fixed up two new baselines w.r.t. ErrorPrediction -> ClassificationError

This commit is contained in:
Frank Seide 2016-08-22 18:53:35 -07:00
Родитель 54f096083d
Коммит 4983c46deb
2 изменённых файлов: 10 добавлений и 10 удалений

Просмотреть файл

@ -349,7 +349,7 @@ Post-processing network...
3 roots:
CE = CrossEntropyWithSoftmax()
Err = ErrorPrediction()
Err = ClassificationError()
OutputNodes.z = Plus()
Validating network. 45 nodes to process in pass 1.
@ -398,7 +398,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, h1.y) : [10 x 64], [64 x *]
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x *], [10] -> [10 x *]
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
Validating network. 20 nodes to process in pass 2.
@ -437,7 +437,7 @@ Post-processing network complete.
08/22/2016 16:27:26: CE = CrossEntropyWithSoftmax
08/22/2016 16:27:26: Evaluation criterion node(s):
08/22/2016 16:27:26: Err = ErrorPrediction
08/22/2016 16:27:26: Err = ClassificationError
Allocating matrices for forward and/or backward propagation.
@ -557,7 +557,7 @@ Post-processing network...
3 roots:
CE = CrossEntropyWithSoftmax()
Err = ErrorPrediction()
Err = ClassificationError()
OutputNodes.z = Plus()
Validating network. 45 nodes to process in pass 1.
@ -606,7 +606,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, h1.y) : [10 x 64], [64 x *1
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x *1], [10] -> [10 x *1]
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
Validating network. 20 nodes to process in pass 2.

Просмотреть файл

@ -349,7 +349,7 @@ Post-processing network...
3 roots:
CE = CrossEntropyWithSoftmax()
Err = ErrorPrediction()
Err = ClassificationError()
OutputNodes.z = Plus()
Validating network. 45 nodes to process in pass 1.
@ -398,7 +398,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, h1.y) : [10 x 64], [64 x *]
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x *], [10] -> [10 x *]
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
Validating network. 20 nodes to process in pass 2.
@ -437,7 +437,7 @@ Post-processing network complete.
08/22/2016 09:28:36: CE = CrossEntropyWithSoftmax
08/22/2016 09:28:36: Evaluation criterion node(s):
08/22/2016 09:28:36: Err = ErrorPrediction
08/22/2016 09:28:36: Err = ClassificationError
Allocating matrices for forward and/or backward propagation.
@ -557,7 +557,7 @@ Post-processing network...
3 roots:
CE = CrossEntropyWithSoftmax()
Err = ErrorPrediction()
Err = ClassificationError()
OutputNodes.z = Plus()
Validating network. 45 nodes to process in pass 1.
@ -606,7 +606,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, h1.y) : [10 x 64], [64 x *1
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x *1], [10] -> [10 x *1]
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
Validating network. 20 nodes to process in pass 2.