceId=0
timestamping=true
05/03/2016 14:11:01: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:03:45: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 14:11:01: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:03:45: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: AlexNet.cntk:AddTop5Eval=[
action=edit
CurModel=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet
NewModel=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet.Top5
CurModel=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet
NewModel=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet.Top5
editPath=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/add_top5_layer.mel
]
configparameters: AlexNet.cntk:command=Train:AddTop5Eval:Test
configparameters: AlexNet.cntk:ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet
configparameters: AlexNet.cntk:currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData
configparameters: AlexNet.cntk:DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData
configparameters: AlexNet.cntk:currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData
configparameters: AlexNet.cntk:DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData
configparameters: AlexNet.cntk:deviceId=0
configparameters: AlexNet.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models
configparameters: AlexNet.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models
configparameters: AlexNet.cntk:ndlMacros=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/Macros.ndl
configparameters: AlexNet.cntk:numMBsToShowResult=100
configparameters: AlexNet.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu
configparameters: AlexNet.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu
configparameters: AlexNet.cntk:parallelTrain=false
configparameters: AlexNet.cntk:precision=float
configparameters: AlexNet.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu
configparameters: AlexNet.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu
configparameters: AlexNet.cntk:Test=[
action=test
modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet.Top5
modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet.Top5
minibatchSize=16
NDLNetworkBuilder=[
networkDescription=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNet.ndl
]
] [
reader=[
readerType=ImageReader
file=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/val_map.txt
@ -272,7 +293,7 @@ configparameters: AlexNet.cntk:timestamping=true
configparameters: AlexNet.cntk:traceLevel=1
configparameters: AlexNet.cntk:Train=[
action=train
modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet
modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet
NDLNetworkBuilder=[
networkDescription=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNet.ndl
]
@ -295,6 +316,7 @@ configparameters: AlexNet.cntk:Train=[
]
numMBsToShowResult=100
]
] [
reader=[
readerType=ImageReader
file=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/train_map.txt
@ -315,24 +337,54 @@ configparameters: AlexNet.cntk:Train=[
]
]
05/03/2016 14:11:01: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 14:11:01: Commands: Train AddTop5Eval Test
05/03/2016 14:11:01: Precision = "float"
05/03/2016 14:11:01: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet
05/03/2016 14:11:01: CNTKCommandTrainInfo: Train : 3
05/03/2016 14:11:01: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
08/16/2016 03:03:45: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:03:45: Commands: Train AddTop5Eval Test
08/16/2016 03:03:45: Precision = "float"
08/16/2016 03:03:45: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet
08/16/2016 03:03:45: CNTKCommandTrainInfo: Train : 3
08/16/2016 03:03:45: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
05/03/2016 14:11:01: ##############################################################################
05/03/2016 14:11:01: # #
05/03/2016 14:11:01: # Action "train" #
05/03/2016 14:11:01: # #
05/03/2016 14:11:01: ##############################################################################
08/16/2016 03:03:45: ##############################################################################
08/16/2016 03:03:45: # #
08/16/2016 03:03:45: # Action "train" #
08/16/2016 03:03:45: # #
08/16/2016 03:03:45: ##############################################################################
05/03/2016 14:11:01: CNTKCommandTrainBegin: Train
08/16/2016 03:03:45: CNTKCommandTrainBegin: Train
NDLBuilder Using GPU 0
05/03/2016 14:11:01: Creating virgin network.
useParallelTrain option is not enabled. ParallelTrain config will be ignored.
08/16/2016 03:03:45: Creating virgin network.
Node 'conv1.W' (LearnableParameter operation): Initializing Parameter[64 x 363] <- 0.000000.
Node 'conv1.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv2.W' (LearnableParameter operation): Initializing Parameter[192 x 1600] <- 0.000000.
Node 'conv2.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 192] <- 0.000000.
Node 'conv3.W' (LearnableParameter operation): Initializing Parameter[384 x 1728] <- 0.000000.
Node 'conv3.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 384] <- 0.000000.
Node 'conv4.W' (LearnableParameter operation): Initializing Parameter[256 x 3456] <- 0.000000.
Node 'conv4.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 0.000000.
Node 'conv5.W' (LearnableParameter operation): Initializing Parameter[256 x 2304] <- 0.000000.
Node 'conv5.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[4096 x 6 x 6 x 256] <- 0.000000.
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[4096] <- 0.000000.
Node 'h2.b' (LearnableParameter operation): Initializing Parameter[4096] <- 0.000000.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[1000] <- 0.000000.
Node 'conv1.W' (LearnableParameter operation): Initializing Parameter[64 x 363] <- gaussian(seed=1, range=0.010497*0.950000, onCPU=false).
Microsoft::MSR::CNTK::GPUMatrix<ElemType>::SetGaussianRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4
Node 'conv1.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv2.W' (LearnableParameter operation): Initializing Parameter[192 x 1600] <- gaussian(seed=2, range=0.005000*2.000000, onCPU=false).
Node 'conv2.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 192] <- 1.000000.
Node 'conv3.W' (LearnableParameter operation): Initializing Parameter[384 x 1728] <- gaussian(seed=3, range=0.004811*2.070000, onCPU=false).
Node 'conv3.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 384] <- 0.000000.
Node 'conv4.W' (LearnableParameter operation): Initializing Parameter[256 x 3456] <- gaussian(seed=4, range=0.003402*2.900000, onCPU=false).
Node 'conv4.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 1.000000.
Node 'conv5.W' (LearnableParameter operation): Initializing Parameter[256 x 2304] <- gaussian(seed=5, range=0.004167*2.400000, onCPU=false).
Node 'conv5.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 1.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[4096 x 6 x 6 x 256] <- gaussian(seed=6, range=0.002083*6.400000, onCPU=false).
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[4096] <- 1.000000.
Node 'h2.W' (LearnableParameter operation): Initializating Parameter[4096 x 0] as gaussian later when dimensions are fully known.
Node 'h2.b' (LearnableParameter operation): Initializing Parameter[4096] <- 1.000000.
Node 'OutputNodes.W' (LearnableParameter operation): Initializating Parameter[1000 x 0] as gaussian later when dimensions are fully known.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[1000] <- 1.000000.
Post-processing network...
@ -343,8 +395,8 @@ Post-processing network...
Validating network. 48 nodes to process in pass 1.
Validating --> OutputNodes.W = LearnableParameter() : -> [1000 x 4096]
Validating --> h2.W = LearnableParameter() : -> [4096 x 4096]
Validating --> OutputNodes.W = LearnableParameter() : -> [1000 x 0]
Validating --> h2.W = LearnableParameter() : -> [4096 x 0]
Validating --> h1.W = LearnableParameter() : -> [4096 x 6 x 6 x 256]
Validating --> conv5.W = LearnableParameter() : -> [256 x 2304]
Validating --> conv4.W = LearnableParameter() : -> [256 x 3456]
@ -380,11 +432,15 @@ Validating --> h1.b = LearnableParameter() : -> [4096]
Validating --> h1.z = Plus (h1.t, h1.b) : [4096 x *], [4096] -> [4096 x *]
Validating --> h1.y = RectifiedLinear (h1.z) : [4096 x *] -> [4096 x *]
Validating --> h1_d = Dropout (h1.y) : [4096 x *] -> [4096 x *]
Node 'h2.W' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 4096].
Node 'h2.W' (LearnableParameter operation): Initializing Parameter[4096 x 4096] <- gaussian(seed=7, range=0.003125*3.200000, onCPU=false).
Validating --> h2.t = Times (h2.W, h1_d) : [4096 x 4096], [4096 x *] -> [4096 x *]
Validating --> h2.b = LearnableParameter() : -> [4096]
Validating --> h2.z = Plus (h2.t, h2.b) : [4096 x *], [4096] -> [4096 x *]
Validating --> h2.y = RectifiedLinear (h2.z) : [4096 x *] -> [4096 x *]
Validating --> h2_d = Dropout (h2.y) : [4096 x *] -> [4096 x *]
Node 'OutputNodes.W' (LearnableParameter operation) operation: Tensor shape was inferred as [1000 x 4096].
Node 'OutputNodes.W' (LearnableParameter operation): Initializing Parameter[1000 x 4096] <- gaussian(seed=8, range=0.003125*3.200000, onCPU=false).
Validating --> OutputNodes.t = Times (OutputNodes.W, h2_d) : [1000 x 4096], [4096 x *] -> [1000 x *]
Validating --> OutputNodes.b = LearnableParameter() : -> [1000]
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [1000 x *], [1000] -> [1000 x *]
@ -398,134 +454,157 @@ Validating network. 30 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c: using cuDNN convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c: using cuDNN convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv4.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv5.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool3: using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
18 out of 48 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
05/03/2016 14:11:02: Created model with 48 nodes on GPU 0.
08/16/2016 03:03:45: Created model with 48 nodes on GPU 0.
05/03/2016 14:11:02: Training criterion node(s):
05/03/2016 14:11:02: ce = CrossEntropyWithSoftmax
08/16/2016 03:03:45: Training criterion node(s):
08/16/2016 03:03:45: ce = CrossEntropyWithSoftmax
05/03/2016 14:11:02: Evaluation criterion node(s):
05/03/2016 14:11:02: err = ErrorPrediction
08/16/2016 03:03:45: Evaluation criterion node(s):
08/16/2016 03:03:45: err = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 93 matrices, 61 are shared as 27, and 32 are not shared.
0000000000000000: {[err Gradient[1]] [features Gradient[224 x 224 x 3 x *]] [labels Gradient[1000 x *]] }
000000E290039200: {[conv2.W Value[192 x 1600]] }
000000E290039340: {[conv1.W Value[64 x 363]] }
000000E290039480: {[conv1.b Value[1 x 1 x 64]] }
000000E290039520: {[conv2.b Value[1 x 1 x 192]] }
000000E29003A060: {[features Value[224 x 224 x 3 x *]] }
000000E29003A240: {[labels Value[1000 x *]] }
000000E2A80AE1D0: {[OutputNodes.b Value[1000]] }
000000E2A80AE270: {[conv3.W Value[384 x 1728]] }
000000E2A80AE310: {[h1.W Value[4096 x 6 x 6 x 256]] }
000000E2A80AE950: {[conv5.b Value[1 x 1 x 256]] }
000000E2A80AEC70: {[h1.b Value[4096]] }
000000E2A80AF350: {[h2.W Value[4096 x 4096]] }
000000E2A80AF530: {[conv3.b Value[1 x 1 x 384]] }
000000E2A80AF710: {[conv4.b Value[1 x 1 x 256]] }
000000E2A80AFA30: {[h2.b Value[4096]] }
000000E2A80AFDF0: {[conv5.W Value[256 x 2304]] }
000000E2A80AFE90: {[conv4.W Value[256 x 3456]] }
000000E2A80AFF30: {[OutputNodes.W Value[1000 x 4096]] }
000000E2AE0BA220: {[conv4.c Value[13 x 13 x 256 x *]] }
000000E2AE0BA2C0: {[h2.W Gradient[4096 x 4096]] [h2.z Value[4096 x *]] }
000000E2AE0BA360: {[conv5.c Gradient[13 x 13 x 256 x *]] [conv5.y Value[13 x 13 x 256 x *]] }
000000E2AE0BA400: {[OutputNodes.t Value[1000 x *]] [h2.b Gradient[4096]] [h2.y Gradient[4096 x *]] }
000000E2AE0BA720: {[err Value[1]] }
000000E2AE0BA7C0: {[conv3.b Gradient[1 x 1 x 384]] [conv3.y Gradient[13 x 13 x 384 x *]] [conv4.z Gradient[13 x 13 x 256 x *]] }
000000E2AE0BA860: {[conv1.c Gradient[56 x 56 x 64 x *]] [conv1.y Value[56 x 56 x 64 x *]] }
000000E2AE0BA900: {[conv1.b Gradient[1 x 1 x 64]] [conv1.y Gradient[56 x 56 x 64 x *]] }
000000E2AE0BA9A0: {[conv1.z Gradient[56 x 56 x 64 x *]] [pool1 Value[27 x 27 x 64 x *]] }
000000E2AE0BAA40: {[conv3.z Gradient[13 x 13 x 384 x *]] [pool2 Gradient[13 x 13 x 192 x *]] }
000000E2AE0BAAE0: {[conv5.W Gradient[256 x 2304]] [conv5.z Value[13 x 13 x 256 x *]] }
000000E2AE0BAB80: {[h1_d Value[4096 x *]] }
000000E2AE0BACC0: {[conv3.c Gradient[13 x 13 x 384 x *]] [conv3.y Value[13 x 13 x 384 x *]] }
000000E2AE0BAE00: {[conv3.c Value[13 x 13 x 384 x *]] }
000000E2AE0BAEA0: {[conv4.W Gradient[256 x 3456]] [conv4.z Value[13 x 13 x 256 x *]] }
000000E2AE0BAFE0: {[h2_d Value[4096 x *]] }
000000E2AE0BB080: {[conv4.c Gradient[13 x 13 x 256 x *]] [conv4.y Value[13 x 13 x 256 x *]] }
000000E2AE0BB120: {[h1.W Gradient[4096 x 6 x 6 x 256]] [h1.z Value[4096 x *]] }
000000E2AE0BB1C0: {[ce Gradient[1]] }
000000E2AE0BB260: {[OutputNodes.b Gradient[1000]] }
000000E2AE0BB3A0: {[conv2.W Gradient[192 x 1600]] [conv2.z Value[27 x 27 x 192 x *]] }
000000E2AE0BB4E0: {[conv1.W Gradient[64 x 363]] [conv1.z Value[56 x 56 x 64 x *]] }
000000E2AE0BB800: {[conv2.b Gradient[1 x 1 x 192]] [conv2.y Gradient[27 x 27 x 192 x *]] }
000000E2AE0BB940: {[h1.z Gradient[4096 x *]] [pool3 Gradient[6 x 6 x 256 x *]] }
000000E2AE0BB9E0: {[h1.b Gradient[4096]] [h1.y Gradient[4096 x *]] [h2.t Value[4096 x *]] }
000000E2AE0BBB20: {[OutputNodes.t Gradient[1000 x *]] }
000000E2AE0BBBC0: {[conv4.b Gradient[1 x 1 x 256]] [conv4.y Gradient[13 x 13 x 256 x *]] [conv5.z Gradient[13 x 13 x 256 x *]] [pool3 Value[6 x 6 x 256 x *]] }
000000E2AE0BBD00: {[ce Value[1]] }
000000E2AE0BBDA0: {[conv2.c Value[27 x 27 x 192 x *]] }
000000E2AE0BBE40: {[conv1.c Value[56 x 56 x 64 x *]] }
000000E2AE0BBF80: {[conv2.c Gradient[27 x 27 x 192 x *]] [conv2.y Value[27 x 27 x 192 x *]] }
000000E2AE0BC020: {[h2.t Gradient[4096 x *]] [h2.y Value[4096 x *]] }
000000E2AE0BC160: {[conv5.c Value[13 x 13 x 256 x *]] }
000000E2AE0BC200: {[conv2.z Gradient[27 x 27 x 192 x *]] [pool1 Gradient[27 x 27 x 64 x *]] [pool2 Value[13 x 13 x 192 x *]] }
000000E2AE0BC2A0: {[OutputNodes.z Value[1000 x *]] }
000000E2AE0BC340: {[h1_d Gradient[4096 x *]] [h2.z Gradient[4096 x *]] }
000000E2AE0BC480: {[OutputNodes.W Gradient[1000 x 4096]] [OutputNodes.z Gradient[1000 x *]] }
000000E2AE0BC520: {[h2_d Gradient[4096 x *]] }
000000E2AE0BC840: {[conv3.W Gradient[384 x 1728]] [conv3.z Value[13 x 13 x 384 x *]] }
000000E2AE0BC8E0: {[conv5.b Gradient[1 x 1 x 256]] [conv5.y Gradient[13 x 13 x 256 x *]] [h1.t Value[4096 x *]] }
000000E2AE0BC980: {[h1.t Gradient[4096 x *]] [h1.y Value[4096 x *]] }
05/03/2016 14:11:02: No PreCompute nodes found, skipping PreCompute step.
05/03/2016 14:11:05: Starting Epoch 1: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
05/03/2016 14:11:05: Starting minibatch loop.
05/03/2016 14:11:14: Epoch[ 1 of 3]-Minibatch[ 1- 100]: ce = 7.43287354 * 1600; err = 0.99937500 * 1600; time = 8.8275s; samplesPerSecond = 181.3
05/03/2016 14:11:20: Finished Epoch[ 1 of 3]: [Training] ce = 7.24222462 * 2999; err = 0.99933311 * 2999; totalSamplesSeen = 2999; learningRatePerSample = 0.00062499999; epochTime=14.8733s
05/03/2016 14:11:24: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet.1'
05/03/2016 14:11:27: Starting Epoch 2: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
05/03/2016 14:11:27: Starting minibatch loop.
05/03/2016 14:11:34: Epoch[ 2 of 3]-Minibatch[ 1- 100, 100.00%]: ce = 6.90465576 * 1600; err = 0.99937500 * 1600; time = 6.9523s; samplesPerSecond = 230.1
05/03/2016 14:11:40: Finished Epoch[ 2 of 3]: [Training] ce = 6.91868774 * 2999; err = 0.99899967 * 2999; totalSamplesSeen = 5998; learningRatePerSample = 0.00062499999; epochTime=12.9929s
05/03/2016 14:11:43: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet.2'
05/03/2016 14:11:46: Starting Epoch 3: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
05/03/2016 14:11:46: Starting minibatch loop.
05/03/2016 14:11:53: Epoch[ 3 of 3]-Minibatch[ 1- 100, 100.00%]: ce = 6.87353699 * 1600; err = 0.99750000 * 1600; time = 7.0845s; samplesPerSecond = 225.8
05/03/2016 14:11:59: Finished Epoch[ 3 of 3]: [Training] ce = 6.88654161 * 2999; err = 0.99799933 * 2999; totalSamplesSeen = 8997; learningRatePerSample = 0.00062499999; epochTime=13.0423s
05/03/2016 14:12:03: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet'
05/03/2016 14:12:06: CNTKCommandTrainEnd: Train
05/03/2016 14:12:06: Action "train" complete.
{ conv1.W : [64 x 363] (gradient)
conv1.z : [56 x 56 x 64 x *] }
{ conv1.c : [56 x 56 x 64 x *] (gradient)
conv1.y : [56 x 56 x 64 x *] }
{ conv2.c : [27 x 27 x 192 x *] (gradient)
conv2.y : [27 x 27 x 192 x *] }
{ conv2.z : [27 x 27 x 192 x *] (gradient)
pool1 : [27 x 27 x 64 x *] (gradient)
pool2 : [13 x 13 x 192 x *] }
{ conv3.W : [384 x 1728] (gradient)
conv3.z : [13 x 13 x 384 x *] }
{ conv1.z : [56 x 56 x 64 x *] (gradient)
pool1 : [27 x 27 x 64 x *] }
{ conv3.c : [13 x 13 x 384 x *] (gradient)
conv3.y : [13 x 13 x 384 x *] }
{ conv2.b : [1 x 1 x 192] (gradient)
conv2.y : [27 x 27 x 192 x *] (gradient) }
{ conv1.b : [1 x 1 x 64] (gradient)
conv1.y : [56 x 56 x 64 x *] (gradient) }
{ conv2.W : [192 x 1600] (gradient)
conv2.z : [27 x 27 x 192 x *] }
{ conv5.b : [1 x 1 x 256] (gradient)
conv5.y : [13 x 13 x 256 x *] (gradient)
h1.t : [4096 x *] }
{ h1_d : [4096 x *] (gradient)
h2.z : [4096 x *] (gradient) }
{ h1.W : [4096 x 6 x 6 x 256] (gradient)
h1.z : [4096 x *] }
{ h1.z : [4096 x *] (gradient)
pool3 : [6 x 6 x 256 x *] (gradient) }
{ OutputNodes.t : [1000 x *]
h2.b : [4096] (gradient)
h2.y : [4096 x *] (gradient) }
{ conv4.b : [1 x 1 x 256] (gradient)
conv4.y : [13 x 13 x 256 x *] (gradient)
conv5.z : [13 x 13 x 256 x *] (gradient)
pool3 : [6 x 6 x 256 x *] }
{ conv5.c : [13 x 13 x 256 x *] (gradient)
conv5.y : [13 x 13 x 256 x *] }
{ OutputNodes.W : [1000 x 4096] (gradient)
OutputNodes.z : [1000 x *] (gradient) }
{ conv3.b : [1 x 1 x 384] (gradient)
conv3.y : [13 x 13 x 384 x *] (gradient)
conv4.z : [13 x 13 x 256 x *] (gradient) }
{ h1.t : [4096 x *] (gradient)
h1.y : [4096 x *] }
{ conv4.c : [13 x 13 x 256 x *] (gradient)
conv4.y : [13 x 13 x 256 x *] }
{ h2.W : [4096 x 4096] (gradient)
h2.z : [4096 x *] }
{ h2.t : [4096 x *] (gradient)
h2.y : [4096 x *] }
{ h1.b : [4096] (gradient)
h1.y : [4096 x *] (gradient)
h2.t : [4096 x *] }
{ conv5.W : [256 x 2304] (gradient)
conv5.z : [13 x 13 x 256 x *] }
{ conv3.z : [13 x 13 x 384 x *] (gradient)
pool2 : [13 x 13 x 192 x *] (gradient) }
{ conv4.W : [256 x 3456] (gradient)
conv4.z : [13 x 13 x 256 x *] }
05/03/2016 14:12:06: ##############################################################################
05/03/2016 14:12:06: # #
05/03/2016 14:12:06: # Action "edit" #
05/03/2016 14:12:06: # #
05/03/2016 14:12:06: ##############################################################################
08/16/2016 03:03:45: Training 61100840 parameters in 16 out of 16 parameter tensors and 45 nodes with gradient:
08/16/2016 03:03:45: Node 'OutputNodes.W' (LearnableParameter operation) : [1000 x 4096]
08/16/2016 03:03:45: Node 'OutputNodes.b' (LearnableParameter operation) : [1000]
08/16/2016 03:03:45: Node 'conv1.W' (LearnableParameter operation) : [64 x 363]
08/16/2016 03:03:45: Node 'conv1.b' (LearnableParameter operation) : [1 x 1 x 64]
08/16/2016 03:03:45: Node 'conv2.W' (LearnableParameter operation) : [192 x 1600]
08/16/2016 03:03:45: Node 'conv2.b' (LearnableParameter operation) : [1 x 1 x 192]
08/16/2016 03:03:45: Node 'conv3.W' (LearnableParameter operation) : [384 x 1728]
08/16/2016 03:03:45: Node 'conv3.b' (LearnableParameter operation) : [1 x 1 x 384]
08/16/2016 03:03:45: Node 'conv4.W' (LearnableParameter operation) : [256 x 3456]
08/16/2016 03:03:45: Node 'conv4.b' (LearnableParameter operation) : [1 x 1 x 256]
08/16/2016 03:03:45: Node 'conv5.W' (LearnableParameter operation) : [256 x 2304]
08/16/2016 03:03:45: Node 'conv5.b' (LearnableParameter operation) : [1 x 1 x 256]
08/16/2016 03:03:45: Node 'h1.W' (LearnableParameter operation) : [4096 x 6 x 6 x 256]
08/16/2016 03:03:45: Node 'h1.b' (LearnableParameter operation) : [4096]
08/16/2016 03:03:45: Node 'h2.W' (LearnableParameter operation) : [4096 x 4096]
08/16/2016 03:03:45: Node 'h2.b' (LearnableParameter operation) : [4096]
08/16/2016 03:03:45: No PreCompute nodes found, or all already computed. Skipping pre-computation step.
08/16/2016 03:03:49: Starting Epoch 1: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..2999] (first sequence at sample 0), data subset 0 of 1
08/16/2016 03:03:49: Starting minibatch loop.
08/16/2016 03:03:59: Epoch[ 1 of 3]-Minibatch[ 1- 100]: ce = 7.41005371 * 1600; err = 1.00000000 * 1600; time = 10.1500s; samplesPerSecond = 157.6
08/16/2016 03:04:06: Finished Epoch[ 1 of 3]: [Training] ce = 7.23359609 * 2999; err = 1.00000000 * 2999; totalSamplesSeen = 2999; learningRatePerSample = 0.00062499999; epochTime=17.2906s
08/16/2016 03:04:10: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet.1'
08/16/2016 03:04:14: Starting Epoch 2: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
BlockRandomizer::StartEpoch: epoch 1: frames [2999..5998] (first sequence at sample 2999), data subset 0 of 1
08/16/2016 03:04:14: Starting minibatch loop.
08/16/2016 03:04:22: Epoch[ 2 of 3]-Minibatch[ 1- 100, 100.00%]: ce = 6.91799866 * 1600; err = 0.99937500 * 1600; time = 8.4264s; samplesPerSecond = 189.9
08/16/2016 03:04:30: Finished Epoch[ 2 of 3]: [Training] ce = 6.91958452 * 2999; err = 0.99966656 * 2999; totalSamplesSeen = 5998; learningRatePerSample = 0.00062499999; epochTime=15.8522s
08/16/2016 03:04:33: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet.2'
08/16/2016 03:04:37: Starting Epoch 3: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
BlockRandomizer::StartEpoch: epoch 2: frames [5998..8997] (first sequence at sample 5998), data subset 0 of 1
08/16/2016 03:04:37: Starting minibatch loop.
08/16/2016 03:04:45: Epoch[ 3 of 3]-Minibatch[ 1- 100, 100.00%]: ce = 6.88781128 * 1600; err = 0.99687500 * 1600; time = 8.2882s; samplesPerSecond = 193.0
08/16/2016 03:04:52: Finished Epoch[ 3 of 3]: [Training] ce = 6.88917725 * 2999; err = 0.99766589 * 2999; totalSamplesSeen = 8997; learningRatePerSample = 0.00062499999; epochTime=15.5577s
08/16/2016 03:04:56: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet'
08/16/2016 03:04:59: CNTKCommandTrainEnd: Train
08/16/2016 03:04:59: Action "train" complete.
08/16/2016 03:04:59: ##############################################################################
08/16/2016 03:04:59: # #
08/16/2016 03:04:59: # Action "edit" #
08/16/2016 03:04:59: # #
08/16/2016 03:04:59: ##############################################################################
Post-processing network...
@ -592,27 +671,29 @@ Validating network. 30 nodes to process in pass 2.
Validating network, final pass.
Using GEMM convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c: using GEMM convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using GEMM convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c: using GEMM convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using GEMM convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3.c: using GEMM convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv4.c: using GEMM convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv5.c: using GEMM convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool3: using GEMM convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
18 out of 48 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
Node 'unnamed143' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.000000.
Node 'unnamed143' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 5.000000.
Post-processing network...
@ -672,8 +753,8 @@ Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [1000 x *1]
Validating --> labels = InputValue() : -> [1000 x *1]
Validating --> ce = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [1000 x *1], [1000 x *1] -> [1]
Validating --> err = ErrorPrediction (labels, OutputNodes.z) : [1000 x *1], [1000 x *1] -> [1]
Validating --> unnamed137 = LearnableParameter() : -> [1 x 1]
Validating --> errTop5 = ErrorPrediction (labels, OutputNodes.z, unnamed137) : [1000 x *1], [1000 x *1], [1 x 1] -> [1]
Validating --> unnamed143 = LearnableParameter() : -> [1 x 1]
Validating --> errTop5 = ErrorPrediction (labels, OutputNodes.z, unnamed143) : [1000 x *1], [1000 x *1], [1 x 1] -> [1]
Validating network. 31 nodes to process in pass 2.
@ -687,28 +768,58 @@ Validating network, final pass.
Post-processing network complete.
05/03/2016 14:12:12: Action "edit" complete.
08/16/2016 03:05:07: Action "edit" complete.
05/03/2016 14:12:12: ##############################################################################
05/03/2016 14:12:12: # #
05/03/2016 14:12:12: # Action "test" #
05/03/2016 14:12:12: # #
05/03/2016 14:12:12: ##############################################################################
08/16/2016 03:05:07: ##############################################################################
08/16/2016 03:05:07: # #
08/16/2016 03:05:07: # Action "test" #
08/16/2016 03:05:07: # #
08/16/2016 03:05:07: ##############################################################################
NDLBuilder Using GPU 0
Node 'conv1.W' (LearnableParameter operation): Initializing Parameter[64 x 363] <- 0.000000.
Node 'conv1.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv2.W' (LearnableParameter operation): Initializing Parameter[192 x 1600] <- 0.000000.
Node 'conv2.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 192] <- 0.000000.
Node 'conv3.W' (LearnableParameter operation): Initializing Parameter[384 x 1728] <- 0.000000.
Node 'conv3.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 384] <- 0.000000.
Node 'conv4.W' (LearnableParameter operation): Initializing Parameter[256 x 3456] <- 0.000000.
Node 'conv4.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 0.000000.
Node 'conv5.W' (LearnableParameter operation): Initializing Parameter[256 x 2304] <- 0.000000.
Node 'conv5.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[4096 x 6 x 6 x 256] <- 0.000000.
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[4096] <- 0.000000.
Node 'h2.b' (LearnableParameter operation): Initializing Parameter[4096] <- 0.000000.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[1000] <- 0.000000.
Node 'conv1.W' (LearnableParameter operation): Initializing Parameter[64 x 363] <- gaussian(seed=9, range=0.010497*0.950000, onCPU=false).
Node 'conv1.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv2.W' (LearnableParameter operation): Initializing Parameter[192 x 1600] <- gaussian(seed=10, range=0.005000*2.000000, onCPU=false).
Node 'conv2.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 192] <- 1.000000.
Node 'conv3.W' (LearnableParameter operation): Initializing Parameter[384 x 1728] <- gaussian(seed=11, range=0.004811*2.070000, onCPU=false).
Node 'conv3.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 384] <- 0.000000.
Node 'conv4.W' (LearnableParameter operation): Initializing Parameter[256 x 3456] <- gaussian(seed=12, range=0.003402*2.900000, onCPU=false).
Node 'conv4.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 1.000000.
Node 'conv5.W' (LearnableParameter operation): Initializing Parameter[256 x 2304] <- gaussian(seed=13, range=0.004167*2.400000, onCPU=false).
Node 'conv5.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 1.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[4096 x 6 x 6 x 256] <- gaussian(seed=14, range=0.002083*6.400000, onCPU=false).
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[4096] <- 1.000000.
Node 'h2.W' (LearnableParameter operation): Initializating Parameter[4096 x 0] as gaussian later when dimensions are fully known.
Node 'h2.b' (LearnableParameter operation): Initializing Parameter[4096] <- 1.000000.
Node 'OutputNodes.W' (LearnableParameter operation): Initializating Parameter[1000 x 0] as gaussian later when dimensions are fully known.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[1000] <- 1.000000.
Post-processing network...
4 roots:
3 roots:
OutputNodes.z = Plus()
ce = CrossEntropyWithSoftmax()
err = ErrorPrediction()
errTop5 = ErrorPrediction()
Validating network. 50 nodes to process in pass 1.
Validating network. 48 nodes to process in pass 1.
Validating --> OutputNodes.W = LearnableParameter() : -> [1000 x 4096]
Validating --> h2.W = LearnableParameter() : -> [4096 x 4096]
Validating --> OutputNodes.W = LearnableParameter() : -> [1000 x 0]
Validating --> h2.W = LearnableParameter() : -> [4096 x 0]
Validating --> h1.W = LearnableParameter() : -> [4096 x 6 x 6 x 256]
Validating --> conv5.W = LearnableParameter() : -> [256 x 2304]
Validating --> conv4.W = LearnableParameter() : -> [256 x 3456]
@ -744,44 +855,46 @@ Validating --> h1.b = LearnableParameter() : -> [4096]
Validating --> h1.z = Plus (h1.t, h1.b) : [4096 x *2], [4096] -> [4096 x *2]
Validating --> h1.y = RectifiedLinear (h1.z) : [4096 x *2] -> [4096 x *2]
Validating --> h1_d = Dropout (h1.y) : [4096 x *2] -> [4096 x *2]
Node 'h2.W' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 4096].
Node 'h2.W' (LearnableParameter operation): Initializing Parameter[4096 x 4096] <- gaussian(seed=15, range=0.003125*3.200000, onCPU=false).
Validating --> h2.t = Times (h2.W, h1_d) : [4096 x 4096], [4096 x *2] -> [4096 x *2]
Validating --> h2.b = LearnableParameter() : -> [4096]
Validating --> h2.z = Plus (h2.t, h2.b) : [4096 x *2], [4096] -> [4096 x *2]
Validating --> h2.y = RectifiedLinear (h2.z) : [4096 x *2] -> [4096 x *2]
Validating --> h2_d = Dropout (h2.y) : [4096 x *2] -> [4096 x *2]
Node 'OutputNodes.W' (LearnableParameter operation) operation: Tensor shape was inferred as [1000 x 4096].
Node 'OutputNodes.W' (LearnableParameter operation): Initializing Parameter[1000 x 4096] <- gaussian(seed=16, range=0.003125*3.200000, onCPU=false).
Validating --> OutputNodes.t = Times (OutputNodes.W, h2_d) : [1000 x 4096], [4096 x *2] -> [1000 x *2]
Validating --> OutputNodes.b = LearnableParameter() : -> [1000]
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [1000 x *2], [1000] -> [1000 x *2]
Validating --> labels = InputValue() : -> [1000 x *2]
Validating --> ce = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [1000 x *2], [1000 x *2] -> [1]
Validating --> err = ErrorPrediction (labels, OutputNodes.z) : [1000 x *2], [1000 x *2] -> [1]
Validating --> unnamed137 = LearnableParameter() : -> [1 x 1]
Validating --> errTop5 = ErrorPrediction (labels, OutputNodes.z, unnamed137) : [1000 x *2], [1000 x *2], [1 x 1] -> [1]
Validating network. 31 nodes to process in pass 2.
Validating network. 30 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c: using cuDNN convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c: using cuDNN convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv4.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv5.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool3: using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
20 out of 50 nodes do not share the minibatch layout with the input data.
18 out of 48 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
@ -790,62 +903,12 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 48 matrices, 0 are shared as 0, and 48 are not shared.
0000000000000000: {[OutputNodes.W Gradient[1000 x 4096]] [OutputNodes.b Gradient[1000]] [OutputNodes.t Gradient[1000 x *2]] [OutputNodes.z Gradient[1000 x *2]] [ce Gradient[1]] [conv1.W Gradient[64 x 363]] [conv1.b Gradient[1 x 1 x 64]] [conv1.c Gradient[56 x 56 x 64 x *2]] [conv1.y Gradient[56 x 56 x 64 x *2]] [conv1.z Gradient[56 x 56 x 64 x *2]] [conv2.W Gradient[192 x 1600]] [conv2.b Gradient[1 x 1 x 192]] [conv2.c Gradient[27 x 27 x 192 x *2]] [conv2.y Gradient[27 x 27 x 192 x *2]] [conv2.z Gradient[27 x 27 x 192 x *2]] [conv3.W Gradient[384 x 1728]] [conv3.b Gradient[1 x 1 x 384]] [conv3.c Gradient[13 x 13 x 384 x *2]] [conv3.y Gradient[13 x 13 x 384 x *2]] [conv3.z Gradient[13 x 13 x 384 x *2]] [conv4.W Gradient[256 x 3456]] [conv4.b Gradient[1 x 1 x 256]] [conv4.c Gradient[13 x 13 x 256 x *2]] [conv4.y Gradient[13 x 13 x 256 x *2]] [conv4.z Gradient[13 x 13 x 256 x *2]] [conv5.W Gradient[256 x 2304]] [conv5.b Gradient[1 x 1 x 256]] [conv5.c Gradient[13 x 13 x 256 x *2]] [conv5.y Gradient[13 x 13 x 256 x *2]] [conv5.z Gradient[13 x 13 x 256 x *2]] [err Gradient[1]] [errTop5 Gradient[1]] [features Gradient[224 x 224 x 3 x *2]] [h1.W Gradient[4096 x 6 x 6 x 256]] [h1.b Gradient[4096]] [h1.t Gradient[4096 x *2]] [h1.y Gradient[4096 x *2]] [h1.z Gradient[4096 x *2]] [h1_d Gradient[4096 x *2]] [h2.W Gradient[4096 x 4096]] [h2.b Gradient[4096]] [h2.t Gradient[4096 x *2]] [h2.y Gradient[4096 x *2]] [h2.z Gradient[4096 x *2]] [h2_d Gradient[4096 x *2]] [labels Gradient[1000 x *2]] [pool1 Gradient[27 x 27 x 64 x *2]] [pool2 Gradient[13 x 13 x 192 x *2]] [pool3 Gradient[6 x 6 x 256 x *2]] [unnamed137 Gradient[1 x 1]] }
000000E28E168F70: {[conv3.W Value[384 x 1728]] }
000000E28E1691F0: {[conv5.W Value[256 x 2304]] }
000000E28E1693D0: {[conv4.b Value[1 x 1 x 256]] }
000000E28E169510: {[conv4.W Value[256 x 3456]] }
000000E28E169830: {[conv5.b Value[1 x 1 x 256]] }
000000E28E1698D0: {[conv3.b Value[1 x 1 x 384]] }
000000E36C778260: {[OutputNodes.b Value[1000]] }
000000E36C7783A0: {[OutputNodes.W Value[1000 x 4096]] }
000000E36C778440: {[labels Value[1000 x *2]] }
000000E36C7786C0: {[features Value[224 x 224 x 3 x *2]] }
000000E36C7788A0: {[h1.b Value[4096]] }
000000E36C7789E0: {[h2.b Value[4096]] }
000000E36C778B20: {[h2.W Value[4096 x 4096]] }
000000E36C778DA0: {[h1.W Value[4096 x 6 x 6 x 256]] }
000000E370969220: {[conv5.y Value[13 x 13 x 256 x *2]] }
000000E370969360: {[h1.t Value[4096 x *2]] }
000000E3709694A0: {[conv4.z Value[13 x 13 x 256 x *2]] }
000000E370969540: {[conv4.c Value[13 x 13 x 256 x *2]] }
000000E370969680: {[conv4.y Value[13 x 13 x 256 x *2]] }
000000E370969720: {[conv5.z Value[13 x 13 x 256 x *2]] }
000000E3709697C0: {[h1.z Value[4096 x *2]] }
000000E370969860: {[h1_d Value[4096 x *2]] }
000000E3709699A0: {[h2.t Value[4096 x *2]] }
000000E370969A40: {[h2.z Value[4096 x *2]] }
000000E370969AE0: {[h2.y Value[4096 x *2]] }
000000E370969B80: {[h2_d Value[4096 x *2]] }
000000E370969C20: {[conv3.y Value[13 x 13 x 384 x *2]] }
000000E370969CC0: {[conv5.c Value[13 x 13 x 256 x *2]] }
000000E370969D60: {[h1.y Value[4096 x *2]] }
000000E370969EA0: {[OutputNodes.t Value[1000 x *2]] }
000000E370969F40: {[pool3 Value[6 x 6 x 256 x *2]] }
000000E37096A080: {[OutputNodes.z Value[1000 x *2]] }
000000E3728E02A0: {[conv2.y Value[27 x 27 x 192 x *2]] }
000000E3728E0340: {[conv1.c Value[56 x 56 x 64 x *2]] }
000000E3728E03E0: {[err Value[1]] }
000000E3728E0480: {[conv1.z Value[56 x 56 x 64 x *2]] }
000000E3728E0700: {[pool2 Value[13 x 13 x 192 x *2]] }
000000E3728E07A0: {[conv3.c Value[13 x 13 x 384 x *2]] }
000000E3728E0980: {[errTop5 Value[1]] }
000000E3728E0A20: {[conv3.z Value[13 x 13 x 384 x *2]] }
000000E3728E0AC0: {[ce Value[1]] }
000000E3728E0CA0: {[unnamed137 Value[1 x 1]] }
000000E3728E0DE0: {[conv1.y Value[56 x 56 x 64 x *2]] }
000000E3728E0E80: {[pool1 Value[27 x 27 x 64 x *2]] }
000000E3728E0F20: {[conv2.c Value[27 x 27 x 192 x *2]] }
000000E3728E1100: {[conv2.z Value[27 x 27 x 192 x *2]] }
000000E372D9CB80: {[conv2.b Value[1 x 1 x 192]] }
000000E372D9CE00: {[conv1.W Value[64 x 363]] }
000000E372D9CFE0: {[conv2.W Value[192 x 1600]] }
000000E372D9D120: {[conv1.b Value[1 x 1 x 64]] }
05/03/2016 14:12:19: Final Results: Minibatch[1-32]: err = 0.99800000 * 500; errTop5 = 0.99600000 * 500; ce = 6.94932878 * 500; perplexity = 1042.44978531
08/16/2016 03:05:09: Minibatch[1-32]: err = 0.99800000 * 500; ce = 7.32805448 * 500
08/16/2016 03:05:09: Final Results: Minibatch[1-32]: err = 0.99800000 * 500; ce = 7.32805448 * 500; perplexity = 1522.41699268
05/03/2016 14:12:19: Action "test" complete.
08/16/2016 03:05:09: Action "test" complete.
05/03/2016 14:12:19: __COMPLETED__
08/16/2016 03:05:09: __COMPLETED__

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -1,49 +1,62 @@
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
Hardware threads: 24
Total Memory: 264172964 kB
-------------------------------------------------------------------
Copying test data to local directory
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNet.cntk currentDirectory=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData RunDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu DataDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet OutputDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu DeviceId=0 timestamping=true
=== Running /home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNetCommon.cntk currentDirectory=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData RunDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu DataDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet OutputDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu DeviceId=0 timestamping=true configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNet.cntk
-------------------------------------------------------------------
Build info:
Built time: May 3 2016 17:56:15
Last modified date: Tue May 3 11:36:22 2016
Built time: Aug 16 2016 09:41:56
Last modified date: Fri Aug 12 07:32:43 2016
Build type: release
Build target: GPU
With 1bit-SGD: no
Math lib: acml
Math lib: mkl
CUDA_PATH: /usr/local/cuda-7.5
CUB_PATH: /usr/local/cub-1.4.1
CUDNN_PATH: /usr/local/cudnn-4.0
Build Branch: HEAD
Build SHA1: 571b092d60e131fd529081a5ed52af2dc815dc82
Built by philly on 18750d26eb32
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by philly on f67b30a647de
Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
-------------------------------------------------------------------
Changed current directory to /tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData
05/03/2016 18:06:53: -------------------------------------------------------------------
05/03/2016 18:06:53: Build info:
Changed current directory to /tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData
08/16/2016 09:55:24: -------------------------------------------------------------------
08/16/2016 09:55:24: Build info:
05/03/2016 18:06:53: Built time: May 3 2016 17:56:15
05/03/2016 18:06:53: Last modified date: Tue May 3 11:36:22 2016
05/03/2016 18:06:53: Build type: release
05/03/2016 18:06:53: Build target: GPU
05/03/2016 18:06:53: With 1bit-SGD: no
05/03/2016 18:06:53: Math lib: acml
05/03/2016 18:06:53: CUDA_PATH: /usr/local/cuda-7.5
05/03/2016 18:06:53: CUB_PATH: /usr/local/cub-1.4.1
05/03/2016 18:06:53: CUDNN_PATH: /usr/local/cudnn-4.0
05/03/2016 18:06:53: Build Branch: HEAD
05/03/2016 18:06:53: Build SHA1: 571b092d60e131fd529081a5ed52af2dc815dc82
05/03/2016 18:06:53: Built by philly on 18750d26eb32
05/03/2016 18:06:53: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
05/03/2016 18:06:53: -------------------------------------------------------------------
08/16/2016 09:55:24: Built time: Aug 16 2016 09:41:56
08/16/2016 09:55:24: Last modified date: Fri Aug 12 07:32:43 2016
08/16/2016 09:55:24: Build type: release
08/16/2016 09:55:24: Build target: GPU
08/16/2016 09:55:24: With 1bit-SGD: no
08/16/2016 09:55:24: Math lib: mkl
08/16/2016 09:55:24: CUDA_PATH: /usr/local/cuda-7.5
08/16/2016 09:55:24: CUB_PATH: /usr/local/cub-1.4.1
08/16/2016 09:55:24: CUDNN_PATH: /usr/local/cudnn-4.0
08/16/2016 09:55:24: Build Branch: HEAD
08/16/2016 09:55:24: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 09:55:24: Built by philly on f67b30a647de
08/16/2016 09:55:24: Build Path: /home/philly/jenkins/workspace/CNTK-Build-Linux
08/16/2016 09:55:24: -------------------------------------------------------------------
08/16/2016 09:55:25: -------------------------------------------------------------------
08/16/2016 09:55:25: GPU info:
05/03/2016 18:06:53: Running on localhost at 2016/05/03 18:06:53
05/03/2016 18:06:53: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNet.cntk currentDirectory=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData RunDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu DataDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet OutputDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu DeviceId=0 timestamping=true
08/16/2016 09:55:25: Device[0]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 09:55:25: Device[1]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 09:55:25: Device[2]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 09:55:25: Device[3]: cores = 2880; computeCapability = 3.5; type = "GeForce GTX 780 Ti"; memory = 3071 MB
08/16/2016 09:55:25: -------------------------------------------------------------------
08/16/2016 09:55:25: Running on localhost at 2016/08/16 09:55:25
08/16/2016 09:55:25: Command line:
/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/build/gpu/release/bin/cntk configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNetCommon.cntk currentDirectory=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData RunDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu DataDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet OutputDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu DeviceId=0 timestamping=true configFile=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNet.cntk
05/03/2016 18:06:53: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/03/2016 18:06:53: ModelDir = "$RunDir$/models"
08/16/2016 09:55:25: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 09:55:25: ModelDir = "$RunDir$/models"
ndlMacros=$ConfigDir$/Macros.ndl
precision=float
deviceId=Auto
@ -76,6 +89,29 @@ Train=[
]
numMBsToShowResult=100
]
]
AddTop5Eval=[
action=edit
CurModel=$ModelDir$/AlexNet
NewModel=$ModelDir$/AlexNet.Top5
editPath=$ConfigDir$/add_top5_layer.mel
]
Test=[
action=test
modelPath=$ModelDir$/AlexNet.Top5
minibatchSize=16
NDLNetworkBuilder=[
networkDescription=$ConfigDir$/AlexNet.ndl
]
]
currentDirectory=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData
RunDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu
DataDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet
OutputDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu
DeviceId=0
timestamping=true
Train=[
reader=[
readerType=ImageReader
file=$ConfigDir$/train_map.txt
@ -95,19 +131,7 @@ Train=[
]
]
]
AddTop5Eval=[
action=edit
CurModel=$ModelDir$/AlexNet
NewModel=$ModelDir$/AlexNet.Top5
editPath=$ConfigDir$/add_top5_layer.mel
]
Test=[
action=test
modelPath=$ModelDir$/AlexNet.Top5
minibatchSize=16
NDLNetworkBuilder=[
networkDescription=$ConfigDir$/AlexNet.ndl
]
Test=[
reader=[
readerType=ImageReader
file=$ConfigDir$/val_map.txt
@ -124,18 +148,11 @@ Test=[
]
]
]
currentDirectory=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData
RunDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu
DataDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet
OutputDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu
DeviceId=0
timestamping=true
05/03/2016 18:06:53: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 09:55:25: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/03/2016 18:06:53: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/03/2016 18:06:53: ModelDir = "/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models"
08/16/2016 09:55:25: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 09:55:25: ModelDir = "/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models"
ndlMacros=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/Macros.ndl
precision=float
deviceId=Auto
@ -145,7 +162,7 @@ traceLevel=1
numMBsToShowResult=100
Train=[
action=train
modelPath=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet
modelPath=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet
NDLNetworkBuilder=[
networkDescription=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNet.ndl
]
@ -168,6 +185,29 @@ Train=[
]
numMBsToShowResult=100
]
]
AddTop5Eval=[
action=edit
CurModel=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet
NewModel=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet.Top5
editPath=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/add_top5_layer.mel
]
Test=[
action=test
modelPath=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet.Top5
minibatchSize=16
NDLNetworkBuilder=[
networkDescription=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNet.ndl
]
]
currentDirectory=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData
RunDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu
DataDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet
OutputDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu
DeviceId=0
timestamping=true
Train=[
reader=[
readerType=ImageReader
file=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/train_map.txt
@ -187,19 +227,7 @@ Train=[
]
]
]
AddTop5Eval=[
action=edit
CurModel=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet
NewModel=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet.Top5
editPath=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/add_top5_layer.mel
]
Test=[
action=test
modelPath=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet.Top5
minibatchSize=16
NDLNetworkBuilder=[
networkDescription=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNet.ndl
]
Test=[
reader=[
readerType=ImageReader
file=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/val_map.txt
@ -216,43 +244,37 @@ Test=[
]
]
]
currentDirectory=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData
RunDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu
DataDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData
ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet
OutputDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu
DeviceId=0
timestamping=true
05/03/2016 18:06:53: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 09:55:25: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 18:06:53: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 09:55:25: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: AlexNet.cntk:AddTop5Eval=[
action=edit
CurModel=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet
NewModel=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet.Top5
CurModel=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet
NewModel=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet.Top5
editPath=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/add_top5_layer.mel
]
configparameters: AlexNet.cntk:command=Train:AddTop5Eval:Test
configparameters: AlexNet.cntk:ConfigDir=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet
configparameters: AlexNet.cntk:currentDirectory=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData
configparameters: AlexNet.cntk:DataDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/TestData
configparameters: AlexNet.cntk:currentDirectory=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData
configparameters: AlexNet.cntk:DataDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/TestData
configparameters: AlexNet.cntk:deviceId=0
configparameters: AlexNet.cntk:ModelDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models
configparameters: AlexNet.cntk:ModelDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models
configparameters: AlexNet.cntk:ndlMacros=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/Macros.ndl
configparameters: AlexNet.cntk:numMBsToShowResult=100
configparameters: AlexNet.cntk:OutputDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu
configparameters: AlexNet.cntk:OutputDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu
configparameters: AlexNet.cntk:parallelTrain=false
configparameters: AlexNet.cntk:precision=float
configparameters: AlexNet.cntk:RunDir=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu
configparameters: AlexNet.cntk:RunDir=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu
configparameters: AlexNet.cntk:Test=[
action=test
modelPath=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet.Top5
modelPath=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet.Top5
minibatchSize=16
NDLNetworkBuilder=[
networkDescription=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNet.ndl
]
] [
reader=[
readerType=ImageReader
file=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/val_map.txt
@ -274,7 +296,7 @@ configparameters: AlexNet.cntk:timestamping=true
configparameters: AlexNet.cntk:traceLevel=1
configparameters: AlexNet.cntk:Train=[
action=train
modelPath=/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet
modelPath=/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet
NDLNetworkBuilder=[
networkDescription=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/AlexNet.ndl
]
@ -297,6 +319,7 @@ configparameters: AlexNet.cntk:Train=[
]
numMBsToShowResult=100
]
] [
reader=[
readerType=ImageReader
file=/home/philly/jenkins/workspace/CNTK-Test-Linux-W1/Tests/EndToEndTests/Image/AlexNet/train_map.txt
@ -317,24 +340,54 @@ configparameters: AlexNet.cntk:Train=[
]
]
05/03/2016 18:06:53: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 18:06:53: Commands: Train AddTop5Eval Test
05/03/2016 18:06:53: Precision = "float"
05/03/2016 18:06:53: CNTKModelPath: /tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet
05/03/2016 18:06:53: CNTKCommandTrainInfo: Train : 3
05/03/2016 18:06:53: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
08/16/2016 09:55:25: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 09:55:25: Commands: Train AddTop5Eval Test
08/16/2016 09:55:25: Precision = "float"
08/16/2016 09:55:25: CNTKModelPath: /tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet
08/16/2016 09:55:25: CNTKCommandTrainInfo: Train : 3
08/16/2016 09:55:25: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
05/03/2016 18:06:53: ##############################################################################
05/03/2016 18:06:53: # #
05/03/2016 18:06:53: # Action "train" #
05/03/2016 18:06:53: # #
05/03/2016 18:06:53: ##############################################################################
08/16/2016 09:55:25: ##############################################################################
08/16/2016 09:55:25: # #
08/16/2016 09:55:25: # Action "train" #
08/16/2016 09:55:25: # #
08/16/2016 09:55:25: ##############################################################################
05/03/2016 18:06:53: CNTKCommandTrainBegin: Train
08/16/2016 09:55:25: CNTKCommandTrainBegin: Train
NDLBuilder Using GPU 0
05/03/2016 18:06:53: Creating virgin network.
useParallelTrain option is not enabled. ParallelTrain config will be ignored.
08/16/2016 09:55:25: Creating virgin network.
Node 'conv1.W' (LearnableParameter operation): Initializing Parameter[64 x 363] <- 0.000000.
Node 'conv1.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv2.W' (LearnableParameter operation): Initializing Parameter[192 x 1600] <- 0.000000.
Node 'conv2.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 192] <- 0.000000.
Node 'conv3.W' (LearnableParameter operation): Initializing Parameter[384 x 1728] <- 0.000000.
Node 'conv3.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 384] <- 0.000000.
Node 'conv4.W' (LearnableParameter operation): Initializing Parameter[256 x 3456] <- 0.000000.
Node 'conv4.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 0.000000.
Node 'conv5.W' (LearnableParameter operation): Initializing Parameter[256 x 2304] <- 0.000000.
Node 'conv5.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[4096 x 6 x 6 x 256] <- 0.000000.
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[4096] <- 0.000000.
Node 'h2.b' (LearnableParameter operation): Initializing Parameter[4096] <- 0.000000.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[1000] <- 0.000000.
Node 'conv1.W' (LearnableParameter operation): Initializing Parameter[64 x 363] <- gaussian(seed=1, range=0.010497*0.950000, onCPU=false).
SetGaussianRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4
Node 'conv1.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv2.W' (LearnableParameter operation): Initializing Parameter[192 x 1600] <- gaussian(seed=2, range=0.005000*2.000000, onCPU=false).
Node 'conv2.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 192] <- 1.000000.
Node 'conv3.W' (LearnableParameter operation): Initializing Parameter[384 x 1728] <- gaussian(seed=3, range=0.004811*2.070000, onCPU=false).
Node 'conv3.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 384] <- 0.000000.
Node 'conv4.W' (LearnableParameter operation): Initializing Parameter[256 x 3456] <- gaussian(seed=4, range=0.003402*2.900000, onCPU=false).
Node 'conv4.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 1.000000.
Node 'conv5.W' (LearnableParameter operation): Initializing Parameter[256 x 2304] <- gaussian(seed=5, range=0.004167*2.400000, onCPU=false).
Node 'conv5.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 1.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[4096 x 6 x 6 x 256] <- gaussian(seed=6, range=0.002083*6.400000, onCPU=false).
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[4096] <- 1.000000.
Node 'h2.W' (LearnableParameter operation): Initializating Parameter[4096 x 0] as gaussian later when dimensions are fully known.
Node 'h2.b' (LearnableParameter operation): Initializing Parameter[4096] <- 1.000000.
Node 'OutputNodes.W' (LearnableParameter operation): Initializating Parameter[1000 x 0] as gaussian later when dimensions are fully known.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[1000] <- 1.000000.
Post-processing network...
@ -345,8 +398,8 @@ Post-processing network...
Validating network. 48 nodes to process in pass 1.
Validating --> OutputNodes.W = LearnableParameter() : -> [1000 x 4096]
Validating --> h2.W = LearnableParameter() : -> [4096 x 4096]
Validating --> OutputNodes.W = LearnableParameter() : -> [1000 x 0]
Validating --> h2.W = LearnableParameter() : -> [4096 x 0]
Validating --> h1.W = LearnableParameter() : -> [4096 x 6 x 6 x 256]
Validating --> conv5.W = LearnableParameter() : -> [256 x 2304]
Validating --> conv4.W = LearnableParameter() : -> [256 x 3456]
@ -382,11 +435,15 @@ Validating --> h1.b = LearnableParameter() : -> [4096]
Validating --> h1.z = Plus (h1.t, h1.b) : [4096 x *], [4096] -> [4096 x *]
Validating --> h1.y = RectifiedLinear (h1.z) : [4096 x *] -> [4096 x *]
Validating --> h1_d = Dropout (h1.y) : [4096 x *] -> [4096 x *]
Node 'h2.W' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 4096].
Node 'h2.W' (LearnableParameter operation): Initializing Parameter[4096 x 4096] <- gaussian(seed=7, range=0.003125*3.200000, onCPU=false).
Validating --> h2.t = Times (h2.W, h1_d) : [4096 x 4096], [4096 x *] -> [4096 x *]
Validating --> h2.b = LearnableParameter() : -> [4096]
Validating --> h2.z = Plus (h2.t, h2.b) : [4096 x *], [4096] -> [4096 x *]
Validating --> h2.y = RectifiedLinear (h2.z) : [4096 x *] -> [4096 x *]
Validating --> h2_d = Dropout (h2.y) : [4096 x *] -> [4096 x *]
Node 'OutputNodes.W' (LearnableParameter operation) operation: Tensor shape was inferred as [1000 x 4096].
Node 'OutputNodes.W' (LearnableParameter operation): Initializing Parameter[1000 x 4096] <- gaussian(seed=8, range=0.003125*3.200000, onCPU=false).
Validating --> OutputNodes.t = Times (OutputNodes.W, h2_d) : [1000 x 4096], [4096 x *] -> [1000 x *]
Validating --> OutputNodes.b = LearnableParameter() : -> [1000]
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [1000 x *], [1000] -> [1000 x *]
@ -400,134 +457,157 @@ Validating network. 30 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c: using cuDNN convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c: using cuDNN convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv4.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv5.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool3: using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
18 out of 48 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
05/03/2016 18:06:53: Created model with 48 nodes on GPU 0.
08/16/2016 09:55:25: Created model with 48 nodes on GPU 0.
05/03/2016 18:06:53: Training criterion node(s):
05/03/2016 18:06:53: ce = CrossEntropyWithSoftmax
08/16/2016 09:55:25: Training criterion node(s):
08/16/2016 09:55:25: ce = CrossEntropyWithSoftmax
05/03/2016 18:06:53: Evaluation criterion node(s):
05/03/2016 18:06:53: err = ErrorPrediction
08/16/2016 09:55:25: Evaluation criterion node(s):
08/16/2016 09:55:25: err = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 93 matrices, 61 are shared as 27, and 32 are not shared.
(nil): {[err Gradient[1]] [features Gradient[224 x 224 x 3 x *]] [labels Gradient[1000 x *]] }
0x1eb05c8: {[features Value[224 x 224 x 3 x *]] }
0x27d0c58: {[conv1.W Value[64 x 363]] }
0x27d1a38: {[conv1.b Value[1 x 1 x 64]] }
0x27d32a8: {[conv2.W Value[192 x 1600]] }
0x27d49b8: {[conv2.b Value[1 x 1 x 192]] }
0x27d5c88: {[conv3.W Value[384 x 1728]] }
0x27d7378: {[conv3.b Value[1 x 1 x 384]] }
0x27d8698: {[conv4.W Value[256 x 3456]] }
0x27d9798: {[OutputNodes.b Value[1000]] }
0x27d9b88: {[conv4.b Value[1 x 1 x 256]] }
0x27dadf8: {[conv5.W Value[256 x 2304]] }
0x27dbff8: {[conv5.b Value[1 x 1 x 256]] }
0x27dd778: {[h1.W Value[4096 x 6 x 6 x 256]] }
0x27de688: {[h1.b Value[4096]] }
0x2c0cab8: {[labels Value[1000 x *]] }
0x2ea6e78: {[h2.W Value[4096 x 4096]] }
0x2ea7c18: {[h2.b Value[4096]] }
0x2ea8838: {[OutputNodes.W Value[1000 x 4096]] }
0x7f47b2c352e8: {[conv1.c Gradient[56 x 56 x 64 x *]] [conv1.y Value[56 x 56 x 64 x *]] }
0x7f47b2c35448: {[conv1.W Gradient[64 x 363]] [conv1.z Value[56 x 56 x 64 x *]] }
0x7f47b2c35648: {[conv1.z Gradient[56 x 56 x 64 x *]] [pool1 Value[27 x 27 x 64 x *]] }
0x7f47b2c35948: {[conv1.c Value[56 x 56 x 64 x *]] }
0x7f47b2e95948: {[conv1.b Gradient[1 x 1 x 64]] [conv1.y Gradient[56 x 56 x 64 x *]] }
0x7f47b2e95b08: {[conv2.W Gradient[192 x 1600]] [conv2.z Value[27 x 27 x 192 x *]] }
0x7f47b2e95cc8: {[conv2.c Gradient[27 x 27 x 192 x *]] [conv2.y Value[27 x 27 x 192 x *]] }
0x7f47b2e95e88: {[conv2.z Gradient[27 x 27 x 192 x *]] [pool1 Gradient[27 x 27 x 64 x *]] [pool2 Value[13 x 13 x 192 x *]] }
0x7f47b2e96048: {[conv3.c Value[13 x 13 x 384 x *]] }
0x7f47b2e96208: {[conv2.b Gradient[1 x 1 x 192]] [conv2.y Gradient[27 x 27 x 192 x *]] }
0x7f47b2e963c8: {[conv3.W Gradient[384 x 1728]] [conv3.z Value[13 x 13 x 384 x *]] }
0x7f47b2e96588: {[conv3.c Gradient[13 x 13 x 384 x *]] [conv3.y Value[13 x 13 x 384 x *]] }
0x7f47b2e96748: {[conv4.c Value[13 x 13 x 256 x *]] }
0x7f47b2e96908: {[conv3.z Gradient[13 x 13 x 384 x *]] [pool2 Gradient[13 x 13 x 192 x *]] }
0x7f47b2e96ac8: {[conv4.W Gradient[256 x 3456]] [conv4.z Value[13 x 13 x 256 x *]] }
0x7f47b2e96c88: {[conv4.c Gradient[13 x 13 x 256 x *]] [conv4.y Value[13 x 13 x 256 x *]] }
0x7f47b2e96e48: {[conv5.c Value[13 x 13 x 256 x *]] }
0x7f47b2e97008: {[conv3.b Gradient[1 x 1 x 384]] [conv3.y Gradient[13 x 13 x 384 x *]] [conv4.z Gradient[13 x 13 x 256 x *]] }
0x7f47b2e971c8: {[conv5.W Gradient[256 x 2304]] [conv5.z Value[13 x 13 x 256 x *]] }
0x7f47b2e97388: {[conv5.c Gradient[13 x 13 x 256 x *]] [conv5.y Value[13 x 13 x 256 x *]] }
0x7f47b2e97548: {[conv4.b Gradient[1 x 1 x 256]] [conv4.y Gradient[13 x 13 x 256 x *]] [conv5.z Gradient[13 x 13 x 256 x *]] [pool3 Value[6 x 6 x 256 x *]] }
0x7f47b2e97708: {[conv5.b Gradient[1 x 1 x 256]] [conv5.y Gradient[13 x 13 x 256 x *]] [h1.t Value[4096 x *]] }
0x7f47b2e978c8: {[h1.W Gradient[4096 x 6 x 6 x 256]] [h1.z Value[4096 x *]] }
0x7f47b2e97a88: {[h1.t Gradient[4096 x *]] [h1.y Value[4096 x *]] }
0x7f47b2e97c48: {[h1_d Value[4096 x *]] }
0x7f47b2e97e08: {[h1.z Gradient[4096 x *]] [pool3 Gradient[6 x 6 x 256 x *]] }
0x7f47b2e97fc8: {[h1.b Gradient[4096]] [h1.y Gradient[4096 x *]] [h2.t Value[4096 x *]] }
0x7f47b2e98188: {[h2.W Gradient[4096 x 4096]] [h2.z Value[4096 x *]] }
0x7f47b2e98348: {[h2.t Gradient[4096 x *]] [h2.y Value[4096 x *]] }
0x7f47b2e98508: {[h2_d Value[4096 x *]] }
0x7f47b2e986c8: {[h1_d Gradient[4096 x *]] [h2.z Gradient[4096 x *]] }
0x7f47b2e98888: {[OutputNodes.t Value[1000 x *]] [h2.b Gradient[4096]] [h2.y Gradient[4096 x *]] }
0x7f47b2e99428: {[ce Gradient[1]] }
0x7f47b2e995e8: {[OutputNodes.W Gradient[1000 x 4096]] [OutputNodes.z Gradient[1000 x *]] }
0x7f47b2e997a8: {[OutputNodes.t Gradient[1000 x *]] }
0x7f47b2e99968: {[OutputNodes.b Gradient[1000]] }
0x7f47b2e99b28: {[h2_d Gradient[4096 x *]] }
0x7f47b2e9aa08: {[OutputNodes.z Value[1000 x *]] }
0x7f47b2e9abc8: {[ce Value[1]] }
0x7f47b2e9b2f8: {[conv2.c Value[27 x 27 x 192 x *]] }
0x7f47b2ef4ce8: {[err Value[1]] }
05/03/2016 18:06:53: No PreCompute nodes found, skipping PreCompute step.
05/03/2016 18:06:55: Starting Epoch 1: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
05/03/2016 18:06:55: Starting minibatch loop.
05/03/2016 18:07:02: Epoch[ 1 of 3]-Minibatch[ 1- 100]: ce = 7.41642395 * 1600; err = 1.00000000 * 1600; time = 7.0425s; samplesPerSecond = 227.2
05/03/2016 18:07:08: Finished Epoch[ 1 of 3]: [Training] ce = 7.22737918 * 2999; err = 0.99966656 * 2999; totalSamplesSeen = 2999; learningRatePerSample = 0.00062499999; epochTime=12.9259s
05/03/2016 18:07:10: SGD: Saving checkpoint model '/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet.1'
05/03/2016 18:07:13: Starting Epoch 2: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
05/03/2016 18:07:13: Starting minibatch loop.
05/03/2016 18:07:19: Epoch[ 2 of 3]-Minibatch[ 1- 100, 100.00%]: ce = 6.90983215 * 1600; err = 1.00000000 * 1600; time = 6.2320s; samplesPerSecond = 256.7
05/03/2016 18:07:25: Finished Epoch[ 2 of 3]: [Training] ce = 6.91963923 * 2999; err = 0.99866622 * 2999; totalSamplesSeen = 5998; learningRatePerSample = 0.00062499999; epochTime=12.2905s
05/03/2016 18:07:27: SGD: Saving checkpoint model '/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet.2'
05/03/2016 18:07:29: Starting Epoch 3: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
05/03/2016 18:07:29: Starting minibatch loop.
05/03/2016 18:07:36: Epoch[ 3 of 3]-Minibatch[ 1- 100, 100.00%]: ce = 6.87519836 * 1600; err = 0.99937500 * 1600; time = 6.4714s; samplesPerSecond = 247.2
05/03/2016 18:07:42: Finished Epoch[ 3 of 3]: [Training] ce = 6.88608052 * 2999; err = 0.99833278 * 2999; totalSamplesSeen = 8997; learningRatePerSample = 0.00062499999; epochTime=12.1425s
05/03/2016 18:07:44: SGD: Saving checkpoint model '/tmp/cntk-test-20160503180555.960884/Image_AlexNet@release_gpu/models/AlexNet'
05/03/2016 18:07:46: CNTKCommandTrainEnd: Train
05/03/2016 18:07:46: Action "train" complete.
{ conv2.b : [1 x 1 x 192] (gradient)
conv2.y : [27 x 27 x 192 x *] (gradient) }
{ conv3.W : [384 x 1728] (gradient)
conv3.z : [13 x 13 x 384 x *] }
{ conv3.c : [13 x 13 x 384 x *] (gradient)
conv3.y : [13 x 13 x 384 x *] }
{ conv3.z : [13 x 13 x 384 x *] (gradient)
pool2 : [13 x 13 x 192 x *] (gradient) }
{ conv4.W : [256 x 3456] (gradient)
conv4.z : [13 x 13 x 256 x *] }
{ conv4.c : [13 x 13 x 256 x *] (gradient)
conv4.y : [13 x 13 x 256 x *] }
{ conv3.b : [1 x 1 x 384] (gradient)
conv3.y : [13 x 13 x 384 x *] (gradient)
conv4.z : [13 x 13 x 256 x *] (gradient) }
{ conv5.W : [256 x 2304] (gradient)
conv5.z : [13 x 13 x 256 x *] }
{ conv5.c : [13 x 13 x 256 x *] (gradient)
conv5.y : [13 x 13 x 256 x *] }
{ conv4.b : [1 x 1 x 256] (gradient)
conv4.y : [13 x 13 x 256 x *] (gradient)
conv5.z : [13 x 13 x 256 x *] (gradient)
pool3 : [6 x 6 x 256 x *] }
{ conv5.b : [1 x 1 x 256] (gradient)
conv5.y : [13 x 13 x 256 x *] (gradient)
h1.t : [4096 x *] }
{ h1.W : [4096 x 6 x 6 x 256] (gradient)
h1.z : [4096 x *] }
{ h1.t : [4096 x *] (gradient)
h1.y : [4096 x *] }
{ h1.z : [4096 x *] (gradient)
pool3 : [6 x 6 x 256 x *] (gradient) }
{ h1.b : [4096] (gradient)
h1.y : [4096 x *] (gradient)
h2.t : [4096 x *] }
{ h2.W : [4096 x 4096] (gradient)
h2.z : [4096 x *] }
{ h2.t : [4096 x *] (gradient)
h2.y : [4096 x *] }
{ h1_d : [4096 x *] (gradient)
h2.z : [4096 x *] (gradient) }
{ OutputNodes.t : [1000 x *]
h2.b : [4096] (gradient)
h2.y : [4096 x *] (gradient) }
{ OutputNodes.W : [1000 x 4096] (gradient)
OutputNodes.z : [1000 x *] (gradient) }
{ conv1.z : [56 x 56 x 64 x *] (gradient)
pool1 : [27 x 27 x 64 x *] }
{ conv1.c : [56 x 56 x 64 x *] (gradient)
conv1.y : [56 x 56 x 64 x *] }
{ conv1.W : [64 x 363] (gradient)
conv1.z : [56 x 56 x 64 x *] }
{ conv2.c : [27 x 27 x 192 x *] (gradient)
conv2.y : [27 x 27 x 192 x *] }
{ conv2.z : [27 x 27 x 192 x *] (gradient)
pool1 : [27 x 27 x 64 x *] (gradient)
pool2 : [13 x 13 x 192 x *] }
{ conv1.b : [1 x 1 x 64] (gradient)
conv1.y : [56 x 56 x 64 x *] (gradient) }
{ conv2.W : [192 x 1600] (gradient)
conv2.z : [27 x 27 x 192 x *] }
05/03/2016 18:07:46: ##############################################################################
05/03/2016 18:07:46: # #
05/03/2016 18:07:46: # Action "edit" #
05/03/2016 18:07:46: # #
05/03/2016 18:07:46: ##############################################################################
08/16/2016 09:55:25: Training 61100840 parameters in 16 out of 16 parameter tensors and 45 nodes with gradient:
08/16/2016 09:55:25: Node 'OutputNodes.W' (LearnableParameter operation) : [1000 x 4096]
08/16/2016 09:55:25: Node 'OutputNodes.b' (LearnableParameter operation) : [1000]
08/16/2016 09:55:25: Node 'conv1.W' (LearnableParameter operation) : [64 x 363]
08/16/2016 09:55:25: Node 'conv1.b' (LearnableParameter operation) : [1 x 1 x 64]
08/16/2016 09:55:25: Node 'conv2.W' (LearnableParameter operation) : [192 x 1600]
08/16/2016 09:55:25: Node 'conv2.b' (LearnableParameter operation) : [1 x 1 x 192]
08/16/2016 09:55:25: Node 'conv3.W' (LearnableParameter operation) : [384 x 1728]
08/16/2016 09:55:25: Node 'conv3.b' (LearnableParameter operation) : [1 x 1 x 384]
08/16/2016 09:55:25: Node 'conv4.W' (LearnableParameter operation) : [256 x 3456]
08/16/2016 09:55:25: Node 'conv4.b' (LearnableParameter operation) : [1 x 1 x 256]
08/16/2016 09:55:25: Node 'conv5.W' (LearnableParameter operation) : [256 x 2304]
08/16/2016 09:55:25: Node 'conv5.b' (LearnableParameter operation) : [1 x 1 x 256]
08/16/2016 09:55:25: Node 'h1.W' (LearnableParameter operation) : [4096 x 6 x 6 x 256]
08/16/2016 09:55:25: Node 'h1.b' (LearnableParameter operation) : [4096]
08/16/2016 09:55:25: Node 'h2.W' (LearnableParameter operation) : [4096 x 4096]
08/16/2016 09:55:25: Node 'h2.b' (LearnableParameter operation) : [4096]
08/16/2016 09:55:25: No PreCompute nodes found, or all already computed. Skipping pre-computation step.
08/16/2016 09:55:27: Starting Epoch 1: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..2999] (first sequence at sample 0), data subset 0 of 1
08/16/2016 09:55:27: Starting minibatch loop.
08/16/2016 09:55:36: Epoch[ 1 of 3]-Minibatch[ 1- 100]: ce = 7.41094299 * 1600; err = 0.99937500 * 1600; time = 8.3724s; samplesPerSecond = 191.1
08/16/2016 09:55:42: Finished Epoch[ 1 of 3]: [Training] ce = 7.23292074 * 2999; err = 0.99899967 * 2999; totalSamplesSeen = 2999; learningRatePerSample = 0.00062499999; epochTime=14.0535s
08/16/2016 09:55:44: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet.1'
08/16/2016 09:55:46: Starting Epoch 2: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
BlockRandomizer::StartEpoch: epoch 1: frames [2999..5998] (first sequence at sample 2999), data subset 0 of 1
08/16/2016 09:55:46: Starting minibatch loop.
08/16/2016 09:55:53: Epoch[ 2 of 3]-Minibatch[ 1- 100, 100.00%]: ce = 6.91068848 * 1600; err = 0.99875000 * 1600; time = 7.2054s; samplesPerSecond = 222.1
08/16/2016 09:56:00: Finished Epoch[ 2 of 3]: [Training] ce = 6.91553955 * 2999; err = 0.99933311 * 2999; totalSamplesSeen = 5998; learningRatePerSample = 0.00062499999; epochTime=13.8615s
08/16/2016 09:56:03: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet.2'
08/16/2016 09:56:05: Starting Epoch 3: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
BlockRandomizer::StartEpoch: epoch 2: frames [5998..8997] (first sequence at sample 5998), data subset 0 of 1
08/16/2016 09:56:05: Starting minibatch loop.
08/16/2016 09:56:12: Epoch[ 3 of 3]-Minibatch[ 1- 100, 100.00%]: ce = 6.88422668 * 1600; err = 0.99687500 * 1600; time = 7.1340s; samplesPerSecond = 224.3
08/16/2016 09:56:19: Finished Epoch[ 3 of 3]: [Training] ce = 6.88836513 * 2999; err = 0.99766589 * 2999; totalSamplesSeen = 8997; learningRatePerSample = 0.00062499999; epochTime=13.7378s
08/16/2016 09:56:21: SGD: Saving checkpoint model '/tmp/cntk-test-20160816095522.619074/Image_AlexNet@release_gpu/models/AlexNet'
08/16/2016 09:56:25: CNTKCommandTrainEnd: Train
08/16/2016 09:56:25: Action "train" complete.
08/16/2016 09:56:25: ##############################################################################
08/16/2016 09:56:25: # #
08/16/2016 09:56:25: # Action "edit" #
08/16/2016 09:56:25: # #
08/16/2016 09:56:25: ##############################################################################
Post-processing network...
@ -594,27 +674,29 @@ Validating network. 30 nodes to process in pass 2.
Validating network, final pass.
Using GEMM convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c: using GEMM convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using GEMM convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c: using GEMM convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using GEMM convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3.c: using GEMM convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv4.c: using GEMM convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv5.c: using GEMM convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool3: using GEMM convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
18 out of 48 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
Node 'unnamed143' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.000000.
Node 'unnamed143' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 5.000000.
Post-processing network...
@ -674,8 +756,8 @@ Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [1000 x *1]
Validating --> labels = InputValue() : -> [1000 x *1]
Validating --> ce = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [1000 x *1], [1000 x *1] -> [1]
Validating --> err = ErrorPrediction (labels, OutputNodes.z) : [1000 x *1], [1000 x *1] -> [1]
Validating --> unnamed137 = LearnableParameter() : -> [1 x 1]
Validating --> errTop5 = ErrorPrediction (labels, OutputNodes.z, unnamed137) : [1000 x *1], [1000 x *1], [1 x 1] -> [1]
Validating --> unnamed143 = LearnableParameter() : -> [1 x 1]
Validating --> errTop5 = ErrorPrediction (labels, OutputNodes.z, unnamed143) : [1000 x *1], [1000 x *1], [1 x 1] -> [1]
Validating network. 31 nodes to process in pass 2.
@ -689,28 +771,58 @@ Validating network, final pass.
Post-processing network complete.
05/03/2016 18:07:51: Action "edit" complete.
08/16/2016 09:56:31: Action "edit" complete.
05/03/2016 18:07:51: ##############################################################################
05/03/2016 18:07:51: # #
05/03/2016 18:07:51: # Action "test" #
05/03/2016 18:07:51: # #
05/03/2016 18:07:51: ##############################################################################
08/16/2016 09:56:31: ##############################################################################
08/16/2016 09:56:31: # #
08/16/2016 09:56:31: # Action "test" #
08/16/2016 09:56:31: # #
08/16/2016 09:56:31: ##############################################################################
NDLBuilder Using GPU 0
Node 'conv1.W' (LearnableParameter operation): Initializing Parameter[64 x 363] <- 0.000000.
Node 'conv1.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv2.W' (LearnableParameter operation): Initializing Parameter[192 x 1600] <- 0.000000.
Node 'conv2.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 192] <- 0.000000.
Node 'conv3.W' (LearnableParameter operation): Initializing Parameter[384 x 1728] <- 0.000000.
Node 'conv3.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 384] <- 0.000000.
Node 'conv4.W' (LearnableParameter operation): Initializing Parameter[256 x 3456] <- 0.000000.
Node 'conv4.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 0.000000.
Node 'conv5.W' (LearnableParameter operation): Initializing Parameter[256 x 2304] <- 0.000000.
Node 'conv5.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[4096 x 6 x 6 x 256] <- 0.000000.
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[4096] <- 0.000000.
Node 'h2.b' (LearnableParameter operation): Initializing Parameter[4096] <- 0.000000.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[1000] <- 0.000000.
Node 'conv1.W' (LearnableParameter operation): Initializing Parameter[64 x 363] <- gaussian(seed=9, range=0.010497*0.950000, onCPU=false).
Node 'conv1.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv2.W' (LearnableParameter operation): Initializing Parameter[192 x 1600] <- gaussian(seed=10, range=0.005000*2.000000, onCPU=false).
Node 'conv2.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 192] <- 1.000000.
Node 'conv3.W' (LearnableParameter operation): Initializing Parameter[384 x 1728] <- gaussian(seed=11, range=0.004811*2.070000, onCPU=false).
Node 'conv3.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 384] <- 0.000000.
Node 'conv4.W' (LearnableParameter operation): Initializing Parameter[256 x 3456] <- gaussian(seed=12, range=0.003402*2.900000, onCPU=false).
Node 'conv4.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 1.000000.
Node 'conv5.W' (LearnableParameter operation): Initializing Parameter[256 x 2304] <- gaussian(seed=13, range=0.004167*2.400000, onCPU=false).
Node 'conv5.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 1.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[4096 x 6 x 6 x 256] <- gaussian(seed=14, range=0.002083*6.400000, onCPU=false).
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[4096] <- 1.000000.
Node 'h2.W' (LearnableParameter operation): Initializating Parameter[4096 x 0] as gaussian later when dimensions are fully known.
Node 'h2.b' (LearnableParameter operation): Initializing Parameter[4096] <- 1.000000.
Node 'OutputNodes.W' (LearnableParameter operation): Initializating Parameter[1000 x 0] as gaussian later when dimensions are fully known.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[1000] <- 1.000000.
Post-processing network...
4 roots:
3 roots:
OutputNodes.z = Plus()
ce = CrossEntropyWithSoftmax()
err = ErrorPrediction()
errTop5 = ErrorPrediction()
Validating network. 50 nodes to process in pass 1.
Validating network. 48 nodes to process in pass 1.
Validating --> OutputNodes.W = LearnableParameter() : -> [1000 x 4096]
Validating --> h2.W = LearnableParameter() : -> [4096 x 4096]
Validating --> OutputNodes.W = LearnableParameter() : -> [1000 x 0]
Validating --> h2.W = LearnableParameter() : -> [4096 x 0]
Validating --> h1.W = LearnableParameter() : -> [4096 x 6 x 6 x 256]
Validating --> conv5.W = LearnableParameter() : -> [256 x 2304]
Validating --> conv4.W = LearnableParameter() : -> [256 x 3456]
@ -746,44 +858,46 @@ Validating --> h1.b = LearnableParameter() : -> [4096]
Validating --> h1.z = Plus (h1.t, h1.b) : [4096 x *2], [4096] -> [4096 x *2]
Validating --> h1.y = RectifiedLinear (h1.z) : [4096 x *2] -> [4096 x *2]
Validating --> h1_d = Dropout (h1.y) : [4096 x *2] -> [4096 x *2]
Node 'h2.W' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 4096].
Node 'h2.W' (LearnableParameter operation): Initializing Parameter[4096 x 4096] <- gaussian(seed=15, range=0.003125*3.200000, onCPU=false).
Validating --> h2.t = Times (h2.W, h1_d) : [4096 x 4096], [4096 x *2] -> [4096 x *2]
Validating --> h2.b = LearnableParameter() : -> [4096]
Validating --> h2.z = Plus (h2.t, h2.b) : [4096 x *2], [4096] -> [4096 x *2]
Validating --> h2.y = RectifiedLinear (h2.z) : [4096 x *2] -> [4096 x *2]
Validating --> h2_d = Dropout (h2.y) : [4096 x *2] -> [4096 x *2]
Node 'OutputNodes.W' (LearnableParameter operation) operation: Tensor shape was inferred as [1000 x 4096].
Node 'OutputNodes.W' (LearnableParameter operation): Initializing Parameter[1000 x 4096] <- gaussian(seed=16, range=0.003125*3.200000, onCPU=false).
Validating --> OutputNodes.t = Times (OutputNodes.W, h2_d) : [1000 x 4096], [4096 x *2] -> [1000 x *2]
Validating --> OutputNodes.b = LearnableParameter() : -> [1000]
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [1000 x *2], [1000] -> [1000 x *2]
Validating --> labels = InputValue() : -> [1000 x *2]
Validating --> ce = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [1000 x *2], [1000 x *2] -> [1]
Validating --> err = ErrorPrediction (labels, OutputNodes.z) : [1000 x *2], [1000 x *2] -> [1]
Validating --> unnamed137 = LearnableParameter() : -> [1 x 1]
Validating --> errTop5 = ErrorPrediction (labels, OutputNodes.z, unnamed137) : [1000 x *2], [1000 x *2], [1 x 1] -> [1]
Validating network. 31 nodes to process in pass 2.
Validating network. 30 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c: using cuDNN convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c: using cuDNN convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv4.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv5.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool3: using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
20 out of 50 nodes do not share the minibatch layout with the input data.
18 out of 48 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
@ -792,62 +906,12 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 48 matrices, 0 are shared as 0, and 48 are not shared.
(nil): {[OutputNodes.W Gradient[1000 x 4096]] [OutputNodes.b Gradient[1000]] [OutputNodes.t Gradient[1000 x *2]] [OutputNodes.z Gradient[1000 x *2]] [ce Gradient[1]] [conv1.W Gradient[64 x 363]] [conv1.b Gradient[1 x 1 x 64]] [conv1.c Gradient[56 x 56 x 64 x *2]] [conv1.y Gradient[56 x 56 x 64 x *2]] [conv1.z Gradient[56 x 56 x 64 x *2]] [conv2.W Gradient[192 x 1600]] [conv2.b Gradient[1 x 1 x 192]] [conv2.c Gradient[27 x 27 x 192 x *2]] [conv2.y Gradient[27 x 27 x 192 x *2]] [conv2.z Gradient[27 x 27 x 192 x *2]] [conv3.W Gradient[384 x 1728]] [conv3.b Gradient[1 x 1 x 384]] [conv3.c Gradient[13 x 13 x 384 x *2]] [conv3.y Gradient[13 x 13 x 384 x *2]] [conv3.z Gradient[13 x 13 x 384 x *2]] [conv4.W Gradient[256 x 3456]] [conv4.b Gradient[1 x 1 x 256]] [conv4.c Gradient[13 x 13 x 256 x *2]] [conv4.y Gradient[13 x 13 x 256 x *2]] [conv4.z Gradient[13 x 13 x 256 x *2]] [conv5.W Gradient[256 x 2304]] [conv5.b Gradient[1 x 1 x 256]] [conv5.c Gradient[13 x 13 x 256 x *2]] [conv5.y Gradient[13 x 13 x 256 x *2]] [conv5.z Gradient[13 x 13 x 256 x *2]] [err Gradient[1]] [errTop5 Gradient[1]] [features Gradient[224 x 224 x 3 x *2]] [h1.W Gradient[4096 x 6 x 6 x 256]] [h1.b Gradient[4096]] [h1.t Gradient[4096 x *2]] [h1.y Gradient[4096 x *2]] [h1.z Gradient[4096 x *2]] [h1_d Gradient[4096 x *2]] [h2.W Gradient[4096 x 4096]] [h2.b Gradient[4096]] [h2.t Gradient[4096 x *2]] [h2.y Gradient[4096 x *2]] [h2.z Gradient[4096 x *2]] [h2_d Gradient[4096 x *2]] [labels Gradient[1000 x *2]] [pool1 Gradient[27 x 27 x 64 x *2]] [pool2 Gradient[13 x 13 x 192 x *2]] [pool3 Gradient[6 x 6 x 256 x *2]] [unnamed137 Gradient[1 x 1]] }
0x7f479db02088: {[conv1.b Value[1 x 1 x 64]] }
0x7f479db2c418: {[conv1.W Value[64 x 363]] }
0x7f479db2d7a8: {[conv2.W Value[192 x 1600]] }
0x7f479db2dae8: {[conv2.b Value[1 x 1 x 192]] }
0x7f479db2fdd8: {[conv3.W Value[384 x 1728]] }
0x7f479db30118: {[conv3.b Value[1 x 1 x 384]] }
0x7f479db30908: {[conv4.b Value[1 x 1 x 256]] }
0x7f479db33f08: {[conv4.W Value[256 x 3456]] }
0x7f479db35358: {[conv5.b Value[1 x 1 x 256]] }
0x7f479db36608: {[conv5.W Value[256 x 2304]] }
0x7f479db37d68: {[features Value[224 x 224 x 3 x *2]] }
0x7f479db38858: {[h1.W Value[4096 x 6 x 6 x 256]] }
0x7f479db38b98: {[h1.b Value[4096]] }
0x7f479db3aa98: {[h2.b Value[4096]] }
0x7f479db3b5d8: {[h2.W Value[4096 x 4096]] }
0x7f479db3ca98: {[labels Value[1000 x *2]] }
0x7f479db3de18: {[OutputNodes.b Value[1000]] }
0x7f479db3e628: {[OutputNodes.W Value[1000 x 4096]] }
0x7f479db40748: {[unnamed137 Value[1 x 1]] }
0x7f479db413e8: {[errTop5 Value[1]] }
0x7f479db42138: {[ce Value[1]] }
0x7f479db48378: {[err Value[1]] }
0x7f479db53e18: {[pool3 Value[6 x 6 x 256 x *2]] }
0x7f479db53fd8: {[h1.t Value[4096 x *2]] }
0x7f479db54198: {[h1.z Value[4096 x *2]] }
0x7f479db54358: {[h1.y Value[4096 x *2]] }
0x7f479db54518: {[h1_d Value[4096 x *2]] }
0x7f479db54898: {[h2.t Value[4096 x *2]] }
0x7f479db54a58: {[h2.z Value[4096 x *2]] }
0x7f479db54c18: {[h2.y Value[4096 x *2]] }
0x7f479db54dd8: {[h2_d Value[4096 x *2]] }
0x7f479db55158: {[OutputNodes.t Value[1000 x *2]] }
0x7f479db55318: {[OutputNodes.z Value[1000 x *2]] }
0x7f47a644f258: {[conv1.z Value[56 x 56 x 64 x *2]] }
0x7f47a644f558: {[conv1.c Value[56 x 56 x 64 x *2]] }
0x7f47a6450068: {[conv1.y Value[56 x 56 x 64 x *2]] }
0x7f47a64506b8: {[pool1 Value[27 x 27 x 64 x *2]] }
0x7f47a6450878: {[conv2.c Value[27 x 27 x 192 x *2]] }
0x7f47a6450bf8: {[conv2.z Value[27 x 27 x 192 x *2]] }
0x7f47a6450db8: {[conv2.y Value[27 x 27 x 192 x *2]] }
0x7f47a6450f78: {[pool2 Value[13 x 13 x 192 x *2]] }
0x7f47a6451138: {[conv3.c Value[13 x 13 x 384 x *2]] }
0x7f47a64514b8: {[conv3.z Value[13 x 13 x 384 x *2]] }
0x7f47a6451678: {[conv3.y Value[13 x 13 x 384 x *2]] }
0x7f47a6451838: {[conv4.c Value[13 x 13 x 256 x *2]] }
0x7f47a6451bb8: {[conv4.z Value[13 x 13 x 256 x *2]] }
0x7f47a6451d78: {[conv4.y Value[13 x 13 x 256 x *2]] }
0x7f47a6451f38: {[conv5.c Value[13 x 13 x 256 x *2]] }
0x7f47a64522b8: {[conv5.z Value[13 x 13 x 256 x *2]] }
0x7f47a6452478: {[conv5.y Value[13 x 13 x 256 x *2]] }
05/03/2016 18:07:55: Final Results: Minibatch[1-32]: err = 0.99800000 * 500; errTop5 = 0.99400000 * 500; ce = 6.96324823 * 500; perplexity = 1057.06156985
08/16/2016 09:56:33: Minibatch[1-32]: err = 0.99800000 * 500; ce = 7.32804733 * 500
08/16/2016 09:56:33: Final Results: Minibatch[1-32]: err = 0.99800000 * 500; ce = 7.32804733 * 500; perplexity = 1522.40611516
05/03/2016 18:07:55: Action "test" complete.
08/16/2016 09:56:33: Action "test" complete.
05/03/2016 18:07:55: __COMPLETED__
08/16/2016 09:56:33: __COMPLETED__

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -1,47 +1,59 @@
CPU info:
CPU Model Name: Intel(R) Xeon(R) CPU W3530 @ 2.80GHz
Hardware threads: 4
Total Memory: 12580404 kB
-------------------------------------------------------------------
Copying test data to local directory
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNet.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu DeviceId=0 timestamping=true
=== Running /cygdrive/c/jenkins/workspace/CNTK-Test-Windows-W1/x64/release/cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNetCommon.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu DeviceId=0 timestamping=true configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNet.cntk
-------------------------------------------------------------------
Build info:
Built time: May 3 2016 13:23:06
Last modified date: Mon Apr 18 00:00:12 2016
Built time: Aug 16 2016 02:54:53
Last modified date: Fri Aug 12 05:31:21 2016
Build type: Release
Build target: GPU
With 1bit-SGD: no
Math lib: mkl
CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
CUB_PATH: C:\src\cub-1.4.1
CUB_PATH: c:\src\cub-1.4.1
CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
Build Branch: HEAD
Build SHA1: af96f7cce6c3c78a4f1e9315e061291c79360e12
Built by svcphil on LIANA-09-w
Build Path: c:\jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
Built by svcphil on Philly-Pool3
Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
-------------------------------------------------------------------
Changed current directory to C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData
05/03/2016 14:11:01: -------------------------------------------------------------------
05/03/2016 14:11:01: Build info:
Changed current directory to C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData
08/16/2016 03:03:44: -------------------------------------------------------------------
08/16/2016 03:03:44: Build info:
05/03/2016 14:11:01: Built time: May 3 2016 13:23:06
05/03/2016 14:11:01: Last modified date: Mon Apr 18 00:00:12 2016
05/03/2016 14:11:01: Build type: Release
05/03/2016 14:11:01: Build target: GPU
05/03/2016 14:11:01: With 1bit-SGD: no
05/03/2016 14:11:01: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
05/03/2016 14:11:01: CUB_PATH: C:\src\cub-1.4.1
05/03/2016 14:11:01: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
05/03/2016 14:11:01: Build Branch: HEAD
05/03/2016 14:11:01: Build SHA1: af96f7cce6c3c78a4f1e9315e061291c79360e12
05/03/2016 14:11:01: Built by svcphil on LIANA-09-w
05/03/2016 14:11:01: Build Path: c:\jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
05/03/2016 14:11:01: -------------------------------------------------------------------
08/16/2016 03:03:44: Built time: Aug 16 2016 02:54:53
08/16/2016 03:03:44: Last modified date: Fri Aug 12 05:31:21 2016
08/16/2016 03:03:44: Build type: Release
08/16/2016 03:03:44: Build target: GPU
08/16/2016 03:03:44: With 1bit-SGD: no
08/16/2016 03:03:44: Math lib: mkl
08/16/2016 03:03:44: CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5
08/16/2016 03:03:44: CUB_PATH: c:\src\cub-1.4.1
08/16/2016 03:03:44: CUDNN_PATH: c:\NVIDIA\cudnn-4.0\cuda
08/16/2016 03:03:44: Build Branch: HEAD
08/16/2016 03:03:44: Build SHA1: 026b1e772b963461e189f8f00aa7ed6951298f84
08/16/2016 03:03:44: Built by svcphil on Philly-Pool3
08/16/2016 03:03:44: Build Path: c:\Jenkins\workspace\CNTK-Build-Windows\Source\CNTK\
08/16/2016 03:03:44: -------------------------------------------------------------------
08/16/2016 03:03:45: -------------------------------------------------------------------
08/16/2016 03:03:45: GPU info:
05/03/2016 14:11:01: Running on DPHAIM-25 at 2016/05/03 14:11:01
05/03/2016 14:11:01: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNet.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu DeviceId=0 timestamping=true
08/16/2016 03:03:45: Device[0]: cores = 2496; computeCapability = 5.2; type = "Quadro M4000"; memory = 8090 MB
08/16/2016 03:03:45: -------------------------------------------------------------------
08/16/2016 03:03:45: Running on cntk-muc00 at 2016/08/16 03:03:45
08/16/2016 03:03:45: Command line:
C:\jenkins\workspace\CNTK-Test-Windows-W1\x64\release\cntk.exe configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNetCommon.cntk currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu DeviceId=0 timestamping=true configFile=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNet.cntk
05/03/2016 14:11:01: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
05/03/2016 14:11:01: ModelDir = "$RunDir$/models"
08/16/2016 03:03:45: >>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:03:45: ModelDir = "$RunDir$/models"
ndlMacros=$ConfigDir$/Macros.ndl
precision=float
deviceId=Auto
@ -74,6 +86,29 @@ Train=[
]
numMBsToShowResult=100
]
]
AddTop5Eval=[
action=edit
CurModel=$ModelDir$/AlexNet
NewModel=$ModelDir$/AlexNet.Top5
editPath=$ConfigDir$/add_top5_layer.mel
]
Test=[
action=test
modelPath=$ModelDir$/AlexNet.Top5
minibatchSize=16
NDLNetworkBuilder=[
networkDescription=$ConfigDir$/AlexNet.ndl
]
]
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu
DeviceId=0
timestamping=true
Train=[
reader=[
readerType=ImageReader
file=$ConfigDir$/train_map.txt
@ -93,19 +128,7 @@ Train=[
]
]
]
AddTop5Eval=[
action=edit
CurModel=$ModelDir$/AlexNet
NewModel=$ModelDir$/AlexNet.Top5
editPath=$ConfigDir$/add_top5_layer.mel
]
Test=[
action=test
modelPath=$ModelDir$/AlexNet.Top5
minibatchSize=16
NDLNetworkBuilder=[
networkDescription=$ConfigDir$/AlexNet.ndl
]
Test=[
reader=[
readerType=ImageReader
file=$ConfigDir$/val_map.txt
@ -122,18 +145,11 @@ Test=[
]
]
]
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu
DeviceId=0
timestamping=true
05/03/2016 14:11:01: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:03:45: <<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
05/03/2016 14:11:01: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
05/03/2016 14:11:01: ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models"
08/16/2016 03:03:45: >>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:03:45: ModelDir = "C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models"
ndlMacros=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/Macros.ndl
precision=float
deviceId=Auto
@ -143,7 +159,7 @@ traceLevel=1
numMBsToShowResult=100
Train=[
action=train
modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet
modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet
NDLNetworkBuilder=[
networkDescription=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNet.ndl
]
@ -166,6 +182,29 @@ Train=[
]
numMBsToShowResult=100
]
]
AddTop5Eval=[
action=edit
CurModel=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet
NewModel=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet.Top5
editPath=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/add_top5_layer.mel
]
Test=[
action=test
modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet.Top5
minibatchSize=16
NDLNetworkBuilder=[
networkDescription=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNet.ndl
]
]
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu
DeviceId=0
timestamping=true
Train=[
reader=[
readerType=ImageReader
file=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/train_map.txt
@ -185,19 +224,7 @@ Train=[
]
]
]
AddTop5Eval=[
action=edit
CurModel=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet
NewModel=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet.Top5
editPath=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/add_top5_layer.mel
]
Test=[
action=test
modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet.Top5
minibatchSize=16
NDLNetworkBuilder=[
networkDescription=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNet.ndl
]
Test=[
reader=[
readerType=ImageReader
file=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/val_map.txt
@ -214,43 +241,37 @@ Test=[
]
]
]
currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData
RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu
DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData
ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet
OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu
DeviceId=0
timestamping=true
05/03/2016 14:11:01: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:03:45: <<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 14:11:01: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
08/16/2016 03:03:45: >>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: AlexNet.cntk:AddTop5Eval=[
action=edit
CurModel=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet
NewModel=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet.Top5
CurModel=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet
NewModel=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet.Top5
editPath=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/add_top5_layer.mel
]
configparameters: AlexNet.cntk:command=Train:AddTop5Eval:Test
configparameters: AlexNet.cntk:ConfigDir=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet
configparameters: AlexNet.cntk:currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData
configparameters: AlexNet.cntk:DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu\TestData
configparameters: AlexNet.cntk:currentDirectory=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData
configparameters: AlexNet.cntk:DataDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu\TestData
configparameters: AlexNet.cntk:deviceId=0
configparameters: AlexNet.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models
configparameters: AlexNet.cntk:ModelDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models
configparameters: AlexNet.cntk:ndlMacros=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/Macros.ndl
configparameters: AlexNet.cntk:numMBsToShowResult=100
configparameters: AlexNet.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu
configparameters: AlexNet.cntk:OutputDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu
configparameters: AlexNet.cntk:parallelTrain=false
configparameters: AlexNet.cntk:precision=float
configparameters: AlexNet.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu
configparameters: AlexNet.cntk:RunDir=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu
configparameters: AlexNet.cntk:Test=[
action=test
modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet.Top5
modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet.Top5
minibatchSize=16
NDLNetworkBuilder=[
networkDescription=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNet.ndl
]
] [
reader=[
readerType=ImageReader
file=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/val_map.txt
@ -272,7 +293,7 @@ configparameters: AlexNet.cntk:timestamping=true
configparameters: AlexNet.cntk:traceLevel=1
configparameters: AlexNet.cntk:Train=[
action=train
modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet
modelPath=C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet
NDLNetworkBuilder=[
networkDescription=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/AlexNet.ndl
]
@ -295,6 +316,7 @@ configparameters: AlexNet.cntk:Train=[
]
numMBsToShowResult=100
]
] [
reader=[
readerType=ImageReader
file=C:\jenkins\workspace\CNTK-Test-Windows-W1\Tests\EndToEndTests\Image\AlexNet/train_map.txt
@ -315,24 +337,54 @@ configparameters: AlexNet.cntk:Train=[
]
]
05/03/2016 14:11:01: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
05/03/2016 14:11:01: Commands: Train AddTop5Eval Test
05/03/2016 14:11:01: Precision = "float"
05/03/2016 14:11:01: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet
05/03/2016 14:11:01: CNTKCommandTrainInfo: Train : 3
05/03/2016 14:11:01: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
08/16/2016 03:03:45: <<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
08/16/2016 03:03:45: Commands: Train AddTop5Eval Test
08/16/2016 03:03:45: Precision = "float"
08/16/2016 03:03:45: CNTKModelPath: C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet
08/16/2016 03:03:45: CNTKCommandTrainInfo: Train : 3
08/16/2016 03:03:45: CNTKCommandTrainInfo: CNTKNoMoreCommands_Total : 3
05/03/2016 14:11:01: ##############################################################################
05/03/2016 14:11:01: # #
05/03/2016 14:11:01: # Action "train" #
05/03/2016 14:11:01: # #
05/03/2016 14:11:01: ##############################################################################
08/16/2016 03:03:45: ##############################################################################
08/16/2016 03:03:45: # #
08/16/2016 03:03:45: # Action "train" #
08/16/2016 03:03:45: # #
08/16/2016 03:03:45: ##############################################################################
05/03/2016 14:11:01: CNTKCommandTrainBegin: Train
08/16/2016 03:03:45: CNTKCommandTrainBegin: Train
NDLBuilder Using GPU 0
05/03/2016 14:11:01: Creating virgin network.
useParallelTrain option is not enabled. ParallelTrain config will be ignored.
08/16/2016 03:03:45: Creating virgin network.
Node 'conv1.W' (LearnableParameter operation): Initializing Parameter[64 x 363] <- 0.000000.
Node 'conv1.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv2.W' (LearnableParameter operation): Initializing Parameter[192 x 1600] <- 0.000000.
Node 'conv2.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 192] <- 0.000000.
Node 'conv3.W' (LearnableParameter operation): Initializing Parameter[384 x 1728] <- 0.000000.
Node 'conv3.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 384] <- 0.000000.
Node 'conv4.W' (LearnableParameter operation): Initializing Parameter[256 x 3456] <- 0.000000.
Node 'conv4.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 0.000000.
Node 'conv5.W' (LearnableParameter operation): Initializing Parameter[256 x 2304] <- 0.000000.
Node 'conv5.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[4096 x 6 x 6 x 256] <- 0.000000.
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[4096] <- 0.000000.
Node 'h2.b' (LearnableParameter operation): Initializing Parameter[4096] <- 0.000000.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[1000] <- 0.000000.
Node 'conv1.W' (LearnableParameter operation): Initializing Parameter[64 x 363] <- gaussian(seed=1, range=0.010497*0.950000, onCPU=false).
Microsoft::MSR::CNTK::GPUMatrix<ElemType>::SetGaussianRandomValue (GPU): creating curand object with seed 1, sizeof(ElemType)==4
Node 'conv1.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv2.W' (LearnableParameter operation): Initializing Parameter[192 x 1600] <- gaussian(seed=2, range=0.005000*2.000000, onCPU=false).
Node 'conv2.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 192] <- 1.000000.
Node 'conv3.W' (LearnableParameter operation): Initializing Parameter[384 x 1728] <- gaussian(seed=3, range=0.004811*2.070000, onCPU=false).
Node 'conv3.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 384] <- 0.000000.
Node 'conv4.W' (LearnableParameter operation): Initializing Parameter[256 x 3456] <- gaussian(seed=4, range=0.003402*2.900000, onCPU=false).
Node 'conv4.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 1.000000.
Node 'conv5.W' (LearnableParameter operation): Initializing Parameter[256 x 2304] <- gaussian(seed=5, range=0.004167*2.400000, onCPU=false).
Node 'conv5.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 1.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[4096 x 6 x 6 x 256] <- gaussian(seed=6, range=0.002083*6.400000, onCPU=false).
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[4096] <- 1.000000.
Node 'h2.W' (LearnableParameter operation): Initializating Parameter[4096 x 0] as gaussian later when dimensions are fully known.
Node 'h2.b' (LearnableParameter operation): Initializing Parameter[4096] <- 1.000000.
Node 'OutputNodes.W' (LearnableParameter operation): Initializating Parameter[1000 x 0] as gaussian later when dimensions are fully known.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[1000] <- 1.000000.
Post-processing network...
@ -343,8 +395,8 @@ Post-processing network...
Validating network. 48 nodes to process in pass 1.
Validating --> OutputNodes.W = LearnableParameter() : -> [1000 x 4096]
Validating --> h2.W = LearnableParameter() : -> [4096 x 4096]
Validating --> OutputNodes.W = LearnableParameter() : -> [1000 x 0]
Validating --> h2.W = LearnableParameter() : -> [4096 x 0]
Validating --> h1.W = LearnableParameter() : -> [4096 x 6 x 6 x 256]
Validating --> conv5.W = LearnableParameter() : -> [256 x 2304]
Validating --> conv4.W = LearnableParameter() : -> [256 x 3456]
@ -380,11 +432,15 @@ Validating --> h1.b = LearnableParameter() : -> [4096]
Validating --> h1.z = Plus (h1.t, h1.b) : [4096 x *], [4096] -> [4096 x *]
Validating --> h1.y = RectifiedLinear (h1.z) : [4096 x *] -> [4096 x *]
Validating --> h1_d = Dropout (h1.y) : [4096 x *] -> [4096 x *]
Node 'h2.W' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 4096].
Node 'h2.W' (LearnableParameter operation): Initializing Parameter[4096 x 4096] <- gaussian(seed=7, range=0.003125*3.200000, onCPU=false).
Validating --> h2.t = Times (h2.W, h1_d) : [4096 x 4096], [4096 x *] -> [4096 x *]
Validating --> h2.b = LearnableParameter() : -> [4096]
Validating --> h2.z = Plus (h2.t, h2.b) : [4096 x *], [4096] -> [4096 x *]
Validating --> h2.y = RectifiedLinear (h2.z) : [4096 x *] -> [4096 x *]
Validating --> h2_d = Dropout (h2.y) : [4096 x *] -> [4096 x *]
Node 'OutputNodes.W' (LearnableParameter operation) operation: Tensor shape was inferred as [1000 x 4096].
Node 'OutputNodes.W' (LearnableParameter operation): Initializing Parameter[1000 x 4096] <- gaussian(seed=8, range=0.003125*3.200000, onCPU=false).
Validating --> OutputNodes.t = Times (OutputNodes.W, h2_d) : [1000 x 4096], [4096 x *] -> [1000 x *]
Validating --> OutputNodes.b = LearnableParameter() : -> [1000]
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [1000 x *], [1000] -> [1000 x *]
@ -398,134 +454,157 @@ Validating network. 30 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c: using cuDNN convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c: using cuDNN convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv4.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv5.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool3: using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
18 out of 48 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
05/03/2016 14:11:02: Created model with 48 nodes on GPU 0.
08/16/2016 03:03:45: Created model with 48 nodes on GPU 0.
05/03/2016 14:11:02: Training criterion node(s):
05/03/2016 14:11:02: ce = CrossEntropyWithSoftmax
08/16/2016 03:03:45: Training criterion node(s):
08/16/2016 03:03:45: ce = CrossEntropyWithSoftmax
05/03/2016 14:11:02: Evaluation criterion node(s):
05/03/2016 14:11:02: err = ErrorPrediction
08/16/2016 03:03:45: Evaluation criterion node(s):
08/16/2016 03:03:45: err = ErrorPrediction
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 93 matrices, 61 are shared as 27, and 32 are not shared.
0000000000000000: {[err Gradient[1]] [features Gradient[224 x 224 x 3 x *]] [labels Gradient[1000 x *]] }
000000E290039200: {[conv2.W Value[192 x 1600]] }
000000E290039340: {[conv1.W Value[64 x 363]] }
000000E290039480: {[conv1.b Value[1 x 1 x 64]] }
000000E290039520: {[conv2.b Value[1 x 1 x 192]] }
000000E29003A060: {[features Value[224 x 224 x 3 x *]] }
000000E29003A240: {[labels Value[1000 x *]] }
000000E2A80AE1D0: {[OutputNodes.b Value[1000]] }
000000E2A80AE270: {[conv3.W Value[384 x 1728]] }
000000E2A80AE310: {[h1.W Value[4096 x 6 x 6 x 256]] }
000000E2A80AE950: {[conv5.b Value[1 x 1 x 256]] }
000000E2A80AEC70: {[h1.b Value[4096]] }
000000E2A80AF350: {[h2.W Value[4096 x 4096]] }
000000E2A80AF530: {[conv3.b Value[1 x 1 x 384]] }
000000E2A80AF710: {[conv4.b Value[1 x 1 x 256]] }
000000E2A80AFA30: {[h2.b Value[4096]] }
000000E2A80AFDF0: {[conv5.W Value[256 x 2304]] }
000000E2A80AFE90: {[conv4.W Value[256 x 3456]] }
000000E2A80AFF30: {[OutputNodes.W Value[1000 x 4096]] }
000000E2AE0BA220: {[conv4.c Value[13 x 13 x 256 x *]] }
000000E2AE0BA2C0: {[h2.W Gradient[4096 x 4096]] [h2.z Value[4096 x *]] }
000000E2AE0BA360: {[conv5.c Gradient[13 x 13 x 256 x *]] [conv5.y Value[13 x 13 x 256 x *]] }
000000E2AE0BA400: {[OutputNodes.t Value[1000 x *]] [h2.b Gradient[4096]] [h2.y Gradient[4096 x *]] }
000000E2AE0BA720: {[err Value[1]] }
000000E2AE0BA7C0: {[conv3.b Gradient[1 x 1 x 384]] [conv3.y Gradient[13 x 13 x 384 x *]] [conv4.z Gradient[13 x 13 x 256 x *]] }
000000E2AE0BA860: {[conv1.c Gradient[56 x 56 x 64 x *]] [conv1.y Value[56 x 56 x 64 x *]] }
000000E2AE0BA900: {[conv1.b Gradient[1 x 1 x 64]] [conv1.y Gradient[56 x 56 x 64 x *]] }
000000E2AE0BA9A0: {[conv1.z Gradient[56 x 56 x 64 x *]] [pool1 Value[27 x 27 x 64 x *]] }
000000E2AE0BAA40: {[conv3.z Gradient[13 x 13 x 384 x *]] [pool2 Gradient[13 x 13 x 192 x *]] }
000000E2AE0BAAE0: {[conv5.W Gradient[256 x 2304]] [conv5.z Value[13 x 13 x 256 x *]] }
000000E2AE0BAB80: {[h1_d Value[4096 x *]] }
000000E2AE0BACC0: {[conv3.c Gradient[13 x 13 x 384 x *]] [conv3.y Value[13 x 13 x 384 x *]] }
000000E2AE0BAE00: {[conv3.c Value[13 x 13 x 384 x *]] }
000000E2AE0BAEA0: {[conv4.W Gradient[256 x 3456]] [conv4.z Value[13 x 13 x 256 x *]] }
000000E2AE0BAFE0: {[h2_d Value[4096 x *]] }
000000E2AE0BB080: {[conv4.c Gradient[13 x 13 x 256 x *]] [conv4.y Value[13 x 13 x 256 x *]] }
000000E2AE0BB120: {[h1.W Gradient[4096 x 6 x 6 x 256]] [h1.z Value[4096 x *]] }
000000E2AE0BB1C0: {[ce Gradient[1]] }
000000E2AE0BB260: {[OutputNodes.b Gradient[1000]] }
000000E2AE0BB3A0: {[conv2.W Gradient[192 x 1600]] [conv2.z Value[27 x 27 x 192 x *]] }
000000E2AE0BB4E0: {[conv1.W Gradient[64 x 363]] [conv1.z Value[56 x 56 x 64 x *]] }
000000E2AE0BB800: {[conv2.b Gradient[1 x 1 x 192]] [conv2.y Gradient[27 x 27 x 192 x *]] }
000000E2AE0BB940: {[h1.z Gradient[4096 x *]] [pool3 Gradient[6 x 6 x 256 x *]] }
000000E2AE0BB9E0: {[h1.b Gradient[4096]] [h1.y Gradient[4096 x *]] [h2.t Value[4096 x *]] }
000000E2AE0BBB20: {[OutputNodes.t Gradient[1000 x *]] }
000000E2AE0BBBC0: {[conv4.b Gradient[1 x 1 x 256]] [conv4.y Gradient[13 x 13 x 256 x *]] [conv5.z Gradient[13 x 13 x 256 x *]] [pool3 Value[6 x 6 x 256 x *]] }
000000E2AE0BBD00: {[ce Value[1]] }
000000E2AE0BBDA0: {[conv2.c Value[27 x 27 x 192 x *]] }
000000E2AE0BBE40: {[conv1.c Value[56 x 56 x 64 x *]] }
000000E2AE0BBF80: {[conv2.c Gradient[27 x 27 x 192 x *]] [conv2.y Value[27 x 27 x 192 x *]] }
000000E2AE0BC020: {[h2.t Gradient[4096 x *]] [h2.y Value[4096 x *]] }
000000E2AE0BC160: {[conv5.c Value[13 x 13 x 256 x *]] }
000000E2AE0BC200: {[conv2.z Gradient[27 x 27 x 192 x *]] [pool1 Gradient[27 x 27 x 64 x *]] [pool2 Value[13 x 13 x 192 x *]] }
000000E2AE0BC2A0: {[OutputNodes.z Value[1000 x *]] }
000000E2AE0BC340: {[h1_d Gradient[4096 x *]] [h2.z Gradient[4096 x *]] }
000000E2AE0BC480: {[OutputNodes.W Gradient[1000 x 4096]] [OutputNodes.z Gradient[1000 x *]] }
000000E2AE0BC520: {[h2_d Gradient[4096 x *]] }
000000E2AE0BC840: {[conv3.W Gradient[384 x 1728]] [conv3.z Value[13 x 13 x 384 x *]] }
000000E2AE0BC8E0: {[conv5.b Gradient[1 x 1 x 256]] [conv5.y Gradient[13 x 13 x 256 x *]] [h1.t Value[4096 x *]] }
000000E2AE0BC980: {[h1.t Gradient[4096 x *]] [h1.y Value[4096 x *]] }
05/03/2016 14:11:02: No PreCompute nodes found, skipping PreCompute step.
05/03/2016 14:11:05: Starting Epoch 1: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
05/03/2016 14:11:05: Starting minibatch loop.
05/03/2016 14:11:14: Epoch[ 1 of 3]-Minibatch[ 1- 100]: ce = 7.43287354 * 1600; err = 0.99937500 * 1600; time = 8.8275s; samplesPerSecond = 181.3
05/03/2016 14:11:20: Finished Epoch[ 1 of 3]: [Training] ce = 7.24222462 * 2999; err = 0.99933311 * 2999; totalSamplesSeen = 2999; learningRatePerSample = 0.00062499999; epochTime=14.8733s
05/03/2016 14:11:24: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet.1'
05/03/2016 14:11:27: Starting Epoch 2: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
05/03/2016 14:11:27: Starting minibatch loop.
05/03/2016 14:11:34: Epoch[ 2 of 3]-Minibatch[ 1- 100, 100.00%]: ce = 6.90465576 * 1600; err = 0.99937500 * 1600; time = 6.9523s; samplesPerSecond = 230.1
05/03/2016 14:11:40: Finished Epoch[ 2 of 3]: [Training] ce = 6.91868774 * 2999; err = 0.99899967 * 2999; totalSamplesSeen = 5998; learningRatePerSample = 0.00062499999; epochTime=12.9929s
05/03/2016 14:11:43: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet.2'
05/03/2016 14:11:46: Starting Epoch 3: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
05/03/2016 14:11:46: Starting minibatch loop.
05/03/2016 14:11:53: Epoch[ 3 of 3]-Minibatch[ 1- 100, 100.00%]: ce = 6.87353699 * 1600; err = 0.99750000 * 1600; time = 7.0845s; samplesPerSecond = 225.8
05/03/2016 14:11:59: Finished Epoch[ 3 of 3]: [Training] ce = 6.88654161 * 2999; err = 0.99799933 * 2999; totalSamplesSeen = 8997; learningRatePerSample = 0.00062499999; epochTime=13.0423s
05/03/2016 14:12:03: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503141032.133212\Image_AlexNet@release_gpu/models/AlexNet'
05/03/2016 14:12:06: CNTKCommandTrainEnd: Train
05/03/2016 14:12:06: Action "train" complete.
{ conv1.W : [64 x 363] (gradient)
conv1.z : [56 x 56 x 64 x *] }
{ conv1.c : [56 x 56 x 64 x *] (gradient)
conv1.y : [56 x 56 x 64 x *] }
{ conv2.c : [27 x 27 x 192 x *] (gradient)
conv2.y : [27 x 27 x 192 x *] }
{ conv2.z : [27 x 27 x 192 x *] (gradient)
pool1 : [27 x 27 x 64 x *] (gradient)
pool2 : [13 x 13 x 192 x *] }
{ conv3.W : [384 x 1728] (gradient)
conv3.z : [13 x 13 x 384 x *] }
{ conv1.z : [56 x 56 x 64 x *] (gradient)
pool1 : [27 x 27 x 64 x *] }
{ conv3.c : [13 x 13 x 384 x *] (gradient)
conv3.y : [13 x 13 x 384 x *] }
{ conv2.b : [1 x 1 x 192] (gradient)
conv2.y : [27 x 27 x 192 x *] (gradient) }
{ conv1.b : [1 x 1 x 64] (gradient)
conv1.y : [56 x 56 x 64 x *] (gradient) }
{ conv2.W : [192 x 1600] (gradient)
conv2.z : [27 x 27 x 192 x *] }
{ conv5.b : [1 x 1 x 256] (gradient)
conv5.y : [13 x 13 x 256 x *] (gradient)
h1.t : [4096 x *] }
{ h1_d : [4096 x *] (gradient)
h2.z : [4096 x *] (gradient) }
{ h1.W : [4096 x 6 x 6 x 256] (gradient)
h1.z : [4096 x *] }
{ h1.z : [4096 x *] (gradient)
pool3 : [6 x 6 x 256 x *] (gradient) }
{ OutputNodes.t : [1000 x *]
h2.b : [4096] (gradient)
h2.y : [4096 x *] (gradient) }
{ conv4.b : [1 x 1 x 256] (gradient)
conv4.y : [13 x 13 x 256 x *] (gradient)
conv5.z : [13 x 13 x 256 x *] (gradient)
pool3 : [6 x 6 x 256 x *] }
{ conv5.c : [13 x 13 x 256 x *] (gradient)
conv5.y : [13 x 13 x 256 x *] }
{ OutputNodes.W : [1000 x 4096] (gradient)
OutputNodes.z : [1000 x *] (gradient) }
{ conv3.b : [1 x 1 x 384] (gradient)
conv3.y : [13 x 13 x 384 x *] (gradient)
conv4.z : [13 x 13 x 256 x *] (gradient) }
{ h1.t : [4096 x *] (gradient)
h1.y : [4096 x *] }
{ conv4.c : [13 x 13 x 256 x *] (gradient)
conv4.y : [13 x 13 x 256 x *] }
{ h2.W : [4096 x 4096] (gradient)
h2.z : [4096 x *] }
{ h2.t : [4096 x *] (gradient)
h2.y : [4096 x *] }
{ h1.b : [4096] (gradient)
h1.y : [4096 x *] (gradient)
h2.t : [4096 x *] }
{ conv5.W : [256 x 2304] (gradient)
conv5.z : [13 x 13 x 256 x *] }
{ conv3.z : [13 x 13 x 384 x *] (gradient)
pool2 : [13 x 13 x 192 x *] (gradient) }
{ conv4.W : [256 x 3456] (gradient)
conv4.z : [13 x 13 x 256 x *] }
05/03/2016 14:12:06: ##############################################################################
05/03/2016 14:12:06: # #
05/03/2016 14:12:06: # Action "edit" #
05/03/2016 14:12:06: # #
05/03/2016 14:12:06: ##############################################################################
08/16/2016 03:03:45: Training 61100840 parameters in 16 out of 16 parameter tensors and 45 nodes with gradient:
08/16/2016 03:03:45: Node 'OutputNodes.W' (LearnableParameter operation) : [1000 x 4096]
08/16/2016 03:03:45: Node 'OutputNodes.b' (LearnableParameter operation) : [1000]
08/16/2016 03:03:45: Node 'conv1.W' (LearnableParameter operation) : [64 x 363]
08/16/2016 03:03:45: Node 'conv1.b' (LearnableParameter operation) : [1 x 1 x 64]
08/16/2016 03:03:45: Node 'conv2.W' (LearnableParameter operation) : [192 x 1600]
08/16/2016 03:03:45: Node 'conv2.b' (LearnableParameter operation) : [1 x 1 x 192]
08/16/2016 03:03:45: Node 'conv3.W' (LearnableParameter operation) : [384 x 1728]
08/16/2016 03:03:45: Node 'conv3.b' (LearnableParameter operation) : [1 x 1 x 384]
08/16/2016 03:03:45: Node 'conv4.W' (LearnableParameter operation) : [256 x 3456]
08/16/2016 03:03:45: Node 'conv4.b' (LearnableParameter operation) : [1 x 1 x 256]
08/16/2016 03:03:45: Node 'conv5.W' (LearnableParameter operation) : [256 x 2304]
08/16/2016 03:03:45: Node 'conv5.b' (LearnableParameter operation) : [1 x 1 x 256]
08/16/2016 03:03:45: Node 'h1.W' (LearnableParameter operation) : [4096 x 6 x 6 x 256]
08/16/2016 03:03:45: Node 'h1.b' (LearnableParameter operation) : [4096]
08/16/2016 03:03:45: Node 'h2.W' (LearnableParameter operation) : [4096 x 4096]
08/16/2016 03:03:45: Node 'h2.b' (LearnableParameter operation) : [4096]
08/16/2016 03:03:45: No PreCompute nodes found, or all already computed. Skipping pre-computation step.
08/16/2016 03:03:49: Starting Epoch 1: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
BlockRandomizer::StartEpoch: epoch 0: frames [0..2999] (first sequence at sample 0), data subset 0 of 1
08/16/2016 03:03:49: Starting minibatch loop.
08/16/2016 03:03:59: Epoch[ 1 of 3]-Minibatch[ 1- 100]: ce = 7.41005371 * 1600; err = 1.00000000 * 1600; time = 10.1500s; samplesPerSecond = 157.6
08/16/2016 03:04:06: Finished Epoch[ 1 of 3]: [Training] ce = 7.23359609 * 2999; err = 1.00000000 * 2999; totalSamplesSeen = 2999; learningRatePerSample = 0.00062499999; epochTime=17.2906s
08/16/2016 03:04:10: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet.1'
08/16/2016 03:04:14: Starting Epoch 2: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
BlockRandomizer::StartEpoch: epoch 1: frames [2999..5998] (first sequence at sample 2999), data subset 0 of 1
08/16/2016 03:04:14: Starting minibatch loop.
08/16/2016 03:04:22: Epoch[ 2 of 3]-Minibatch[ 1- 100, 100.00%]: ce = 6.91799866 * 1600; err = 0.99937500 * 1600; time = 8.4264s; samplesPerSecond = 189.9
08/16/2016 03:04:30: Finished Epoch[ 2 of 3]: [Training] ce = 6.91958452 * 2999; err = 0.99966656 * 2999; totalSamplesSeen = 5998; learningRatePerSample = 0.00062499999; epochTime=15.8522s
08/16/2016 03:04:33: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet.2'
08/16/2016 03:04:37: Starting Epoch 3: learning rate per sample = 0.000625 effective momentum = 0.900000 momentum as time constant = 151.9 samples
BlockRandomizer::StartEpoch: epoch 2: frames [5998..8997] (first sequence at sample 5998), data subset 0 of 1
08/16/2016 03:04:37: Starting minibatch loop.
08/16/2016 03:04:45: Epoch[ 3 of 3]-Minibatch[ 1- 100, 100.00%]: ce = 6.88781128 * 1600; err = 0.99687500 * 1600; time = 8.2882s; samplesPerSecond = 193.0
08/16/2016 03:04:52: Finished Epoch[ 3 of 3]: [Training] ce = 6.88917725 * 2999; err = 0.99766589 * 2999; totalSamplesSeen = 8997; learningRatePerSample = 0.00062499999; epochTime=15.5577s
08/16/2016 03:04:56: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160816030158.863578\Image_AlexNet@release_gpu/models/AlexNet'
08/16/2016 03:04:59: CNTKCommandTrainEnd: Train
08/16/2016 03:04:59: Action "train" complete.
08/16/2016 03:04:59: ##############################################################################
08/16/2016 03:04:59: # #
08/16/2016 03:04:59: # Action "edit" #
08/16/2016 03:04:59: # #
08/16/2016 03:04:59: ##############################################################################
Post-processing network...
@ -592,27 +671,29 @@ Validating network. 30 nodes to process in pass 2.
Validating network, final pass.
Using GEMM convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c: using GEMM convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using GEMM convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c: using GEMM convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using GEMM convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3.c: using GEMM convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv4.c: using GEMM convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv5.c: using GEMM convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using GEMM convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool3: using GEMM convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
18 out of 48 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
Node 'unnamed143' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 0.000000.
Node 'unnamed143' (LearnableParameter operation): Initializing Parameter[1 x 1] <- 5.000000.
Post-processing network...
@ -672,8 +753,8 @@ Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [1000 x *1]
Validating --> labels = InputValue() : -> [1000 x *1]
Validating --> ce = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [1000 x *1], [1000 x *1] -> [1]
Validating --> err = ErrorPrediction (labels, OutputNodes.z) : [1000 x *1], [1000 x *1] -> [1]
Validating --> unnamed137 = LearnableParameter() : -> [1 x 1]
Validating --> errTop5 = ErrorPrediction (labels, OutputNodes.z, unnamed137) : [1000 x *1], [1000 x *1], [1 x 1] -> [1]
Validating --> unnamed143 = LearnableParameter() : -> [1 x 1]
Validating --> errTop5 = ErrorPrediction (labels, OutputNodes.z, unnamed143) : [1000 x *1], [1000 x *1], [1 x 1] -> [1]
Validating network. 31 nodes to process in pass 2.
@ -687,28 +768,58 @@ Validating network, final pass.
Post-processing network complete.
05/03/2016 14:12:12: Action "edit" complete.
08/16/2016 03:05:07: Action "edit" complete.
05/03/2016 14:12:12: ##############################################################################
05/03/2016 14:12:12: # #
05/03/2016 14:12:12: # Action "test" #
05/03/2016 14:12:12: # #
05/03/2016 14:12:12: ##############################################################################
08/16/2016 03:05:07: ##############################################################################
08/16/2016 03:05:07: # #
08/16/2016 03:05:07: # Action "test" #
08/16/2016 03:05:07: # #
08/16/2016 03:05:07: ##############################################################################
NDLBuilder Using GPU 0
Node 'conv1.W' (LearnableParameter operation): Initializing Parameter[64 x 363] <- 0.000000.
Node 'conv1.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv2.W' (LearnableParameter operation): Initializing Parameter[192 x 1600] <- 0.000000.
Node 'conv2.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 192] <- 0.000000.
Node 'conv3.W' (LearnableParameter operation): Initializing Parameter[384 x 1728] <- 0.000000.
Node 'conv3.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 384] <- 0.000000.
Node 'conv4.W' (LearnableParameter operation): Initializing Parameter[256 x 3456] <- 0.000000.
Node 'conv4.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 0.000000.
Node 'conv5.W' (LearnableParameter operation): Initializing Parameter[256 x 2304] <- 0.000000.
Node 'conv5.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 0.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[4096 x 6 x 6 x 256] <- 0.000000.
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[4096] <- 0.000000.
Node 'h2.b' (LearnableParameter operation): Initializing Parameter[4096] <- 0.000000.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[1000] <- 0.000000.
Node 'conv1.W' (LearnableParameter operation): Initializing Parameter[64 x 363] <- gaussian(seed=9, range=0.010497*0.950000, onCPU=false).
Node 'conv1.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 64] <- 0.000000.
Node 'conv2.W' (LearnableParameter operation): Initializing Parameter[192 x 1600] <- gaussian(seed=10, range=0.005000*2.000000, onCPU=false).
Node 'conv2.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 192] <- 1.000000.
Node 'conv3.W' (LearnableParameter operation): Initializing Parameter[384 x 1728] <- gaussian(seed=11, range=0.004811*2.070000, onCPU=false).
Node 'conv3.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 384] <- 0.000000.
Node 'conv4.W' (LearnableParameter operation): Initializing Parameter[256 x 3456] <- gaussian(seed=12, range=0.003402*2.900000, onCPU=false).
Node 'conv4.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 1.000000.
Node 'conv5.W' (LearnableParameter operation): Initializing Parameter[256 x 2304] <- gaussian(seed=13, range=0.004167*2.400000, onCPU=false).
Node 'conv5.b' (LearnableParameter operation): Initializing Parameter[1 x 1 x 256] <- 1.000000.
Node 'h1.W' (LearnableParameter operation): Initializing Parameter[4096 x 6 x 6 x 256] <- gaussian(seed=14, range=0.002083*6.400000, onCPU=false).
Node 'h1.b' (LearnableParameter operation): Initializing Parameter[4096] <- 1.000000.
Node 'h2.W' (LearnableParameter operation): Initializating Parameter[4096 x 0] as gaussian later when dimensions are fully known.
Node 'h2.b' (LearnableParameter operation): Initializing Parameter[4096] <- 1.000000.
Node 'OutputNodes.W' (LearnableParameter operation): Initializating Parameter[1000 x 0] as gaussian later when dimensions are fully known.
Node 'OutputNodes.b' (LearnableParameter operation): Initializing Parameter[1000] <- 1.000000.
Post-processing network...
4 roots:
3 roots:
OutputNodes.z = Plus()
ce = CrossEntropyWithSoftmax()
err = ErrorPrediction()
errTop5 = ErrorPrediction()
Validating network. 50 nodes to process in pass 1.
Validating network. 48 nodes to process in pass 1.
Validating --> OutputNodes.W = LearnableParameter() : -> [1000 x 4096]
Validating --> h2.W = LearnableParameter() : -> [4096 x 4096]
Validating --> OutputNodes.W = LearnableParameter() : -> [1000 x 0]
Validating --> h2.W = LearnableParameter() : -> [4096 x 0]
Validating --> h1.W = LearnableParameter() : -> [4096 x 6 x 6 x 256]
Validating --> conv5.W = LearnableParameter() : -> [256 x 2304]
Validating --> conv4.W = LearnableParameter() : -> [256 x 3456]
@ -744,44 +855,46 @@ Validating --> h1.b = LearnableParameter() : -> [4096]
Validating --> h1.z = Plus (h1.t, h1.b) : [4096 x *2], [4096] -> [4096 x *2]
Validating --> h1.y = RectifiedLinear (h1.z) : [4096 x *2] -> [4096 x *2]
Validating --> h1_d = Dropout (h1.y) : [4096 x *2] -> [4096 x *2]
Node 'h2.W' (LearnableParameter operation) operation: Tensor shape was inferred as [4096 x 4096].
Node 'h2.W' (LearnableParameter operation): Initializing Parameter[4096 x 4096] <- gaussian(seed=15, range=0.003125*3.200000, onCPU=false).
Validating --> h2.t = Times (h2.W, h1_d) : [4096 x 4096], [4096 x *2] -> [4096 x *2]
Validating --> h2.b = LearnableParameter() : -> [4096]
Validating --> h2.z = Plus (h2.t, h2.b) : [4096 x *2], [4096] -> [4096 x *2]
Validating --> h2.y = RectifiedLinear (h2.z) : [4096 x *2] -> [4096 x *2]
Validating --> h2_d = Dropout (h2.y) : [4096 x *2] -> [4096 x *2]
Node 'OutputNodes.W' (LearnableParameter operation) operation: Tensor shape was inferred as [1000 x 4096].
Node 'OutputNodes.W' (LearnableParameter operation): Initializing Parameter[1000 x 4096] <- gaussian(seed=16, range=0.003125*3.200000, onCPU=false).
Validating --> OutputNodes.t = Times (OutputNodes.W, h2_d) : [1000 x 4096], [4096 x *2] -> [1000 x *2]
Validating --> OutputNodes.b = LearnableParameter() : -> [1000]
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [1000 x *2], [1000] -> [1000 x *2]
Validating --> labels = InputValue() : -> [1000 x *2]
Validating --> ce = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [1000 x *2], [1000 x *2] -> [1]
Validating --> err = ErrorPrediction (labels, OutputNodes.z) : [1000 x *2], [1000 x *2] -> [1]
Validating --> unnamed137 = LearnableParameter() : -> [1 x 1]
Validating --> errTop5 = ErrorPrediction (labels, OutputNodes.z, unnamed137) : [1000 x *2], [1000 x *2], [1 x 1] -> [1]
Validating network. 31 nodes to process in pass 2.
Validating network. 30 nodes to process in pass 2.
Validating network, final pass.
Using cuDNN convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv1.c: using cuDNN convolution engine for geometry: Input: 224 x 224 x 3, Output: 56 x 56 x 64, Kernel: 11 x 11 x 3, Map: 1 x 1 x 64, Stride: 4 x 4 x 3, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool1: using cuDNN convolution engine for geometry: Input: 56 x 56 x 64, Output: 27 x 27 x 64, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv2.c: using cuDNN convolution engine for geometry: Input: 27 x 27 x 64, Output: 27 x 27 x 192, Kernel: 5 x 5 x 64, Map: 1 x 1 x 192, Stride: 1 x 1 x 64, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool2: using cuDNN convolution engine for geometry: Input: 27 x 27 x 192, Output: 13 x 13 x 192, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv3.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 192, Output: 13 x 13 x 384, Kernel: 3 x 3 x 192, Map: 1 x 1 x 384, Stride: 1 x 1 x 192, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv4.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 384, Output: 13 x 13 x 256, Kernel: 3 x 3 x 384, Map: 1 x 1 x 256, Stride: 1 x 1 x 384, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
conv5.c: using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 13 x 13 x 256, Kernel: 3 x 3 x 256, Map: 1 x 1 x 256, Stride: 1 x 1 x 256, Sharing: (1), AutoPad: (1), LowerPad: 0, UpperPad: 0.
Using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
pool3: using cuDNN convolution engine for geometry: Input: 13 x 13 x 256, Output: 6 x 6 x 256, Kernel: 3 x 3 x 1, Map: 1, Stride: 2 x 2 x 1, Sharing: (1), AutoPad: (0), LowerPad: 0, UpperPad: 0.
20 out of 50 nodes do not share the minibatch layout with the input data.
18 out of 48 nodes do not share the minibatch layout with the input data.
Post-processing network complete.
@ -790,62 +903,12 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
Allocating matrices for forward and/or backward propagation.
Memory Sharing Structure:
Memory Sharing: Out of 48 matrices, 0 are shared as 0, and 48 are not shared.
0000000000000000: {[OutputNodes.W Gradient[1000 x 4096]] [OutputNodes.b Gradient[1000]] [OutputNodes.t Gradient[1000 x *2]] [OutputNodes.z Gradient[1000 x *2]] [ce Gradient[1]] [conv1.W Gradient[64 x 363]] [conv1.b Gradient[1 x 1 x 64]] [conv1.c Gradient[56 x 56 x 64 x *2]] [conv1.y Gradient[56 x 56 x 64 x *2]] [conv1.z Gradient[56 x 56 x 64 x *2]] [conv2.W Gradient[192 x 1600]] [conv2.b Gradient[1 x 1 x 192]] [conv2.c Gradient[27 x 27 x 192 x *2]] [conv2.y Gradient[27 x 27 x 192 x *2]] [conv2.z Gradient[27 x 27 x 192 x *2]] [conv3.W Gradient[384 x 1728]] [conv3.b Gradient[1 x 1 x 384]] [conv3.c Gradient[13 x 13 x 384 x *2]] [conv3.y Gradient[13 x 13 x 384 x *2]] [conv3.z Gradient[13 x 13 x 384 x *2]] [conv4.W Gradient[256 x 3456]] [conv4.b Gradient[1 x 1 x 256]] [conv4.c Gradient[13 x 13 x 256 x *2]] [conv4.y Gradient[13 x 13 x 256 x *2]] [conv4.z Gradient[13 x 13 x 256 x *2]] [conv5.W Gradient[256 x 2304]] [conv5.b Gradient[1 x 1 x 256]] [conv5.c Gradient[13 x 13 x 256 x *2]] [conv5.y Gradient[13 x 13 x 256 x *2]] [conv5.z Gradient[13 x 13 x 256 x *2]] [err Gradient[1]] [errTop5 Gradient[1]] [features Gradient[224 x 224 x 3 x *2]] [h1.W Gradient[4096 x 6 x 6 x 256]] [h1.b Gradient[4096]] [h1.t Gradient[4096 x *2]] [h1.y Gradient[4096 x *2]] [h1.z Gradient[4096 x *2]] [h1_d Gradient[4096 x *2]] [h2.W Gradient[4096 x 4096]] [h2.b Gradient[4096]] [h2.t Gradient[4096 x *2]] [h2.y Gradient[4096 x *2]] [h2.z Gradient[4096 x *2]] [h2_d Gradient[4096 x *2]] [labels Gradient[1000 x *2]] [pool1 Gradient[27 x 27 x 64 x *2]] [pool2 Gradient[13 x 13 x 192 x *2]] [pool3 Gradient[6 x 6 x 256 x *2]] [unnamed137 Gradient[1 x 1]] }
000000E28E168F70: {[conv3.W Value[384 x 1728]] }
000000E28E1691F0: {[conv5.W Value[256 x 2304]] }
000000E28E1693D0: {[conv4.b Value[1 x 1 x 256]] }
000000E28E169510: {[conv4.W Value[256 x 3456]] }
000000E28E169830: {[conv5.b Value[1 x 1 x 256]] }
000000E28E1698D0: {[conv3.b Value[1 x 1 x 384]] }
000000E36C778260: {[OutputNodes.b Value[1000]] }
000000E36C7783A0: {[OutputNodes.W Value[1000 x 4096]] }
000000E36C778440: {[labels Value[1000 x *2]] }
000000E36C7786C0: {[features Value[224 x 224 x 3 x *2]] }
000000E36C7788A0: {[h1.b Value[4096]] }
000000E36C7789E0: {[h2.b Value[4096]] }
000000E36C778B20: {[h2.W Value[4096 x 4096]] }
000000E36C778DA0: {[h1.W Value[4096 x 6 x 6 x 256]] }
000000E370969220: {[conv5.y Value[13 x 13 x 256 x *2]] }
000000E370969360: {[h1.t Value[4096 x *2]] }
000000E3709694A0: {[conv4.z Value[13 x 13 x 256 x *2]] }
000000E370969540: {[conv4.c Value[13 x 13 x 256 x *2]] }
000000E370969680: {[conv4.y Value[13 x 13 x 256 x *2]] }
000000E370969720: {[conv5.z Value[13 x 13 x 256 x *2]] }
000000E3709697C0: {[h1.z Value[4096 x *2]] }
000000E370969860: {[h1_d Value[4096 x *2]] }
000000E3709699A0: {[h2.t Value[4096 x *2]] }
000000E370969A40: {[h2.z Value[4096 x *2]] }
000000E370969AE0: {[h2.y Value[4096 x *2]] }
000000E370969B80: {[h2_d Value[4096 x *2]] }
000000E370969C20: {[conv3.y Value[13 x 13 x 384 x *2]] }
000000E370969CC0: {[conv5.c Value[13 x 13 x 256 x *2]] }
000000E370969D60: {[h1.y Value[4096 x *2]] }
000000E370969EA0: {[OutputNodes.t Value[1000 x *2]] }
000000E370969F40: {[pool3 Value[6 x 6 x 256 x *2]] }
000000E37096A080: {[OutputNodes.z Value[1000 x *2]] }
000000E3728E02A0: {[conv2.y Value[27 x 27 x 192 x *2]] }
000000E3728E0340: {[conv1.c Value[56 x 56 x 64 x *2]] }
000000E3728E03E0: {[err Value[1]] }
000000E3728E0480: {[conv1.z Value[56 x 56 x 64 x *2]] }
000000E3728E0700: {[pool2 Value[13 x 13 x 192 x *2]] }
000000E3728E07A0: {[conv3.c Value[13 x 13 x 384 x *2]] }
000000E3728E0980: {[errTop5 Value[1]] }
000000E3728E0A20: {[conv3.z Value[13 x 13 x 384 x *2]] }
000000E3728E0AC0: {[ce Value[1]] }
000000E3728E0CA0: {[unnamed137 Value[1 x 1]] }
000000E3728E0DE0: {[conv1.y Value[56 x 56 x 64 x *2]] }
000000E3728E0E80: {[pool1 Value[27 x 27 x 64 x *2]] }
000000E3728E0F20: {[conv2.c Value[27 x 27 x 192 x *2]] }
000000E3728E1100: {[conv2.z Value[27 x 27 x 192 x *2]] }
000000E372D9CB80: {[conv2.b Value[1 x 1 x 192]] }
000000E372D9CE00: {[conv1.W Value[64 x 363]] }
000000E372D9CFE0: {[conv2.W Value[192 x 1600]] }
000000E372D9D120: {[conv1.b Value[1 x 1 x 64]] }
05/03/2016 14:12:19: Final Results: Minibatch[1-32]: err = 0.99800000 * 500; errTop5 = 0.99600000 * 500; ce = 6.94932878 * 500; perplexity = 1042.44978531
08/16/2016 03:05:09: Minibatch[1-32]: err = 0.99800000 * 500; ce = 7.32805448 * 500
08/16/2016 03:05:09: Final Results: Minibatch[1-32]: err = 0.99800000 * 500; ce = 7.32805448 * 500; perplexity = 1522.41699268
05/03/2016 14:12:19: Action "test" complete.
08/16/2016 03:05:09: Action "test" complete.
05/03/2016 14:12:19: __COMPLETED__
08/16/2016 03:05:09: __COMPLETED__

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -89,6 +89,7 @@ reader = [
miniBatchMode = "partial"
randomize = "auto"
verbosity = 0
useMersenneTwisterRand=true
features = [
dim = 363

Некоторые файлы не были показаны из-за слишком большого количества измененных файлов Показать больше