fix imageScaler export/import to onnx

This commit is contained in:
Bowen Bao 2018-08-14 14:56:41 -07:00
Родитель ef836bc293
Коммит 4b4b9cda28
3 изменённых файлов: 32 добавлений и 29 удалений

Просмотреть файл

@ -1910,7 +1910,7 @@ FunctionPtr ONNXToCNTKHelper::CreateFunction(const Node *node, const std::vector
{
// Asssumes that if CreateFunction was called with isSimpleBatchAxisOnnxOp = true
// then the op was created with a PlaceholderVariable input.
auto operandPlaceholder = PlaceholderVariable(inputs[0].Shape(), L"operand", {});
auto operandPlaceholder = PlaceholderVariable(inputs[0].Shape(), inputs[0].GetDataType(), L"operand", {});
FunctionPtr operandWithBatchAxis = ToBatch(operandPlaceholder);
auto cntkFunctionWithBatchAxis = CreateFunction(node, inputs, graph, operandWithBatchAxis);
FunctionPtr cntkFunctionWithStaticAxis = UnpackBatch(cntkFunctionWithBatchAxis, ToFixedWStringFromMultiByte(node->Name()));
@ -2787,19 +2787,9 @@ FunctionPtr ONNXToCNTKHelper::CreateFunction(const Node *node, const std::vector
}
else if (onnxOpName == "ImageScaler")
{
double scale = GetNamedAttributeAsFloat(node, "scale", 1);
std::vector<float> bias = GetNamedAttributeAsFloatVec(node, "bias");
const NDShape &inputShape = inputs[0].Shape();
if (inputShape.Rank() == 4 && inputShape[3] == 1)
{
// CNTK does not have batch axis in shape dimensions.
Variable inputReshaped = Reshape(inputs[0], inputShape.SubShape(0, 3));
return ImageScaler(inputReshaped, scale, bias, ToFixedWStringFromMultiByte(node->Name()));
}
else
{
return ImageScaler(inputs[0], scale, bias, ToFixedWStringFromMultiByte(node->Name()));
}
float scale = GetNamedAttributeAsFloat(node, "scale", 1);
std::vector<float> bias = GetNamedAttributeAsFloatVec(node, "bias", std::vector<float>());
return ImageScaler(inputOperand0, scale, bias, ToFixedWStringFromMultiByte(node->Name()));
}
else if (onnxOpName == "MeanVarianceNormalization")
{

Просмотреть файл

@ -546,6 +546,7 @@ namespace ONNX
{ L"LocalResponseNormalization" },
{ L"MeanVarianceNormalization" },
{ L"BatchNormalization" },
{ L"ImageScaler" },
};
std::set<std::string> Operators::_onnxSimpleBatchAxisOps = { // List of all ONNX ops that are simple (single input, output) and have batch axis.
@ -557,6 +558,7 @@ namespace ONNX
{ "SpaceToDepth" },
{ "LRN" },
{ "MeanVarianceNormalization" },
{ "ImageScaler" },
};
}

Просмотреть файл

@ -19,7 +19,7 @@ DIM_SIZE_FOR_NON_BATCH_OPS = 1
# When adding a test for a new op, please check to see if
# that op needs to be added to this list (i.e. does that op
# get exported to an ONNX op with defined batch axis).
set_of_batch_ops = {'Pooling', 'Convolution', 'GlobalAveragePooling', 'GlobalMaxPooling', 'DepthToSpace', 'SpaceToDepth', 'LocalResponseNormalization', 'MeanVarianceNormalization', 'LayerNormalization', 'BatchNormalization'}
set_of_batch_ops = {'Pooling', 'Convolution', 'GlobalAveragePooling', 'GlobalMaxPooling', 'DepthToSpace', 'SpaceToDepth', 'LocalResponseNormalization', 'MeanVarianceNormalization', 'LayerNormalization', 'BatchNormalization', 'ImageScaler'}
# List of CNTK ops for which output shape doesn't change regardless
# of whether the input has batch axis or not.
@ -31,19 +31,32 @@ set_of_batch_irrelevant_ops = {'Flatten'}
#helpers
#############
def verify_no_input(model, tmpdir, name):
filename = os.path.join(str(tmpdir), name + R'.onnx')
model.save(filename, format=C.ModelFormat.ONNX)
opname = model.owner.op_name
loaded_model = C.Function.load(filename, format=C.ModelFormat.ONNX)
loaded_model = None
loaded_model = try_save_load_resave_onnx_model(model, tmpdir, name, loaded_model)
filename_resave = os.path.join(str(tmpdir), name + R'_resave.onnx')
loaded_model.save(filename_resave, format=C.ModelFormat.ONNX)
model_shape = model.shape
dim_denotation = None
if model.output.dynamic_axes == (C.Axis('defaultBatchAxis'),) and opname not in set_of_batch_ops:
dim_denotation = DIM_SIZE_FOR_NON_BATCH_OPS
elif opname in set_of_batch_ops:
dim_denotation = CNTK_FREEDIM_AXIS_DENOTATION
if not dim_denotation is None and opname not in set_of_batch_irrelevant_ops:
model_shape = (dim_denotation, ) + model_shape
assert model.shape == loaded_model.shape
assert model_shape == loaded_model.shape
o = model.eval()
o_ = loaded_model.eval()
assert np.allclose(o_, o)
o0 = model.eval()
o1 = loaded_model.eval()
if (type(o0) is list):
o0 = o0[0]
if (type(o1) is list):
o1 = o1[0]
assert np.allclose(o0, o1)
return loaded_model
def try_save_load_resave_onnx_model(model, tmpdir, name, loaded_model):
if not loaded_model:
@ -711,7 +724,6 @@ def test_HardSigmiod(tmpdir, dtype):
#ImageScaler
@pytest.mark.parametrize("dtype", DType_Config)
def test_ImageScaler(tmpdir, dtype):
pytest.skip('Needs to be fixed after removal of batch axis change.')
with C.default_options(dtype = dtype):
input_height = 32
input_width = 32
@ -720,11 +732,11 @@ def test_ImageScaler(tmpdir, dtype):
scalar = 1.5
bias = [10, 20, 30]
model = C.image_scaler(image, scalar, bias);
model = C.image_scaler(image, scalar, bias)
verify_no_input(model, tmpdir, 'ImageScaler_0')
x = C.input_variable(np.shape(image))
model = C.image_scaler(x, scalar, bias);
model = C.image_scaler(x, scalar, bias)
verify_one_input(model, image, tmpdir, 'ImageScaler_1')
#LayerNormalization
@ -807,7 +819,6 @@ def test_LogSoftmax(tmpdir, dtype):
#LRN
@pytest.mark.parametrize("dtype", DType_Config)
def test_LRN(tmpdir, dtype, device_id):
#pytest.skip('Needs to be fixed after removal of batch axis change.')
if device_id == -1 and dtype == np.float16:
pytest.skip('Test is skipped on CPU with float16 data, because it uses convolution.')
device = cntk_device(device_id)