renamed ErrorPrediction to ClassificationError, second attempt
This commit is contained in:
Родитель
9bd57387bb
Коммит
536e264749
|
@ -259,7 +259,7 @@ CE=CrossEntropyWithSoftmax(labels, Plus2)
|
|||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
ErrPredict=ErrorPrediction(labels, Plus2)
|
||||
ErrPredict=ClassificationError(labels, Plus2)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
@ -616,7 +616,7 @@ CE=CrossEntropyWithSoftmax(labels, Plus2)
|
|||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
ErrPredict=ErrorPrediction(labels, Plus2)
|
||||
ErrPredict=ClassificationError(labels, Plus2)
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
@ -633,19 +633,19 @@ CrossEntropyWithSoftmax
|
|||
|
||||
\end_inset
|
||||
|
||||
() to compute the training criterion and the operator ErrorPrediction
|
||||
() to compute the training criterion and the operator ClassificationError
|
||||
\begin_inset Index idx
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
ErrorPrediction
|
||||
ClassificationError
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
() to compute the testing criterion.
|
||||
These operators are internally represented as computation nodes CrossEntropyWit
|
||||
hSoftmaxNode and ErrorPredictionNode with names CE and ErrPredict, respectively.
|
||||
hSoftmaxNode and ClassificationErrorNode with names CE and ErrPredict, respectively.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
|
@ -740,7 +740,7 @@ status open
|
|||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
ErrPredict=ErrorPrediction(labels, Plus2) # classification error
|
||||
ErrPredict=ClassificationError(labels, Plus2) # classification error
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
@ -1025,7 +1025,7 @@ reference "sub:NDL-Basic-Concepts"
|
|||
but is much simpler and easier to understand because of the use of macros.
|
||||
One new feature shown in this network definition is the access to macro-region
|
||||
variables.
|
||||
ErrorPrediction() needs to access an intermediate result from SMBFF before
|
||||
ClassificationError() needs to access an intermediate result from SMBFF before
|
||||
the CrossEntropyWithSoftmax() is applied.
|
||||
Although the needed variable is local to the macro, it can be accessed
|
||||
via the
|
||||
|
@ -1107,7 +1107,7 @@ CE = SMBFF(L1, LDim, HDim, labels)
|
|||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
Err=ErrorPrediction(labels, CE.F)
|
||||
Err=ClassificationError(labels, CE.F)
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
@ -1280,7 +1280,7 @@ CE = SMBFF(L3, LDim, HDim, labels, tag="criterion")
|
|||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
Err=ErrorPrediction(labels, CE.F, tag="evaluation")
|
||||
Err=ClassificationError(labels, CE.F, tag="evaluation")
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
@ -2900,12 +2900,12 @@ classProbBeforeSoftmax - applying softmax on this matrix will result in
|
|||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
ErrorPrediction
|
||||
ClassificationError
|
||||
\begin_inset Index idx
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
ErrorPrediction
|
||||
ClassificationError
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
@ -2941,7 +2941,7 @@ status open
|
|||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
ErrorPrediction(labels, m)
|
||||
ClassificationError(labels, m)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
@ -4059,7 +4059,7 @@ CE = SMBFF(L3, LDim, HDim, labels, tag="criterion")
|
|||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
Err=ErrorPrediction(labels, CE.F, tag="evaluation")
|
||||
Err=ClassificationError(labels, CE.F, tag="evaluation")
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
|
|
@ -290,7 +290,7 @@ cntkSpeech.dnn"
|
|||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
evalCriterion="ErrorPrediction"
|
||||
evalCriterion="ClassificationError"
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
@ -1610,7 +1610,7 @@ CE1=CrossEntropyWithSoftmax(labels,BFF1.FF.P,tag="evaluation")
|
|||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
FER1 = ErrorPrediction(labels,BFF1.FF.P,tag="evaluation")
|
||||
FER1 = ClassificationError(labels,BFF1.FF.P,tag="evaluation")
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
@ -1634,7 +1634,7 @@ CE2=CrossEntropyWithSoftmax(regions,BFF2.FF.P,tag="evaluation")
|
|||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
FER2 = ErrorPrediction(regions,BFF2.FF.P,tag="evaluation")
|
||||
FER2 = ClassificationError(regions,BFF2.FF.P,tag="evaluation")
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
|
|
@ -514,7 +514,7 @@ Simple_Demo=[
|
|||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
evalCriterion="ErrorPrediction"
|
||||
evalCriterion="ClassificationError"
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
|
|
@ -52,12 +52,12 @@ train = [
|
|||
z = DNNLayer (hiddenDim, labelDim, h1, 1)
|
||||
|
||||
ce = CrossEntropyWithSoftmax (labels, z)
|
||||
errs = ErrorPrediction (labels, z)
|
||||
errs = ClassificationError (labels, z)
|
||||
|
||||
# set top5Errs as an evaluation node to compute the top-5 error rate
|
||||
# This is not marked tag="evaluation" since expensive during training.
|
||||
# We explicitly select it as an output node in the "test" command.
|
||||
top5Errs = ErrorPrediction (labels, z, topN=5)
|
||||
top5Errs = ClassificationError (labels, z, topN=5)
|
||||
|
||||
# declare special nodes
|
||||
featureNodes = (features)
|
||||
|
|
|
@ -22,8 +22,8 @@ DNN = [
|
|||
ol = DNNLayer(hiddenDim, labelDim, h1, 1)
|
||||
|
||||
ce = CrossEntropyWithSoftmax(labels, ol)
|
||||
errs = ErrorPrediction(labels, ol)
|
||||
top5Errs = ErrorPrediction(labels, ol, Const(5), tag="eval") # only used in testing
|
||||
errs = ClassificationError(labels, ol)
|
||||
top5Errs = ClassificationError(labels, ol, Const(5), tag="eval") # only used in testing
|
||||
|
||||
# Special Nodes
|
||||
FeatureNodes = (features)
|
||||
|
|
|
@ -58,7 +58,7 @@ DNN=[
|
|||
ol = DNNLayer(h1Dim, labelDim, h1, 1)
|
||||
|
||||
ce = CrossEntropyWithSoftmax(labels, ol)
|
||||
errs = ErrorPrediction(labels, ol)
|
||||
errs = ClassificationError(labels, ol)
|
||||
|
||||
# Special Nodes
|
||||
FeatureNodes = (features)
|
||||
|
|
|
@ -64,7 +64,7 @@ DNN = [
|
|||
ol = DNNLayer(h1Dim, labelDim, h1, 1)
|
||||
|
||||
ce = CrossEntropyWithSoftmax(labels, ol)
|
||||
errs = ErrorPrediction(labels, ol)
|
||||
errs = ClassificationError(labels, ol)
|
||||
|
||||
# Special Nodes
|
||||
FeatureNodes = (features)
|
||||
|
|
|
@ -79,7 +79,7 @@ DNN=[
|
|||
ol = DNNLastLayer(hiddenDim, labelDim, h1_d, fc2WScale, fc2BValue)
|
||||
|
||||
CE = CrossEntropyWithSoftmax(labels, ol, tag = Criteria)
|
||||
Err = ErrorPrediction(labels, ol, tag = Eval)
|
||||
Err = ClassificationError(labels, ol, tag = Eval)
|
||||
OutputNodes = ol
|
||||
]
|
||||
|
||||
|
|
|
@ -84,7 +84,7 @@ DNN=[
|
|||
ol = DNNLastLayer(hiddenDim, labelDim, h1, fc2WScale, fc2BValue)
|
||||
|
||||
CE = CrossEntropyWithSoftmax(labels, ol, tag = Criteria)
|
||||
Err = ErrorPrediction(labels, ol, tag = Eval)
|
||||
Err = ClassificationError(labels, ol, tag = Eval)
|
||||
OutputNodes = ol
|
||||
]
|
||||
|
||||
|
|
|
@ -61,7 +61,7 @@ DNN=[
|
|||
ol = DnnLastLayer(cMap3, labelDim, pool, fc1WScale, fc1BValue)
|
||||
|
||||
CE = CrossEntropyWithSoftmax(labels, ol, tag = Criteria)
|
||||
Err = ErrorPrediction(labels, ol, tag = Eval)
|
||||
Err = ClassificationError(labels, ol, tag = Eval)
|
||||
OutputNodes = ol
|
||||
]
|
||||
|
||||
|
|
|
@ -106,7 +106,7 @@ DNN=[
|
|||
ol = DnnLastLayer(cMap3, labelDim, pool, fc1WScale, fc1BValue)
|
||||
|
||||
CE = CrossEntropyWithSoftmax(labels, ol, tag = Criteria)
|
||||
Err = ErrorPrediction(labels, ol, tag = Eval)
|
||||
Err = ClassificationError(labels, ol, tag = Eval)
|
||||
OutputNodes = ol
|
||||
]
|
||||
|
||||
|
|
|
@ -103,6 +103,6 @@ DNN=[
|
|||
ol = DNNLastLayer(hiddenDim, labelDim, h2_d, fc3WScale, fc3BValue)
|
||||
|
||||
CE = CrossEntropyWithSoftmax(labels, ol, tag = Criteria)
|
||||
Err = ErrorPrediction(labels, ol, tag = Eval)
|
||||
Err = ClassificationError(labels, ol, tag = Eval)
|
||||
OutputNodes = ol
|
||||
]
|
||||
|
|
|
@ -111,6 +111,6 @@ DNN=[
|
|||
ol = DnnLayer(cMap6, labelDim, pool2, fcWScale, fcBValue)
|
||||
|
||||
CE = CrossEntropyWithSoftmax(labels, ol, tag = Criteria)
|
||||
Err = ErrorPrediction(labels, ol, tag = Eval)
|
||||
Err = ClassificationError(labels, ol, tag = Eval)
|
||||
OutputNodes = ol
|
||||
]
|
||||
|
|
|
@ -74,6 +74,6 @@ DNN=[
|
|||
ol = DnnLayer(cMap4, labelDim, pool5, fcWScale, fcBValue)
|
||||
|
||||
CE = CrossEntropyWithSoftmax(labels, ol, tag = Criteria)
|
||||
Err = ErrorPrediction(labels, ol, tag = Eval)
|
||||
Err = ClassificationError(labels, ol, tag = Eval)
|
||||
OutputNodes = ol
|
||||
]
|
||||
|
|
|
@ -77,6 +77,6 @@ DNN=[
|
|||
ol = DnnLayer(cMap6, labelDim, pool2, fcWScale, fcBValue)
|
||||
|
||||
CE = CrossEntropyWithSoftmax(labels, ol, tag = Criteria)
|
||||
Err = ErrorPrediction(labels, ol, tag = Eval)
|
||||
Err = ClassificationError(labels, ol, tag = Eval)
|
||||
OutputNodes = ol
|
||||
]
|
||||
|
|
|
@ -71,6 +71,6 @@ DNN=[
|
|||
ol = DnnLayer(hiddenDim, labelDim, h2_d, fc3WScale, fc3BValue)
|
||||
|
||||
CE = CrossEntropyWithSoftmax(labels, ol, tag = Criteria)
|
||||
Err = ErrorPrediction(labels, ol, tag = Eval)
|
||||
Err = ClassificationError(labels, ol, tag = Eval)
|
||||
OutputNodes = ol
|
||||
]
|
||||
|
|
|
@ -79,6 +79,6 @@ DNN=[
|
|||
ol = DnnLayer(hiddenDim, labelDim, h2_d, fc3WScale, fc3BValue)
|
||||
|
||||
CE = CrossEntropyWithSoftmax(labels, ol, tag = Criteria)
|
||||
Err = ErrorPrediction(labels, ol, tag = Eval)
|
||||
Err = ClassificationError(labels, ol, tag = Eval)
|
||||
OutputNodes = ol
|
||||
]
|
||||
|
|
|
@ -80,6 +80,6 @@ DNN=[
|
|||
ol = DnnLayer(hiddenDim, labelDim, h2_d, fc3WScale, fc3BValue)
|
||||
|
||||
CE = CrossEntropyWithSoftmax(labels, ol, tag = Criteria)
|
||||
Err = ErrorPrediction(labels, ol, tag = Eval)
|
||||
Err = ClassificationError(labels, ol, tag = Eval)
|
||||
OutputNodes = ol
|
||||
]
|
||||
|
|
|
@ -29,7 +29,7 @@ ndlTestCosDist=[
|
|||
CD = CosDistance(L4, labels);
|
||||
CDAll=SumElements(CD)
|
||||
NCD=Negate(CDALL, tag="criterion")
|
||||
Err=ErrorPrediction(labels, L4, tag="evaluation")
|
||||
Err=ClassificationError(labels, L4, tag="evaluation")
|
||||
|
||||
# rootNodes defined here
|
||||
OutputNodes=(L4)
|
||||
|
@ -129,7 +129,7 @@ ndlFull=[
|
|||
#SM=Softmax(Plus2)
|
||||
#CE=CrossEntropy(labels, SM)
|
||||
CE=CrossEntropyWithSoftmax(labels, Plus2)
|
||||
ErrPredict=ErrorPrediction(labels, Plus2)
|
||||
ErrPredict=ClassificationError(labels, Plus2)
|
||||
FeatureNodes=(features)
|
||||
LabelNodes=(labels)
|
||||
CriterionNodes=(CE)
|
||||
|
@ -233,7 +233,7 @@ ndlMacroUse2=[
|
|||
L2 = RBFF(L1, HDim, HDim)
|
||||
L3 = RBFF(L2, HDim, HDim)
|
||||
CE = SMBFF(L3, LDim, HDim, labels, tag="criterion")
|
||||
Err=ErrorPrediction(labels, CE.BFF, tag="evaluation")
|
||||
Err=ClassificationError(labels, CE.BFF, tag="evaluation")
|
||||
|
||||
# rootNodes defined here
|
||||
OutputNodes=(CE.BFF)
|
||||
|
@ -290,7 +290,7 @@ ndlMacroUseCNNSubSample2ZeroPadding=[
|
|||
HDim=128
|
||||
L1 = SBFF(mp, HDim, mpoutputSizePerSample)
|
||||
CE = SMBFF(L1, LDim, HDim, labels, tag="criterion")
|
||||
Err=ErrorPrediction(labels, CE.BFF, tag="evaluation")
|
||||
Err=ClassificationError(labels, CE.BFF, tag="evaluation")
|
||||
|
||||
# rootNodes defined here
|
||||
OutputNodes=(CE.BFF)
|
||||
|
@ -349,7 +349,7 @@ ndlMacroUseCNNSubSample2=[
|
|||
HDim=128
|
||||
L1 = SBFF(mp, HDim, mpoutputSizePerSample)
|
||||
CE = SMBFF(L1, LDim, HDim, labels, tag="criterion")
|
||||
Err=ErrorPrediction(labels, CE.BFF, tag="evaluation")
|
||||
Err=ClassificationError(labels, CE.BFF, tag="evaluation")
|
||||
|
||||
# rootNodes defined here
|
||||
OutputNodes=(CE.BFF)
|
||||
|
@ -399,7 +399,7 @@ ndlMacroUseCNN=[
|
|||
HDim=128
|
||||
L1 = SBFF(mp, HDim, 0)
|
||||
CE = SMBFF(L1, LDim, HDim, labels, tag="criterion")
|
||||
Err=ErrorPrediction(labels, CE.BFF, tag="evaluation")
|
||||
Err=ClassificationError(labels, CE.BFF, tag="evaluation")
|
||||
|
||||
# rootNodes defined here
|
||||
OutputNodes=(CE.BFF)
|
||||
|
@ -430,7 +430,7 @@ ndlMacroUseNoBase=[
|
|||
L2 = RFFD(L1, HDim, HDim)
|
||||
L3 = RFFD(L2, HDim, HDim)
|
||||
CE = SMFF(L3, LDim, SDim, labels, tag="criterion")
|
||||
Err=ErrorPrediction(labels, CE.BFF, tag="evaluation")
|
||||
Err=ClassificationError(labels, CE.BFF, tag="evaluation")
|
||||
# rootNodes defined here
|
||||
OutputNodes=(CE.BFF)
|
||||
]
|
||||
|
@ -463,7 +463,7 @@ ndlMacroUseMask=[
|
|||
L4=ElementTimes(L3, ML2)
|
||||
|
||||
CE = SMBFF(L4, LDim, HDim, labels, tag="criterion")
|
||||
Err=ErrorPrediction(labels, CE.BFF, tag="evaluation")
|
||||
Err=ClassificationError(labels, CE.BFF, tag="evaluation")
|
||||
|
||||
# output nodes
|
||||
Prior=Mean(labels)
|
||||
|
|
|
@ -39,7 +39,7 @@ Multigpu_Demo_Train=[
|
|||
# 2 input, 2 50-element hidden, 2 output
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
|
|
@ -32,7 +32,7 @@ Simple_Demo_Train = [
|
|||
# 2 input, 2 50-element hidden, 2 output
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -137,6 +137,6 @@ Simple_Demo_Output=[
|
|||
# grep labels SimpleOutput.labels | awk '{print $1}' > L
|
||||
# diff L P | grep "<" | wc -l
|
||||
# wc -l P
|
||||
# The ratio of the two numbers gives the same error rate as ErrorPrediction/Sample in the log.
|
||||
# The ratio of the two numbers gives the same error rate as ClassificationError/Sample in the log.
|
||||
]
|
||||
]
|
||||
|
|
|
@ -29,7 +29,7 @@ speechTrain = [
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 363:512:512:132
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
applyMeanVarNorm = true
|
||||
needPrior = true
|
||||
|
|
|
@ -199,7 +199,7 @@ ndlCreateNetwork_LSTMP_c1024_p256_x3 = [
|
|||
LSTMoutputW = Plus(Times(W, LSTMoutput3), b);
|
||||
|
||||
ce = CrossEntropyWithSoftmax(labels, LSTMoutputW);
|
||||
err = ErrorPrediction(labels, LSTMoutputW);
|
||||
err = ClassificationError(labels, LSTMoutputW);
|
||||
|
||||
logPrior = LogPrior(labels)
|
||||
scaledLogLikelihood = Minus(LSTMoutputW, logPrior)
|
||||
|
|
|
@ -172,7 +172,7 @@ ndlCreateNetwork=[
|
|||
criterion = Plus(Scale(cr2,criterion2), Scale(cr1,criterion1), tag=Criteria)
|
||||
|
||||
#CE = SMBFF(Dout,labelDim,hiddenDim,labels,tag=Criteria)
|
||||
Err = ErrorPrediction(labels,DNN_A_CE_BFF,tag=Eval)
|
||||
Err = ClassificationError(labels,DNN_A_CE_BFF,tag=Eval)
|
||||
|
||||
logPrior = LogPrior(labels)
|
||||
|
||||
|
|
|
@ -33,7 +33,7 @@ ndlCreateNetwork=[
|
|||
L2 = SBFF(L1,hiddenDim,hiddenDim)
|
||||
L3 = SBFF(L2,hiddenDim,hiddenDim)
|
||||
CE = SMBFF(L3,labelDim,hiddenDim,labels,tag=Criteria)
|
||||
Err = ErrorPrediction(labels,CE.BFF.FF.P,tag=Eval)
|
||||
Err = ClassificationError(labels,CE.BFF.FF.P,tag=Eval)
|
||||
|
||||
# define output (scaled loglikelihood)
|
||||
logPrior = LogPrior(labels)
|
||||
|
|
|
@ -122,7 +122,7 @@ ndlCreateNetwork=[
|
|||
L5 = SBFF(L4,hiddenDim,hiddenDim)
|
||||
L6 = SBFF(L5,hiddenDim,hiddenDim)
|
||||
CE = SMBFF(L6,labelDim,hiddenDim,labels,tag=Criteria)
|
||||
Err = ErrorPrediction(labels,CE.BFF.FF.P,tag=Eval)
|
||||
Err = ClassificationError(labels,CE.BFF.FF.P,tag=Eval)
|
||||
|
||||
# define output (scaled loglikelihood)
|
||||
logPrior = LogPrior(labels)
|
||||
|
|
|
@ -128,7 +128,7 @@ ndlCreateNetwork=[
|
|||
# same name as the corresponding node in the non-sequence training model.
|
||||
CE.BFF = BFF(L6, labelDim, hiddenDim)
|
||||
Cr = DummyCriterion(objectives, derivatives, CE.BFF.FF.P, tag=Criteria)
|
||||
Err = ErrorPrediction(labels, CE.BFF.FF.P, tag=Eval)
|
||||
Err = ClassificationError(labels, CE.BFF.FF.P, tag=Eval)
|
||||
|
||||
# define output (scaled loglikelihood)
|
||||
logPrior = LogPrior(labels)
|
||||
|
|
|
@ -106,7 +106,7 @@ ndlCreateNetwork=[
|
|||
LSTMoutputW1 = Times(W1, LSTMoutput3)
|
||||
|
||||
cr = CrossEntropyWithSoftmax(labels, LSTMoutputW1,tag=Criteria)
|
||||
Err = ErrorPrediction(labels,LSTMoutputW1,tag=Eval)
|
||||
Err = ClassificationError(labels,LSTMoutputW1,tag=Eval)
|
||||
|
||||
logPrior = LogPrior(labels)
|
||||
ScaledLogLikelihood=Minus(LSTMoutputW1,logPrior,tag=Output)
|
||||
|
|
|
@ -142,7 +142,7 @@ ndlCreateNetwork_LSTMP_c1024_p256_x3=[
|
|||
#LSTMoutputW = Plus(Times(W, LSTMoutput3), b);
|
||||
|
||||
cr = CrossEntropyWithSoftmax(labels, LSTMoutputW,tag=Criteria);
|
||||
Err = ErrorPrediction(labels,LSTMoutputW,tag=Eval);
|
||||
Err = ClassificationError(labels,LSTMoutputW,tag=Eval);
|
||||
|
||||
logPrior = LogPrior(labels)
|
||||
ScaledLogLikelihood=Minus(LSTMoutputW,logPrior,tag=Output)
|
||||
|
|
|
@ -184,7 +184,7 @@ ndlCreateNetwork_LSTMP_c1024_p256_x3=[
|
|||
|
||||
|
||||
cr = CrossEntropyWithSoftmax(labels, LSTMoutputW,tag=Criteria);
|
||||
Err = ErrorPrediction(labels,LSTMoutputW,tag=Eval);
|
||||
Err = ClassificationError(labels,LSTMoutputW,tag=Eval);
|
||||
|
||||
logPrior = LogPrior(labels)
|
||||
ScaledLogLikelihood=Minus(LSTMoutputW,logPrior,tag=Output)
|
||||
|
|
|
@ -182,7 +182,7 @@ ndlCreateNetwork_LSTMP_c1024_p256_x3=[
|
|||
|
||||
|
||||
cr = CrossEntropyWithSoftmax(labels, LSTMoutputW,tag=Criteria);
|
||||
Err = ErrorPrediction(labels,LSTMoutputW,tag=Eval);
|
||||
Err = ClassificationError(labels,LSTMoutputW,tag=Eval);
|
||||
|
||||
logPrior = LogPrior(labels)
|
||||
ScaledLogLikelihood=Minus(LSTMoutputW,logPrior,tag=Output)
|
||||
|
|
|
@ -111,7 +111,7 @@ ndlCreateNetwork_LSTMP_c1024_p256_x3=[
|
|||
LSTMoutputW = Plus(Times(W, LSTMoutput3), b);
|
||||
|
||||
cr = CrossEntropyWithSoftmax(labels, LSTMoutputW,tag=Criteria);
|
||||
Err = ErrorPrediction(labels,LSTMoutputW,tag=Eval);
|
||||
Err = ClassificationError(labels,LSTMoutputW,tag=Eval);
|
||||
|
||||
logPrior = LogPrior(labels)
|
||||
ScaledLogLikelihood=Minus(LSTMoutputW,logPrior,tag=Output)
|
||||
|
|
|
@ -112,7 +112,7 @@ ndlCreateNetwork_LSTMP_c1024_p256_x3=[
|
|||
|
||||
|
||||
cr = CrossEntropyWithSoftmax(labels, LSTMoutputW,tag=Criteria);
|
||||
Err = ErrorPrediction(labels,LSTMoutputW,tag=Eval);
|
||||
Err = ClassificationError(labels,LSTMoutputW,tag=Eval);
|
||||
|
||||
logPrior = LogPrior(labels)
|
||||
ScaledLogLikelihood=Minus(LSTMoutputW,logPrior,tag=Output)
|
||||
|
|
|
@ -187,7 +187,7 @@ ndlCreateNetwork_LSTMP_c1024_p256_x3=[
|
|||
|
||||
|
||||
cr = CrossEntropyWithSoftmax(labels, LSTMoutputW,tag=Criteria);
|
||||
Err = ErrorPrediction(labels,LSTMoutputW,tag=Eval);
|
||||
Err = ClassificationError(labels,LSTMoutputW,tag=Eval);
|
||||
|
||||
logPrior = LogPrior(labels)
|
||||
ScaledLogLikelihood=Minus(LSTMoutputW,logPrior,tag=Output)
|
||||
|
|
|
@ -116,7 +116,7 @@ ndlCreateNetwork_LSTMP_c1024_p256_x3=[
|
|||
LSTMoutputW = Plus(Times(W, LSTMoutput8), b);
|
||||
|
||||
cr = CrossEntropyWithSoftmax(labels, LSTMoutputW,tag=Criteria);
|
||||
Err = ErrorPrediction(labels,LSTMoutputW,tag=Eval);
|
||||
Err = ClassificationError(labels,LSTMoutputW,tag=Eval);
|
||||
|
||||
logPrior = LogPrior(labels)
|
||||
ScaledLogLikelihood=Minus(LSTMoutputW,logPrior,tag=Output)
|
||||
|
|
|
@ -163,7 +163,7 @@ ndlCreateNetwork=[
|
|||
criterion2 = CrossEntropyWithSoftmax(statelabels, DNN_B_CE_BFF)
|
||||
criterion = Plus(Scale(cr2,criterion2), Scale(cr1,criterion1), tag="criterion")
|
||||
|
||||
Err = ErrorPrediction(labels,DNN_A_CE_BFF,tag="evaluation")
|
||||
Err = ClassificationError(labels,DNN_A_CE_BFF,tag="evaluation")
|
||||
|
||||
logPrior = LogPrior(labels)
|
||||
|
||||
|
|
|
@ -18,7 +18,7 @@ TIMIT_TrainAdaptLR=[
|
|||
SimpleNetworkBuilder=[
|
||||
layerSizes=792:512*3:183
|
||||
trainingCriterion=CrossEntropyWithSoftmax
|
||||
evalCriterion=ErrorPrediction
|
||||
evalCriterion=ClassificationError
|
||||
layerTypes=Sigmoid
|
||||
initValueScale=1.0
|
||||
applyMeanVarNorm=true
|
||||
|
|
|
@ -24,7 +24,7 @@ TIMIT_TrainSimple=[
|
|||
SimpleNetworkBuilder=[
|
||||
layerSizes=792:512*3:183
|
||||
trainingCriterion=CrossEntropyWithSoftmax
|
||||
evalCriterion=ErrorPrediction
|
||||
evalCriterion=ClassificationError
|
||||
layerTypes=Sigmoid
|
||||
initValueScale=1.0
|
||||
applyMeanVarNorm=true
|
||||
|
|
|
@ -33,7 +33,7 @@ ndlCreateNetwork=[
|
|||
L2 = SBFF(L1,hiddenDim,hiddenDim)
|
||||
L3 = SBFF(L2,hiddenDim,hiddenDim)
|
||||
CE = SMBFF(L3,labelDim,hiddenDim,myLabels,tag="criterion")
|
||||
Err = ErrorPrediction(myLabels,CE.BFF.FF.P,tag="evaluation")
|
||||
Err = ClassificationError(myLabels,CE.BFF.FF.P,tag="evaluation")
|
||||
|
||||
# define output (scaled loglikelihood)
|
||||
logPrior = LogPrior(myLabels)
|
||||
|
|
|
@ -31,7 +31,7 @@ ndlCreateNetwork=[
|
|||
featNorm = MeanVarNorm(features)
|
||||
L1 = SBFF(featNorm,hiddenDim,featDim)
|
||||
CE = SMBFF(L1,labelDim,hiddenDim,labels,tag="criterion")
|
||||
Err = ErrorPrediction(labels,CE.BFF.FF.P,tag="evaluation")
|
||||
Err = ClassificationError(labels,CE.BFF.FF.P,tag="evaluation")
|
||||
|
||||
# define output (scaled loglikelihood)
|
||||
logPrior = LogPrior(labels)
|
||||
|
|
|
@ -102,7 +102,7 @@ ndlCreateNetwork=[
|
|||
LSTMoutputW1 = Times(W1, LSTMoutput)
|
||||
|
||||
cr = CrossEntropyWithSoftmax(labels, LSTMoutputW1,tag="criterion")
|
||||
Err = ErrorPrediction(labels,LSTMoutputW1,tag="evaluation")
|
||||
Err = ClassificationError(labels,LSTMoutputW1,tag="evaluation")
|
||||
|
||||
logPrior = LogPrior(labels)
|
||||
ScaledLogLikelihood=Minus(LSTMoutputW1,logPrior,tag="output")
|
||||
|
|
|
@ -51,7 +51,7 @@ L1 = SBFF2(featInput1, HiddenDim, FeatDim1, featInput2, FeatDim2)
|
|||
L2 = SBFF(L1, HiddenDim, HiddenDim)
|
||||
L3 = SBFF(L2, HiddenDim, HiddenDim)
|
||||
CE = SMBFF(L3, LabelDim1, HiddenDim, labels,tag="criterion") # do I need a tag?
|
||||
FER = ErrorPrediction(labels,CE.BFF.FF.P,tag="evaluation")
|
||||
FER = ClassificationError(labels,CE.BFF.FF.P,tag="evaluation")
|
||||
|
||||
# outputNodes
|
||||
Prior=Mean(labels)
|
||||
|
|
|
@ -41,12 +41,12 @@ L3 = SBFF(L2, HiddenDim, HiddenDim2)
|
|||
# objective function 1
|
||||
BFF1=BFF(L3,LabelDim1,HiddenDim)
|
||||
CE1=CrossEntropyWithSoftmax(labels,BFF1.FF.P,tag="evaluation")
|
||||
FER1 = ErrorPrediction(labels,BFF1.FF.P,tag="evaluation")
|
||||
FER1 = ClassificationError(labels,BFF1.FF.P,tag="evaluation")
|
||||
|
||||
# objective function 2
|
||||
BFF2=BFF(L3,LabelDim2,HiddenDim)
|
||||
CE2=CrossEntropyWithSoftmax(regions,BFF2.FF.P,tag="evaluation")
|
||||
FER2 = ErrorPrediction(regions,BFF2.FF.P,tag="evaluation")
|
||||
FER2 = ClassificationError(regions,BFF2.FF.P,tag="evaluation")
|
||||
|
||||
# weighted final objective function
|
||||
Alpha1=0.8
|
||||
|
|
|
@ -66,7 +66,7 @@ enum class EvalCriterion : int
|
|||
CrossEntropy,
|
||||
SquareError,
|
||||
Logistic,
|
||||
ErrorPrediction,
|
||||
ClassificationError,
|
||||
ClassCrossEntropyWithSoftmax,
|
||||
NCECrossEntropyWithSoftmax,
|
||||
CRF,
|
||||
|
|
|
@ -216,13 +216,13 @@ TIMIT_TrainSimple = new TrainAction [ // new: added TrainAction; t
|
|||
needPrior = true
|
||||
// the following two belong into SGD, so they were removed here
|
||||
//trainingCriterion = CrossEntropyWithSoftmax
|
||||
//evalCriterion = ErrorPrediction
|
||||
//evalCriterion = ClassificationError
|
||||
// new: connect to input stream from source; and expose the output layer
|
||||
input = source.features.data // these are also ComputeNodeRefs, exposed by the source
|
||||
output = ComputeNodeRef [ dim = source.labels.dim ] // SimpleNetworkBuilder will put top layer affine transform output (input to softmax) here
|
||||
// criteria are configurable here; these are ComputeNodes created here
|
||||
trainingCriterion = CrossEntropyWithSoftmax (source.labels.data, output)
|
||||
evalCriterion = ErrorPrediction (source.labels.data, output)
|
||||
evalCriterion = ClassificationError (source.labels.data, output)
|
||||
// new: (and half-baked) define Input nodes
|
||||
myFeatures=Input(featDim) // reader stream will reference this
|
||||
myLabels=Input(labelDim)
|
||||
|
@ -245,7 +245,7 @@ TIMIT_TrainSimple = new TrainAction [ // new: added TrainAction; t
|
|||
//L2 = SBFF(L1,hiddenDim,hiddenDim)
|
||||
//L3 = SBFF(L2,hiddenDim,hiddenDim)
|
||||
//CE = SMBFF(L3,labelDim,hiddenDim,myLabels,tag=Criteria)
|
||||
//Err = ErrorPrediction(myLabels,CE.BFF.FF.P,tag=Eval)
|
||||
//Err = ClassificationError(myLabels,CE.BFF.FF.P,tag=Eval)
|
||||
//logPrior = LogPrior(myLabels)
|
||||
//ScaledLogLikelihood=Minus(CE.BFF.FF.P,logPrior,tag=Output)
|
||||
|
||||
|
@ -279,7 +279,7 @@ TIMIT_TrainSimple = new TrainAction [ // new: added TrainAction; t
|
|||
|
||||
// define criterion nodes
|
||||
CE = CrossEntropyWithSoftmax(myLabels, outZ)
|
||||
Err = ErrorPrediction(myLabels, outZ)
|
||||
Err = ClassificationError(myLabels, outZ)
|
||||
|
||||
// define output node for decoding
|
||||
logPrior = LogPrior(myLabels)
|
||||
|
@ -392,7 +392,7 @@ network = new NDL [
|
|||
|
||||
// define criterion nodes
|
||||
CE = CrossEntropyWithSoftmax(myLabels, outZ)
|
||||
Err = ErrorPrediction(myLabels, outZ)
|
||||
Err = ClassificationError(myLabels, outZ)
|
||||
|
||||
// define output node for decoding
|
||||
logPrior = LogPrior(myLabels)
|
||||
|
|
|
@ -23,7 +23,7 @@ m1=[
|
|||
L2 = RBFF(L1, HDim, HDim)
|
||||
L3 = RBFF(L2, HDim, HDim)
|
||||
CE = SMBFF(L3, LDim, HDim, labels, tag="criterion")
|
||||
Err=ErrorPrediction(labels, CE.BFF.FF.P, tag="evaluation")
|
||||
Err=ClassificationError(labels, CE.BFF.FF.P, tag="evaluation")
|
||||
|
||||
# rootNodes defined here
|
||||
OutputNodes=(CE.BFF.FF.P)
|
||||
|
|
|
@ -171,7 +171,7 @@ namespace CNTK
|
|||
std::swap(inputVars[0], inputVars[1]);
|
||||
opType = PrimitiveOpType::CrossEntropyWithSoftmax;
|
||||
}
|
||||
else if (node->OperationName() == OperationNameOf(ErrorPredictionNode))
|
||||
else if (node->OperationName() == OperationNameOf(ClassificationErrorNode))
|
||||
{
|
||||
std::swap(inputVars[0], inputVars[1]);
|
||||
opType = PrimitiveOpType::ClassificationError;
|
||||
|
|
|
@ -289,7 +289,7 @@ namespace CNTK
|
|||
computationNodePtr = builder.CrossEntropyWithSoftmax(input1Node, input0Node, function->Name());
|
||||
break;
|
||||
case PrimitiveOpType::ClassificationError:
|
||||
computationNodePtr = builder.ErrorPrediction(input1Node, input0Node, function->Name());
|
||||
computationNodePtr = builder.ClassificationError(input1Node, input0Node, function->Name());
|
||||
break;
|
||||
case PrimitiveOpType::PastValue:
|
||||
case PrimitiveOpType::FutureValue:
|
||||
|
|
|
@ -435,7 +435,7 @@ bool ComputationNetwork::IsTypicalCriterionNode(ComputationNodeBasePtr nodePtr)
|
|||
nodePtr->OperationName() == OperationNameOf(SequenceWithSoftmaxNode) ||
|
||||
nodePtr->OperationName() == OperationNameOf(CrossEntropyNode) ||
|
||||
nodePtr->OperationName() == OperationNameOf(ClassBasedCrossEntropyWithSoftmaxNode) ||
|
||||
nodePtr->OperationName() == OperationNameOf(ErrorPredictionNode) ||
|
||||
nodePtr->OperationName() == OperationNameOf(ClassificationErrorNode) ||
|
||||
#ifdef COMING_SOON
|
||||
nodePtr->OperationName() == OperationNameOf(CRFNode) ||
|
||||
#endif
|
||||
|
@ -1228,7 +1228,7 @@ void ComputationNetwork::SaveToDbnFile(ComputationNetworkPtr net, const std::wst
|
|||
};
|
||||
|
||||
// Get output node
|
||||
std::list<ComputationNodeBasePtr> outputNodes = net->GetNodesWithType(OperationNameOf(ErrorPredictionNode));
|
||||
std::list<ComputationNodeBasePtr> outputNodes = net->GetNodesWithType(OperationNameOf(ClassificationErrorNode));
|
||||
ComputationNodeBasePtr outputNode = GetFirstNodeWithDifferentType(outputNodes.front()->GetInputs(), OperationNameOf(InputValue));
|
||||
|
||||
if (outputNode == nullptr)
|
||||
|
|
|
@ -122,7 +122,7 @@ public:
|
|||
ComputationNodePtr DummyCriterion(const ComputationNodePtr objectives, const ComputationNodePtr derivatives, const ComputationNodePtr prediction, const std::wstring nodeName = L"");
|
||||
ComputationNodePtr ElementTimes(const ComputationNodePtr a, const ComputationNodePtr b, const std::wstring nodeName = L"");
|
||||
ComputationNodePtr DynamicAxis(const ComputationNodePtr a, const std::wstring& nodeName = L"");
|
||||
ComputationNodePtr ErrorPrediction(const ComputationNodePtr a, const ComputationNodePtr b, const std::wstring nodeName = L"");
|
||||
ComputationNodePtr ClassificationError(const ComputationNodePtr a, const ComputationNodePtr b, const std::wstring nodeName = L"");
|
||||
ComputationNodePtr Exp(const ComputationNodePtr a, const std::wstring nodeName = L"");
|
||||
ComputationNodePtr Floor(const ComputationNodePtr a, const std::wstring nodeName = L"");
|
||||
ComputationNodePtr FutureValue(const ComputationNodePtr a, const float initHiddenActivity, const size_t row_size, size_t timeStep, const std::wstring nodeName = L"");
|
||||
|
|
|
@ -447,7 +447,7 @@ ScriptableObjects::ConfigurableRuntimeTypeRegister::Add<ComputationNetworkWithEd
|
|||
// refWeight = 0.9
|
||||
// kldLabels = labels * (1-refWeight) + Softmax (zRef) * refWeight # interpolate with ref output
|
||||
// ce = CrossEntropyWithSoftmax (z, kldLabels)
|
||||
// errs = ErrorPrediction (z, labels)
|
||||
// errs = ClassificationError (z, labels)
|
||||
// criterionNodes = (ce)
|
||||
// evaluationNodes = (errs)
|
||||
// ===================================================================
|
||||
|
|
|
@ -272,8 +272,8 @@ Post-processing network...
|
|||
|
||||
4 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
errTop1 = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
errTop1 = ClassificationError()
|
||||
ol.z = Plus()
|
||||
|
||||
Validating network. 17 nodes to process in pass 1.
|
||||
|
@ -292,9 +292,9 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 200], [200 x 1 x *] -> [10 x 1
|
|||
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
|
||||
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x 1 x *], [10 x 1] -> [10 x 1 x *]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> err = ClassificationError (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> unnamed81 = LearnableParameter() : -> [1 x 1]
|
||||
Validating --> errTop1 = ErrorPrediction (labels, ol.z, unnamed81) : [10 x *], [10 x 1 x *], [1 x 1] -> [1]
|
||||
Validating --> errTop1 = ClassificationError (labels, ol.z, unnamed81) : [10 x *], [10 x 1 x *], [1 x 1] -> [1]
|
||||
|
||||
Validating network. 9 nodes to process in pass 2.
|
||||
|
||||
|
@ -314,8 +314,8 @@ Post-processing network complete.
|
|||
|
||||
05/13/2016 15:10:02: Evaluation criterion node(s):
|
||||
|
||||
05/13/2016 15:10:02: errTop1 = ErrorPrediction
|
||||
05/13/2016 15:10:02: err = ErrorPrediction
|
||||
05/13/2016 15:10:02: errTop1 = ClassificationError
|
||||
05/13/2016 15:10:02: err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -390,8 +390,8 @@ Post-processing network...
|
|||
|
||||
4 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
errTop1 = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
errTop1 = ClassificationError()
|
||||
ol.z = Plus()
|
||||
|
||||
Validating network. 17 nodes to process in pass 1.
|
||||
|
@ -410,9 +410,9 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 200], [200 x 1 x *1] -> [10 x 1
|
|||
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
|
||||
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x 1 x *1], [10 x 1] -> [10 x 1 x *1]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> err = ClassificationError (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> unnamed81 = LearnableParameter() : -> [1 x 1]
|
||||
Validating --> errTop1 = ErrorPrediction (labels, ol.z, unnamed81) : [10 x *1], [10 x 1 x *1], [1 x 1] -> [1]
|
||||
Validating --> errTop1 = ClassificationError (labels, ol.z, unnamed81) : [10 x *1], [10 x 1 x *1], [1 x 1] -> [1]
|
||||
|
||||
Validating network. 9 nodes to process in pass 2.
|
||||
|
||||
|
|
|
@ -270,8 +270,8 @@ Post-processing network...
|
|||
|
||||
4 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
errTop1 = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
errTop1 = ClassificationError()
|
||||
ol.z = Plus()
|
||||
|
||||
Validating network. 17 nodes to process in pass 1.
|
||||
|
@ -290,9 +290,9 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 200], [200 x 1 x *] -> [10 x 1
|
|||
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
|
||||
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x 1 x *], [10 x 1] -> [10 x 1 x *]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> err = ClassificationError (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> unnamed81 = LearnableParameter() : -> [1 x 1]
|
||||
Validating --> errTop1 = ErrorPrediction (labels, ol.z, unnamed81) : [10 x *], [10 x 1 x *], [1 x 1] -> [1]
|
||||
Validating --> errTop1 = ClassificationError (labels, ol.z, unnamed81) : [10 x *], [10 x 1 x *], [1 x 1] -> [1]
|
||||
|
||||
Validating network. 9 nodes to process in pass 2.
|
||||
|
||||
|
@ -312,8 +312,8 @@ Post-processing network complete.
|
|||
|
||||
05/13/2016 08:15:53: Evaluation criterion node(s):
|
||||
|
||||
05/13/2016 08:15:53: errTop1 = ErrorPrediction
|
||||
05/13/2016 08:15:53: err = ErrorPrediction
|
||||
05/13/2016 08:15:53: errTop1 = ClassificationError
|
||||
05/13/2016 08:15:53: err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -388,8 +388,8 @@ Post-processing network...
|
|||
|
||||
4 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
errTop1 = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
errTop1 = ClassificationError()
|
||||
ol.z = Plus()
|
||||
|
||||
Validating network. 17 nodes to process in pass 1.
|
||||
|
@ -408,9 +408,9 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 200], [200 x 1 x *1] -> [10 x 1
|
|||
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
|
||||
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x 1 x *1], [10 x 1] -> [10 x 1 x *1]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> err = ClassificationError (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> unnamed81 = LearnableParameter() : -> [1 x 1]
|
||||
Validating --> errTop1 = ErrorPrediction (labels, ol.z, unnamed81) : [10 x *1], [10 x 1 x *1], [1 x 1] -> [1]
|
||||
Validating --> errTop1 = ClassificationError (labels, ol.z, unnamed81) : [10 x *1], [10 x 1 x *1], [1 x 1] -> [1]
|
||||
|
||||
Validating network. 9 nodes to process in pass 2.
|
||||
|
||||
|
|
|
@ -284,7 +284,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
ol.z = Plus()
|
||||
|
||||
Validating network. 27 nodes to process in pass 1.
|
||||
|
@ -315,7 +315,7 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 128], [128 x 1 x *] -> [10 x 1
|
|||
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
|
||||
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x 1 x *], [10 x 1] -> [10 x 1 x *]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> err = ClassificationError (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
|
||||
Validating network. 16 nodes to process in pass 2.
|
||||
|
||||
|
@ -343,7 +343,7 @@ Post-processing network complete.
|
|||
|
||||
05/13/2016 15:10:11: Evaluation criterion node(s):
|
||||
|
||||
05/13/2016 15:10:11: err = ErrorPrediction
|
||||
05/13/2016 15:10:11: err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -429,7 +429,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
ol.z = Plus()
|
||||
|
||||
Validating network. 27 nodes to process in pass 1.
|
||||
|
@ -460,7 +460,7 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 128], [128 x 1 x *1] -> [10 x 1
|
|||
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
|
||||
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x 1 x *1], [10 x 1] -> [10 x 1 x *1]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> err = ClassificationError (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
|
||||
Validating network. 16 nodes to process in pass 2.
|
||||
|
||||
|
|
|
@ -282,7 +282,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
ol.z = Plus()
|
||||
|
||||
Validating network. 27 nodes to process in pass 1.
|
||||
|
@ -313,7 +313,7 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 128], [128 x 1 x *] -> [10 x 1
|
|||
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
|
||||
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x 1 x *], [10 x 1] -> [10 x 1 x *]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> err = ClassificationError (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
|
||||
Validating network. 16 nodes to process in pass 2.
|
||||
|
||||
|
@ -341,7 +341,7 @@ Post-processing network complete.
|
|||
|
||||
05/13/2016 08:16:18: Evaluation criterion node(s):
|
||||
|
||||
05/13/2016 08:16:18: err = ErrorPrediction
|
||||
05/13/2016 08:16:18: err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -427,7 +427,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
ol.z = Plus()
|
||||
|
||||
Validating network. 27 nodes to process in pass 1.
|
||||
|
@ -458,7 +458,7 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 128], [128 x 1 x *1] -> [10 x 1
|
|||
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
|
||||
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x 1 x *1], [10 x 1] -> [10 x 1 x *1]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> err = ClassificationError (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
|
||||
Validating network. 16 nodes to process in pass 2.
|
||||
|
||||
|
|
|
@ -287,7 +287,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
ol.z = Plus()
|
||||
|
||||
Validating network. 36 nodes to process in pass 1.
|
||||
|
@ -329,7 +329,7 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 128], [128 x *] -> [10 x *]
|
|||
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
|
||||
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x *], [10 x 1] -> [10 x 1 x *]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> err = ClassificationError (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
|
||||
Validating network. 16 nodes to process in pass 2.
|
||||
|
||||
|
@ -363,7 +363,7 @@ Post-processing network complete.
|
|||
|
||||
05/13/2016 15:10:29: Evaluation criterion node(s):
|
||||
|
||||
05/13/2016 15:10:29: err = ErrorPrediction
|
||||
05/13/2016 15:10:29: err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -462,7 +462,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
ol.z = Plus()
|
||||
|
||||
Validating network. 36 nodes to process in pass 1.
|
||||
|
@ -502,7 +502,7 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 128], [128 x *1] -> [10 x *1]
|
|||
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
|
||||
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x *1], [10 x 1] -> [10 x 1 x *1]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> err = ClassificationError (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
|
||||
Validating network. 16 nodes to process in pass 2.
|
||||
|
||||
|
|
|
@ -285,7 +285,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
ol.z = Plus()
|
||||
|
||||
Validating network. 36 nodes to process in pass 1.
|
||||
|
@ -327,7 +327,7 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 128], [128 x *] -> [10 x *]
|
|||
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
|
||||
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x *], [10 x 1] -> [10 x 1 x *]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> err = ClassificationError (labels, ol.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
|
||||
Validating network. 16 nodes to process in pass 2.
|
||||
|
||||
|
@ -361,7 +361,7 @@ Post-processing network complete.
|
|||
|
||||
05/13/2016 08:16:58: Evaluation criterion node(s):
|
||||
|
||||
05/13/2016 08:16:58: err = ErrorPrediction
|
||||
05/13/2016 08:16:58: err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -460,7 +460,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
ol.z = Plus()
|
||||
|
||||
Validating network. 36 nodes to process in pass 1.
|
||||
|
@ -500,7 +500,7 @@ Validating --> ol.t = Times (ol.W, h1.y) : [10 x 128], [128 x *1] -> [10 x *1]
|
|||
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
|
||||
Validating --> ol.z = Plus (ol.t, ol.b) : [10 x *1], [10 x 1] -> [10 x 1 x *1]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> err = ClassificationError (labels, ol.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
|
||||
Validating network. 16 nodes to process in pass 2.
|
||||
|
||||
|
|
|
@ -288,7 +288,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
CE = CrossEntropyWithSoftmax()
|
||||
Err = ErrorPrediction()
|
||||
Err = ClassificationError()
|
||||
OutputNodes.z = Plus()
|
||||
|
||||
Validating network. 34 nodes to process in pass 1.
|
||||
|
@ -326,7 +326,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, h1_d) : [10 x 64], [64 x 1
|
|||
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
|
||||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x 1 x *], [10] -> [10 x 1 x *]
|
||||
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
|
||||
Validating network. 21 nodes to process in pass 2.
|
||||
|
||||
|
@ -358,7 +358,7 @@ Post-processing network complete.
|
|||
|
||||
05/13/2016 15:10:48: Evaluation criterion node(s):
|
||||
|
||||
05/13/2016 15:10:48: Err = ErrorPrediction
|
||||
05/13/2016 15:10:48: Err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -492,7 +492,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
CE = CrossEntropyWithSoftmax()
|
||||
Err = ErrorPrediction()
|
||||
Err = ClassificationError()
|
||||
OutputNodes.z = Plus()
|
||||
|
||||
Validating network. 34 nodes to process in pass 1.
|
||||
|
@ -530,7 +530,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, h1_d) : [10 x 64], [64 x 1
|
|||
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
|
||||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x 1 x *1], [10] -> [10 x 1 x *1]
|
||||
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
|
||||
Validating network. 21 nodes to process in pass 2.
|
||||
|
||||
|
|
|
@ -286,7 +286,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
CE = CrossEntropyWithSoftmax()
|
||||
Err = ErrorPrediction()
|
||||
Err = ClassificationError()
|
||||
OutputNodes.z = Plus()
|
||||
|
||||
Validating network. 34 nodes to process in pass 1.
|
||||
|
@ -324,7 +324,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, h1_d) : [10 x 64], [64 x 1
|
|||
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
|
||||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x 1 x *], [10] -> [10 x 1 x *]
|
||||
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *], [10 x 1 x *] -> [1]
|
||||
|
||||
Validating network. 21 nodes to process in pass 2.
|
||||
|
||||
|
@ -356,7 +356,7 @@ Post-processing network complete.
|
|||
|
||||
05/13/2016 08:17:53: Evaluation criterion node(s):
|
||||
|
||||
05/13/2016 08:17:53: Err = ErrorPrediction
|
||||
05/13/2016 08:17:53: Err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -490,7 +490,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
CE = CrossEntropyWithSoftmax()
|
||||
Err = ErrorPrediction()
|
||||
Err = ClassificationError()
|
||||
OutputNodes.z = Plus()
|
||||
|
||||
Validating network. 34 nodes to process in pass 1.
|
||||
|
@ -528,7 +528,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, h1_d) : [10 x 64], [64 x 1
|
|||
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
|
||||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x 1 x *1], [10] -> [10 x 1 x *1]
|
||||
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
|
||||
Validating network. 21 nodes to process in pass 2.
|
||||
|
||||
|
|
|
@ -289,7 +289,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
CE = CrossEntropyWithSoftmax()
|
||||
Err = ErrorPrediction()
|
||||
Err = ClassificationError()
|
||||
OutputNodes.z = Plus()
|
||||
|
||||
Validating network. 45 nodes to process in pass 1.
|
||||
|
@ -338,7 +338,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, h1.y) : [10 x 64], [64 x *]
|
|||
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
|
||||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x *], [10] -> [10 x *]
|
||||
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
|
||||
Validating network. 20 nodes to process in pass 2.
|
||||
|
||||
|
@ -378,7 +378,7 @@ Post-processing network complete.
|
|||
|
||||
05/13/2016 08:18:26: Evaluation criterion node(s):
|
||||
|
||||
05/13/2016 08:18:26: Err = ErrorPrediction
|
||||
05/13/2016 08:18:26: Err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -489,7 +489,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
CE = CrossEntropyWithSoftmax()
|
||||
Err = ErrorPrediction()
|
||||
Err = ClassificationError()
|
||||
OutputNodes.z = Plus()
|
||||
|
||||
Validating network. 45 nodes to process in pass 1.
|
||||
|
@ -538,7 +538,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, h1.y) : [10 x 64], [64 x *1
|
|||
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
|
||||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x *1], [10] -> [10 x *1]
|
||||
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
|
||||
Validating network. 20 nodes to process in pass 2.
|
||||
|
||||
|
|
|
@ -356,7 +356,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
CE = CrossEntropyWithSoftmax()
|
||||
Err = ErrorPrediction()
|
||||
Err = ClassificationError()
|
||||
OutputNodes.z = Plus()
|
||||
|
||||
Validating network. 184 nodes to process in pass 1.
|
||||
|
@ -546,7 +546,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, pool) : [10 x 1 x 1 x 64],
|
|||
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
|
||||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x *], [10] -> [10 x *]
|
||||
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
|
||||
Validating network. 75 nodes to process in pass 2.
|
||||
|
||||
|
@ -652,7 +652,7 @@ Post-processing network complete.
|
|||
|
||||
05/03/2016 18:13:08: Evaluation criterion node(s):
|
||||
|
||||
05/03/2016 18:13:08: Err = ErrorPrediction
|
||||
05/03/2016 18:13:08: Err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -907,7 +907,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
CE = CrossEntropyWithSoftmax()
|
||||
Err = ErrorPrediction()
|
||||
Err = ClassificationError()
|
||||
OutputNodes.z = Plus()
|
||||
|
||||
Validating network. 184 nodes to process in pass 1.
|
||||
|
@ -1095,7 +1095,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, pool) : [10 x 1 x 1 x 64],
|
|||
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
|
||||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x *1], [10] -> [10 x *1]
|
||||
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
|
||||
Validating network. 75 nodes to process in pass 2.
|
||||
|
||||
|
|
|
@ -354,7 +354,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
CE = CrossEntropyWithSoftmax()
|
||||
Err = ErrorPrediction()
|
||||
Err = ClassificationError()
|
||||
OutputNodes.z = Plus()
|
||||
|
||||
Validating network. 184 nodes to process in pass 1.
|
||||
|
@ -544,7 +544,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, pool) : [10 x 1 x 1 x 64],
|
|||
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
|
||||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x *], [10] -> [10 x *]
|
||||
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
|
||||
Validating network. 75 nodes to process in pass 2.
|
||||
|
||||
|
@ -650,7 +650,7 @@ Post-processing network complete.
|
|||
|
||||
05/03/2016 14:04:12: Evaluation criterion node(s):
|
||||
|
||||
05/03/2016 14:04:12: Err = ErrorPrediction
|
||||
05/03/2016 14:04:12: Err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -905,7 +905,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
CE = CrossEntropyWithSoftmax()
|
||||
Err = ErrorPrediction()
|
||||
Err = ClassificationError()
|
||||
OutputNodes.z = Plus()
|
||||
|
||||
Validating network. 184 nodes to process in pass 1.
|
||||
|
@ -1093,7 +1093,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, pool) : [10 x 1 x 1 x 64],
|
|||
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
|
||||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x *1], [10] -> [10 x *1]
|
||||
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
|
||||
Validating network. 75 nodes to process in pass 2.
|
||||
|
||||
|
|
|
@ -23,7 +23,7 @@ Epochs must be finished with expected results:
|
|||
patterns:
|
||||
- Finished Epoch[{{integer}} of {{integer}}]
|
||||
- CrossEntropyWithSoftmax = {{float,tolerance=2.0%}}
|
||||
- EvalErrorPrediction = {{float,tolerance=2.0%}}
|
||||
- EvalClassificationError = {{float,tolerance=2.0%}}
|
||||
- learningRatePerSample = {{float,tolerance=0.001%}}
|
||||
|
||||
Per-minibatch training results must match:
|
||||
|
|
|
@ -356,7 +356,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
CE = CrossEntropyWithSoftmax()
|
||||
Err = ErrorPrediction()
|
||||
Err = ClassificationError()
|
||||
OutputNodes.z = Plus()
|
||||
|
||||
Validating network. 949 nodes to process in pass 1.
|
||||
|
@ -1311,7 +1311,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, pool) : [10 x 1 x 1 x 64],
|
|||
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
|
||||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x *], [10] -> [10 x *]
|
||||
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
|
||||
Validating network. 390 nodes to process in pass 2.
|
||||
|
||||
|
@ -1777,7 +1777,7 @@ Post-processing network complete.
|
|||
|
||||
05/03/2016 18:17:55: Evaluation criterion node(s):
|
||||
|
||||
05/03/2016 18:17:55: Err = ErrorPrediction
|
||||
05/03/2016 18:17:55: Err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -2932,7 +2932,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
CE = CrossEntropyWithSoftmax()
|
||||
Err = ErrorPrediction()
|
||||
Err = ClassificationError()
|
||||
OutputNodes.z = Plus()
|
||||
|
||||
Validating network. 949 nodes to process in pass 1.
|
||||
|
@ -3885,7 +3885,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, pool) : [10 x 1 x 1 x 64],
|
|||
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
|
||||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x *1], [10] -> [10 x *1]
|
||||
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
|
||||
Validating network. 390 nodes to process in pass 2.
|
||||
|
||||
|
|
|
@ -354,7 +354,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
CE = CrossEntropyWithSoftmax()
|
||||
Err = ErrorPrediction()
|
||||
Err = ClassificationError()
|
||||
OutputNodes.z = Plus()
|
||||
|
||||
Validating network. 949 nodes to process in pass 1.
|
||||
|
@ -1309,7 +1309,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, pool) : [10 x 1 x 1 x 64],
|
|||
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
|
||||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x *], [10] -> [10 x *]
|
||||
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
|
||||
Validating network. 390 nodes to process in pass 2.
|
||||
|
||||
|
@ -1775,7 +1775,7 @@ Post-processing network complete.
|
|||
|
||||
05/03/2016 14:05:00: Evaluation criterion node(s):
|
||||
|
||||
05/03/2016 14:05:00: Err = ErrorPrediction
|
||||
05/03/2016 14:05:00: Err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -2930,7 +2930,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
CE = CrossEntropyWithSoftmax()
|
||||
Err = ErrorPrediction()
|
||||
Err = ClassificationError()
|
||||
OutputNodes.z = Plus()
|
||||
|
||||
Validating network. 949 nodes to process in pass 1.
|
||||
|
@ -3883,7 +3883,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, pool) : [10 x 1 x 1 x 64],
|
|||
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
|
||||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x *1], [10] -> [10 x *1]
|
||||
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
|
||||
Validating network. 390 nodes to process in pass 2.
|
||||
|
||||
|
|
|
@ -23,7 +23,7 @@ Epochs must be finished with expected results:
|
|||
patterns:
|
||||
- Finished Epoch[{{integer}} of {{integer}}]
|
||||
- CrossEntropyWithSoftmax = {{float,tolerance=2.0%}}
|
||||
- EvalErrorPrediction = {{float,tolerance=2.0%}}
|
||||
- EvalClassificationError = {{float,tolerance=2.0%}}
|
||||
- learningRatePerSample = {{float,tolerance=0.001%}}
|
||||
|
||||
Per-minibatch training results must match:
|
||||
|
|
|
@ -282,7 +282,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
CE = CrossEntropyWithSoftmax()
|
||||
Err = ErrorPrediction()
|
||||
Err = ClassificationError()
|
||||
OutputNodes.z = Plus()
|
||||
|
||||
Validating network. 32 nodes to process in pass 1.
|
||||
|
@ -318,7 +318,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, conv4.y) : [10 x 7 x 7 x 32
|
|||
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
|
||||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x *], [10] -> [10 x *]
|
||||
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
|
||||
Validating network. 19 nodes to process in pass 2.
|
||||
|
||||
|
@ -350,7 +350,7 @@ Post-processing network complete.
|
|||
|
||||
05/13/2016 15:11:11: Evaluation criterion node(s):
|
||||
|
||||
05/13/2016 15:11:11: Err = ErrorPrediction
|
||||
05/13/2016 15:11:11: Err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -446,7 +446,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
CE = CrossEntropyWithSoftmax()
|
||||
Err = ErrorPrediction()
|
||||
Err = ClassificationError()
|
||||
OutputNodes.z = Plus()
|
||||
|
||||
Validating network. 32 nodes to process in pass 1.
|
||||
|
@ -482,7 +482,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, conv4.y) : [10 x 7 x 7 x 32
|
|||
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
|
||||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x *1], [10] -> [10 x *1]
|
||||
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
|
||||
Validating network. 19 nodes to process in pass 2.
|
||||
|
||||
|
|
|
@ -280,7 +280,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
CE = CrossEntropyWithSoftmax()
|
||||
Err = ErrorPrediction()
|
||||
Err = ClassificationError()
|
||||
OutputNodes.z = Plus()
|
||||
|
||||
Validating network. 32 nodes to process in pass 1.
|
||||
|
@ -316,7 +316,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, conv4.y) : [10 x 7 x 7 x 32
|
|||
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
|
||||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x *], [10] -> [10 x *]
|
||||
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *], [10 x *] -> [1]
|
||||
|
||||
Validating network. 19 nodes to process in pass 2.
|
||||
|
||||
|
@ -348,7 +348,7 @@ Post-processing network complete.
|
|||
|
||||
05/13/2016 08:19:02: Evaluation criterion node(s):
|
||||
|
||||
05/13/2016 08:19:02: Err = ErrorPrediction
|
||||
05/13/2016 08:19:02: Err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -444,7 +444,7 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
CE = CrossEntropyWithSoftmax()
|
||||
Err = ErrorPrediction()
|
||||
Err = ClassificationError()
|
||||
OutputNodes.z = Plus()
|
||||
|
||||
Validating network. 32 nodes to process in pass 1.
|
||||
|
@ -480,7 +480,7 @@ Validating --> OutputNodes.t = Times (OutputNodes.W, conv4.y) : [10 x 7 x 7 x 32
|
|||
Validating --> OutputNodes.b = LearnableParameter() : -> [10]
|
||||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [10 x *1], [10] -> [10 x *1]
|
||||
Validating --> CE = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
Validating --> Err = ErrorPrediction (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
Validating --> Err = ClassificationError (labels, OutputNodes.z) : [10 x *1], [10 x *1] -> [1]
|
||||
|
||||
Validating network. 19 nodes to process in pass 2.
|
||||
|
||||
|
|
|
@ -68,7 +68,7 @@ Multigpu_Demo_Train=[
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -169,7 +169,7 @@ Multigpu_Demo_Train=[
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -302,7 +302,7 @@ configparameters: Multigpu.cntk:Multigpu_Demo_Train=[
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -370,7 +370,7 @@ Post-processing network...
|
|||
|
||||
7 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -399,7 +399,7 @@ Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *] -> [2 x 1 x *]
|
|||
Validating --> B2 = LearnableParameter() : -> [2 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *], [2 x 1] -> [2 x 1 x *]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *] -> [2 x 1 x *]
|
||||
Validating --> Prior = Mean (labels) : [2 x *] -> [2]
|
||||
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
|
||||
|
@ -423,14 +423,14 @@ Post-processing network complete.
|
|||
|
||||
05/03/2016 15:21:43: Evaluation criterion node(s):
|
||||
|
||||
05/03/2016 15:21:43: EvalErrorPrediction = ErrorPrediction
|
||||
05/03/2016 15:21:43: EvalClassificationError = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
||||
Memory Sharing Structure:
|
||||
|
||||
(nil): {[EvalErrorPrediction Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
|
||||
(nil): {[EvalClassificationError Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
|
||||
0x1abc7c8: {[InvStdOfFeatures Value[2]] }
|
||||
0x1b40348: {[features Value[2 x *]] }
|
||||
0x1b408b8: {[MeanOfFeatures Value[2]] }
|
||||
|
@ -443,7 +443,7 @@ Memory Sharing Structure:
|
|||
0x1b46708: {[labels Value[2 x *]] }
|
||||
0x1b473e8: {[Prior Value[2]] }
|
||||
0x1b4b138: {[ScaledLogLikelihood Value[2 x 1 x *]] }
|
||||
0x1b4cc28: {[EvalErrorPrediction Value[1]] }
|
||||
0x1b4cc28: {[EvalClassificationError Value[1]] }
|
||||
0x1b4cea8: {[CrossEntropyWithSoftmax Value[1]] }
|
||||
0x1b4d388: {[H1 Value[50 x 1 x *]] [W0*features Gradient[50 x *]] }
|
||||
0x1b4d548: {[W0*features+B0 Gradient[50 x 1 x *]] [W1*H1 Value[50 x 1 x *]] }
|
||||
|
@ -473,139 +473,139 @@ Memory Sharing Structure:
|
|||
05/03/2016 15:21:44: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 15:21:44: Starting minibatch loop.
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.69966235 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0538s; samplesPerSecond = 4647.4
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.70639648 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.1073s; samplesPerSecond = 2329.6
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.70470264 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0631s; samplesPerSecond = 3961.3
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.69813501 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0747s; samplesPerSecond = 3346.9
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.73551416 * 250; EvalErrorPrediction = 0.57600000 * 250; time = 0.0900s; samplesPerSecond = 2778.4
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72432324 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0605s; samplesPerSecond = 4135.0
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.73327588 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0619s; samplesPerSecond = 4039.0
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.70092627 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0769s; samplesPerSecond = 3249.9
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.72354980 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0799s; samplesPerSecond = 3129.0
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.72148096 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0620s; samplesPerSecond = 4031.5
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.69814941 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.1278s; samplesPerSecond = 1955.9
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.70699121 * 250; EvalErrorPrediction = 0.54800000 * 250; time = 0.0821s; samplesPerSecond = 3044.1
|
||||
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.69898437 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0755s; samplesPerSecond = 3312.4
|
||||
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.71712695 * 250; EvalErrorPrediction = 0.54000000 * 250; time = 0.0657s; samplesPerSecond = 3804.8
|
||||
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.69470703 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.1049s; samplesPerSecond = 2382.9
|
||||
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.71375879 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.1180s; samplesPerSecond = 2117.9
|
||||
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70381641 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.1065s; samplesPerSecond = 2347.9
|
||||
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.71748633 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.2709s; samplesPerSecond = 922.9
|
||||
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71863281 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.1375s; samplesPerSecond = 1818.4
|
||||
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.70715234 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.1143s; samplesPerSecond = 2186.6
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.70401074 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.1079s; samplesPerSecond = 2317.1
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70599414 * 250; EvalErrorPrediction = 0.48400000 * 250; time = 0.0917s; samplesPerSecond = 2727.7
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69628711 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0923s; samplesPerSecond = 2707.6
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.75920898 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0887s; samplesPerSecond = 2819.0
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.70542578 * 250; EvalErrorPrediction = 0.43600000 * 250; time = 0.0634s; samplesPerSecond = 3945.8
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.70643945 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0885s; samplesPerSecond = 2823.7
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.72481641 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0601s; samplesPerSecond = 4162.6
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.71133594 * 250; EvalErrorPrediction = 0.55600000 * 250; time = 0.0630s; samplesPerSecond = 3968.1
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.68605664 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0849s; samplesPerSecond = 2944.1
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.69535352 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0879s; samplesPerSecond = 2844.6
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.68741797 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0752s; samplesPerSecond = 3325.7
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.67916406 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0958s; samplesPerSecond = 2610.3
|
||||
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.67841992 * 250; EvalErrorPrediction = 0.44800000 * 250; time = 0.1009s; samplesPerSecond = 2478.7
|
||||
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.68038477 * 250; EvalErrorPrediction = 0.49200000 * 250; time = 0.1607s; samplesPerSecond = 1555.6
|
||||
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.61937109 * 250; EvalErrorPrediction = 0.30400000 * 250; time = 0.1131s; samplesPerSecond = 2211.4
|
||||
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.57844141 * 250; EvalErrorPrediction = 0.27200000 * 250; time = 0.1047s; samplesPerSecond = 2388.5
|
||||
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.49124023 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0896s; samplesPerSecond = 2791.5
|
||||
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.39071289 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0727s; samplesPerSecond = 3438.8
|
||||
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.27650586 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.2624s; samplesPerSecond = 952.6
|
||||
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.26430078 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0842s; samplesPerSecond = 2967.7
|
||||
05/03/2016 15:21:47: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.66664150 * 10000; EvalErrorPrediction = 0.44430000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=3.93174s
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.69966235 * 250; EvalClassificationError = 0.51200000 * 250; time = 0.0538s; samplesPerSecond = 4647.4
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.70639648 * 250; EvalClassificationError = 0.49600000 * 250; time = 0.1073s; samplesPerSecond = 2329.6
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.70470264 * 250; EvalClassificationError = 0.52400000 * 250; time = 0.0631s; samplesPerSecond = 3961.3
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.69813501 * 250; EvalClassificationError = 0.52400000 * 250; time = 0.0747s; samplesPerSecond = 3346.9
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.73551416 * 250; EvalClassificationError = 0.57600000 * 250; time = 0.0900s; samplesPerSecond = 2778.4
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72432324 * 250; EvalClassificationError = 0.50800000 * 250; time = 0.0605s; samplesPerSecond = 4135.0
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.73327588 * 250; EvalClassificationError = 0.48800000 * 250; time = 0.0619s; samplesPerSecond = 4039.0
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.70092627 * 250; EvalClassificationError = 0.50400000 * 250; time = 0.0769s; samplesPerSecond = 3249.9
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.72354980 * 250; EvalClassificationError = 0.46000000 * 250; time = 0.0799s; samplesPerSecond = 3129.0
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.72148096 * 250; EvalClassificationError = 0.52000000 * 250; time = 0.0620s; samplesPerSecond = 4031.5
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.69814941 * 250; EvalClassificationError = 0.48000000 * 250; time = 0.1278s; samplesPerSecond = 1955.9
|
||||
05/03/2016 15:21:44: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.70699121 * 250; EvalClassificationError = 0.54800000 * 250; time = 0.0821s; samplesPerSecond = 3044.1
|
||||
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.69898437 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0755s; samplesPerSecond = 3312.4
|
||||
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.71712695 * 250; EvalClassificationError = 0.54000000 * 250; time = 0.0657s; samplesPerSecond = 3804.8
|
||||
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.69470703 * 250; EvalClassificationError = 0.52400000 * 250; time = 0.1049s; samplesPerSecond = 2382.9
|
||||
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.71375879 * 250; EvalClassificationError = 0.51200000 * 250; time = 0.1180s; samplesPerSecond = 2117.9
|
||||
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70381641 * 250; EvalClassificationError = 0.47600000 * 250; time = 0.1065s; samplesPerSecond = 2347.9
|
||||
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.71748633 * 250; EvalClassificationError = 0.48800000 * 250; time = 0.2709s; samplesPerSecond = 922.9
|
||||
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71863281 * 250; EvalClassificationError = 0.50400000 * 250; time = 0.1375s; samplesPerSecond = 1818.4
|
||||
05/03/2016 15:21:45: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.70715234 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.1143s; samplesPerSecond = 2186.6
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.70401074 * 250; EvalClassificationError = 0.48000000 * 250; time = 0.1079s; samplesPerSecond = 2317.1
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70599414 * 250; EvalClassificationError = 0.48400000 * 250; time = 0.0917s; samplesPerSecond = 2727.7
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69628711 * 250; EvalClassificationError = 0.48000000 * 250; time = 0.0923s; samplesPerSecond = 2707.6
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.75920898 * 250; EvalClassificationError = 0.51200000 * 250; time = 0.0887s; samplesPerSecond = 2819.0
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.70542578 * 250; EvalClassificationError = 0.43600000 * 250; time = 0.0634s; samplesPerSecond = 3945.8
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.70643945 * 250; EvalClassificationError = 0.46400000 * 250; time = 0.0885s; samplesPerSecond = 2823.7
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.72481641 * 250; EvalClassificationError = 0.51600000 * 250; time = 0.0601s; samplesPerSecond = 4162.6
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.71133594 * 250; EvalClassificationError = 0.55600000 * 250; time = 0.0630s; samplesPerSecond = 3968.1
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.68605664 * 250; EvalClassificationError = 0.47200000 * 250; time = 0.0849s; samplesPerSecond = 2944.1
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.69535352 * 250; EvalClassificationError = 0.47200000 * 250; time = 0.0879s; samplesPerSecond = 2844.6
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.68741797 * 250; EvalClassificationError = 0.45200000 * 250; time = 0.0752s; samplesPerSecond = 3325.7
|
||||
05/03/2016 15:21:46: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.67916406 * 250; EvalClassificationError = 0.46000000 * 250; time = 0.0958s; samplesPerSecond = 2610.3
|
||||
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.67841992 * 250; EvalClassificationError = 0.44800000 * 250; time = 0.1009s; samplesPerSecond = 2478.7
|
||||
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.68038477 * 250; EvalClassificationError = 0.49200000 * 250; time = 0.1607s; samplesPerSecond = 1555.6
|
||||
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.61937109 * 250; EvalClassificationError = 0.30400000 * 250; time = 0.1131s; samplesPerSecond = 2211.4
|
||||
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.57844141 * 250; EvalClassificationError = 0.27200000 * 250; time = 0.1047s; samplesPerSecond = 2388.5
|
||||
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.49124023 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0896s; samplesPerSecond = 2791.5
|
||||
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.39071289 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0727s; samplesPerSecond = 3438.8
|
||||
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.27650586 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.2624s; samplesPerSecond = 952.6
|
||||
05/03/2016 15:21:47: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.26430078 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0842s; samplesPerSecond = 2967.7
|
||||
05/03/2016 15:21:47: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.66664150 * 10000; EvalClassificationError = 0.44430000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=3.93174s
|
||||
05/03/2016 15:21:47: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn.1'
|
||||
|
||||
05/03/2016 15:21:47: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 15:21:47: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.20720006 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0545s; samplesPerSecond = 4583.4
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.19690290 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0641s; samplesPerSecond = 3899.7
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.16064646 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0770s; samplesPerSecond = 3247.1
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.13547171 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0640s; samplesPerSecond = 3904.2
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.18000261 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0732s; samplesPerSecond = 3413.6
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.17787841 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0790s; samplesPerSecond = 3164.0
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.16821879 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0880s; samplesPerSecond = 2839.4
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16363456 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0854s; samplesPerSecond = 2926.8
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.19533907 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0774s; samplesPerSecond = 3228.6
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.19318692 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0820s; samplesPerSecond = 3049.5
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.12726279 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0766s; samplesPerSecond = 3261.6
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.18620067 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0773s; samplesPerSecond = 3235.5
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.11547500 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0797s; samplesPerSecond = 3136.6
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16675950 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0833s; samplesPerSecond = 2999.8
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.15807389 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0822s; samplesPerSecond = 3042.5
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.18389093 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0726s; samplesPerSecond = 3443.0
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.18269750 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0897s; samplesPerSecond = 2787.7
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18737841 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0963s; samplesPerSecond = 2597.3
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.20174757 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0811s; samplesPerSecond = 3081.1
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.13336708 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0732s; samplesPerSecond = 3414.6
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13851332 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0879s; samplesPerSecond = 2843.0
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.15422288 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0821s; samplesPerSecond = 3044.3
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.15478799 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0815s; samplesPerSecond = 3069.2
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14530201 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0810s; samplesPerSecond = 3086.3
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.12192809 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.2596s; samplesPerSecond = 962.9
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.13975597 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0569s; samplesPerSecond = 4394.5
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12566363 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0911s; samplesPerSecond = 2744.6
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.18963051 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0765s; samplesPerSecond = 3267.2
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.17955467 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0914s; samplesPerSecond = 2736.4
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.18862103 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0772s; samplesPerSecond = 3236.7
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17503073 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0775s; samplesPerSecond = 3225.8
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.14741998 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0774s; samplesPerSecond = 3230.1
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.13803981 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0726s; samplesPerSecond = 3443.0
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.14139232 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0820s; samplesPerSecond = 3048.4
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13886877 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0766s; samplesPerSecond = 3264.1
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.15025864 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0852s; samplesPerSecond = 2933.5
|
||||
05/03/2016 15:21:51: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.14659342 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0903s; samplesPerSecond = 2767.4
|
||||
05/03/2016 15:21:51: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.13078795 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0784s; samplesPerSecond = 3187.6
|
||||
05/03/2016 15:21:51: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.19832882 * 250; EvalErrorPrediction = 0.11600000 * 250; time = 0.0772s; samplesPerSecond = 3240.4
|
||||
05/03/2016 15:21:51: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15828904 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0721s; samplesPerSecond = 3468.7
|
||||
05/03/2016 15:21:51: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.16210811 * 10000; EvalErrorPrediction = 0.07480000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=3.34279s
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.20720006 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0545s; samplesPerSecond = 4583.4
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.19690290 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0641s; samplesPerSecond = 3899.7
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.16064646 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0770s; samplesPerSecond = 3247.1
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.13547171 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0640s; samplesPerSecond = 3904.2
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.18000261 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0732s; samplesPerSecond = 3413.6
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.17787841 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0790s; samplesPerSecond = 3164.0
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.16821879 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0880s; samplesPerSecond = 2839.4
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16363456 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0854s; samplesPerSecond = 2926.8
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.19533907 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0774s; samplesPerSecond = 3228.6
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.19318692 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0820s; samplesPerSecond = 3049.5
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.12726279 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0766s; samplesPerSecond = 3261.6
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.18620067 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0773s; samplesPerSecond = 3235.5
|
||||
05/03/2016 15:21:48: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.11547500 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0797s; samplesPerSecond = 3136.6
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16675950 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0833s; samplesPerSecond = 2999.8
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.15807389 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0822s; samplesPerSecond = 3042.5
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.18389093 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0726s; samplesPerSecond = 3443.0
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.18269750 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0897s; samplesPerSecond = 2787.7
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18737841 * 250; EvalClassificationError = 0.09600000 * 250; time = 0.0963s; samplesPerSecond = 2597.3
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.20174757 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0811s; samplesPerSecond = 3081.1
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.13336708 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0732s; samplesPerSecond = 3414.6
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13851332 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0879s; samplesPerSecond = 2843.0
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.15422288 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0821s; samplesPerSecond = 3044.3
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.15478799 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0815s; samplesPerSecond = 3069.2
|
||||
05/03/2016 15:21:49: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14530201 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0810s; samplesPerSecond = 3086.3
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.12192809 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.2596s; samplesPerSecond = 962.9
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.13975597 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0569s; samplesPerSecond = 4394.5
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12566363 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0911s; samplesPerSecond = 2744.6
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.18963051 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0765s; samplesPerSecond = 3267.2
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.17955467 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0914s; samplesPerSecond = 2736.4
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.18862103 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0772s; samplesPerSecond = 3236.7
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17503073 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0775s; samplesPerSecond = 3225.8
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.14741998 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0774s; samplesPerSecond = 3230.1
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.13803981 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0726s; samplesPerSecond = 3443.0
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.14139232 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0820s; samplesPerSecond = 3048.4
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13886877 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0766s; samplesPerSecond = 3264.1
|
||||
05/03/2016 15:21:50: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.15025864 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0852s; samplesPerSecond = 2933.5
|
||||
05/03/2016 15:21:51: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.14659342 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0903s; samplesPerSecond = 2767.4
|
||||
05/03/2016 15:21:51: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.13078795 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0784s; samplesPerSecond = 3187.6
|
||||
05/03/2016 15:21:51: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.19832882 * 250; EvalClassificationError = 0.11600000 * 250; time = 0.0772s; samplesPerSecond = 3240.4
|
||||
05/03/2016 15:21:51: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15828904 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0721s; samplesPerSecond = 3468.7
|
||||
05/03/2016 15:21:51: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.16210811 * 10000; EvalClassificationError = 0.07480000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=3.34279s
|
||||
05/03/2016 15:21:51: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn.2'
|
||||
|
||||
05/03/2016 15:21:51: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 15:21:51: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
|
||||
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.19031988 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0960s; samplesPerSecond = 2604.5
|
||||
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.13920714 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0967s; samplesPerSecond = 2585.3
|
||||
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14595162 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0869s; samplesPerSecond = 2877.8
|
||||
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.13324012 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0817s; samplesPerSecond = 3060.5
|
||||
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.17358728 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0804s; samplesPerSecond = 3109.2
|
||||
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.17949159 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0660s; samplesPerSecond = 3788.1
|
||||
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.15009323 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0653s; samplesPerSecond = 3829.5
|
||||
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.17060954 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0660s; samplesPerSecond = 3787.3
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.10410764 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0762s; samplesPerSecond = 3280.0
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.20572259 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.2571s; samplesPerSecond = 972.5
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.16519130 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0640s; samplesPerSecond = 3906.2
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.14908187 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0593s; samplesPerSecond = 4213.2
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.19227612 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0688s; samplesPerSecond = 3632.8
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13670934 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0532s; samplesPerSecond = 4700.3
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.21113164 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0693s; samplesPerSecond = 3609.4
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.13129944 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0882s; samplesPerSecond = 2833.6
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17304376 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0840s; samplesPerSecond = 2975.2
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16479250 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0685s; samplesPerSecond = 3648.5
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.14591786 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0976s; samplesPerSecond = 2561.0
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.12562012 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0969s; samplesPerSecond = 2580.7
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13442773 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0959s; samplesPerSecond = 2607.8
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.17125328 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0754s; samplesPerSecond = 3314.6
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.22482522 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.1037s; samplesPerSecond = 2410.8
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.18291792 * 250; EvalErrorPrediction = 0.11600000 * 250; time = 0.0650s; samplesPerSecond = 3844.3
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.20296558 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0823s; samplesPerSecond = 3038.9
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.22849719 * 250; EvalErrorPrediction = 0.12400000 * 250; time = 0.0828s; samplesPerSecond = 3020.2
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12500068 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0864s; samplesPerSecond = 2894.1
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.15719802 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0840s; samplesPerSecond = 2976.4
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.11520810 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0687s; samplesPerSecond = 3636.7
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14159592 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0974s; samplesPerSecond = 2567.1
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18509569 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0721s; samplesPerSecond = 3465.4
|
||||
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.15008345 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0905s; samplesPerSecond = 2763.6
|
||||
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.12866435 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0902s; samplesPerSecond = 2770.5
|
||||
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.17640526 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0896s; samplesPerSecond = 2789.2
|
||||
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.14982110 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.2845s; samplesPerSecond = 878.8
|
||||
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.11472753 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0867s; samplesPerSecond = 2882.5
|
||||
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16524783 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0755s; samplesPerSecond = 3312.4
|
||||
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14961037 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0958s; samplesPerSecond = 2608.8
|
||||
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.15972387 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0972s; samplesPerSecond = 2572.7
|
||||
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.17867958 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0969s; samplesPerSecond = 2581.0
|
||||
05/03/2016 15:21:54: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.16073358 * 10000; EvalErrorPrediction = 0.07780000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=3.65495s
|
||||
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.19031988 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0960s; samplesPerSecond = 2604.5
|
||||
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.13920714 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0967s; samplesPerSecond = 2585.3
|
||||
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14595162 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0869s; samplesPerSecond = 2877.8
|
||||
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.13324012 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0817s; samplesPerSecond = 3060.5
|
||||
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.17358728 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0804s; samplesPerSecond = 3109.2
|
||||
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.17949159 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0660s; samplesPerSecond = 3788.1
|
||||
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.15009323 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0653s; samplesPerSecond = 3829.5
|
||||
05/03/2016 15:21:51: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.17060954 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0660s; samplesPerSecond = 3787.3
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.10410764 * 250; EvalClassificationError = 0.04000000 * 250; time = 0.0762s; samplesPerSecond = 3280.0
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.20572259 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.2571s; samplesPerSecond = 972.5
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.16519130 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0640s; samplesPerSecond = 3906.2
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.14908187 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0593s; samplesPerSecond = 4213.2
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.19227612 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0688s; samplesPerSecond = 3632.8
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13670934 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0532s; samplesPerSecond = 4700.3
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.21113164 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0693s; samplesPerSecond = 3609.4
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.13129944 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0882s; samplesPerSecond = 2833.6
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17304376 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0840s; samplesPerSecond = 2975.2
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16479250 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0685s; samplesPerSecond = 3648.5
|
||||
05/03/2016 15:21:52: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.14591786 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0976s; samplesPerSecond = 2561.0
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.12562012 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0969s; samplesPerSecond = 2580.7
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13442773 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0959s; samplesPerSecond = 2607.8
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.17125328 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0754s; samplesPerSecond = 3314.6
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.22482522 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.1037s; samplesPerSecond = 2410.8
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.18291792 * 250; EvalClassificationError = 0.11600000 * 250; time = 0.0650s; samplesPerSecond = 3844.3
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.20296558 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0823s; samplesPerSecond = 3038.9
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.22849719 * 250; EvalClassificationError = 0.12400000 * 250; time = 0.0828s; samplesPerSecond = 3020.2
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12500068 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0864s; samplesPerSecond = 2894.1
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.15719802 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0840s; samplesPerSecond = 2976.4
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.11520810 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0687s; samplesPerSecond = 3636.7
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14159592 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0974s; samplesPerSecond = 2567.1
|
||||
05/03/2016 15:21:53: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18509569 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0721s; samplesPerSecond = 3465.4
|
||||
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.15008345 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0905s; samplesPerSecond = 2763.6
|
||||
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.12866435 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0902s; samplesPerSecond = 2770.5
|
||||
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.17640526 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0896s; samplesPerSecond = 2789.2
|
||||
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.14982110 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.2845s; samplesPerSecond = 878.8
|
||||
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.11472753 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0867s; samplesPerSecond = 2882.5
|
||||
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16524783 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0755s; samplesPerSecond = 3312.4
|
||||
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14961037 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0958s; samplesPerSecond = 2608.8
|
||||
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.15972387 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0972s; samplesPerSecond = 2572.7
|
||||
05/03/2016 15:21:54: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.17867958 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0969s; samplesPerSecond = 2581.0
|
||||
05/03/2016 15:21:54: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.16073358 * 10000; EvalClassificationError = 0.07780000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=3.65495s
|
||||
05/03/2016 15:21:54: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn'
|
||||
05/03/2016 15:21:54: CNTKCommandTrainEnd: Multigpu_Demo_Train
|
||||
|
||||
|
@ -623,7 +623,7 @@ Post-processing network...
|
|||
|
||||
7 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -652,7 +652,7 @@ Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *1] -> [2 x 1 x *1]
|
|||
Validating --> B2 = LearnableParameter() : -> [2 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *1], [2 x 1] -> [2 x 1 x *1]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *1] -> [2 x 1 x *1]
|
||||
Validating --> Prior = Mean (labels) : [2 x *1] -> [2]
|
||||
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
|
||||
|
@ -676,7 +676,7 @@ Allocating matrices for forward and/or backward propagation.
|
|||
|
||||
Memory Sharing Structure:
|
||||
|
||||
(nil): {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalErrorPrediction Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
|
||||
(nil): {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalClassificationError Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
|
||||
0x1abbf28: {[B0 Value[50 x 1]] }
|
||||
0x1b47908: {[W1 Value[50 x 50]] }
|
||||
0x1b48278: {[W2 Value[2 x 50]] }
|
||||
|
@ -688,7 +688,7 @@ Memory Sharing Structure:
|
|||
0x1b50cd8: {[Prior Value[2]] }
|
||||
0x1b514f8: {[W0 Value[50 x 2]] }
|
||||
0x1b53938: {[B1 Value[50 x 1]] }
|
||||
0x1c0fd98: {[EvalErrorPrediction Value[1]] }
|
||||
0x1c0fd98: {[EvalClassificationError Value[1]] }
|
||||
0x1c0fef8: {[CrossEntropyWithSoftmax Value[1]] }
|
||||
0x1c10438: {[LogOfPrior Value[2]] }
|
||||
0x1c11f48: {[MVNormalizedFeatures Value[2 x *1]] }
|
||||
|
@ -701,7 +701,7 @@ Memory Sharing Structure:
|
|||
0x1c12d78: {[W2*H1 Value[2 x 1 x *1]] }
|
||||
0x1c12f38: {[HLast Value[2 x 1 x *1]] }
|
||||
|
||||
05/03/2016 15:21:55: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.05804312 * 603; CrossEntropyWithSoftmax = 0.12790061 * 603; perplexity = 1.13644005
|
||||
05/03/2016 15:21:55: Final Results: Minibatch[1-1]: EvalClassificationError = 0.05804312 * 603; CrossEntropyWithSoftmax = 0.12790061 * 603; perplexity = 1.13644005
|
||||
|
||||
05/03/2016 15:21:55: Action "test" complete.
|
||||
|
||||
|
|
|
@ -68,7 +68,7 @@ Multigpu_Demo_Train=[
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -169,7 +169,7 @@ Multigpu_Demo_Train=[
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -302,7 +302,7 @@ configparameters: Multigpu.cntk:Multigpu_Demo_Train=[
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -371,7 +371,7 @@ Post-processing network...
|
|||
|
||||
7 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -400,7 +400,7 @@ Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *] -> [2 x 1 x *]
|
|||
Validating --> B2 = LearnableParameter() : -> [2 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *], [2 x 1] -> [2 x 1 x *]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *] -> [2 x 1 x *]
|
||||
Validating --> Prior = Mean (labels) : [2 x *] -> [2]
|
||||
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
|
||||
|
@ -424,14 +424,14 @@ Post-processing network complete.
|
|||
|
||||
05/03/2016 15:21:55: Evaluation criterion node(s):
|
||||
|
||||
05/03/2016 15:21:55: EvalErrorPrediction = ErrorPrediction
|
||||
05/03/2016 15:21:55: EvalClassificationError = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
||||
Memory Sharing Structure:
|
||||
|
||||
(nil): {[EvalErrorPrediction Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
|
||||
(nil): {[EvalClassificationError Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
|
||||
0x12a62e8: {[features Value[2 x *]] }
|
||||
0x20202b8: {[MeanOfFeatures Value[2]] }
|
||||
0x20207c8: {[InvStdOfFeatures Value[2]] }
|
||||
|
@ -444,7 +444,7 @@ Memory Sharing Structure:
|
|||
0x278ae18: {[Prior Value[2]] }
|
||||
0x278c158: {[LogOfPrior Value[2]] }
|
||||
0x27908f8: {[H1 Value[50 x 1 x *]] [W0*features Gradient[50 x *]] }
|
||||
0x2790a18: {[EvalErrorPrediction Value[1]] }
|
||||
0x2790a18: {[EvalClassificationError Value[1]] }
|
||||
0x2790d18: {[ScaledLogLikelihood Value[2 x 1 x *]] }
|
||||
0x2790e78: {[CrossEntropyWithSoftmax Value[1]] }
|
||||
0x27966e8: {[B0 Value[50 x 1]] }
|
||||
|
@ -474,139 +474,139 @@ Memory Sharing Structure:
|
|||
05/03/2016 15:21:56: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 15:21:56: Starting minibatch loop.
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70004456 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0059s; samplesPerSecond = 42038.0
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.70309900 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0049s; samplesPerSecond = 50525.5
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.70606104 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0050s; samplesPerSecond = 50423.6
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.69845532 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0049s; samplesPerSecond = 50689.4
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.73496533 * 250; EvalErrorPrediction = 0.57600000 * 250; time = 0.0050s; samplesPerSecond = 50261.4
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72522827 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0050s; samplesPerSecond = 50454.1
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.73287500 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0049s; samplesPerSecond = 50576.6
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.70135547 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0049s; samplesPerSecond = 50566.3
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.72466504 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0049s; samplesPerSecond = 50515.3
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.72187500 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0049s; samplesPerSecond = 50730.5
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.69799023 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0049s; samplesPerSecond = 50751.1
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.70696387 * 250; EvalErrorPrediction = 0.54800000 * 250; time = 0.0050s; samplesPerSecond = 50454.1
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.69863965 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0050s; samplesPerSecond = 50393.1
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.71772461 * 250; EvalErrorPrediction = 0.54800000 * 250; time = 0.0048s; samplesPerSecond = 51899.5
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.69526270 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0047s; samplesPerSecond = 53544.7
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.71436426 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0047s; samplesPerSecond = 53498.8
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70399316 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0047s; samplesPerSecond = 53694.2
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.71745508 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0046s; samplesPerSecond = 53879.3
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71963184 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0047s; samplesPerSecond = 53521.7
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.70689941 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0047s; samplesPerSecond = 53602.1
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.70425098 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0046s; samplesPerSecond = 53890.9
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70622754 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0047s; samplesPerSecond = 53728.8
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69729492 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0046s; samplesPerSecond = 53786.6
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.75974219 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0046s; samplesPerSecond = 54265.2
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.70631250 * 250; EvalErrorPrediction = 0.43600000 * 250; time = 0.0047s; samplesPerSecond = 53659.6
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.70705664 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0047s; samplesPerSecond = 53602.1
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.72660352 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0046s; samplesPerSecond = 54124.3
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.71369727 * 250; EvalErrorPrediction = 0.55600000 * 250; time = 0.0047s; samplesPerSecond = 53441.6
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.68916602 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0047s; samplesPerSecond = 53659.6
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.69964844 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0047s; samplesPerSecond = 53339.0
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.69387891 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0046s; samplesPerSecond = 53832.9
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.68885742 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0047s; samplesPerSecond = 53350.4
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69388867 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0047s; samplesPerSecond = 53430.2
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.70363867 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0046s; samplesPerSecond = 53960.7
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.65449219 * 250; EvalErrorPrediction = 0.44400000 * 250; time = 0.0047s; samplesPerSecond = 53544.7
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.64607031 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0047s; samplesPerSecond = 53453.1
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.59492969 * 250; EvalErrorPrediction = 0.12400000 * 250; time = 0.0046s; samplesPerSecond = 53972.4
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.53965820 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0047s; samplesPerSecond = 53636.6
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.43681445 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0047s; samplesPerSecond = 52854.1
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.37407422 * 250; EvalErrorPrediction = 0.12000000 * 250; time = 0.0047s; samplesPerSecond = 53521.7
|
||||
05/03/2016 15:21:56: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.68409629 * 10000; EvalErrorPrediction = 0.45780000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=0.194983s
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70004456 * 250; EvalClassificationError = 0.52000000 * 250; time = 0.0059s; samplesPerSecond = 42038.0
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.70309900 * 250; EvalClassificationError = 0.51600000 * 250; time = 0.0049s; samplesPerSecond = 50525.5
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.70606104 * 250; EvalClassificationError = 0.52400000 * 250; time = 0.0050s; samplesPerSecond = 50423.6
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.69845532 * 250; EvalClassificationError = 0.52400000 * 250; time = 0.0049s; samplesPerSecond = 50689.4
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.73496533 * 250; EvalClassificationError = 0.57600000 * 250; time = 0.0050s; samplesPerSecond = 50261.4
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72522827 * 250; EvalClassificationError = 0.50800000 * 250; time = 0.0050s; samplesPerSecond = 50454.1
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.73287500 * 250; EvalClassificationError = 0.48800000 * 250; time = 0.0049s; samplesPerSecond = 50576.6
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.70135547 * 250; EvalClassificationError = 0.51600000 * 250; time = 0.0049s; samplesPerSecond = 50566.3
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.72466504 * 250; EvalClassificationError = 0.46000000 * 250; time = 0.0049s; samplesPerSecond = 50515.3
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.72187500 * 250; EvalClassificationError = 0.52000000 * 250; time = 0.0049s; samplesPerSecond = 50730.5
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.69799023 * 250; EvalClassificationError = 0.48000000 * 250; time = 0.0049s; samplesPerSecond = 50751.1
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.70696387 * 250; EvalClassificationError = 0.54800000 * 250; time = 0.0050s; samplesPerSecond = 50454.1
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.69863965 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0050s; samplesPerSecond = 50393.1
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.71772461 * 250; EvalClassificationError = 0.54800000 * 250; time = 0.0048s; samplesPerSecond = 51899.5
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.69526270 * 250; EvalClassificationError = 0.52400000 * 250; time = 0.0047s; samplesPerSecond = 53544.7
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.71436426 * 250; EvalClassificationError = 0.51200000 * 250; time = 0.0047s; samplesPerSecond = 53498.8
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70399316 * 250; EvalClassificationError = 0.47600000 * 250; time = 0.0047s; samplesPerSecond = 53694.2
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.71745508 * 250; EvalClassificationError = 0.48800000 * 250; time = 0.0046s; samplesPerSecond = 53879.3
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71963184 * 250; EvalClassificationError = 0.49600000 * 250; time = 0.0047s; samplesPerSecond = 53521.7
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.70689941 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0047s; samplesPerSecond = 53602.1
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.70425098 * 250; EvalClassificationError = 0.48000000 * 250; time = 0.0046s; samplesPerSecond = 53890.9
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70622754 * 250; EvalClassificationError = 0.45200000 * 250; time = 0.0047s; samplesPerSecond = 53728.8
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69729492 * 250; EvalClassificationError = 0.48000000 * 250; time = 0.0046s; samplesPerSecond = 53786.6
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.75974219 * 250; EvalClassificationError = 0.51200000 * 250; time = 0.0046s; samplesPerSecond = 54265.2
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.70631250 * 250; EvalClassificationError = 0.43600000 * 250; time = 0.0047s; samplesPerSecond = 53659.6
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.70705664 * 250; EvalClassificationError = 0.46400000 * 250; time = 0.0047s; samplesPerSecond = 53602.1
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.72660352 * 250; EvalClassificationError = 0.51600000 * 250; time = 0.0046s; samplesPerSecond = 54124.3
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.71369727 * 250; EvalClassificationError = 0.55600000 * 250; time = 0.0047s; samplesPerSecond = 53441.6
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.68916602 * 250; EvalClassificationError = 0.47200000 * 250; time = 0.0047s; samplesPerSecond = 53659.6
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.69964844 * 250; EvalClassificationError = 0.47600000 * 250; time = 0.0047s; samplesPerSecond = 53339.0
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.69387891 * 250; EvalClassificationError = 0.46000000 * 250; time = 0.0046s; samplesPerSecond = 53832.9
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.68885742 * 250; EvalClassificationError = 0.50400000 * 250; time = 0.0047s; samplesPerSecond = 53350.4
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69388867 * 250; EvalClassificationError = 0.48000000 * 250; time = 0.0047s; samplesPerSecond = 53430.2
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.70363867 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0046s; samplesPerSecond = 53960.7
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.65449219 * 250; EvalClassificationError = 0.44400000 * 250; time = 0.0047s; samplesPerSecond = 53544.7
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.64607031 * 250; EvalClassificationError = 0.46000000 * 250; time = 0.0047s; samplesPerSecond = 53453.1
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.59492969 * 250; EvalClassificationError = 0.12400000 * 250; time = 0.0046s; samplesPerSecond = 53972.4
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.53965820 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0047s; samplesPerSecond = 53636.6
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.43681445 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0047s; samplesPerSecond = 52854.1
|
||||
05/03/2016 15:21:56: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.37407422 * 250; EvalClassificationError = 0.12000000 * 250; time = 0.0047s; samplesPerSecond = 53521.7
|
||||
05/03/2016 15:21:56: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.68409629 * 10000; EvalClassificationError = 0.45780000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=0.194983s
|
||||
05/03/2016 15:21:56: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn.1'
|
||||
|
||||
05/03/2016 15:21:56: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 15:21:56: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.27919647 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0093s; samplesPerSecond = 26818.3
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.24468611 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0080s; samplesPerSecond = 31063.6
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.19639892 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0081s; samplesPerSecond = 30982.8
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.16397861 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0080s; samplesPerSecond = 31222.7
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.19745002 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0081s; samplesPerSecond = 30944.4
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.19548896 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0081s; samplesPerSecond = 30871.8
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.18230148 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0081s; samplesPerSecond = 30910.0
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.17531255 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0080s; samplesPerSecond = 31059.8
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.20166559 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0081s; samplesPerSecond = 30944.4
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.19749058 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0081s; samplesPerSecond = 31055.9
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.13463336 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0081s; samplesPerSecond = 30963.6
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.19006259 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0080s; samplesPerSecond = 31063.6
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.12234776 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0079s; samplesPerSecond = 31605.6
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16962922 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0077s; samplesPerSecond = 32649.9
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16091639 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0076s; samplesPerSecond = 32743.9
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.18624030 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32748.2
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.18465726 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0076s; samplesPerSecond = 32899.1
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18514518 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0077s; samplesPerSecond = 32620.0
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.20127224 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0076s; samplesPerSecond = 32791.2
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.13418547 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0076s; samplesPerSecond = 32701.1
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13995001 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0076s; samplesPerSecond = 32838.6
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.15602538 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32907.7
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.15448171 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32864.5
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14780067 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32894.7
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.12361633 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0077s; samplesPerSecond = 32628.6
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.14079766 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0077s; samplesPerSecond = 32632.8
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12624363 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0076s; samplesPerSecond = 32899.1
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.18913222 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32894.7
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.17952681 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0076s; samplesPerSecond = 32786.9
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.18825452 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0076s; samplesPerSecond = 32825.6
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17517656 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0076s; samplesPerSecond = 32942.4
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.14744161 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32791.2
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.13888184 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0076s; samplesPerSecond = 32795.5
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.14156678 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0076s; samplesPerSecond = 32855.8
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13990591 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0077s; samplesPerSecond = 32607.3
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.15059729 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32855.8
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.14720846 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0076s; samplesPerSecond = 32799.8
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.13021243 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0076s; samplesPerSecond = 32912.1
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.19704037 * 250; EvalErrorPrediction = 0.11600000 * 250; time = 0.0076s; samplesPerSecond = 33029.5
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15858146 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0076s; samplesPerSecond = 32860.1
|
||||
05/03/2016 15:21:56: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.16938752 * 10000; EvalErrorPrediction = 0.07430000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.313881s
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.27919647 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0093s; samplesPerSecond = 26818.3
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.24468611 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0080s; samplesPerSecond = 31063.6
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.19639892 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0081s; samplesPerSecond = 30982.8
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.16397861 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0080s; samplesPerSecond = 31222.7
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.19745002 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0081s; samplesPerSecond = 30944.4
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.19548896 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0081s; samplesPerSecond = 30871.8
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.18230148 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0081s; samplesPerSecond = 30910.0
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.17531255 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0080s; samplesPerSecond = 31059.8
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.20166559 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0081s; samplesPerSecond = 30944.4
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.19749058 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0081s; samplesPerSecond = 31055.9
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.13463336 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0081s; samplesPerSecond = 30963.6
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.19006259 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0080s; samplesPerSecond = 31063.6
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.12234776 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0079s; samplesPerSecond = 31605.6
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16962922 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0077s; samplesPerSecond = 32649.9
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16091639 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0076s; samplesPerSecond = 32743.9
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.18624030 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32748.2
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.18465726 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0076s; samplesPerSecond = 32899.1
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18514518 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0077s; samplesPerSecond = 32620.0
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.20127224 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0076s; samplesPerSecond = 32791.2
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.13418547 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0076s; samplesPerSecond = 32701.1
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13995001 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0076s; samplesPerSecond = 32838.6
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.15602538 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32907.7
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.15448171 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32864.5
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14780067 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32894.7
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.12361633 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0077s; samplesPerSecond = 32628.6
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.14079766 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0077s; samplesPerSecond = 32632.8
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12624363 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0076s; samplesPerSecond = 32899.1
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.18913222 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32894.7
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.17952681 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0076s; samplesPerSecond = 32786.9
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.18825452 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0076s; samplesPerSecond = 32825.6
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17517656 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0076s; samplesPerSecond = 32942.4
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.14744161 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32791.2
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.13888184 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0076s; samplesPerSecond = 32795.5
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.14156678 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0076s; samplesPerSecond = 32855.8
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13990591 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0077s; samplesPerSecond = 32607.3
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.15059729 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32855.8
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.14720846 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0076s; samplesPerSecond = 32799.8
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.13021243 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0076s; samplesPerSecond = 32912.1
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.19704037 * 250; EvalClassificationError = 0.11600000 * 250; time = 0.0076s; samplesPerSecond = 33029.5
|
||||
05/03/2016 15:21:56: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15858146 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0076s; samplesPerSecond = 32860.1
|
||||
05/03/2016 15:21:56: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.16938752 * 10000; EvalClassificationError = 0.07430000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.313881s
|
||||
05/03/2016 15:21:56: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn.2'
|
||||
|
||||
05/03/2016 15:21:56: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 15:21:56: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.18888809 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0078s; samplesPerSecond = 32129.5
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.14084978 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0076s; samplesPerSecond = 32756.8
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14561895 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0077s; samplesPerSecond = 32666.9
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.13238169 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0076s; samplesPerSecond = 32752.5
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.17465335 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0076s; samplesPerSecond = 32765.4
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.17752616 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0076s; samplesPerSecond = 32821.3
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.15030556 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0077s; samplesPerSecond = 32645.6
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.17118019 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0077s; samplesPerSecond = 32611.5
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.10379908 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0077s; samplesPerSecond = 32637.1
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.20636150 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0076s; samplesPerSecond = 32782.6
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.16606704 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0077s; samplesPerSecond = 32543.6
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.14937580 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0077s; samplesPerSecond = 32446.5
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.19161901 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0076s; samplesPerSecond = 32731.1
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13684752 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32696.8
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.21095939 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0076s; samplesPerSecond = 32688.3
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.13216461 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32769.7
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17341094 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0077s; samplesPerSecond = 32586.0
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16532641 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0076s; samplesPerSecond = 32868.8
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.14614740 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0076s; samplesPerSecond = 32696.8
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.12551177 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32705.4
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13419939 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32782.6
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.17050096 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0076s; samplesPerSecond = 32899.1
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.22579789 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0076s; samplesPerSecond = 32838.6
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.18219666 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0078s; samplesPerSecond = 32220.6
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.20347898 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32791.2
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.22972656 * 250; EvalErrorPrediction = 0.12000000 * 250; time = 0.0076s; samplesPerSecond = 32825.6
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12621914 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0076s; samplesPerSecond = 32890.4
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.15674728 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0076s; samplesPerSecond = 32808.4
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.11517532 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0077s; samplesPerSecond = 32658.4
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14187870 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32860.1
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18496784 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0076s; samplesPerSecond = 32929.4
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.15026403 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0076s; samplesPerSecond = 32942.4
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.12862609 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32925.1
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.17651362 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0076s; samplesPerSecond = 32778.3
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.14975908 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0076s; samplesPerSecond = 32981.5
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.11465866 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0076s; samplesPerSecond = 32838.6
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16513610 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0076s; samplesPerSecond = 32808.4
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14972374 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32977.2
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.15995582 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32825.6
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.17898927 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0076s; samplesPerSecond = 32756.8
|
||||
05/03/2016 15:21:56: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.16083773 * 10000; EvalErrorPrediction = 0.07760000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.307973s
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.18888809 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0078s; samplesPerSecond = 32129.5
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.14084978 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0076s; samplesPerSecond = 32756.8
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14561895 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0077s; samplesPerSecond = 32666.9
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.13238169 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0076s; samplesPerSecond = 32752.5
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.17465335 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0076s; samplesPerSecond = 32765.4
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.17752616 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0076s; samplesPerSecond = 32821.3
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.15030556 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0077s; samplesPerSecond = 32645.6
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.17118019 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0077s; samplesPerSecond = 32611.5
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.10379908 * 250; EvalClassificationError = 0.04000000 * 250; time = 0.0077s; samplesPerSecond = 32637.1
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.20636150 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0076s; samplesPerSecond = 32782.6
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.16606704 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0077s; samplesPerSecond = 32543.6
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.14937580 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0077s; samplesPerSecond = 32446.5
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.19161901 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0076s; samplesPerSecond = 32731.1
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13684752 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32696.8
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.21095939 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0076s; samplesPerSecond = 32688.3
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.13216461 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32769.7
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17341094 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0077s; samplesPerSecond = 32586.0
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16532641 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0076s; samplesPerSecond = 32868.8
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.14614740 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0076s; samplesPerSecond = 32696.8
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.12551177 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32705.4
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13419939 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32782.6
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.17050096 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0076s; samplesPerSecond = 32899.1
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.22579789 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0076s; samplesPerSecond = 32838.6
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.18219666 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0078s; samplesPerSecond = 32220.6
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.20347898 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32791.2
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.22972656 * 250; EvalClassificationError = 0.12000000 * 250; time = 0.0076s; samplesPerSecond = 32825.6
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12621914 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0076s; samplesPerSecond = 32890.4
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.15674728 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0076s; samplesPerSecond = 32808.4
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.11517532 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0077s; samplesPerSecond = 32658.4
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14187870 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32860.1
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18496784 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0076s; samplesPerSecond = 32929.4
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.15026403 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0076s; samplesPerSecond = 32942.4
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.12862609 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32925.1
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.17651362 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0076s; samplesPerSecond = 32778.3
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.14975908 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0076s; samplesPerSecond = 32981.5
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.11465866 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0076s; samplesPerSecond = 32838.6
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16513610 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0076s; samplesPerSecond = 32808.4
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14972374 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0076s; samplesPerSecond = 32977.2
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.15995582 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0076s; samplesPerSecond = 32825.6
|
||||
05/03/2016 15:21:56: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.17898927 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0076s; samplesPerSecond = 32756.8
|
||||
05/03/2016 15:21:56: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.16083773 * 10000; EvalClassificationError = 0.07760000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.307973s
|
||||
05/03/2016 15:21:56: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152142.598996/CNTKTextFormatReader/Examples/Other/Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn'
|
||||
05/03/2016 15:21:56: CNTKCommandTrainEnd: Multigpu_Demo_Train
|
||||
|
||||
|
@ -624,7 +624,7 @@ Post-processing network...
|
|||
|
||||
7 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -653,7 +653,7 @@ Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *1] -> [2 x 1 x *1]
|
|||
Validating --> B2 = LearnableParameter() : -> [2 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *1], [2 x 1] -> [2 x 1 x *1]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *1] -> [2 x 1 x *1]
|
||||
Validating --> Prior = Mean (labels) : [2 x *1] -> [2]
|
||||
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
|
||||
|
@ -677,7 +677,7 @@ Allocating matrices for forward and/or backward propagation.
|
|||
|
||||
Memory Sharing Structure:
|
||||
|
||||
(nil): {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalErrorPrediction Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
|
||||
(nil): {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalClassificationError Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
|
||||
0x1222268: {[InvStdOfFeatures Value[2]] }
|
||||
0x1223258: {[W2 Value[2 x 50]] }
|
||||
0x12a56c8: {[B0 Value[50 x 1]] }
|
||||
|
@ -697,12 +697,12 @@ Memory Sharing Structure:
|
|||
0x2adcc08: {[W0*features Value[50 x *1]] }
|
||||
0x2add0a8: {[W0 Value[50 x 2]] }
|
||||
0x2ae0518: {[W1 Value[50 x 50]] }
|
||||
0x68bf228: {[EvalErrorPrediction Value[1]] }
|
||||
0x68bf228: {[EvalClassificationError Value[1]] }
|
||||
0x68bf388: {[CrossEntropyWithSoftmax Value[1]] }
|
||||
0x68bf988: {[LogOfPrior Value[2]] }
|
||||
0x68d0438: {[features Value[2 x *1]] }
|
||||
|
||||
05/03/2016 15:21:57: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.05804312 * 603; CrossEntropyWithSoftmax = 0.12736577 * 603; perplexity = 1.13583240
|
||||
05/03/2016 15:21:57: Final Results: Minibatch[1-1]: EvalClassificationError = 0.05804312 * 603; CrossEntropyWithSoftmax = 0.12736577 * 603; perplexity = 1.13583240
|
||||
|
||||
05/03/2016 15:21:57: Action "test" complete.
|
||||
|
||||
|
|
|
@ -66,7 +66,7 @@ Multigpu_Demo_Train=[
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -167,7 +167,7 @@ Multigpu_Demo_Train=[
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -300,7 +300,7 @@ configparameters: Multigpu.cntk:Multigpu_Demo_Train=[
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -368,7 +368,7 @@ Post-processing network...
|
|||
|
||||
7 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -397,7 +397,7 @@ Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *] -> [2 x 1 x *]
|
|||
Validating --> B2 = LearnableParameter() : -> [2 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *], [2 x 1] -> [2 x 1 x *]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *] -> [2 x 1 x *]
|
||||
Validating --> Prior = Mean (labels) : [2 x *] -> [2]
|
||||
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
|
||||
|
@ -421,14 +421,14 @@ Post-processing network complete.
|
|||
|
||||
05/03/2016 15:29:48: Evaluation criterion node(s):
|
||||
|
||||
05/03/2016 15:29:48: EvalErrorPrediction = ErrorPrediction
|
||||
05/03/2016 15:29:48: EvalClassificationError = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
||||
Memory Sharing Structure:
|
||||
|
||||
0000000000000000: {[EvalErrorPrediction Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
|
||||
0000000000000000: {[EvalClassificationError Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
|
||||
000000CDDFBEECA0: {[features Value[2 x *]] }
|
||||
000000CDDFC7B170: {[W0*features+B0 Gradient[50 x 1 x *]] [W1*H1 Value[50 x 1 x *]] }
|
||||
000000CDDFC7B490: {[HLast Value[2 x 1 x *]] [W2 Gradient[2 x 50]] }
|
||||
|
@ -438,7 +438,7 @@ Memory Sharing Structure:
|
|||
000000CDDFC7B990: {[H1 Value[50 x 1 x *]] [W0*features Gradient[50 x *]] }
|
||||
000000CDDFC7BC10: {[LogOfPrior Value[2]] }
|
||||
000000CDDFC7BCB0: {[MVNormalizedFeatures Value[2 x *]] }
|
||||
000000CDDFC7BD50: {[EvalErrorPrediction Value[1]] }
|
||||
000000CDDFC7BD50: {[EvalClassificationError Value[1]] }
|
||||
000000CDDFC7BDF0: {[W0 Gradient[50 x 2]] [W0*features+B0 Value[50 x 1 x *]] }
|
||||
000000CDDFC7BF30: {[ScaledLogLikelihood Value[2 x 1 x *]] }
|
||||
000000CDDFC7C070: {[H2 Value[50 x 1 x *]] [W1*H1 Gradient[50 x 1 x *]] }
|
||||
|
@ -471,139 +471,139 @@ Memory Sharing Structure:
|
|||
05/03/2016 15:29:48: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 15:29:48: Starting minibatch loop.
|
||||
05/03/2016 15:29:48: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70511987 * 250; EvalErrorPrediction = 0.55200000 * 250; time = 0.0377s; samplesPerSecond = 6637.8
|
||||
05/03/2016 15:29:48: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.69754895 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0300s; samplesPerSecond = 8341.4
|
||||
05/03/2016 15:29:48: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.71056921 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0285s; samplesPerSecond = 8758.7
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.72951074 * 250; EvalErrorPrediction = 0.56000000 * 250; time = 0.0290s; samplesPerSecond = 8610.3
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70946655 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0285s; samplesPerSecond = 8776.9
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72656787 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0289s; samplesPerSecond = 8652.6
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.69337402 * 250; EvalErrorPrediction = 0.43200000 * 250; time = 0.0288s; samplesPerSecond = 8670.9
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.73605176 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0277s; samplesPerSecond = 9033.4
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.71453076 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0271s; samplesPerSecond = 9209.5
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.75191992 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0247s; samplesPerSecond = 10134.6
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.75975146 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0270s; samplesPerSecond = 9243.5
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.73172168 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0268s; samplesPerSecond = 9333.9
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.76840820 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0265s; samplesPerSecond = 9435.7
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.70464746 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0269s; samplesPerSecond = 9309.3
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70557227 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0253s; samplesPerSecond = 9880.3
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.72711816 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0267s; samplesPerSecond = 9357.7
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70076660 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0270s; samplesPerSecond = 9264.1
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.69409766 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0257s; samplesPerSecond = 9716.3
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.69139941 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0257s; samplesPerSecond = 9742.4
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.73361621 * 250; EvalErrorPrediction = 0.55200000 * 250; time = 0.0295s; samplesPerSecond = 8477.4
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.72225879 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0273s; samplesPerSecond = 9161.9
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70356348 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0261s; samplesPerSecond = 9562.8
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69928613 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0254s; samplesPerSecond = 9848.7
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.72360938 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0252s; samplesPerSecond = 9924.6
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69871875 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0262s; samplesPerSecond = 9530.7
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69114844 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0257s; samplesPerSecond = 9720.1
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.68648047 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0273s; samplesPerSecond = 9161.9
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69657227 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0270s; samplesPerSecond = 9259.9
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.71585547 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0264s; samplesPerSecond = 9486.2
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.69730664 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0261s; samplesPerSecond = 9595.1
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.70432422 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0244s; samplesPerSecond = 10248.8
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.69991797 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0220s; samplesPerSecond = 11388.0
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.68696875 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0222s; samplesPerSecond = 11277.0
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.67331445 * 250; EvalErrorPrediction = 0.37200000 * 250; time = 0.0245s; samplesPerSecond = 10192.4
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.65711328 * 250; EvalErrorPrediction = 0.43200000 * 250; time = 0.0240s; samplesPerSecond = 10429.3
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.64534375 * 250; EvalErrorPrediction = 0.44800000 * 250; time = 0.0243s; samplesPerSecond = 10305.0
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.61021875 * 250; EvalErrorPrediction = 0.36400000 * 250; time = 0.0236s; samplesPerSecond = 10606.3
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.54191016 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0236s; samplesPerSecond = 10578.4
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.45624414 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0232s; samplesPerSecond = 10762.4
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.37636133 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0235s; samplesPerSecond = 10623.8
|
||||
05/03/2016 15:29:49: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.68695688 * 10000; EvalErrorPrediction = 0.45550000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=1.06166s
|
||||
05/03/2016 15:29:48: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70511987 * 250; EvalClassificationError = 0.55200000 * 250; time = 0.0377s; samplesPerSecond = 6637.8
|
||||
05/03/2016 15:29:48: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.69754895 * 250; EvalClassificationError = 0.47600000 * 250; time = 0.0300s; samplesPerSecond = 8341.4
|
||||
05/03/2016 15:29:48: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.71056921 * 250; EvalClassificationError = 0.50400000 * 250; time = 0.0285s; samplesPerSecond = 8758.7
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.72951074 * 250; EvalClassificationError = 0.56000000 * 250; time = 0.0290s; samplesPerSecond = 8610.3
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70946655 * 250; EvalClassificationError = 0.48800000 * 250; time = 0.0285s; samplesPerSecond = 8776.9
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72656787 * 250; EvalClassificationError = 0.54400000 * 250; time = 0.0289s; samplesPerSecond = 8652.6
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.69337402 * 250; EvalClassificationError = 0.43200000 * 250; time = 0.0288s; samplesPerSecond = 8670.9
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.73605176 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0277s; samplesPerSecond = 9033.4
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.71453076 * 250; EvalClassificationError = 0.51200000 * 250; time = 0.0271s; samplesPerSecond = 9209.5
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.75191992 * 250; EvalClassificationError = 0.47200000 * 250; time = 0.0247s; samplesPerSecond = 10134.6
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.75975146 * 250; EvalClassificationError = 0.53200000 * 250; time = 0.0270s; samplesPerSecond = 9243.5
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.73172168 * 250; EvalClassificationError = 0.50800000 * 250; time = 0.0268s; samplesPerSecond = 9333.9
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.76840820 * 250; EvalClassificationError = 0.53200000 * 250; time = 0.0265s; samplesPerSecond = 9435.7
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.70464746 * 250; EvalClassificationError = 0.46800000 * 250; time = 0.0269s; samplesPerSecond = 9309.3
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70557227 * 250; EvalClassificationError = 0.46400000 * 250; time = 0.0253s; samplesPerSecond = 9880.3
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.72711816 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0267s; samplesPerSecond = 9357.7
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70076660 * 250; EvalClassificationError = 0.45600000 * 250; time = 0.0270s; samplesPerSecond = 9264.1
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.69409766 * 250; EvalClassificationError = 0.49600000 * 250; time = 0.0257s; samplesPerSecond = 9716.3
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.69139941 * 250; EvalClassificationError = 0.46800000 * 250; time = 0.0257s; samplesPerSecond = 9742.4
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.73361621 * 250; EvalClassificationError = 0.55200000 * 250; time = 0.0295s; samplesPerSecond = 8477.4
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.72225879 * 250; EvalClassificationError = 0.46800000 * 250; time = 0.0273s; samplesPerSecond = 9161.9
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70356348 * 250; EvalClassificationError = 0.45600000 * 250; time = 0.0261s; samplesPerSecond = 9562.8
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69928613 * 250; EvalClassificationError = 0.46400000 * 250; time = 0.0254s; samplesPerSecond = 9848.7
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.72360938 * 250; EvalClassificationError = 0.51600000 * 250; time = 0.0252s; samplesPerSecond = 9924.6
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69871875 * 250; EvalClassificationError = 0.51200000 * 250; time = 0.0262s; samplesPerSecond = 9530.7
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69114844 * 250; EvalClassificationError = 0.47600000 * 250; time = 0.0257s; samplesPerSecond = 9720.1
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.68648047 * 250; EvalClassificationError = 0.45600000 * 250; time = 0.0273s; samplesPerSecond = 9161.9
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69657227 * 250; EvalClassificationError = 0.46400000 * 250; time = 0.0270s; samplesPerSecond = 9259.9
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.71585547 * 250; EvalClassificationError = 0.45200000 * 250; time = 0.0264s; samplesPerSecond = 9486.2
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.69730664 * 250; EvalClassificationError = 0.52400000 * 250; time = 0.0261s; samplesPerSecond = 9595.1
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.70432422 * 250; EvalClassificationError = 0.53200000 * 250; time = 0.0244s; samplesPerSecond = 10248.8
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.69991797 * 250; EvalClassificationError = 0.47600000 * 250; time = 0.0220s; samplesPerSecond = 11388.0
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.68696875 * 250; EvalClassificationError = 0.47600000 * 250; time = 0.0222s; samplesPerSecond = 11277.0
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.67331445 * 250; EvalClassificationError = 0.37200000 * 250; time = 0.0245s; samplesPerSecond = 10192.4
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.65711328 * 250; EvalClassificationError = 0.43200000 * 250; time = 0.0240s; samplesPerSecond = 10429.3
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.64534375 * 250; EvalClassificationError = 0.44800000 * 250; time = 0.0243s; samplesPerSecond = 10305.0
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.61021875 * 250; EvalClassificationError = 0.36400000 * 250; time = 0.0236s; samplesPerSecond = 10606.3
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.54191016 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0236s; samplesPerSecond = 10578.4
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.45624414 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0232s; samplesPerSecond = 10762.4
|
||||
05/03/2016 15:29:49: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.37636133 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0235s; samplesPerSecond = 10623.8
|
||||
05/03/2016 15:29:49: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.68695688 * 10000; EvalClassificationError = 0.45550000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=1.06166s
|
||||
05/03/2016 15:29:49: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn.1'
|
||||
|
||||
05/03/2016 15:29:49: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 15:29:49: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
|
||||
05/03/2016 15:29:49: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.28780429 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0246s; samplesPerSecond = 10181.2
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.28222478 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0246s; samplesPerSecond = 10178.3
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.23589864 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0255s; samplesPerSecond = 9796.2
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.21209458 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0242s; samplesPerSecond = 10312.3
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.20285913 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0243s; samplesPerSecond = 10283.0
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.21300948 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0252s; samplesPerSecond = 9928.5
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.17835594 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0256s; samplesPerSecond = 9753.8
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.18830077 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0257s; samplesPerSecond = 9740.1
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.14198478 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0250s; samplesPerSecond = 10019.2
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.15895022 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0237s; samplesPerSecond = 10566.8
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.21062646 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0238s; samplesPerSecond = 10517.9
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.16081948 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0223s; samplesPerSecond = 11186.7
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.15635713 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0234s; samplesPerSecond = 10700.2
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13008516 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0239s; samplesPerSecond = 10453.7
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16625347 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0234s; samplesPerSecond = 10674.2
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.15001793 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0245s; samplesPerSecond = 10223.7
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.22343917 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0234s; samplesPerSecond = 10692.4
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18006735 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0245s; samplesPerSecond = 10194.5
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.15361620 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0235s; samplesPerSecond = 10636.9
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.17039588 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0246s; samplesPerSecond = 10177.1
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15516786 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0237s; samplesPerSecond = 10544.1
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.15969617 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0225s; samplesPerSecond = 11102.2
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.15939439 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0234s; samplesPerSecond = 10697.9
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.15300194 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0233s; samplesPerSecond = 10729.2
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.14902476 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0231s; samplesPerSecond = 10811.7
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.15043256 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0231s; samplesPerSecond = 10823.4
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.15531360 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0229s; samplesPerSecond = 10936.1
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.17990796 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0248s; samplesPerSecond = 10088.4
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.22925668 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0229s; samplesPerSecond = 10913.7
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16843626 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0234s; samplesPerSecond = 10682.8
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18045325 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0236s; samplesPerSecond = 10585.6
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13337526 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0221s; samplesPerSecond = 11308.6
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.14332977 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0245s; samplesPerSecond = 10219.9
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.18749446 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0242s; samplesPerSecond = 10326.7
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.15505967 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0236s; samplesPerSecond = 10587.8
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.19616616 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0228s; samplesPerSecond = 10980.3
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.17305907 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0236s; samplesPerSecond = 10610.3
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15197365 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0249s; samplesPerSecond = 10033.3
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.12102416 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0238s; samplesPerSecond = 10483.5
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15278496 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0235s; samplesPerSecond = 10646.9
|
||||
05/03/2016 15:29:50: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.17643784 * 10000; EvalErrorPrediction = 0.07560000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.957696s
|
||||
05/03/2016 15:29:49: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.28780429 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0246s; samplesPerSecond = 10181.2
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.28222478 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0246s; samplesPerSecond = 10178.3
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.23589864 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0255s; samplesPerSecond = 9796.2
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.21209458 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0242s; samplesPerSecond = 10312.3
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.20285913 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0243s; samplesPerSecond = 10283.0
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.21300948 * 250; EvalClassificationError = 0.09600000 * 250; time = 0.0252s; samplesPerSecond = 9928.5
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.17835594 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0256s; samplesPerSecond = 9753.8
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.18830077 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0257s; samplesPerSecond = 9740.1
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.14198478 * 250; EvalClassificationError = 0.04000000 * 250; time = 0.0250s; samplesPerSecond = 10019.2
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.15895022 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0237s; samplesPerSecond = 10566.8
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.21062646 * 250; EvalClassificationError = 0.11200000 * 250; time = 0.0238s; samplesPerSecond = 10517.9
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.16081948 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0223s; samplesPerSecond = 11186.7
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.15635713 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0234s; samplesPerSecond = 10700.2
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13008516 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0239s; samplesPerSecond = 10453.7
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16625347 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0234s; samplesPerSecond = 10674.2
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.15001793 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0245s; samplesPerSecond = 10223.7
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.22343917 * 250; EvalClassificationError = 0.11200000 * 250; time = 0.0234s; samplesPerSecond = 10692.4
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18006735 * 250; EvalClassificationError = 0.09600000 * 250; time = 0.0245s; samplesPerSecond = 10194.5
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.15361620 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0235s; samplesPerSecond = 10636.9
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.17039588 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0246s; samplesPerSecond = 10177.1
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15516786 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0237s; samplesPerSecond = 10544.1
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.15969617 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0225s; samplesPerSecond = 11102.2
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.15939439 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0234s; samplesPerSecond = 10697.9
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.15300194 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0233s; samplesPerSecond = 10729.2
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.14902476 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0231s; samplesPerSecond = 10811.7
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.15043256 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0231s; samplesPerSecond = 10823.4
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.15531360 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0229s; samplesPerSecond = 10936.1
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.17990796 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0248s; samplesPerSecond = 10088.4
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.22925668 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0229s; samplesPerSecond = 10913.7
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16843626 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0234s; samplesPerSecond = 10682.8
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18045325 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0236s; samplesPerSecond = 10585.6
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13337526 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0221s; samplesPerSecond = 11308.6
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.14332977 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0245s; samplesPerSecond = 10219.9
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.18749446 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0242s; samplesPerSecond = 10326.7
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.15505967 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0236s; samplesPerSecond = 10587.8
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.19616616 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0228s; samplesPerSecond = 10980.3
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.17305907 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0236s; samplesPerSecond = 10610.3
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15197365 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0249s; samplesPerSecond = 10033.3
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.12102416 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0238s; samplesPerSecond = 10483.5
|
||||
05/03/2016 15:29:50: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15278496 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0235s; samplesPerSecond = 10646.9
|
||||
05/03/2016 15:29:50: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.17643784 * 10000; EvalClassificationError = 0.07560000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.957696s
|
||||
05/03/2016 15:29:50: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn.2'
|
||||
|
||||
05/03/2016 15:29:50: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 15:29:50: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
|
||||
05/03/2016 15:29:50: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.10623312 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0235s; samplesPerSecond = 10637.4
|
||||
05/03/2016 15:29:50: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.17519442 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0236s; samplesPerSecond = 10608.5
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14133983 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0240s; samplesPerSecond = 10404.5
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.16278491 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0233s; samplesPerSecond = 10749.0
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.11783558 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0232s; samplesPerSecond = 10780.0
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.16342188 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0243s; samplesPerSecond = 10305.9
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.16272195 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0239s; samplesPerSecond = 10476.9
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.19401477 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0241s; samplesPerSecond = 10370.0
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.20186661 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0229s; samplesPerSecond = 10903.2
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.13672539 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0235s; samplesPerSecond = 10631.1
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.20069212 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0234s; samplesPerSecond = 10681.5
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.17729039 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0252s; samplesPerSecond = 9928.1
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.15906107 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0251s; samplesPerSecond = 9941.5
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16281632 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0247s; samplesPerSecond = 10121.5
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.19834981 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0248s; samplesPerSecond = 10067.7
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.10217642 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0247s; samplesPerSecond = 10105.1
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17011383 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0258s; samplesPerSecond = 9692.2
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16599137 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0252s; samplesPerSecond = 9911.6
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.12648996 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0254s; samplesPerSecond = 9848.7
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.11920298 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0248s; samplesPerSecond = 10091.2
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.12883164 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0272s; samplesPerSecond = 9205.1
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.18222479 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0250s; samplesPerSecond = 9988.0
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.13443351 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0246s; samplesPerSecond = 10149.4
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.19720325 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0244s; samplesPerSecond = 10230.8
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.15586137 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0254s; samplesPerSecond = 9860.4
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.11854887 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0250s; samplesPerSecond = 9991.6
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.13705285 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0249s; samplesPerSecond = 10050.7
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.20009941 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0240s; samplesPerSecond = 10411.5
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.19078680 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0233s; samplesPerSecond = 10741.6
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16505705 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0238s; samplesPerSecond = 10507.7
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.12232722 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0239s; samplesPerSecond = 10472.1
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.16342047 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0238s; samplesPerSecond = 10514.4
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.15875107 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0234s; samplesPerSecond = 10688.3
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.12248772 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0232s; samplesPerSecond = 10793.5
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13457009 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0238s; samplesPerSecond = 10521.4
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.20976565 * 250; EvalErrorPrediction = 0.11600000 * 250; time = 0.0238s; samplesPerSecond = 10494.9
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16519102 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0230s; samplesPerSecond = 10862.5
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14971420 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0247s; samplesPerSecond = 10106.3
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.16456633 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0230s; samplesPerSecond = 10858.2
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.16971407 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0239s; samplesPerSecond = 10473.0
|
||||
05/03/2016 15:29:51: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15787325 * 10000; EvalErrorPrediction = 0.07430000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.972052s
|
||||
05/03/2016 15:29:50: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.10623312 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0235s; samplesPerSecond = 10637.4
|
||||
05/03/2016 15:29:50: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.17519442 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0236s; samplesPerSecond = 10608.5
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14133983 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0240s; samplesPerSecond = 10404.5
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.16278491 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0233s; samplesPerSecond = 10749.0
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.11783558 * 250; EvalClassificationError = 0.04000000 * 250; time = 0.0232s; samplesPerSecond = 10780.0
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.16342188 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0243s; samplesPerSecond = 10305.9
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.16272195 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0239s; samplesPerSecond = 10476.9
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.19401477 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0241s; samplesPerSecond = 10370.0
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.20186661 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0229s; samplesPerSecond = 10903.2
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.13672539 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0235s; samplesPerSecond = 10631.1
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.20069212 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0234s; samplesPerSecond = 10681.5
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.17729039 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0252s; samplesPerSecond = 9928.1
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.15906107 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0251s; samplesPerSecond = 9941.5
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16281632 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0247s; samplesPerSecond = 10121.5
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.19834981 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0248s; samplesPerSecond = 10067.7
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.10217642 * 250; EvalClassificationError = 0.04000000 * 250; time = 0.0247s; samplesPerSecond = 10105.1
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17011383 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0258s; samplesPerSecond = 9692.2
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16599137 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0252s; samplesPerSecond = 9911.6
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.12648996 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0254s; samplesPerSecond = 9848.7
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.11920298 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0248s; samplesPerSecond = 10091.2
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.12883164 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0272s; samplesPerSecond = 9205.1
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.18222479 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0250s; samplesPerSecond = 9988.0
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.13443351 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0246s; samplesPerSecond = 10149.4
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.19720325 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0244s; samplesPerSecond = 10230.8
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.15586137 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0254s; samplesPerSecond = 9860.4
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.11854887 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0250s; samplesPerSecond = 9991.6
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.13705285 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0249s; samplesPerSecond = 10050.7
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.20009941 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0240s; samplesPerSecond = 10411.5
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.19078680 * 250; EvalClassificationError = 0.11200000 * 250; time = 0.0233s; samplesPerSecond = 10741.6
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16505705 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0238s; samplesPerSecond = 10507.7
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.12232722 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0239s; samplesPerSecond = 10472.1
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.16342047 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0238s; samplesPerSecond = 10514.4
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.15875107 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0234s; samplesPerSecond = 10688.3
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.12248772 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0232s; samplesPerSecond = 10793.5
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13457009 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0238s; samplesPerSecond = 10521.4
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.20976565 * 250; EvalClassificationError = 0.11600000 * 250; time = 0.0238s; samplesPerSecond = 10494.9
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16519102 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0230s; samplesPerSecond = 10862.5
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14971420 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0247s; samplesPerSecond = 10106.3
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.16456633 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0230s; samplesPerSecond = 10858.2
|
||||
05/03/2016 15:29:51: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.16971407 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0239s; samplesPerSecond = 10473.0
|
||||
05/03/2016 15:29:51: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15787325 * 10000; EvalClassificationError = 0.07430000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.972052s
|
||||
05/03/2016 15:29:51: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_cpu/Models/multigpu.dnn'
|
||||
05/03/2016 15:29:51: CNTKCommandTrainEnd: Multigpu_Demo_Train
|
||||
|
||||
|
@ -621,7 +621,7 @@ Post-processing network...
|
|||
|
||||
7 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -650,7 +650,7 @@ Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *1] -> [2 x 1 x *1]
|
|||
Validating --> B2 = LearnableParameter() : -> [2 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *1], [2 x 1] -> [2 x 1 x *1]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *1] -> [2 x 1 x *1]
|
||||
Validating --> Prior = Mean (labels) : [2 x *1] -> [2]
|
||||
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
|
||||
|
@ -674,7 +674,7 @@ Allocating matrices for forward and/or backward propagation.
|
|||
|
||||
Memory Sharing Structure:
|
||||
|
||||
0000000000000000: {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalErrorPrediction Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
|
||||
0000000000000000: {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalClassificationError Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
|
||||
000000CDDFC7B490: {[W0 Value[50 x 2]] }
|
||||
000000CDDFC7B530: {[features Value[2 x *1]] }
|
||||
000000CDDFC7B710: {[W1 Value[50 x 50]] }
|
||||
|
@ -690,7 +690,7 @@ Memory Sharing Structure:
|
|||
000000CDDFC8C2B0: {[W1*H1+B1 Value[50 x 1 x *1]] }
|
||||
000000CDDFC8C490: {[CrossEntropyWithSoftmax Value[1]] }
|
||||
000000CDDFC8C5D0: {[LogOfPrior Value[2]] }
|
||||
000000CDDFC8C670: {[EvalErrorPrediction Value[1]] }
|
||||
000000CDDFC8C670: {[EvalClassificationError Value[1]] }
|
||||
000000CDDFC8C990: {[MVNormalizedFeatures Value[2 x *1]] }
|
||||
000000CDDFC8CA30: {[H2 Value[50 x 1 x *1]] }
|
||||
000000CDDFC8CC10: {[W1*H1 Value[50 x 1 x *1]] }
|
||||
|
@ -699,7 +699,7 @@ Memory Sharing Structure:
|
|||
000000CDDFC8D610: {[HLast Value[2 x 1 x *1]] }
|
||||
000000CDDFC8D750: {[W0*features+B0 Value[50 x 1 x *1]] }
|
||||
|
||||
05/03/2016 15:29:52: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.05306799 * 603; CrossEntropyWithSoftmax = 0.11782631 * 603; perplexity = 1.12504868
|
||||
05/03/2016 15:29:52: Final Results: Minibatch[1-1]: EvalClassificationError = 0.05306799 * 603; CrossEntropyWithSoftmax = 0.11782631 * 603; perplexity = 1.12504868
|
||||
|
||||
05/03/2016 15:29:52: Action "test" complete.
|
||||
|
||||
|
|
|
@ -66,7 +66,7 @@ Multigpu_Demo_Train=[
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -167,7 +167,7 @@ Multigpu_Demo_Train=[
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -300,7 +300,7 @@ configparameters: Multigpu.cntk:Multigpu_Demo_Train=[
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -369,7 +369,7 @@ Post-processing network...
|
|||
|
||||
7 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -398,7 +398,7 @@ Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *] -> [2 x 1 x *]
|
|||
Validating --> B2 = LearnableParameter() : -> [2 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *], [2 x 1] -> [2 x 1 x *]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *] -> [2 x 1 x *]
|
||||
Validating --> Prior = Mean (labels) : [2 x *] -> [2]
|
||||
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
|
||||
|
@ -422,14 +422,14 @@ Post-processing network complete.
|
|||
|
||||
05/03/2016 15:29:53: Evaluation criterion node(s):
|
||||
|
||||
05/03/2016 15:29:53: EvalErrorPrediction = ErrorPrediction
|
||||
05/03/2016 15:29:53: EvalClassificationError = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
||||
Memory Sharing Structure:
|
||||
|
||||
0000000000000000: {[EvalErrorPrediction Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
|
||||
0000000000000000: {[EvalClassificationError Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
|
||||
000000572B66ECA0: {[features Value[2 x *]] }
|
||||
00000057420A1700: {[W1 Value[50 x 50]] }
|
||||
00000057420A1980: {[MeanOfFeatures Value[2]] }
|
||||
|
@ -448,7 +448,7 @@ Memory Sharing Structure:
|
|||
00000057439283E0: {[LogOfPrior Value[2]] }
|
||||
00000057439285C0: {[W0 Gradient[50 x 2]] [W0*features+B0 Value[50 x 1 x *]] }
|
||||
0000005743928660: {[B1 Gradient[50 x 1]] [H2 Gradient[50 x 1 x *]] [HLast Gradient[2 x 1 x *]] }
|
||||
00000057439287A0: {[EvalErrorPrediction Value[1]] }
|
||||
00000057439287A0: {[EvalClassificationError Value[1]] }
|
||||
0000005743928980: {[CrossEntropyWithSoftmax Value[1]] }
|
||||
0000005743928A20: {[B2 Gradient[2 x 1]] }
|
||||
0000005743928E80: {[H1 Value[50 x 1 x *]] [W0*features Gradient[50 x *]] }
|
||||
|
@ -472,139 +472,139 @@ Memory Sharing Structure:
|
|||
05/03/2016 15:29:54: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 15:29:54: Starting minibatch loop.
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70650452 * 250; EvalErrorPrediction = 0.55200000 * 250; time = 0.0115s; samplesPerSecond = 21832.2
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.69701831 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0095s; samplesPerSecond = 26326.9
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.71089587 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0100s; samplesPerSecond = 25067.7
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.72980273 * 250; EvalErrorPrediction = 0.56000000 * 250; time = 0.0096s; samplesPerSecond = 26079.7
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70902783 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0115s; samplesPerSecond = 21692.0
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72657300 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0124s; samplesPerSecond = 20127.2
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.69319678 * 250; EvalErrorPrediction = 0.43200000 * 250; time = 0.0091s; samplesPerSecond = 27439.4
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.73563477 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0112s; samplesPerSecond = 22246.0
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.71463281 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0115s; samplesPerSecond = 21739.1
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.75213428 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0105s; samplesPerSecond = 23814.1
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.75931445 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0115s; samplesPerSecond = 21763.7
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.73075293 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0120s; samplesPerSecond = 20835.1
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.76701953 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0130s; samplesPerSecond = 19305.0
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.70451270 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0108s; samplesPerSecond = 23184.6
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70539941 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0117s; samplesPerSecond = 21385.8
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.72700293 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0120s; samplesPerSecond = 20917.0
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70096191 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0112s; samplesPerSecond = 22301.5
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.69437305 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0113s; samplesPerSecond = 22079.0
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.69161621 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0116s; samplesPerSecond = 21514.6
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.73388281 * 250; EvalErrorPrediction = 0.55200000 * 250; time = 0.0107s; samplesPerSecond = 23406.0
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.72255664 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0116s; samplesPerSecond = 21546.2
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70414551 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0115s; samplesPerSecond = 21756.2
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69976758 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0113s; samplesPerSecond = 22065.3
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.72419141 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0114s; samplesPerSecond = 22018.7
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69943945 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0111s; samplesPerSecond = 22604.0
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69206445 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0111s; samplesPerSecond = 22504.3
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.68771680 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0113s; samplesPerSecond = 22118.0
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69878516 * 250; EvalErrorPrediction = 0.44000000 * 250; time = 0.0130s; samplesPerSecond = 19278.2
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.71889844 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0127s; samplesPerSecond = 19632.5
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.70086523 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0095s; samplesPerSecond = 26329.6
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.70878320 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0112s; samplesPerSecond = 22361.4
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.70674414 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0130s; samplesPerSecond = 19168.8
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69707422 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0094s; samplesPerSecond = 26729.4
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.68588281 * 250; EvalErrorPrediction = 0.40800000 * 250; time = 0.0112s; samplesPerSecond = 22365.4
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.67734766 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0128s; samplesPerSecond = 19583.3
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.67958008 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0092s; samplesPerSecond = 27144.4
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.66424805 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0114s; samplesPerSecond = 21864.6
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.62412500 * 250; EvalErrorPrediction = 0.20400000 * 250; time = 0.0116s; samplesPerSecond = 21475.8
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.58007422 * 250; EvalErrorPrediction = 0.16000000 * 250; time = 0.0094s; samplesPerSecond = 26567.5
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.52764648 * 250; EvalErrorPrediction = 0.19200000 * 250; time = 0.0132s; samplesPerSecond = 18988.3
|
||||
05/03/2016 15:29:54: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.69975483 * 10000; EvalErrorPrediction = 0.46850000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=0.453807s
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70650452 * 250; EvalClassificationError = 0.55200000 * 250; time = 0.0115s; samplesPerSecond = 21832.2
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.69701831 * 250; EvalClassificationError = 0.47600000 * 250; time = 0.0095s; samplesPerSecond = 26326.9
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.71089587 * 250; EvalClassificationError = 0.50400000 * 250; time = 0.0100s; samplesPerSecond = 25067.7
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.72980273 * 250; EvalClassificationError = 0.56000000 * 250; time = 0.0096s; samplesPerSecond = 26079.7
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70902783 * 250; EvalClassificationError = 0.52800000 * 250; time = 0.0115s; samplesPerSecond = 21692.0
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72657300 * 250; EvalClassificationError = 0.54400000 * 250; time = 0.0124s; samplesPerSecond = 20127.2
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.69319678 * 250; EvalClassificationError = 0.43200000 * 250; time = 0.0091s; samplesPerSecond = 27439.4
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.73563477 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0112s; samplesPerSecond = 22246.0
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.71463281 * 250; EvalClassificationError = 0.51200000 * 250; time = 0.0115s; samplesPerSecond = 21739.1
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.75213428 * 250; EvalClassificationError = 0.47200000 * 250; time = 0.0105s; samplesPerSecond = 23814.1
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.75931445 * 250; EvalClassificationError = 0.53200000 * 250; time = 0.0115s; samplesPerSecond = 21763.7
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.73075293 * 250; EvalClassificationError = 0.50800000 * 250; time = 0.0120s; samplesPerSecond = 20835.1
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.76701953 * 250; EvalClassificationError = 0.53200000 * 250; time = 0.0130s; samplesPerSecond = 19305.0
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.70451270 * 250; EvalClassificationError = 0.46800000 * 250; time = 0.0108s; samplesPerSecond = 23184.6
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70539941 * 250; EvalClassificationError = 0.50400000 * 250; time = 0.0117s; samplesPerSecond = 21385.8
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.72700293 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0120s; samplesPerSecond = 20917.0
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70096191 * 250; EvalClassificationError = 0.45600000 * 250; time = 0.0112s; samplesPerSecond = 22301.5
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.69437305 * 250; EvalClassificationError = 0.49600000 * 250; time = 0.0113s; samplesPerSecond = 22079.0
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.69161621 * 250; EvalClassificationError = 0.46800000 * 250; time = 0.0116s; samplesPerSecond = 21514.6
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.73388281 * 250; EvalClassificationError = 0.55200000 * 250; time = 0.0107s; samplesPerSecond = 23406.0
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.72255664 * 250; EvalClassificationError = 0.46800000 * 250; time = 0.0116s; samplesPerSecond = 21546.2
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70414551 * 250; EvalClassificationError = 0.45600000 * 250; time = 0.0115s; samplesPerSecond = 21756.2
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69976758 * 250; EvalClassificationError = 0.46000000 * 250; time = 0.0113s; samplesPerSecond = 22065.3
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.72419141 * 250; EvalClassificationError = 0.51600000 * 250; time = 0.0114s; samplesPerSecond = 22018.7
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69943945 * 250; EvalClassificationError = 0.51200000 * 250; time = 0.0111s; samplesPerSecond = 22604.0
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69206445 * 250; EvalClassificationError = 0.47600000 * 250; time = 0.0111s; samplesPerSecond = 22504.3
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.68771680 * 250; EvalClassificationError = 0.45600000 * 250; time = 0.0113s; samplesPerSecond = 22118.0
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69878516 * 250; EvalClassificationError = 0.44000000 * 250; time = 0.0130s; samplesPerSecond = 19278.2
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.71889844 * 250; EvalClassificationError = 0.45600000 * 250; time = 0.0127s; samplesPerSecond = 19632.5
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.70086523 * 250; EvalClassificationError = 0.52400000 * 250; time = 0.0095s; samplesPerSecond = 26329.6
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.70878320 * 250; EvalClassificationError = 0.53200000 * 250; time = 0.0112s; samplesPerSecond = 22361.4
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.70674414 * 250; EvalClassificationError = 0.48000000 * 250; time = 0.0130s; samplesPerSecond = 19168.8
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69707422 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0094s; samplesPerSecond = 26729.4
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.68588281 * 250; EvalClassificationError = 0.40800000 * 250; time = 0.0112s; samplesPerSecond = 22365.4
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.67734766 * 250; EvalClassificationError = 0.45600000 * 250; time = 0.0128s; samplesPerSecond = 19583.3
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.67958008 * 250; EvalClassificationError = 0.48000000 * 250; time = 0.0092s; samplesPerSecond = 27144.4
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.66424805 * 250; EvalClassificationError = 0.46800000 * 250; time = 0.0114s; samplesPerSecond = 21864.6
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.62412500 * 250; EvalClassificationError = 0.20400000 * 250; time = 0.0116s; samplesPerSecond = 21475.8
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.58007422 * 250; EvalClassificationError = 0.16000000 * 250; time = 0.0094s; samplesPerSecond = 26567.5
|
||||
05/03/2016 15:29:54: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.52764648 * 250; EvalClassificationError = 0.19200000 * 250; time = 0.0132s; samplesPerSecond = 18988.3
|
||||
05/03/2016 15:29:54: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.69975483 * 10000; EvalClassificationError = 0.46850000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=0.453807s
|
||||
05/03/2016 15:29:54: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn.1'
|
||||
|
||||
05/03/2016 15:29:54: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 15:29:54: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.45075654 * 250; EvalErrorPrediction = 0.15200000 * 250; time = 0.0250s; samplesPerSecond = 10002.4
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.40775497 * 250; EvalErrorPrediction = 0.14400000 * 250; time = 0.0219s; samplesPerSecond = 11420.2
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.34165228 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0230s; samplesPerSecond = 10859.6
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.29708900 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0198s; samplesPerSecond = 12604.0
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.26669365 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0211s; samplesPerSecond = 11860.7
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.25328680 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0212s; samplesPerSecond = 11817.0
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.21017820 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0237s; samplesPerSecond = 10540.1
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.21483054 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0214s; samplesPerSecond = 11699.7
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.16626513 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0213s; samplesPerSecond = 11757.5
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.17672434 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0239s; samplesPerSecond = 10454.6
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.22140190 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0208s; samplesPerSecond = 12033.1
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.17048554 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0237s; samplesPerSecond = 10553.4
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.16438517 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0234s; samplesPerSecond = 10662.3
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13782141 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0218s; samplesPerSecond = 11449.0
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16909663 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0244s; samplesPerSecond = 10228.7
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.15419129 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0229s; samplesPerSecond = 10924.7
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.22229924 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0242s; samplesPerSecond = 10340.4
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18134995 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0236s; samplesPerSecond = 10579.3
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.15616904 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0236s; samplesPerSecond = 10594.6
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.17162733 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0262s; samplesPerSecond = 9530.3
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15676289 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0262s; samplesPerSecond = 9554.4
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.16159542 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0262s; samplesPerSecond = 9558.8
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.16102246 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0284s; samplesPerSecond = 8800.3
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.15392923 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0248s; samplesPerSecond = 10089.6
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.14898334 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0269s; samplesPerSecond = 9279.5
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.15087969 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0285s; samplesPerSecond = 8785.2
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.15494578 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0247s; samplesPerSecond = 10101.4
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.17878713 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0250s; samplesPerSecond = 9986.0
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.22845049 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0249s; samplesPerSecond = 10045.4
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16884430 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0241s; samplesPerSecond = 10376.5
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17970282 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0237s; samplesPerSecond = 10533.9
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13292468 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0257s; samplesPerSecond = 9721.6
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.14167778 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0226s; samplesPerSecond = 11048.3
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.18716852 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0237s; samplesPerSecond = 10534.7
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.15480385 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0258s; samplesPerSecond = 9705.0
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.19482328 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0247s; samplesPerSecond = 10115.7
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.17488171 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0249s; samplesPerSecond = 10048.2
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15164433 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0281s; samplesPerSecond = 8901.2
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.12142463 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0222s; samplesPerSecond = 11279.0
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15287631 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0238s; samplesPerSecond = 10489.7
|
||||
05/03/2016 15:29:55: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.19475469 * 10000; EvalErrorPrediction = 0.07830000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.964496s
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.45075654 * 250; EvalClassificationError = 0.15200000 * 250; time = 0.0250s; samplesPerSecond = 10002.4
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.40775497 * 250; EvalClassificationError = 0.14400000 * 250; time = 0.0219s; samplesPerSecond = 11420.2
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.34165228 * 250; EvalClassificationError = 0.11200000 * 250; time = 0.0230s; samplesPerSecond = 10859.6
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.29708900 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0198s; samplesPerSecond = 12604.0
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.26669365 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0211s; samplesPerSecond = 11860.7
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.25328680 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0212s; samplesPerSecond = 11817.0
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.21017820 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0237s; samplesPerSecond = 10540.1
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.21483054 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0214s; samplesPerSecond = 11699.7
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.16626513 * 250; EvalClassificationError = 0.04000000 * 250; time = 0.0213s; samplesPerSecond = 11757.5
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.17672434 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0239s; samplesPerSecond = 10454.6
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.22140190 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0208s; samplesPerSecond = 12033.1
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.17048554 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0237s; samplesPerSecond = 10553.4
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.16438517 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0234s; samplesPerSecond = 10662.3
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13782141 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0218s; samplesPerSecond = 11449.0
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16909663 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0244s; samplesPerSecond = 10228.7
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.15419129 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0229s; samplesPerSecond = 10924.7
|
||||
05/03/2016 15:29:54: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.22229924 * 250; EvalClassificationError = 0.11200000 * 250; time = 0.0242s; samplesPerSecond = 10340.4
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18134995 * 250; EvalClassificationError = 0.09600000 * 250; time = 0.0236s; samplesPerSecond = 10579.3
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.15616904 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0236s; samplesPerSecond = 10594.6
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.17162733 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0262s; samplesPerSecond = 9530.3
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15676289 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0262s; samplesPerSecond = 9554.4
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.16159542 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0262s; samplesPerSecond = 9558.8
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.16102246 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0284s; samplesPerSecond = 8800.3
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.15392923 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0248s; samplesPerSecond = 10089.6
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.14898334 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0269s; samplesPerSecond = 9279.5
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.15087969 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0285s; samplesPerSecond = 8785.2
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.15494578 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0247s; samplesPerSecond = 10101.4
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.17878713 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0250s; samplesPerSecond = 9986.0
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.22845049 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0249s; samplesPerSecond = 10045.4
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16884430 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0241s; samplesPerSecond = 10376.5
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17970282 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0237s; samplesPerSecond = 10533.9
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13292468 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0257s; samplesPerSecond = 9721.6
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.14167778 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0226s; samplesPerSecond = 11048.3
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.18716852 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0237s; samplesPerSecond = 10534.7
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.15480385 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0258s; samplesPerSecond = 9705.0
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.19482328 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0247s; samplesPerSecond = 10115.7
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.17488171 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0249s; samplesPerSecond = 10048.2
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15164433 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0281s; samplesPerSecond = 8901.2
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.12142463 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0222s; samplesPerSecond = 11279.0
|
||||
05/03/2016 15:29:55: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15287631 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0238s; samplesPerSecond = 10489.7
|
||||
05/03/2016 15:29:55: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.19475469 * 10000; EvalClassificationError = 0.07830000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.964496s
|
||||
05/03/2016 15:29:55: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn.2'
|
||||
|
||||
05/03/2016 15:29:55: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 15:29:55: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1).
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.10717578 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0253s; samplesPerSecond = 9869.7
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.17521929 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0234s; samplesPerSecond = 10701.1
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14088211 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0250s; samplesPerSecond = 9986.8
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.16281337 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0243s; samplesPerSecond = 10287.6
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.11778386 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0234s; samplesPerSecond = 10666.9
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.16295400 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0266s; samplesPerSecond = 9385.8
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.16287201 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0233s; samplesPerSecond = 10746.2
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.19482140 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0242s; samplesPerSecond = 10312.3
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.20113689 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0235s; samplesPerSecond = 10643.3
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.13748570 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0238s; samplesPerSecond = 10484.4
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.20080420 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0236s; samplesPerSecond = 10600.9
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.17730590 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0268s; samplesPerSecond = 9342.3
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.15851029 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0233s; samplesPerSecond = 10743.0
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16257260 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0250s; samplesPerSecond = 10012.8
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.19772537 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0224s; samplesPerSecond = 11143.3
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.10259204 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0235s; samplesPerSecond = 10626.1
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17093073 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0244s; samplesPerSecond = 10230.0
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16628544 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0252s; samplesPerSecond = 9936.8
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.12690716 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0246s; samplesPerSecond = 10171.7
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.11894288 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0233s; samplesPerSecond = 10718.1
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.12815907 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0246s; samplesPerSecond = 10151.0
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.18265773 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0225s; samplesPerSecond = 11131.9
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.13388730 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0231s; samplesPerSecond = 10807.5
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.19787903 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0251s; samplesPerSecond = 9951.4
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.15563315 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0241s; samplesPerSecond = 10373.0
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.11837055 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0240s; samplesPerSecond = 10429.3
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.13732942 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0234s; samplesPerSecond = 10689.7
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.20012115 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0253s; samplesPerSecond = 9872.4
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.19086846 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0238s; samplesPerSecond = 10525.4
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16492589 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0243s; samplesPerSecond = 10272.8
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.12141157 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0238s; samplesPerSecond = 10509.5
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.16335481 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0236s; samplesPerSecond = 10579.3
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.15923900 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0241s; samplesPerSecond = 10358.0
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.12315803 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0235s; samplesPerSecond = 10617.1
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13481532 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0260s; samplesPerSecond = 9612.4
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.20958008 * 250; EvalErrorPrediction = 0.11600000 * 250; time = 0.0223s; samplesPerSecond = 11232.4
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16519713 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0255s; samplesPerSecond = 9814.3
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14990733 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0239s; samplesPerSecond = 10481.3
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.16508552 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0255s; samplesPerSecond = 9789.3
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.16941540 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0240s; samplesPerSecond = 10435.4
|
||||
05/03/2016 15:29:56: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15791792 * 10000; EvalErrorPrediction = 0.07460000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.970059s
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.10717578 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0253s; samplesPerSecond = 9869.7
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.17521929 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0234s; samplesPerSecond = 10701.1
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14088211 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0250s; samplesPerSecond = 9986.8
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.16281337 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0243s; samplesPerSecond = 10287.6
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.11778386 * 250; EvalClassificationError = 0.04000000 * 250; time = 0.0234s; samplesPerSecond = 10666.9
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.16295400 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0266s; samplesPerSecond = 9385.8
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.16287201 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0233s; samplesPerSecond = 10746.2
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.19482140 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0242s; samplesPerSecond = 10312.3
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.20113689 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0235s; samplesPerSecond = 10643.3
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.13748570 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0238s; samplesPerSecond = 10484.4
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.20080420 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0236s; samplesPerSecond = 10600.9
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.17730590 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0268s; samplesPerSecond = 9342.3
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.15851029 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0233s; samplesPerSecond = 10743.0
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16257260 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0250s; samplesPerSecond = 10012.8
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.19772537 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0224s; samplesPerSecond = 11143.3
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.10259204 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0235s; samplesPerSecond = 10626.1
|
||||
05/03/2016 15:29:55: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17093073 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0244s; samplesPerSecond = 10230.0
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16628544 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0252s; samplesPerSecond = 9936.8
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.12690716 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0246s; samplesPerSecond = 10171.7
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.11894288 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0233s; samplesPerSecond = 10718.1
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.12815907 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0246s; samplesPerSecond = 10151.0
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.18265773 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0225s; samplesPerSecond = 11131.9
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.13388730 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0231s; samplesPerSecond = 10807.5
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.19787903 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0251s; samplesPerSecond = 9951.4
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.15563315 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0241s; samplesPerSecond = 10373.0
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.11837055 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0240s; samplesPerSecond = 10429.3
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.13732942 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0234s; samplesPerSecond = 10689.7
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.20012115 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0253s; samplesPerSecond = 9872.4
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.19086846 * 250; EvalClassificationError = 0.11200000 * 250; time = 0.0238s; samplesPerSecond = 10525.4
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16492589 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0243s; samplesPerSecond = 10272.8
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.12141157 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0238s; samplesPerSecond = 10509.5
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.16335481 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0236s; samplesPerSecond = 10579.3
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.15923900 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0241s; samplesPerSecond = 10358.0
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.12315803 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0235s; samplesPerSecond = 10617.1
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13481532 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0260s; samplesPerSecond = 9612.4
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.20958008 * 250; EvalClassificationError = 0.11600000 * 250; time = 0.0223s; samplesPerSecond = 11232.4
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16519713 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0255s; samplesPerSecond = 9814.3
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14990733 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0239s; samplesPerSecond = 10481.3
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.16508552 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0255s; samplesPerSecond = 9789.3
|
||||
05/03/2016 15:29:56: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.16941540 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0240s; samplesPerSecond = 10435.4
|
||||
05/03/2016 15:29:56: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15791792 * 10000; EvalClassificationError = 0.07460000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.970059s
|
||||
05/03/2016 15:29:56: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503162947.903093\CNTKTextFormatReader\Examples\Other\Simple2d_MultiGpu@release_gpu/Models/multigpu.dnn'
|
||||
05/03/2016 15:29:56: CNTKCommandTrainEnd: Multigpu_Demo_Train
|
||||
|
||||
|
@ -622,7 +622,7 @@ Post-processing network...
|
|||
|
||||
7 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -651,7 +651,7 @@ Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *1] -> [2 x 1 x *1]
|
|||
Validating --> B2 = LearnableParameter() : -> [2 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *1], [2 x 1] -> [2 x 1 x *1]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *1] -> [2 x 1 x *1]
|
||||
Validating --> Prior = Mean (labels) : [2 x *1] -> [2]
|
||||
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
|
||||
|
@ -675,7 +675,7 @@ Allocating matrices for forward and/or backward propagation.
|
|||
|
||||
Memory Sharing Structure:
|
||||
|
||||
0000000000000000: {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalErrorPrediction Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
|
||||
0000000000000000: {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalClassificationError Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
|
||||
0000005743925BB0: {[HLast Value[2 x 1 x *1]] }
|
||||
0000005743925D90: {[MVNormalizedFeatures Value[2 x *1]] }
|
||||
0000005743925E30: {[CrossEntropyWithSoftmax Value[1]] }
|
||||
|
@ -688,7 +688,7 @@ Memory Sharing Structure:
|
|||
00000057439265B0: {[W0*features+B0 Value[50 x 1 x *1]] }
|
||||
0000005743926650: {[W1*H1 Value[50 x 1 x *1]] }
|
||||
0000005743926970: {[H2 Value[50 x 1 x *1]] }
|
||||
0000005743926AB0: {[EvalErrorPrediction Value[1]] }
|
||||
0000005743926AB0: {[EvalClassificationError Value[1]] }
|
||||
000000574B7FAD10: {[W0 Value[50 x 2]] }
|
||||
000000574B7FB170: {[InvStdOfFeatures Value[2]] }
|
||||
000000574B7FB210: {[MeanOfFeatures Value[2]] }
|
||||
|
@ -700,7 +700,7 @@ Memory Sharing Structure:
|
|||
000000574D960E50: {[B2 Value[2 x 1]] }
|
||||
000000574D9610D0: {[B0 Value[50 x 1]] }
|
||||
|
||||
05/03/2016 15:29:56: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.05638474 * 603; CrossEntropyWithSoftmax = 0.12022919 * 603; perplexity = 1.12775529
|
||||
05/03/2016 15:29:56: Final Results: Minibatch[1-1]: EvalClassificationError = 0.05638474 * 603; CrossEntropyWithSoftmax = 0.12022919 * 603; perplexity = 1.12775529
|
||||
|
||||
05/03/2016 15:29:56: Action "test" complete.
|
||||
|
||||
|
|
|
@ -21,7 +21,7 @@ testCases:
|
|||
patterns:
|
||||
- Finished Epoch[{{integer}} of {{integer}}]
|
||||
- CrossEntropyWithSoftmax = {{float,tolerance=0.05}} * {{integer}}
|
||||
- EvalErrorPrediction = {{float,tolerance=0.05}} * {{integer}}
|
||||
- EvalClassificationError = {{float,tolerance=0.05}} * {{integer}}
|
||||
- totalSamplesSeen = {{integer}}
|
||||
- learningRatePerSample = {{float,tolerance=0.1%}}
|
||||
|
||||
|
@ -29,10 +29,10 @@ testCases:
|
|||
patterns:
|
||||
- Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}}
|
||||
- CrossEntropyWithSoftmax = {{float,tolerance=0.05}} * {{integer}}
|
||||
- EvalErrorPrediction = {{float,tolerance=0.05}} * {{integer}}
|
||||
- EvalClassificationError = {{float,tolerance=0.05}} * {{integer}}
|
||||
|
||||
Final test results must match:
|
||||
patterns:
|
||||
- "Final Results: Minibatch[{{integer}}-{{integer}}]"
|
||||
- CrossEntropyWithSoftmax = {{float,tolerance=0.05}} * {{integer}}
|
||||
- EvalErrorPrediction = {{float,tolerance=0.05}} * {{integer}}
|
||||
- EvalClassificationError = {{float,tolerance=0.05}} * {{integer}}
|
|
@ -58,7 +58,7 @@ Simple_Demo_Train = [
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -157,7 +157,7 @@ Simple_Demo_Train = [
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -300,7 +300,7 @@ configparameters: Simple.cntk:Simple_Demo_Train=[
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -355,7 +355,7 @@ Post-processing network...
|
|||
|
||||
7 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -384,7 +384,7 @@ Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *] -> [2 x 1 x *]
|
|||
Validating --> B2 = LearnableParameter() : -> [2 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *], [2 x 1] -> [2 x 1 x *]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *] -> [2 x 1 x *]
|
||||
Validating --> Prior = Mean (labels) : [2 x *] -> [2]
|
||||
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
|
||||
|
@ -408,14 +408,14 @@ Post-processing network complete.
|
|||
|
||||
05/03/2016 15:21:15: Evaluation criterion node(s):
|
||||
|
||||
05/03/2016 15:21:15: EvalErrorPrediction = ErrorPrediction
|
||||
05/03/2016 15:21:15: EvalClassificationError = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
||||
Memory Sharing Structure:
|
||||
|
||||
(nil): {[EvalErrorPrediction Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
|
||||
(nil): {[EvalClassificationError Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
|
||||
0x2e7f338: {[features Value[2 x *]] }
|
||||
0x2e82908: {[MeanOfFeatures Value[2]] }
|
||||
0x2e84f08: {[InvStdOfFeatures Value[2]] }
|
||||
|
@ -427,7 +427,7 @@ Memory Sharing Structure:
|
|||
0x2e8b718: {[B2 Value[2 x 1]] }
|
||||
0x2e8c1e8: {[labels Value[2 x *]] }
|
||||
0x2e8cf38: {[Prior Value[2]] }
|
||||
0x2e926f8: {[EvalErrorPrediction Value[1]] }
|
||||
0x2e926f8: {[EvalClassificationError Value[1]] }
|
||||
0x2e92858: {[ScaledLogLikelihood Value[2 x 1 x *]] }
|
||||
0x2e929b8: {[CrossEntropyWithSoftmax Value[1]] }
|
||||
0x2e93218: {[LogOfPrior Value[2]] }
|
||||
|
@ -458,139 +458,139 @@ Memory Sharing Structure:
|
|||
05/03/2016 15:21:17: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 15:21:17: Starting minibatch loop.
|
||||
05/03/2016 15:21:17: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.69966235 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0806s; samplesPerSecond = 3103.4
|
||||
05/03/2016 15:21:17: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.70639648 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0489s; samplesPerSecond = 5107.5
|
||||
05/03/2016 15:21:17: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.70470264 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0598s; samplesPerSecond = 4180.0
|
||||
05/03/2016 15:21:17: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.69813501 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0581s; samplesPerSecond = 4306.3
|
||||
05/03/2016 15:21:17: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.73551416 * 250; EvalErrorPrediction = 0.57600000 * 250; time = 0.0618s; samplesPerSecond = 4045.4
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72432324 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0579s; samplesPerSecond = 4314.7
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.73327588 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.2699s; samplesPerSecond = 926.3
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.70092627 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0620s; samplesPerSecond = 4035.0
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.72354980 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0826s; samplesPerSecond = 3027.2
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.72148096 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0811s; samplesPerSecond = 3082.2
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.69814941 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0895s; samplesPerSecond = 2793.1
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.70699121 * 250; EvalErrorPrediction = 0.54800000 * 250; time = 0.0482s; samplesPerSecond = 5187.9
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.69898437 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0567s; samplesPerSecond = 4408.3
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.71712695 * 250; EvalErrorPrediction = 0.54000000 * 250; time = 0.0586s; samplesPerSecond = 4266.7
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.69470703 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0546s; samplesPerSecond = 4575.3
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.71375879 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0640s; samplesPerSecond = 3907.4
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70381641 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0756s; samplesPerSecond = 3307.9
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.71748633 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0598s; samplesPerSecond = 4178.1
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71863281 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0813s; samplesPerSecond = 3075.3
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.70715234 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0811s; samplesPerSecond = 3082.9
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.70401074 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0673s; samplesPerSecond = 3717.1
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70599414 * 250; EvalErrorPrediction = 0.48400000 * 250; time = 0.0819s; samplesPerSecond = 3052.5
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69628711 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0909s; samplesPerSecond = 2749.3
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.75920898 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0752s; samplesPerSecond = 3323.1
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.70542578 * 250; EvalErrorPrediction = 0.43600000 * 250; time = 0.0734s; samplesPerSecond = 3406.2
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.70643945 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0869s; samplesPerSecond = 2875.4
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.72481641 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0893s; samplesPerSecond = 2798.7
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.71133594 * 250; EvalErrorPrediction = 0.55600000 * 250; time = 0.0814s; samplesPerSecond = 3072.2
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.68605664 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0812s; samplesPerSecond = 3077.4
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.69535352 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0895s; samplesPerSecond = 2792.1
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.68741797 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0831s; samplesPerSecond = 3008.7
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.67916406 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0818s; samplesPerSecond = 3056.5
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.67841992 * 250; EvalErrorPrediction = 0.44800000 * 250; time = 0.2681s; samplesPerSecond = 932.5
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.68038477 * 250; EvalErrorPrediction = 0.49200000 * 250; time = 0.0513s; samplesPerSecond = 4869.4
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.61937109 * 250; EvalErrorPrediction = 0.30400000 * 250; time = 0.0680s; samplesPerSecond = 3678.3
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.57844141 * 250; EvalErrorPrediction = 0.27200000 * 250; time = 0.0758s; samplesPerSecond = 3296.3
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.49124023 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0664s; samplesPerSecond = 3763.4
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.39071289 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0505s; samplesPerSecond = 4955.3
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.27650586 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0515s; samplesPerSecond = 4855.7
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.26430078 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0517s; samplesPerSecond = 4834.4
|
||||
05/03/2016 15:21:20: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.66664150 * 10000; EvalErrorPrediction = 0.44430000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=3.21314s
|
||||
05/03/2016 15:21:17: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.69966235 * 250; EvalClassificationError = 0.51200000 * 250; time = 0.0806s; samplesPerSecond = 3103.4
|
||||
05/03/2016 15:21:17: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.70639648 * 250; EvalClassificationError = 0.49600000 * 250; time = 0.0489s; samplesPerSecond = 5107.5
|
||||
05/03/2016 15:21:17: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.70470264 * 250; EvalClassificationError = 0.52400000 * 250; time = 0.0598s; samplesPerSecond = 4180.0
|
||||
05/03/2016 15:21:17: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.69813501 * 250; EvalClassificationError = 0.52400000 * 250; time = 0.0581s; samplesPerSecond = 4306.3
|
||||
05/03/2016 15:21:17: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.73551416 * 250; EvalClassificationError = 0.57600000 * 250; time = 0.0618s; samplesPerSecond = 4045.4
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72432324 * 250; EvalClassificationError = 0.50800000 * 250; time = 0.0579s; samplesPerSecond = 4314.7
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.73327588 * 250; EvalClassificationError = 0.48800000 * 250; time = 0.2699s; samplesPerSecond = 926.3
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.70092627 * 250; EvalClassificationError = 0.50400000 * 250; time = 0.0620s; samplesPerSecond = 4035.0
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.72354980 * 250; EvalClassificationError = 0.46000000 * 250; time = 0.0826s; samplesPerSecond = 3027.2
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.72148096 * 250; EvalClassificationError = 0.52000000 * 250; time = 0.0811s; samplesPerSecond = 3082.2
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.69814941 * 250; EvalClassificationError = 0.48000000 * 250; time = 0.0895s; samplesPerSecond = 2793.1
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.70699121 * 250; EvalClassificationError = 0.54800000 * 250; time = 0.0482s; samplesPerSecond = 5187.9
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.69898437 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0567s; samplesPerSecond = 4408.3
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.71712695 * 250; EvalClassificationError = 0.54000000 * 250; time = 0.0586s; samplesPerSecond = 4266.7
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.69470703 * 250; EvalClassificationError = 0.52400000 * 250; time = 0.0546s; samplesPerSecond = 4575.3
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.71375879 * 250; EvalClassificationError = 0.51200000 * 250; time = 0.0640s; samplesPerSecond = 3907.4
|
||||
05/03/2016 15:21:18: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70381641 * 250; EvalClassificationError = 0.47600000 * 250; time = 0.0756s; samplesPerSecond = 3307.9
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.71748633 * 250; EvalClassificationError = 0.48800000 * 250; time = 0.0598s; samplesPerSecond = 4178.1
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71863281 * 250; EvalClassificationError = 0.50400000 * 250; time = 0.0813s; samplesPerSecond = 3075.3
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.70715234 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0811s; samplesPerSecond = 3082.9
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.70401074 * 250; EvalClassificationError = 0.48000000 * 250; time = 0.0673s; samplesPerSecond = 3717.1
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70599414 * 250; EvalClassificationError = 0.48400000 * 250; time = 0.0819s; samplesPerSecond = 3052.5
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69628711 * 250; EvalClassificationError = 0.48000000 * 250; time = 0.0909s; samplesPerSecond = 2749.3
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.75920898 * 250; EvalClassificationError = 0.51200000 * 250; time = 0.0752s; samplesPerSecond = 3323.1
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.70542578 * 250; EvalClassificationError = 0.43600000 * 250; time = 0.0734s; samplesPerSecond = 3406.2
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.70643945 * 250; EvalClassificationError = 0.46400000 * 250; time = 0.0869s; samplesPerSecond = 2875.4
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.72481641 * 250; EvalClassificationError = 0.51600000 * 250; time = 0.0893s; samplesPerSecond = 2798.7
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.71133594 * 250; EvalClassificationError = 0.55600000 * 250; time = 0.0814s; samplesPerSecond = 3072.2
|
||||
05/03/2016 15:21:19: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.68605664 * 250; EvalClassificationError = 0.47200000 * 250; time = 0.0812s; samplesPerSecond = 3077.4
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.69535352 * 250; EvalClassificationError = 0.47200000 * 250; time = 0.0895s; samplesPerSecond = 2792.1
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.68741797 * 250; EvalClassificationError = 0.45200000 * 250; time = 0.0831s; samplesPerSecond = 3008.7
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.67916406 * 250; EvalClassificationError = 0.46000000 * 250; time = 0.0818s; samplesPerSecond = 3056.5
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.67841992 * 250; EvalClassificationError = 0.44800000 * 250; time = 0.2681s; samplesPerSecond = 932.5
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.68038477 * 250; EvalClassificationError = 0.49200000 * 250; time = 0.0513s; samplesPerSecond = 4869.4
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.61937109 * 250; EvalClassificationError = 0.30400000 * 250; time = 0.0680s; samplesPerSecond = 3678.3
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.57844141 * 250; EvalClassificationError = 0.27200000 * 250; time = 0.0758s; samplesPerSecond = 3296.3
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.49124023 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0664s; samplesPerSecond = 3763.4
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.39071289 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0505s; samplesPerSecond = 4955.3
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.27650586 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0515s; samplesPerSecond = 4855.7
|
||||
05/03/2016 15:21:20: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.26430078 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0517s; samplesPerSecond = 4834.4
|
||||
05/03/2016 15:21:20: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.66664150 * 10000; EvalClassificationError = 0.44430000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=3.21314s
|
||||
05/03/2016 15:21:20: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu/Models/simple.dnn.1'
|
||||
|
||||
05/03/2016 15:21:20: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 15:21:20: Starting minibatch loop.
|
||||
05/03/2016 15:21:20: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.20732678 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0782s; samplesPerSecond = 3196.0
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.19684015 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0812s; samplesPerSecond = 3079.4
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.16083588 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0796s; samplesPerSecond = 3141.3
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.13558752 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0811s; samplesPerSecond = 3083.5
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.17992950 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0814s; samplesPerSecond = 3070.9
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.17858063 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0812s; samplesPerSecond = 3079.3
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.16847546 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0688s; samplesPerSecond = 3631.6
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16359399 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0547s; samplesPerSecond = 4572.7
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.19534705 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0521s; samplesPerSecond = 4796.2
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.19363660 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0758s; samplesPerSecond = 3297.5
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.12703638 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0682s; samplesPerSecond = 3667.7
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.18622827 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0576s; samplesPerSecond = 4344.0
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.11595044 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0599s; samplesPerSecond = 4171.2
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16689380 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0650s; samplesPerSecond = 3845.2
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.15822559 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0631s; samplesPerSecond = 3964.2
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.18381909 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0638s; samplesPerSecond = 3920.5
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.18274048 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0642s; samplesPerSecond = 3893.2
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18638428 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0564s; samplesPerSecond = 4431.5
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.20111572 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0528s; samplesPerSecond = 4733.8
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.13185034 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0504s; samplesPerSecond = 4962.1
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13692554 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0559s; samplesPerSecond = 4468.8
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.15396802 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0672s; samplesPerSecond = 3719.4
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.15347241 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0818s; samplesPerSecond = 3057.6
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14583887 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.2662s; samplesPerSecond = 939.1
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.12333276 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0738s; samplesPerSecond = 3389.0
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.13958154 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0778s; samplesPerSecond = 3211.3
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12539844 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0772s; samplesPerSecond = 3239.1
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.19014404 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0475s; samplesPerSecond = 5259.1
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.17959521 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0780s; samplesPerSecond = 3206.4
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.18899121 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0469s; samplesPerSecond = 5333.6
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17525586 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0625s; samplesPerSecond = 4003.1
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.14735645 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0940s; samplesPerSecond = 2658.9
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.13705518 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0543s; samplesPerSecond = 4600.2
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.13610693 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0752s; samplesPerSecond = 3324.2
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13555811 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0583s; samplesPerSecond = 4291.1
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.14883594 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0598s; samplesPerSecond = 4180.7
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.14724707 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0599s; samplesPerSecond = 4172.4
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.13130469 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0664s; samplesPerSecond = 3764.2
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.19636084 * 250; EvalErrorPrediction = 0.11600000 * 250; time = 0.0644s; samplesPerSecond = 3884.1
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15681836 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0651s; samplesPerSecond = 3841.0
|
||||
05/03/2016 15:21:23: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.16173864 * 10000; EvalErrorPrediction = 0.07520000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=2.87283s
|
||||
05/03/2016 15:21:20: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.20732678 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0782s; samplesPerSecond = 3196.0
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.19684015 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0812s; samplesPerSecond = 3079.4
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.16083588 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0796s; samplesPerSecond = 3141.3
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.13558752 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0811s; samplesPerSecond = 3083.5
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.17992950 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0814s; samplesPerSecond = 3070.9
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.17858063 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0812s; samplesPerSecond = 3079.3
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.16847546 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0688s; samplesPerSecond = 3631.6
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16359399 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0547s; samplesPerSecond = 4572.7
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.19534705 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0521s; samplesPerSecond = 4796.2
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.19363660 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0758s; samplesPerSecond = 3297.5
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.12703638 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0682s; samplesPerSecond = 3667.7
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.18622827 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0576s; samplesPerSecond = 4344.0
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.11595044 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0599s; samplesPerSecond = 4171.2
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16689380 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0650s; samplesPerSecond = 3845.2
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.15822559 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0631s; samplesPerSecond = 3964.2
|
||||
05/03/2016 15:21:21: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.18381909 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0638s; samplesPerSecond = 3920.5
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.18274048 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0642s; samplesPerSecond = 3893.2
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18638428 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0564s; samplesPerSecond = 4431.5
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.20111572 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0528s; samplesPerSecond = 4733.8
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.13185034 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0504s; samplesPerSecond = 4962.1
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13692554 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0559s; samplesPerSecond = 4468.8
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.15396802 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0672s; samplesPerSecond = 3719.4
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.15347241 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0818s; samplesPerSecond = 3057.6
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14583887 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.2662s; samplesPerSecond = 939.1
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.12333276 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0738s; samplesPerSecond = 3389.0
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.13958154 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0778s; samplesPerSecond = 3211.3
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12539844 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0772s; samplesPerSecond = 3239.1
|
||||
05/03/2016 15:21:22: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.19014404 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0475s; samplesPerSecond = 5259.1
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.17959521 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0780s; samplesPerSecond = 3206.4
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.18899121 * 250; EvalClassificationError = 0.09600000 * 250; time = 0.0469s; samplesPerSecond = 5333.6
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17525586 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0625s; samplesPerSecond = 4003.1
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.14735645 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0940s; samplesPerSecond = 2658.9
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.13705518 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0543s; samplesPerSecond = 4600.2
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.13610693 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0752s; samplesPerSecond = 3324.2
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13555811 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0583s; samplesPerSecond = 4291.1
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.14883594 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0598s; samplesPerSecond = 4180.7
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.14724707 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0599s; samplesPerSecond = 4172.4
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.13130469 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0664s; samplesPerSecond = 3764.2
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.19636084 * 250; EvalClassificationError = 0.11600000 * 250; time = 0.0644s; samplesPerSecond = 3884.1
|
||||
05/03/2016 15:21:23: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15681836 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0651s; samplesPerSecond = 3841.0
|
||||
05/03/2016 15:21:23: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.16173864 * 10000; EvalClassificationError = 0.07520000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=2.87283s
|
||||
05/03/2016 15:21:23: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu/Models/simple.dnn.2'
|
||||
|
||||
05/03/2016 15:21:23: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 15:21:23: Starting minibatch loop.
|
||||
05/03/2016 15:21:23: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.18214960 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0604s; samplesPerSecond = 4138.7
|
||||
05/03/2016 15:21:23: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.13526825 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0622s; samplesPerSecond = 4020.6
|
||||
05/03/2016 15:21:23: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14344995 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0640s; samplesPerSecond = 3906.0
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.12557471 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0628s; samplesPerSecond = 3978.7
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.17627924 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0639s; samplesPerSecond = 3914.6
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.17585291 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0644s; samplesPerSecond = 3884.2
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.14716791 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0628s; samplesPerSecond = 3979.1
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16757751 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0643s; samplesPerSecond = 3885.5
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.10314917 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0642s; samplesPerSecond = 3895.3
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.20322217 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0650s; samplesPerSecond = 3848.0
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.16604797 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0642s; samplesPerSecond = 3892.3
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.15105725 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0651s; samplesPerSecond = 3839.4
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.19206934 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0640s; samplesPerSecond = 3903.9
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13667065 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.2688s; samplesPerSecond = 930.0
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.20713037 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0472s; samplesPerSecond = 5299.3
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.12862158 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0625s; samplesPerSecond = 3998.5
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17174683 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0465s; samplesPerSecond = 5381.7
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16493628 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0526s; samplesPerSecond = 4753.8
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.14843726 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0505s; samplesPerSecond = 4952.5
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.12574292 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0505s; samplesPerSecond = 4951.4
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13455151 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0614s; samplesPerSecond = 4072.8
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.16762988 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0495s; samplesPerSecond = 5055.0
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.22347461 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0523s; samplesPerSecond = 4780.1
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.18213623 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0542s; samplesPerSecond = 4611.6
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.19970923 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0539s; samplesPerSecond = 4638.8
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.22695947 * 250; EvalErrorPrediction = 0.12800000 * 250; time = 0.0542s; samplesPerSecond = 4609.7
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12664502 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0541s; samplesPerSecond = 4625.3
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.15838037 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0538s; samplesPerSecond = 4648.8
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.11555566 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0581s; samplesPerSecond = 4305.4
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14157520 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0544s; samplesPerSecond = 4595.2
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18558350 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0541s; samplesPerSecond = 4622.4
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.15083594 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0540s; samplesPerSecond = 4632.9
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.12831787 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0541s; samplesPerSecond = 4624.1
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.17656494 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0545s; samplesPerSecond = 4587.6
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.14956396 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0625s; samplesPerSecond = 4000.3
|
||||
05/03/2016 15:21:26: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.11451660 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0496s; samplesPerSecond = 5040.3
|
||||
05/03/2016 15:21:26: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16392383 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0496s; samplesPerSecond = 5036.0
|
||||
05/03/2016 15:21:26: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14811230 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0505s; samplesPerSecond = 4955.0
|
||||
05/03/2016 15:21:26: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.16003760 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0588s; samplesPerSecond = 4255.2
|
||||
05/03/2016 15:21:26: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.17969775 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0482s; samplesPerSecond = 5185.4
|
||||
05/03/2016 15:21:26: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15964808 * 10000; EvalErrorPrediction = 0.07750000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=2.49695s
|
||||
05/03/2016 15:21:23: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.18214960 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0604s; samplesPerSecond = 4138.7
|
||||
05/03/2016 15:21:23: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.13526825 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0622s; samplesPerSecond = 4020.6
|
||||
05/03/2016 15:21:23: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14344995 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0640s; samplesPerSecond = 3906.0
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.12557471 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0628s; samplesPerSecond = 3978.7
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.17627924 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0639s; samplesPerSecond = 3914.6
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.17585291 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0644s; samplesPerSecond = 3884.2
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.14716791 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0628s; samplesPerSecond = 3979.1
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16757751 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0643s; samplesPerSecond = 3885.5
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.10314917 * 250; EvalClassificationError = 0.04000000 * 250; time = 0.0642s; samplesPerSecond = 3895.3
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.20322217 * 250; EvalClassificationError = 0.11200000 * 250; time = 0.0650s; samplesPerSecond = 3848.0
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.16604797 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0642s; samplesPerSecond = 3892.3
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.15105725 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0651s; samplesPerSecond = 3839.4
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.19206934 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0640s; samplesPerSecond = 3903.9
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13667065 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.2688s; samplesPerSecond = 930.0
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.20713037 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0472s; samplesPerSecond = 5299.3
|
||||
05/03/2016 15:21:24: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.12862158 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0625s; samplesPerSecond = 3998.5
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17174683 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0465s; samplesPerSecond = 5381.7
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16493628 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0526s; samplesPerSecond = 4753.8
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.14843726 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0505s; samplesPerSecond = 4952.5
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.12574292 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0505s; samplesPerSecond = 4951.4
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13455151 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0614s; samplesPerSecond = 4072.8
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.16762988 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0495s; samplesPerSecond = 5055.0
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.22347461 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0523s; samplesPerSecond = 4780.1
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.18213623 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0542s; samplesPerSecond = 4611.6
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.19970923 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0539s; samplesPerSecond = 4638.8
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.22695947 * 250; EvalClassificationError = 0.12800000 * 250; time = 0.0542s; samplesPerSecond = 4609.7
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12664502 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0541s; samplesPerSecond = 4625.3
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.15838037 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0538s; samplesPerSecond = 4648.8
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.11555566 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0581s; samplesPerSecond = 4305.4
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14157520 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0544s; samplesPerSecond = 4595.2
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18558350 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0541s; samplesPerSecond = 4622.4
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.15083594 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0540s; samplesPerSecond = 4632.9
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.12831787 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0541s; samplesPerSecond = 4624.1
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.17656494 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0545s; samplesPerSecond = 4587.6
|
||||
05/03/2016 15:21:25: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.14956396 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0625s; samplesPerSecond = 4000.3
|
||||
05/03/2016 15:21:26: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.11451660 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0496s; samplesPerSecond = 5040.3
|
||||
05/03/2016 15:21:26: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16392383 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0496s; samplesPerSecond = 5036.0
|
||||
05/03/2016 15:21:26: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14811230 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0505s; samplesPerSecond = 4955.0
|
||||
05/03/2016 15:21:26: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.16003760 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0588s; samplesPerSecond = 4255.2
|
||||
05/03/2016 15:21:26: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.17969775 * 250; EvalClassificationError = 0.09600000 * 250; time = 0.0482s; samplesPerSecond = 5185.4
|
||||
05/03/2016 15:21:26: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15964808 * 10000; EvalClassificationError = 0.07750000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=2.49695s
|
||||
05/03/2016 15:21:26: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_cpu/Models/simple.dnn'
|
||||
05/03/2016 15:21:26: CNTKCommandTrainEnd: Simple_Demo_Train
|
||||
|
||||
|
@ -608,7 +608,7 @@ Post-processing network...
|
|||
|
||||
7 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -637,7 +637,7 @@ Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *1] -> [2 x 1 x *1]
|
|||
Validating --> B2 = LearnableParameter() : -> [2 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *1], [2 x 1] -> [2 x 1 x *1]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *1] -> [2 x 1 x *1]
|
||||
Validating --> Prior = Mean (labels) : [2 x *1] -> [2]
|
||||
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
|
||||
|
@ -661,7 +661,7 @@ Allocating matrices for forward and/or backward propagation.
|
|||
|
||||
Memory Sharing Structure:
|
||||
|
||||
(nil): {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalErrorPrediction Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
|
||||
(nil): {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalClassificationError Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
|
||||
0x2e83eb8: {[W2 Value[2 x 50]] }
|
||||
0x2e87ac8: {[MVNormalizedFeatures Value[2 x *1]] }
|
||||
0x2e87e78: {[W0*features Value[50 x *1]] }
|
||||
|
@ -676,7 +676,7 @@ Memory Sharing Structure:
|
|||
0x2e8d298: {[B2 Value[2 x 1]] }
|
||||
0x2e8f2c8: {[labels Value[2 x *1]] }
|
||||
0x2e8f8e8: {[MeanOfFeatures Value[2]] }
|
||||
0x2e91598: {[EvalErrorPrediction Value[1]] }
|
||||
0x2e91598: {[EvalClassificationError Value[1]] }
|
||||
0x2e916f8: {[CrossEntropyWithSoftmax Value[1]] }
|
||||
0x2e91bb8: {[LogOfPrior Value[2]] }
|
||||
0x2e93758: {[B0 Value[50 x 1]] }
|
||||
|
@ -686,7 +686,7 @@ Memory Sharing Structure:
|
|||
0x2e985f8: {[W1 Value[50 x 50]] }
|
||||
0x2e99178: {[features Value[2 x *1]] }
|
||||
|
||||
05/03/2016 15:21:26: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.05970149 * 603; CrossEntropyWithSoftmax = 0.13085309 * 603; perplexity = 1.13980032
|
||||
05/03/2016 15:21:26: Final Results: Minibatch[1-1]: EvalClassificationError = 0.05970149 * 603; CrossEntropyWithSoftmax = 0.13085309 * 603; perplexity = 1.13980032
|
||||
|
||||
05/03/2016 15:21:26: Action "test" complete.
|
||||
|
||||
|
@ -702,7 +702,7 @@ Post-processing network...
|
|||
|
||||
8 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -732,7 +732,7 @@ Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *2] -> [2 x 1 x *2]
|
|||
Validating --> B2 = LearnableParameter() : -> [2 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *2], [2 x 1] -> [2 x 1 x *2]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *2], [2 x 1 x *2] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [2 x *2], [2 x 1 x *2] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *2], [2 x 1 x *2] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *2] -> [2 x 1 x *2]
|
||||
Validating --> Prior = Mean (labels) : [2 x *2] -> [2]
|
||||
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
|
||||
|
@ -755,7 +755,7 @@ Allocating matrices for forward and/or backward propagation.
|
|||
|
||||
Memory Sharing Structure:
|
||||
|
||||
(nil): {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [CrossEntropyWithSoftmax Value[1]] [EvalErrorPrediction Gradient[1]] [EvalErrorPrediction Value[1]] [H1 Gradient[50 x 1 x *2]] [H2 Gradient[50 x 1 x *2]] [HLast Gradient[2 x 1 x *2]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *2]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *2]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *2]] [ScaledLogLikelihood Value[2 x 1 x *2]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *2]] [W0*features+B0 Gradient[50 x 1 x *2]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *2]] [W1*H1+B1 Gradient[50 x 1 x *2]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *2]] [features Gradient[2 x *2]] [labels Gradient[2 x *2]] }
|
||||
(nil): {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [CrossEntropyWithSoftmax Value[1]] [EvalClassificationError Gradient[1]] [EvalClassificationError Value[1]] [H1 Gradient[50 x 1 x *2]] [H2 Gradient[50 x 1 x *2]] [HLast Gradient[2 x 1 x *2]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *2]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *2]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *2]] [ScaledLogLikelihood Value[2 x 1 x *2]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *2]] [W0*features+B0 Gradient[50 x 1 x *2]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *2]] [W1*H1+B1 Gradient[50 x 1 x *2]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *2]] [features Gradient[2 x *2]] [labels Gradient[2 x *2]] }
|
||||
0x2e82858: {[PosteriorProb Value[2 x 1 x *2]] }
|
||||
0x2e83b58: {[labels Value[2 x *2]] }
|
||||
0x2e84318: {[MeanOfFeatures Value[2]] }
|
||||
|
|
|
@ -58,7 +58,7 @@ Simple_Demo_Train = [
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -157,7 +157,7 @@ Simple_Demo_Train = [
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -300,7 +300,7 @@ configparameters: Simple.cntk:Simple_Demo_Train=[
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -356,7 +356,7 @@ Post-processing network...
|
|||
|
||||
7 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -385,7 +385,7 @@ Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *] -> [2 x 1 x *]
|
|||
Validating --> B2 = LearnableParameter() : -> [2 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *], [2 x 1] -> [2 x 1 x *]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *] -> [2 x 1 x *]
|
||||
Validating --> Prior = Mean (labels) : [2 x *] -> [2]
|
||||
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
|
||||
|
@ -409,14 +409,14 @@ Post-processing network complete.
|
|||
|
||||
05/03/2016 15:21:27: Evaluation criterion node(s):
|
||||
|
||||
05/03/2016 15:21:27: EvalErrorPrediction = ErrorPrediction
|
||||
05/03/2016 15:21:27: EvalClassificationError = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
||||
Memory Sharing Structure:
|
||||
|
||||
(nil): {[EvalErrorPrediction Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
|
||||
(nil): {[EvalClassificationError Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
|
||||
0x1ef9338: {[features Value[2 x *]] }
|
||||
0x2b32ad8: {[MeanOfFeatures Value[2]] }
|
||||
0x2b32fe8: {[InvStdOfFeatures Value[2]] }
|
||||
|
@ -429,7 +429,7 @@ Memory Sharing Structure:
|
|||
0x3185898: {[Prior Value[2]] }
|
||||
0x3186bd8: {[LogOfPrior Value[2]] }
|
||||
0x318b378: {[H1 Value[50 x 1 x *]] [W0*features Gradient[50 x *]] }
|
||||
0x318b498: {[EvalErrorPrediction Value[1]] }
|
||||
0x318b498: {[EvalClassificationError Value[1]] }
|
||||
0x318b798: {[ScaledLogLikelihood Value[2 x 1 x *]] }
|
||||
0x318b8f8: {[CrossEntropyWithSoftmax Value[1]] }
|
||||
0x3191148: {[B0 Value[50 x 1]] }
|
||||
|
@ -459,139 +459,139 @@ Memory Sharing Structure:
|
|||
05/03/2016 15:21:28: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 15:21:28: Starting minibatch loop.
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70004456 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0055s; samplesPerSecond = 45495.9
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.70309900 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0046s; samplesPerSecond = 54347.8
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.70606104 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0046s; samplesPerSecond = 54241.7
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.69845532 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0046s; samplesPerSecond = 54549.4
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.73496533 * 250; EvalErrorPrediction = 0.57600000 * 250; time = 0.0046s; samplesPerSecond = 54136.0
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72522827 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0046s; samplesPerSecond = 54359.6
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.73287500 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0046s; samplesPerSecond = 54466.2
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.70135547 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0046s; samplesPerSecond = 54872.7
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.72466504 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0046s; samplesPerSecond = 54194.7
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.72187500 * 250; EvalErrorPrediction = 0.52000000 * 250; time = 0.0046s; samplesPerSecond = 54501.9
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.69799023 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0046s; samplesPerSecond = 54788.5
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.70696387 * 250; EvalErrorPrediction = 0.54800000 * 250; time = 0.0046s; samplesPerSecond = 54371.5
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.69863965 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0046s; samplesPerSecond = 54300.6
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.71772461 * 250; EvalErrorPrediction = 0.54800000 * 250; time = 0.0046s; samplesPerSecond = 54644.8
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.69526270 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0046s; samplesPerSecond = 54525.6
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.71436426 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0046s; samplesPerSecond = 54561.3
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70399316 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0046s; samplesPerSecond = 54573.2
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.71745508 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0046s; samplesPerSecond = 54716.6
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71963184 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0046s; samplesPerSecond = 54537.5
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.70689941 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0046s; samplesPerSecond = 54336.0
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.70425098 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0046s; samplesPerSecond = 54692.6
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70622754 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0046s; samplesPerSecond = 54561.3
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69729492 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0046s; samplesPerSecond = 54537.5
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.75974219 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0046s; samplesPerSecond = 54680.7
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.70631250 * 250; EvalErrorPrediction = 0.43600000 * 250; time = 0.0046s; samplesPerSecond = 54288.8
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.70705664 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0046s; samplesPerSecond = 54561.3
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.72660352 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0046s; samplesPerSecond = 54824.6
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.71369727 * 250; EvalErrorPrediction = 0.55600000 * 250; time = 0.0046s; samplesPerSecond = 54537.5
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.68916602 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0046s; samplesPerSecond = 54371.5
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.69964844 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0046s; samplesPerSecond = 54218.2
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.69387891 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0045s; samplesPerSecond = 54969.2
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.68885742 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0046s; samplesPerSecond = 54573.2
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69388867 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0046s; samplesPerSecond = 54454.4
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.70363867 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0046s; samplesPerSecond = 54824.6
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.65449219 * 250; EvalErrorPrediction = 0.44400000 * 250; time = 0.0046s; samplesPerSecond = 54561.3
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.64607031 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0046s; samplesPerSecond = 54347.8
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.59492969 * 250; EvalErrorPrediction = 0.12400000 * 250; time = 0.0046s; samplesPerSecond = 54764.5
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.53965820 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54609.0
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.43681445 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0046s; samplesPerSecond = 54525.6
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.37407422 * 250; EvalErrorPrediction = 0.12000000 * 250; time = 0.0046s; samplesPerSecond = 54466.2
|
||||
05/03/2016 15:21:28: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.68409629 * 10000; EvalErrorPrediction = 0.45780000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=0.1879s
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70004456 * 250; EvalClassificationError = 0.52000000 * 250; time = 0.0055s; samplesPerSecond = 45495.9
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.70309900 * 250; EvalClassificationError = 0.51600000 * 250; time = 0.0046s; samplesPerSecond = 54347.8
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.70606104 * 250; EvalClassificationError = 0.52400000 * 250; time = 0.0046s; samplesPerSecond = 54241.7
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.69845532 * 250; EvalClassificationError = 0.52400000 * 250; time = 0.0046s; samplesPerSecond = 54549.4
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.73496533 * 250; EvalClassificationError = 0.57600000 * 250; time = 0.0046s; samplesPerSecond = 54136.0
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72522827 * 250; EvalClassificationError = 0.50800000 * 250; time = 0.0046s; samplesPerSecond = 54359.6
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.73287500 * 250; EvalClassificationError = 0.48800000 * 250; time = 0.0046s; samplesPerSecond = 54466.2
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.70135547 * 250; EvalClassificationError = 0.51600000 * 250; time = 0.0046s; samplesPerSecond = 54872.7
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.72466504 * 250; EvalClassificationError = 0.46000000 * 250; time = 0.0046s; samplesPerSecond = 54194.7
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.72187500 * 250; EvalClassificationError = 0.52000000 * 250; time = 0.0046s; samplesPerSecond = 54501.9
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.69799023 * 250; EvalClassificationError = 0.48000000 * 250; time = 0.0046s; samplesPerSecond = 54788.5
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.70696387 * 250; EvalClassificationError = 0.54800000 * 250; time = 0.0046s; samplesPerSecond = 54371.5
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.69863965 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0046s; samplesPerSecond = 54300.6
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.71772461 * 250; EvalClassificationError = 0.54800000 * 250; time = 0.0046s; samplesPerSecond = 54644.8
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.69526270 * 250; EvalClassificationError = 0.52400000 * 250; time = 0.0046s; samplesPerSecond = 54525.6
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.71436426 * 250; EvalClassificationError = 0.51200000 * 250; time = 0.0046s; samplesPerSecond = 54561.3
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70399316 * 250; EvalClassificationError = 0.47600000 * 250; time = 0.0046s; samplesPerSecond = 54573.2
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.71745508 * 250; EvalClassificationError = 0.48800000 * 250; time = 0.0046s; samplesPerSecond = 54716.6
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.71963184 * 250; EvalClassificationError = 0.49600000 * 250; time = 0.0046s; samplesPerSecond = 54537.5
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.70689941 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0046s; samplesPerSecond = 54336.0
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.70425098 * 250; EvalClassificationError = 0.48000000 * 250; time = 0.0046s; samplesPerSecond = 54692.6
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70622754 * 250; EvalClassificationError = 0.45200000 * 250; time = 0.0046s; samplesPerSecond = 54561.3
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69729492 * 250; EvalClassificationError = 0.48000000 * 250; time = 0.0046s; samplesPerSecond = 54537.5
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.75974219 * 250; EvalClassificationError = 0.51200000 * 250; time = 0.0046s; samplesPerSecond = 54680.7
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.70631250 * 250; EvalClassificationError = 0.43600000 * 250; time = 0.0046s; samplesPerSecond = 54288.8
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.70705664 * 250; EvalClassificationError = 0.46400000 * 250; time = 0.0046s; samplesPerSecond = 54561.3
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.72660352 * 250; EvalClassificationError = 0.51600000 * 250; time = 0.0046s; samplesPerSecond = 54824.6
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.71369727 * 250; EvalClassificationError = 0.55600000 * 250; time = 0.0046s; samplesPerSecond = 54537.5
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.68916602 * 250; EvalClassificationError = 0.47200000 * 250; time = 0.0046s; samplesPerSecond = 54371.5
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.69964844 * 250; EvalClassificationError = 0.47600000 * 250; time = 0.0046s; samplesPerSecond = 54218.2
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.69387891 * 250; EvalClassificationError = 0.46000000 * 250; time = 0.0045s; samplesPerSecond = 54969.2
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.68885742 * 250; EvalClassificationError = 0.50400000 * 250; time = 0.0046s; samplesPerSecond = 54573.2
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69388867 * 250; EvalClassificationError = 0.48000000 * 250; time = 0.0046s; samplesPerSecond = 54454.4
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.70363867 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0046s; samplesPerSecond = 54824.6
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.65449219 * 250; EvalClassificationError = 0.44400000 * 250; time = 0.0046s; samplesPerSecond = 54561.3
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.64607031 * 250; EvalClassificationError = 0.46000000 * 250; time = 0.0046s; samplesPerSecond = 54347.8
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.59492969 * 250; EvalClassificationError = 0.12400000 * 250; time = 0.0046s; samplesPerSecond = 54764.5
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.53965820 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54609.0
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.43681445 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0046s; samplesPerSecond = 54525.6
|
||||
05/03/2016 15:21:28: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.37407422 * 250; EvalClassificationError = 0.12000000 * 250; time = 0.0046s; samplesPerSecond = 54466.2
|
||||
05/03/2016 15:21:28: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.68409629 * 10000; EvalClassificationError = 0.45780000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=0.1879s
|
||||
05/03/2016 15:21:28: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn.1'
|
||||
|
||||
05/03/2016 15:21:28: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 15:21:28: Starting minibatch loop.
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.27895840 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0046s; samplesPerSecond = 53902.5
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.24395615 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54933.0
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.19587115 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0046s; samplesPerSecond = 54824.6
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.16368213 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0045s; samplesPerSecond = 55126.8
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.19700140 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0046s; samplesPerSecond = 54933.0
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.19580530 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54585.2
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.18257983 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0045s; samplesPerSecond = 55248.6
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.17520911 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0046s; samplesPerSecond = 54752.5
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.20164514 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0046s; samplesPerSecond = 54752.5
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.19787024 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0046s; samplesPerSecond = 54466.2
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.13437573 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0045s; samplesPerSecond = 55090.3
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.19004956 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0046s; samplesPerSecond = 54848.6
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.12287280 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0045s; samplesPerSecond = 54957.1
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16975903 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0045s; samplesPerSecond = 55175.5
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16102686 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54513.7
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.18611646 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54800.5
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.18469507 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0045s; samplesPerSecond = 55334.2
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18472339 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54908.9
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.20064648 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0046s; samplesPerSecond = 54597.1
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.13324683 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0045s; samplesPerSecond = 54969.2
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13878418 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0045s; samplesPerSecond = 55078.2
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.15587354 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0046s; samplesPerSecond = 54920.9
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.15337378 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54812.5
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14797070 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0045s; samplesPerSecond = 55199.8
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.12512891 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0046s; samplesPerSecond = 54383.3
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.14058545 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0045s; samplesPerSecond = 54993.4
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12611963 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0045s; samplesPerSecond = 54945.1
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.18970605 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0046s; samplesPerSecond = 54884.7
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.17965479 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0045s; samplesPerSecond = 54969.2
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.18866455 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0046s; samplesPerSecond = 54836.6
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17539941 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0045s; samplesPerSecond = 54945.1
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.14742432 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54848.6
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.13789502 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0046s; samplesPerSecond = 54788.5
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.13652100 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0045s; samplesPerSecond = 55224.2
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13619336 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0046s; samplesPerSecond = 54920.9
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.14909424 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54478.1
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.14762256 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0045s; samplesPerSecond = 55139.0
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.13142578 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0046s; samplesPerSecond = 54860.7
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.19570459 * 250; EvalErrorPrediction = 0.11600000 * 250; time = 0.0046s; samplesPerSecond = 54764.5
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15718604 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0045s; samplesPerSecond = 55005.5
|
||||
05/03/2016 15:21:28: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.16901047 * 10000; EvalErrorPrediction = 0.07510000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.184798s
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.27895840 * 250; EvalClassificationError = 0.09600000 * 250; time = 0.0046s; samplesPerSecond = 53902.5
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.24395615 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54933.0
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.19587115 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0046s; samplesPerSecond = 54824.6
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.16368213 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0045s; samplesPerSecond = 55126.8
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.19700140 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0046s; samplesPerSecond = 54933.0
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.19580530 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54585.2
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.18257983 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0045s; samplesPerSecond = 55248.6
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.17520911 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0046s; samplesPerSecond = 54752.5
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.20164514 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0046s; samplesPerSecond = 54752.5
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.19787024 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0046s; samplesPerSecond = 54466.2
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.13437573 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0045s; samplesPerSecond = 55090.3
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.19004956 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0046s; samplesPerSecond = 54848.6
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.12287280 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0045s; samplesPerSecond = 54957.1
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16975903 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0045s; samplesPerSecond = 55175.5
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16102686 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54513.7
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.18611646 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54800.5
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.18469507 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0045s; samplesPerSecond = 55334.2
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18472339 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54908.9
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.20064648 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0046s; samplesPerSecond = 54597.1
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.13324683 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0045s; samplesPerSecond = 54969.2
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13878418 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0045s; samplesPerSecond = 55078.2
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.15587354 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0046s; samplesPerSecond = 54920.9
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.15337378 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54812.5
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.14797070 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0045s; samplesPerSecond = 55199.8
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.12512891 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0046s; samplesPerSecond = 54383.3
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.14058545 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0045s; samplesPerSecond = 54993.4
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12611963 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0045s; samplesPerSecond = 54945.1
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.18970605 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0046s; samplesPerSecond = 54884.7
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.17965479 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0045s; samplesPerSecond = 54969.2
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.18866455 * 250; EvalClassificationError = 0.09600000 * 250; time = 0.0046s; samplesPerSecond = 54836.6
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17539941 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0045s; samplesPerSecond = 54945.1
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.14742432 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54848.6
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.13789502 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0046s; samplesPerSecond = 54788.5
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.13652100 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0045s; samplesPerSecond = 55224.2
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13619336 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0046s; samplesPerSecond = 54920.9
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.14909424 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54478.1
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.14762256 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0045s; samplesPerSecond = 55139.0
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.13142578 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0046s; samplesPerSecond = 54860.7
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.19570459 * 250; EvalClassificationError = 0.11600000 * 250; time = 0.0046s; samplesPerSecond = 54764.5
|
||||
05/03/2016 15:21:28: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15718604 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0045s; samplesPerSecond = 55005.5
|
||||
05/03/2016 15:21:28: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.16901047 * 10000; EvalClassificationError = 0.07510000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.184798s
|
||||
05/03/2016 15:21:28: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn.2'
|
||||
|
||||
05/03/2016 15:21:28: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 15:21:28: Starting minibatch loop.
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.18133401 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54124.3
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.13605756 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0046s; samplesPerSecond = 54884.7
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14345651 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54668.7
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.12512610 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0045s; samplesPerSecond = 54969.2
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.17690991 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54800.5
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.17504150 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0046s; samplesPerSecond = 54740.5
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.14723834 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0045s; samplesPerSecond = 55224.2
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16752893 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0045s; samplesPerSecond = 54993.4
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.10317773 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0046s; samplesPerSecond = 54800.5
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.20306372 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0045s; samplesPerSecond = 55248.6
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.16637036 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0045s; samplesPerSecond = 55066.1
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.15126868 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54824.6
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.19167224 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0046s; samplesPerSecond = 54884.7
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13687085 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0045s; samplesPerSecond = 55420.1
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.20709912 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0046s; samplesPerSecond = 54740.5
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.12918774 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0045s; samplesPerSecond = 54981.3
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17185107 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0045s; samplesPerSecond = 55322.0
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16523242 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54908.9
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.14880249 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0046s; samplesPerSecond = 54728.5
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.12590967 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0045s; samplesPerSecond = 54957.1
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13443018 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54872.7
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.16726147 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0046s; samplesPerSecond = 54836.6
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.22407422 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0045s; samplesPerSecond = 55041.8
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.18191553 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0045s; samplesPerSecond = 55078.2
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.19983057 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0046s; samplesPerSecond = 54680.7
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.22728223 * 250; EvalErrorPrediction = 0.12400000 * 250; time = 0.0046s; samplesPerSecond = 54692.6
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12720459 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0045s; samplesPerSecond = 55151.1
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.15842871 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0045s; samplesPerSecond = 54945.1
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.11558691 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0045s; samplesPerSecond = 54945.1
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14163428 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0045s; samplesPerSecond = 55248.6
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18560596 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0045s; samplesPerSecond = 54993.4
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.15099561 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0045s; samplesPerSecond = 55078.2
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.12822461 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54395.1
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.17662500 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0045s; samplesPerSecond = 55309.7
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.14950781 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0046s; samplesPerSecond = 54945.1
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.11450977 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0046s; samplesPerSecond = 54908.9
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16386768 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0045s; samplesPerSecond = 55260.8
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14811523 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0045s; samplesPerSecond = 54981.3
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.16021143 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54764.5
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.17989551 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0045s; samplesPerSecond = 55151.1
|
||||
05/03/2016 15:21:28: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15971016 * 10000; EvalErrorPrediction = 0.07740000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.184406s
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.18133401 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54124.3
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.13605756 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0046s; samplesPerSecond = 54884.7
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14345651 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54668.7
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.12512610 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0045s; samplesPerSecond = 54969.2
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.17690991 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54800.5
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.17504150 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0046s; samplesPerSecond = 54740.5
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.14723834 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0045s; samplesPerSecond = 55224.2
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.16752893 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0045s; samplesPerSecond = 54993.4
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.10317773 * 250; EvalClassificationError = 0.04000000 * 250; time = 0.0046s; samplesPerSecond = 54800.5
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.20306372 * 250; EvalClassificationError = 0.11200000 * 250; time = 0.0045s; samplesPerSecond = 55248.6
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.16637036 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0045s; samplesPerSecond = 55066.1
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.15126868 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54824.6
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.19167224 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0046s; samplesPerSecond = 54884.7
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13687085 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0045s; samplesPerSecond = 55420.1
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.20709912 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0046s; samplesPerSecond = 54740.5
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.12918774 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0045s; samplesPerSecond = 54981.3
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17185107 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0045s; samplesPerSecond = 55322.0
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16523242 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54908.9
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.14880249 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0046s; samplesPerSecond = 54728.5
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.12590967 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0045s; samplesPerSecond = 54957.1
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.13443018 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54872.7
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.16726147 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0046s; samplesPerSecond = 54836.6
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.22407422 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0045s; samplesPerSecond = 55041.8
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.18191553 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0045s; samplesPerSecond = 55078.2
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.19983057 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0046s; samplesPerSecond = 54680.7
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.22728223 * 250; EvalClassificationError = 0.12400000 * 250; time = 0.0046s; samplesPerSecond = 54692.6
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.12720459 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0045s; samplesPerSecond = 55151.1
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.15842871 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0045s; samplesPerSecond = 54945.1
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.11558691 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0045s; samplesPerSecond = 54945.1
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.14163428 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0045s; samplesPerSecond = 55248.6
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.18560596 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0045s; samplesPerSecond = 54993.4
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.15099561 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0045s; samplesPerSecond = 55078.2
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.12822461 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0046s; samplesPerSecond = 54395.1
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.17662500 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0045s; samplesPerSecond = 55309.7
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.14950781 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0046s; samplesPerSecond = 54945.1
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.11450977 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0046s; samplesPerSecond = 54908.9
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16386768 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0045s; samplesPerSecond = 55260.8
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14811523 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0045s; samplesPerSecond = 54981.3
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.16021143 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0046s; samplesPerSecond = 54764.5
|
||||
05/03/2016 15:21:28: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.17989551 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0045s; samplesPerSecond = 55151.1
|
||||
05/03/2016 15:21:28: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15971016 * 10000; EvalClassificationError = 0.07740000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.184406s
|
||||
05/03/2016 15:21:28: SGD: Saving checkpoint model '/tmp/cntk-test-20160503152115.267374/CNTKTextFormatReader/Examples/Other/Simple2d_Simple@release_gpu/Models/simple.dnn'
|
||||
05/03/2016 15:21:29: CNTKCommandTrainEnd: Simple_Demo_Train
|
||||
|
||||
|
@ -609,7 +609,7 @@ Post-processing network...
|
|||
|
||||
7 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -638,7 +638,7 @@ Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *1] -> [2 x 1 x *1]
|
|||
Validating --> B2 = LearnableParameter() : -> [2 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *1], [2 x 1] -> [2 x 1 x *1]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *1] -> [2 x 1 x *1]
|
||||
Validating --> Prior = Mean (labels) : [2 x *1] -> [2]
|
||||
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
|
||||
|
@ -662,11 +662,11 @@ Allocating matrices for forward and/or backward propagation.
|
|||
|
||||
Memory Sharing Structure:
|
||||
|
||||
(nil): {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalErrorPrediction Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
|
||||
(nil): {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalClassificationError Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
|
||||
0x1efcc08: {[B2 Value[2 x 1]] }
|
||||
0x1efd8c8: {[W0 Value[50 x 2]] }
|
||||
0x1efee68: {[InvStdOfFeatures Value[2]] }
|
||||
0x2b337e8: {[EvalErrorPrediction Value[1]] }
|
||||
0x2b337e8: {[EvalClassificationError Value[1]] }
|
||||
0x2b33948: {[CrossEntropyWithSoftmax Value[1]] }
|
||||
0x2b33f08: {[LogOfPrior Value[2]] }
|
||||
0x31808e8: {[W2 Value[2 x 50]] }
|
||||
|
@ -687,7 +687,7 @@ Memory Sharing Structure:
|
|||
0x7273058: {[W2*H1 Value[2 x 1 x *1]] }
|
||||
0x7273218: {[HLast Value[2 x 1 x *1]] }
|
||||
|
||||
05/03/2016 15:21:29: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.05970149 * 603; CrossEntropyWithSoftmax = 0.13093129 * 603; perplexity = 1.13988946
|
||||
05/03/2016 15:21:29: Final Results: Minibatch[1-1]: EvalClassificationError = 0.05970149 * 603; CrossEntropyWithSoftmax = 0.13093129 * 603; perplexity = 1.13988946
|
||||
|
||||
05/03/2016 15:21:29: Action "test" complete.
|
||||
|
||||
|
@ -703,7 +703,7 @@ Post-processing network...
|
|||
|
||||
8 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -733,7 +733,7 @@ Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *2] -> [2 x 1 x *2]
|
|||
Validating --> B2 = LearnableParameter() : -> [2 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *2], [2 x 1] -> [2 x 1 x *2]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *2], [2 x 1 x *2] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [2 x *2], [2 x 1 x *2] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *2], [2 x 1 x *2] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *2] -> [2 x 1 x *2]
|
||||
Validating --> Prior = Mean (labels) : [2 x *2] -> [2]
|
||||
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
|
||||
|
@ -756,7 +756,7 @@ Allocating matrices for forward and/or backward propagation.
|
|||
|
||||
Memory Sharing Structure:
|
||||
|
||||
(nil): {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [CrossEntropyWithSoftmax Value[1]] [EvalErrorPrediction Gradient[1]] [EvalErrorPrediction Value[1]] [H1 Gradient[50 x 1 x *2]] [H2 Gradient[50 x 1 x *2]] [HLast Gradient[2 x 1 x *2]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *2]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *2]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *2]] [ScaledLogLikelihood Value[2 x 1 x *2]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *2]] [W0*features+B0 Gradient[50 x 1 x *2]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *2]] [W1*H1+B1 Gradient[50 x 1 x *2]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *2]] [features Gradient[2 x *2]] [labels Gradient[2 x *2]] }
|
||||
(nil): {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [CrossEntropyWithSoftmax Value[1]] [EvalClassificationError Gradient[1]] [EvalClassificationError Value[1]] [H1 Gradient[50 x 1 x *2]] [H2 Gradient[50 x 1 x *2]] [HLast Gradient[2 x 1 x *2]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *2]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *2]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *2]] [ScaledLogLikelihood Value[2 x 1 x *2]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *2]] [W0*features+B0 Gradient[50 x 1 x *2]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *2]] [W1*H1+B1 Gradient[50 x 1 x *2]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *2]] [features Gradient[2 x *2]] [labels Gradient[2 x *2]] }
|
||||
0x1efcef8: {[features Value[2 x *2]] }
|
||||
0x1efe2c8: {[labels Value[2 x *2]] }
|
||||
0x1eff188: {[PosteriorProb Value[2 x 1 x *2]] }
|
||||
|
|
|
@ -56,7 +56,7 @@ Simple_Demo_Train = [
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -155,7 +155,7 @@ Simple_Demo_Train = [
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -298,7 +298,7 @@ configparameters: Simple.cntk:Simple_Demo_Train=[
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -353,7 +353,7 @@ Post-processing network...
|
|||
|
||||
7 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -382,7 +382,7 @@ Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *] -> [2 x 1 x *]
|
|||
Validating --> B2 = LearnableParameter() : -> [2 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *], [2 x 1] -> [2 x 1 x *]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *] -> [2 x 1 x *]
|
||||
Validating --> Prior = Mean (labels) : [2 x *] -> [2]
|
||||
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
|
||||
|
@ -406,14 +406,14 @@ Post-processing network complete.
|
|||
|
||||
05/03/2016 13:12:46: Evaluation criterion node(s):
|
||||
|
||||
05/03/2016 13:12:46: EvalErrorPrediction = ErrorPrediction
|
||||
05/03/2016 13:12:46: EvalClassificationError = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
||||
Memory Sharing Structure:
|
||||
|
||||
0000000000000000: {[EvalErrorPrediction Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
|
||||
0000000000000000: {[EvalClassificationError Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
|
||||
000000702B410E90: {[features Value[2 x *]] }
|
||||
000000702B44E0C0: {[W0 Value[50 x 2]] }
|
||||
000000702B4D76F0: {[H2 Value[50 x 1 x *]] [W1*H1 Gradient[50 x 1 x *]] }
|
||||
|
@ -428,7 +428,7 @@ Memory Sharing Structure:
|
|||
000000702B4D8690: {[B0 Gradient[50 x 1]] [H1 Gradient[50 x 1 x *]] [W1*H1+B1 Gradient[50 x 1 x *]] [W2*H1 Value[2 x 1 x *]] }
|
||||
000000702B4D8730: {[HLast Value[2 x 1 x *]] [W2 Gradient[2 x 50]] }
|
||||
000000702B4D89B0: {[CrossEntropyWithSoftmax Value[1]] }
|
||||
000000702B4D8AF0: {[EvalErrorPrediction Value[1]] }
|
||||
000000702B4D8AF0: {[EvalClassificationError Value[1]] }
|
||||
000000702B4D8B90: {[H1 Value[50 x 1 x *]] [W0*features Gradient[50 x *]] }
|
||||
000000702B4D8F50: {[B2 Gradient[2 x 1]] }
|
||||
000000702B4D91D0: {[ScaledLogLikelihood Value[2 x 1 x *]] }
|
||||
|
@ -456,139 +456,139 @@ Memory Sharing Structure:
|
|||
05/03/2016 13:12:47: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 13:12:47: Starting minibatch loop.
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70511987 * 250; EvalErrorPrediction = 0.55200000 * 250; time = 0.0327s; samplesPerSecond = 7657.0
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.69754895 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0257s; samplesPerSecond = 9726.5
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.71056921 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0248s; samplesPerSecond = 10096.1
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.72951074 * 250; EvalErrorPrediction = 0.56000000 * 250; time = 0.0245s; samplesPerSecond = 10210.3
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70946655 * 250; EvalErrorPrediction = 0.48800000 * 250; time = 0.0249s; samplesPerSecond = 10032.5
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72656787 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0248s; samplesPerSecond = 10065.2
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.69337402 * 250; EvalErrorPrediction = 0.43200000 * 250; time = 0.0256s; samplesPerSecond = 9766.8
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.73605176 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0259s; samplesPerSecond = 9662.6
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.71453076 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0239s; samplesPerSecond = 10469.0
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.75191992 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0255s; samplesPerSecond = 9802.0
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.75975146 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0248s; samplesPerSecond = 10100.6
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.73172168 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0255s; samplesPerSecond = 9808.5
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.76840820 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0261s; samplesPerSecond = 9593.2
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.70464746 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0255s; samplesPerSecond = 9807.4
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70557227 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0242s; samplesPerSecond = 10340.4
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.72711816 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0249s; samplesPerSecond = 10049.8
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70076660 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0247s; samplesPerSecond = 10117.4
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.69409766 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0254s; samplesPerSecond = 9834.0
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.69139941 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0243s; samplesPerSecond = 10275.8
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.73361621 * 250; EvalErrorPrediction = 0.55200000 * 250; time = 0.0255s; samplesPerSecond = 9802.8
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.72225879 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0246s; samplesPerSecond = 10146.5
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70356348 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0243s; samplesPerSecond = 10286.8
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69928613 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0252s; samplesPerSecond = 9909.2
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.72360938 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0244s; samplesPerSecond = 10227.0
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69871875 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0244s; samplesPerSecond = 10243.8
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69114844 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0248s; samplesPerSecond = 10081.5
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.68648047 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0254s; samplesPerSecond = 9844.5
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69657227 * 250; EvalErrorPrediction = 0.46400000 * 250; time = 0.0258s; samplesPerSecond = 9679.8
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.71585547 * 250; EvalErrorPrediction = 0.45200000 * 250; time = 0.0255s; samplesPerSecond = 9798.2
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.69730664 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0260s; samplesPerSecond = 9609.1
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.70432422 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0265s; samplesPerSecond = 9431.1
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.69991797 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0257s; samplesPerSecond = 9722.7
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.68696875 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0259s; samplesPerSecond = 9647.3
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.67331445 * 250; EvalErrorPrediction = 0.37200000 * 250; time = 0.0267s; samplesPerSecond = 9364.7
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.65711328 * 250; EvalErrorPrediction = 0.43200000 * 250; time = 0.0258s; samplesPerSecond = 9700.1
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.64534375 * 250; EvalErrorPrediction = 0.44800000 * 250; time = 0.0260s; samplesPerSecond = 9608.0
|
||||
05/03/2016 13:12:48: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.61021875 * 250; EvalErrorPrediction = 0.36400000 * 250; time = 0.0263s; samplesPerSecond = 9515.5
|
||||
05/03/2016 13:12:48: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.54191016 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0229s; samplesPerSecond = 10907.5
|
||||
05/03/2016 13:12:48: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.45624414 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0239s; samplesPerSecond = 10479.5
|
||||
05/03/2016 13:12:48: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.37636133 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0229s; samplesPerSecond = 10917.0
|
||||
05/03/2016 13:12:48: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.68695688 * 10000; EvalErrorPrediction = 0.45550000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=1.01718s
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70511987 * 250; EvalClassificationError = 0.55200000 * 250; time = 0.0327s; samplesPerSecond = 7657.0
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.69754895 * 250; EvalClassificationError = 0.47600000 * 250; time = 0.0257s; samplesPerSecond = 9726.5
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.71056921 * 250; EvalClassificationError = 0.50400000 * 250; time = 0.0248s; samplesPerSecond = 10096.1
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.72951074 * 250; EvalClassificationError = 0.56000000 * 250; time = 0.0245s; samplesPerSecond = 10210.3
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70946655 * 250; EvalClassificationError = 0.48800000 * 250; time = 0.0249s; samplesPerSecond = 10032.5
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72656787 * 250; EvalClassificationError = 0.54400000 * 250; time = 0.0248s; samplesPerSecond = 10065.2
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.69337402 * 250; EvalClassificationError = 0.43200000 * 250; time = 0.0256s; samplesPerSecond = 9766.8
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.73605176 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0259s; samplesPerSecond = 9662.6
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.71453076 * 250; EvalClassificationError = 0.51200000 * 250; time = 0.0239s; samplesPerSecond = 10469.0
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.75191992 * 250; EvalClassificationError = 0.47200000 * 250; time = 0.0255s; samplesPerSecond = 9802.0
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.75975146 * 250; EvalClassificationError = 0.53200000 * 250; time = 0.0248s; samplesPerSecond = 10100.6
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.73172168 * 250; EvalClassificationError = 0.50800000 * 250; time = 0.0255s; samplesPerSecond = 9808.5
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.76840820 * 250; EvalClassificationError = 0.53200000 * 250; time = 0.0261s; samplesPerSecond = 9593.2
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.70464746 * 250; EvalClassificationError = 0.46800000 * 250; time = 0.0255s; samplesPerSecond = 9807.4
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70557227 * 250; EvalClassificationError = 0.46400000 * 250; time = 0.0242s; samplesPerSecond = 10340.4
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.72711816 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0249s; samplesPerSecond = 10049.8
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70076660 * 250; EvalClassificationError = 0.45600000 * 250; time = 0.0247s; samplesPerSecond = 10117.4
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.69409766 * 250; EvalClassificationError = 0.49600000 * 250; time = 0.0254s; samplesPerSecond = 9834.0
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.69139941 * 250; EvalClassificationError = 0.46800000 * 250; time = 0.0243s; samplesPerSecond = 10275.8
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.73361621 * 250; EvalClassificationError = 0.55200000 * 250; time = 0.0255s; samplesPerSecond = 9802.8
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.72225879 * 250; EvalClassificationError = 0.46800000 * 250; time = 0.0246s; samplesPerSecond = 10146.5
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70356348 * 250; EvalClassificationError = 0.45600000 * 250; time = 0.0243s; samplesPerSecond = 10286.8
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69928613 * 250; EvalClassificationError = 0.46400000 * 250; time = 0.0252s; samplesPerSecond = 9909.2
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.72360938 * 250; EvalClassificationError = 0.51600000 * 250; time = 0.0244s; samplesPerSecond = 10227.0
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69871875 * 250; EvalClassificationError = 0.51200000 * 250; time = 0.0244s; samplesPerSecond = 10243.8
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69114844 * 250; EvalClassificationError = 0.47600000 * 250; time = 0.0248s; samplesPerSecond = 10081.5
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.68648047 * 250; EvalClassificationError = 0.45600000 * 250; time = 0.0254s; samplesPerSecond = 9844.5
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69657227 * 250; EvalClassificationError = 0.46400000 * 250; time = 0.0258s; samplesPerSecond = 9679.8
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.71585547 * 250; EvalClassificationError = 0.45200000 * 250; time = 0.0255s; samplesPerSecond = 9798.2
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.69730664 * 250; EvalClassificationError = 0.52400000 * 250; time = 0.0260s; samplesPerSecond = 9609.1
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.70432422 * 250; EvalClassificationError = 0.53200000 * 250; time = 0.0265s; samplesPerSecond = 9431.1
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.69991797 * 250; EvalClassificationError = 0.47600000 * 250; time = 0.0257s; samplesPerSecond = 9722.7
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.68696875 * 250; EvalClassificationError = 0.47600000 * 250; time = 0.0259s; samplesPerSecond = 9647.3
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.67331445 * 250; EvalClassificationError = 0.37200000 * 250; time = 0.0267s; samplesPerSecond = 9364.7
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.65711328 * 250; EvalClassificationError = 0.43200000 * 250; time = 0.0258s; samplesPerSecond = 9700.1
|
||||
05/03/2016 13:12:47: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.64534375 * 250; EvalClassificationError = 0.44800000 * 250; time = 0.0260s; samplesPerSecond = 9608.0
|
||||
05/03/2016 13:12:48: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.61021875 * 250; EvalClassificationError = 0.36400000 * 250; time = 0.0263s; samplesPerSecond = 9515.5
|
||||
05/03/2016 13:12:48: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.54191016 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0229s; samplesPerSecond = 10907.5
|
||||
05/03/2016 13:12:48: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.45624414 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0239s; samplesPerSecond = 10479.5
|
||||
05/03/2016 13:12:48: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.37636133 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0229s; samplesPerSecond = 10917.0
|
||||
05/03/2016 13:12:48: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.68695688 * 10000; EvalClassificationError = 0.45550000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=1.01718s
|
||||
05/03/2016 13:12:48: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu/Models/simple.dnn.1'
|
||||
|
||||
05/03/2016 13:12:48: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 13:12:48: Starting minibatch loop.
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.28579105 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0228s; samplesPerSecond = 10943.3
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.27768619 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0230s; samplesPerSecond = 10860.1
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.23309790 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0223s; samplesPerSecond = 11187.2
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.20937585 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0221s; samplesPerSecond = 11327.1
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.20192059 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0225s; samplesPerSecond = 11116.5
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.21303992 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0232s; samplesPerSecond = 10762.9
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.17823340 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0247s; samplesPerSecond = 10120.6
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.18892688 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0231s; samplesPerSecond = 10816.4
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.14161328 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0225s; samplesPerSecond = 11100.8
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.15813574 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0226s; samplesPerSecond = 11077.1
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.21082446 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0233s; samplesPerSecond = 10728.2
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.16117041 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0229s; samplesPerSecond = 10928.0
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.15665234 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0223s; samplesPerSecond = 11195.2
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13067773 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0226s; samplesPerSecond = 11047.3
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16602710 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0212s; samplesPerSecond = 11796.9
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.14975708 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0215s; samplesPerSecond = 11641.4
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.22351709 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0214s; samplesPerSecond = 11708.5
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18010474 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0207s; samplesPerSecond = 12085.5
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.15341577 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0207s; samplesPerSecond = 12072.6
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.17195337 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0209s; samplesPerSecond = 11976.6
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15546069 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0217s; samplesPerSecond = 11534.6
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.16008325 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0214s; samplesPerSecond = 11689.3
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.15944043 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0209s; samplesPerSecond = 11981.2
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.15336865 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0207s; samplesPerSecond = 12102.4
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.14822266 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0212s; samplesPerSecond = 11766.4
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.14999512 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0211s; samplesPerSecond = 11833.2
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.15481982 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0208s; samplesPerSecond = 11992.7
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.17656738 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0204s; samplesPerSecond = 12229.1
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.22373242 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0213s; samplesPerSecond = 11738.7
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16403760 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0211s; samplesPerSecond = 11856.8
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17322168 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0211s; samplesPerSecond = 11868.0
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13165430 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0205s; samplesPerSecond = 12202.3
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.14016992 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0208s; samplesPerSecond = 11993.9
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.18369678 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0214s; samplesPerSecond = 11657.7
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.15161035 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0215s; samplesPerSecond = 11612.8
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.18919824 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0215s; samplesPerSecond = 11632.8
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.17373975 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0212s; samplesPerSecond = 11818.1
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15033740 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0208s; samplesPerSecond = 12036.6
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.12107568 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0207s; samplesPerSecond = 12075.5
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15386328 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0227s; samplesPerSecond = 10997.7
|
||||
05/03/2016 13:12:48: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.17515541 * 10000; EvalErrorPrediction = 0.07440000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.87149s
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.28579105 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0228s; samplesPerSecond = 10943.3
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.27768619 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0230s; samplesPerSecond = 10860.1
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.23309790 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0223s; samplesPerSecond = 11187.2
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.20937585 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0221s; samplesPerSecond = 11327.1
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.20192059 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0225s; samplesPerSecond = 11116.5
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.21303992 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0232s; samplesPerSecond = 10762.9
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.17823340 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0247s; samplesPerSecond = 10120.6
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.18892688 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0231s; samplesPerSecond = 10816.4
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.14161328 * 250; EvalClassificationError = 0.04000000 * 250; time = 0.0225s; samplesPerSecond = 11100.8
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.15813574 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0226s; samplesPerSecond = 11077.1
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.21082446 * 250; EvalClassificationError = 0.11200000 * 250; time = 0.0233s; samplesPerSecond = 10728.2
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.16117041 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0229s; samplesPerSecond = 10928.0
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.15665234 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0223s; samplesPerSecond = 11195.2
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13067773 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0226s; samplesPerSecond = 11047.3
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16602710 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0212s; samplesPerSecond = 11796.9
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.14975708 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0215s; samplesPerSecond = 11641.4
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.22351709 * 250; EvalClassificationError = 0.11200000 * 250; time = 0.0214s; samplesPerSecond = 11708.5
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18010474 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0207s; samplesPerSecond = 12085.5
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.15341577 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0207s; samplesPerSecond = 12072.6
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.17195337 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0209s; samplesPerSecond = 11976.6
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15546069 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0217s; samplesPerSecond = 11534.6
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.16008325 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0214s; samplesPerSecond = 11689.3
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.15944043 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0209s; samplesPerSecond = 11981.2
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.15336865 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0207s; samplesPerSecond = 12102.4
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.14822266 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0212s; samplesPerSecond = 11766.4
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.14999512 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0211s; samplesPerSecond = 11833.2
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.15481982 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0208s; samplesPerSecond = 11992.7
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.17656738 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0204s; samplesPerSecond = 12229.1
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.22373242 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0213s; samplesPerSecond = 11738.7
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16403760 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0211s; samplesPerSecond = 11856.8
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17322168 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0211s; samplesPerSecond = 11868.0
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13165430 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0205s; samplesPerSecond = 12202.3
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.14016992 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0208s; samplesPerSecond = 11993.9
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.18369678 * 250; EvalClassificationError = 0.09600000 * 250; time = 0.0214s; samplesPerSecond = 11657.7
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.15161035 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0215s; samplesPerSecond = 11612.8
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.18919824 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0215s; samplesPerSecond = 11632.8
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.17373975 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0212s; samplesPerSecond = 11818.1
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15033740 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0208s; samplesPerSecond = 12036.6
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.12107568 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0207s; samplesPerSecond = 12075.5
|
||||
05/03/2016 13:12:48: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15386328 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0227s; samplesPerSecond = 10997.7
|
||||
05/03/2016 13:12:48: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.17515541 * 10000; EvalClassificationError = 0.07440000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.87149s
|
||||
05/03/2016 13:12:48: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu/Models/simple.dnn.2'
|
||||
|
||||
05/03/2016 13:12:48: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 13:12:48: Starting minibatch loop.
|
||||
05/03/2016 13:12:48: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.10671188 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0217s; samplesPerSecond = 11511.2
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.17609265 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0205s; samplesPerSecond = 12183.8
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14152701 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0208s; samplesPerSecond = 12001.9
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.16348053 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0213s; samplesPerSecond = 11748.1
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.11764551 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0219s; samplesPerSecond = 11435.4
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.16246954 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0212s; samplesPerSecond = 11811.4
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.16140149 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0207s; samplesPerSecond = 12078.5
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.19747632 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0202s; samplesPerSecond = 12391.0
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.20041309 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0214s; samplesPerSecond = 11659.9
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.13657080 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0208s; samplesPerSecond = 12033.7
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.20124377 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0203s; samplesPerSecond = 12293.5
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.17898120 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0206s; samplesPerSecond = 12144.2
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.16037830 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0232s; samplesPerSecond = 10779.1
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16276050 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0214s; samplesPerSecond = 11704.7
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.19882275 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0218s; samplesPerSecond = 11454.2
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.10263354 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0208s; samplesPerSecond = 12041.2
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17038770 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0213s; samplesPerSecond = 11725.5
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16624731 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0209s; samplesPerSecond = 11958.3
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.12664160 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0213s; samplesPerSecond = 11723.3
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.11944995 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0213s; samplesPerSecond = 11733.8
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.12949756 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0208s; samplesPerSecond = 11996.2
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.18147778 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0222s; samplesPerSecond = 11242.5
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.13172412 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0233s; samplesPerSecond = 10719.0
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.19600269 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0238s; samplesPerSecond = 10521.0
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.15840479 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0226s; samplesPerSecond = 11084.5
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.11888281 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0225s; samplesPerSecond = 11129.9
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.13710742 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0222s; samplesPerSecond = 11251.1
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.20026318 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0233s; samplesPerSecond = 10730.5
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.18824951 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0223s; samplesPerSecond = 11227.9
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16653223 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0225s; samplesPerSecond = 11096.3
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.11935254 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0229s; samplesPerSecond = 10918.5
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.16085400 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0225s; samplesPerSecond = 11132.9
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.16112646 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0219s; samplesPerSecond = 11439.6
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.12345313 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0229s; samplesPerSecond = 10904.6
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13502686 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0226s; samplesPerSecond = 11075.2
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.20874756 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0224s; samplesPerSecond = 11185.2
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16650537 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0227s; samplesPerSecond = 11009.3
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14995752 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0206s; samplesPerSecond = 12134.7
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.16497070 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0209s; samplesPerSecond = 11953.7
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.16843018 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0210s; samplesPerSecond = 11912.1
|
||||
05/03/2016 13:12:49: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15794755 * 10000; EvalErrorPrediction = 0.07480000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.871499s
|
||||
05/03/2016 13:12:48: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.10671188 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0217s; samplesPerSecond = 11511.2
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.17609265 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0205s; samplesPerSecond = 12183.8
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14152701 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0208s; samplesPerSecond = 12001.9
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.16348053 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0213s; samplesPerSecond = 11748.1
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.11764551 * 250; EvalClassificationError = 0.04000000 * 250; time = 0.0219s; samplesPerSecond = 11435.4
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.16246954 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0212s; samplesPerSecond = 11811.4
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.16140149 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0207s; samplesPerSecond = 12078.5
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.19747632 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0202s; samplesPerSecond = 12391.0
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.20041309 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0214s; samplesPerSecond = 11659.9
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.13657080 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0208s; samplesPerSecond = 12033.7
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.20124377 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0203s; samplesPerSecond = 12293.5
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.17898120 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0206s; samplesPerSecond = 12144.2
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.16037830 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0232s; samplesPerSecond = 10779.1
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16276050 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0214s; samplesPerSecond = 11704.7
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.19882275 * 250; EvalClassificationError = 0.11200000 * 250; time = 0.0218s; samplesPerSecond = 11454.2
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.10263354 * 250; EvalClassificationError = 0.04000000 * 250; time = 0.0208s; samplesPerSecond = 12041.2
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17038770 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0213s; samplesPerSecond = 11725.5
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16624731 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0209s; samplesPerSecond = 11958.3
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.12664160 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0213s; samplesPerSecond = 11723.3
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.11944995 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0213s; samplesPerSecond = 11733.8
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.12949756 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0208s; samplesPerSecond = 11996.2
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.18147778 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0222s; samplesPerSecond = 11242.5
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.13172412 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0233s; samplesPerSecond = 10719.0
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.19600269 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0238s; samplesPerSecond = 10521.0
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.15840479 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0226s; samplesPerSecond = 11084.5
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.11888281 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0225s; samplesPerSecond = 11129.9
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.13710742 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0222s; samplesPerSecond = 11251.1
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.20026318 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0233s; samplesPerSecond = 10730.5
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.18824951 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0223s; samplesPerSecond = 11227.9
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16653223 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0225s; samplesPerSecond = 11096.3
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.11935254 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0229s; samplesPerSecond = 10918.5
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.16085400 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0225s; samplesPerSecond = 11132.9
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.16112646 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0219s; samplesPerSecond = 11439.6
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.12345313 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0229s; samplesPerSecond = 10904.6
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13502686 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0226s; samplesPerSecond = 11075.2
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.20874756 * 250; EvalClassificationError = 0.11200000 * 250; time = 0.0224s; samplesPerSecond = 11185.2
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16650537 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0227s; samplesPerSecond = 11009.3
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.14995752 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0206s; samplesPerSecond = 12134.7
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.16497070 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0209s; samplesPerSecond = 11953.7
|
||||
05/03/2016 13:12:49: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.16843018 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0210s; samplesPerSecond = 11912.1
|
||||
05/03/2016 13:12:49: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15794755 * 10000; EvalClassificationError = 0.07480000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.871499s
|
||||
05/03/2016 13:12:49: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503141245.787579\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_cpu/Models/simple.dnn'
|
||||
05/03/2016 13:12:49: CNTKCommandTrainEnd: Simple_Demo_Train
|
||||
|
||||
|
@ -606,7 +606,7 @@ Post-processing network...
|
|||
|
||||
7 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -635,7 +635,7 @@ Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *1] -> [2 x 1 x *1]
|
|||
Validating --> B2 = LearnableParameter() : -> [2 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *1], [2 x 1] -> [2 x 1 x *1]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *1] -> [2 x 1 x *1]
|
||||
Validating --> Prior = Mean (labels) : [2 x *1] -> [2]
|
||||
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
|
||||
|
@ -659,7 +659,7 @@ Allocating matrices for forward and/or backward propagation.
|
|||
|
||||
Memory Sharing Structure:
|
||||
|
||||
0000000000000000: {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalErrorPrediction Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
|
||||
0000000000000000: {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalClassificationError Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
|
||||
00000070343C5200: {[InvStdOfFeatures Value[2]] }
|
||||
00000070343C5340: {[Prior Value[2]] }
|
||||
00000070343C53E0: {[W0 Value[50 x 2]] }
|
||||
|
@ -671,7 +671,7 @@ Memory Sharing Structure:
|
|||
000000703442D030: {[HLast Value[2 x 1 x *1]] }
|
||||
000000703442D0D0: {[W0*features Value[50 x *1]] }
|
||||
000000703442D170: {[W1*H1+B1 Value[50 x 1 x *1]] }
|
||||
000000703442D2B0: {[EvalErrorPrediction Value[1]] }
|
||||
000000703442D2B0: {[EvalClassificationError Value[1]] }
|
||||
000000703442D530: {[CrossEntropyWithSoftmax Value[1]] }
|
||||
000000703442D5D0: {[W2 Value[2 x 50]] }
|
||||
000000703442D670: {[LogOfPrior Value[2]] }
|
||||
|
@ -684,7 +684,7 @@ Memory Sharing Structure:
|
|||
0000007034432340: {[B0 Value[50 x 1]] }
|
||||
0000007034432480: {[B2 Value[2 x 1]] }
|
||||
|
||||
05/03/2016 13:12:50: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.05638474 * 603; CrossEntropyWithSoftmax = 0.12474995 * 603; perplexity = 1.13286515
|
||||
05/03/2016 13:12:50: Final Results: Minibatch[1-1]: EvalClassificationError = 0.05638474 * 603; CrossEntropyWithSoftmax = 0.12474995 * 603; perplexity = 1.13286515
|
||||
|
||||
05/03/2016 13:12:50: Action "test" complete.
|
||||
|
||||
|
@ -700,7 +700,7 @@ Post-processing network...
|
|||
|
||||
8 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -730,7 +730,7 @@ Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *2] -> [2 x 1 x *2]
|
|||
Validating --> B2 = LearnableParameter() : -> [2 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *2], [2 x 1] -> [2 x 1 x *2]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *2], [2 x 1 x *2] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [2 x *2], [2 x 1 x *2] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *2], [2 x 1 x *2] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *2] -> [2 x 1 x *2]
|
||||
Validating --> Prior = Mean (labels) : [2 x *2] -> [2]
|
||||
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
|
||||
|
@ -753,7 +753,7 @@ Allocating matrices for forward and/or backward propagation.
|
|||
|
||||
Memory Sharing Structure:
|
||||
|
||||
0000000000000000: {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [CrossEntropyWithSoftmax Value[1]] [EvalErrorPrediction Gradient[1]] [EvalErrorPrediction Value[1]] [H1 Gradient[50 x 1 x *2]] [H2 Gradient[50 x 1 x *2]] [HLast Gradient[2 x 1 x *2]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *2]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *2]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *2]] [ScaledLogLikelihood Value[2 x 1 x *2]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *2]] [W0*features+B0 Gradient[50 x 1 x *2]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *2]] [W1*H1+B1 Gradient[50 x 1 x *2]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *2]] [features Gradient[2 x *2]] [labels Gradient[2 x *2]] }
|
||||
0000000000000000: {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [CrossEntropyWithSoftmax Value[1]] [EvalClassificationError Gradient[1]] [EvalClassificationError Value[1]] [H1 Gradient[50 x 1 x *2]] [H2 Gradient[50 x 1 x *2]] [HLast Gradient[2 x 1 x *2]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *2]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *2]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *2]] [ScaledLogLikelihood Value[2 x 1 x *2]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *2]] [W0*features+B0 Gradient[50 x 1 x *2]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *2]] [W1*H1+B1 Gradient[50 x 1 x *2]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *2]] [features Gradient[2 x *2]] [labels Gradient[2 x *2]] }
|
||||
000000702E3275E0: {[H2 Value[50 x 1 x *2]] }
|
||||
000000702E327680: {[W2*H1 Value[2 x 1 x *2]] }
|
||||
000000702E3277C0: {[LogOfPrior Value[2]] }
|
||||
|
|
|
@ -56,7 +56,7 @@ Simple_Demo_Train = [
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -155,7 +155,7 @@ Simple_Demo_Train = [
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -298,7 +298,7 @@ configparameters: Simple.cntk:Simple_Demo_Train=[
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
|
@ -354,7 +354,7 @@ Post-processing network...
|
|||
|
||||
7 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -383,7 +383,7 @@ Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *] -> [2 x 1 x *]
|
|||
Validating --> B2 = LearnableParameter() : -> [2 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *], [2 x 1] -> [2 x 1 x *]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *], [2 x 1 x *] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *] -> [2 x 1 x *]
|
||||
Validating --> Prior = Mean (labels) : [2 x *] -> [2]
|
||||
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
|
||||
|
@ -407,14 +407,14 @@ Post-processing network complete.
|
|||
|
||||
05/03/2016 13:01:59: Evaluation criterion node(s):
|
||||
|
||||
05/03/2016 13:01:59: EvalErrorPrediction = ErrorPrediction
|
||||
05/03/2016 13:01:59: EvalClassificationError = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
||||
Memory Sharing Structure:
|
||||
|
||||
0000000000000000: {[EvalErrorPrediction Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
|
||||
0000000000000000: {[EvalClassificationError Gradient[1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *]] [PosteriorProb Value[2 x 1 x *]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *]] [features Gradient[2 x *]] [labels Gradient[2 x *]] }
|
||||
000000501A590FF0: {[W2 Value[2 x 50]] }
|
||||
000000501A591090: {[W0 Value[50 x 2]] }
|
||||
000000501A5919F0: {[B1 Value[50 x 1]] }
|
||||
|
@ -427,7 +427,7 @@ Memory Sharing Structure:
|
|||
000000501A5A1180: {[ScaledLogLikelihood Value[2 x 1 x *]] }
|
||||
000000501A5A1220: {[B0 Gradient[50 x 1]] [H1 Gradient[50 x 1 x *]] [W1*H1+B1 Gradient[50 x 1 x *]] [W2*H1 Value[2 x 1 x *]] }
|
||||
000000501A5A17C0: {[W0 Gradient[50 x 2]] [W0*features+B0 Value[50 x 1 x *]] }
|
||||
000000501A5A1900: {[EvalErrorPrediction Value[1]] }
|
||||
000000501A5A1900: {[EvalClassificationError Value[1]] }
|
||||
000000501A5A19A0: {[W0*features Value[50 x *]] }
|
||||
000000501A5A1A40: {[W2*H1 Gradient[2 x 1 x *]] }
|
||||
000000501A5A1F40: {[MVNormalizedFeatures Value[2 x *]] }
|
||||
|
@ -457,139 +457,139 @@ Memory Sharing Structure:
|
|||
05/03/2016 13:01:59: Starting Epoch 1: learning rate per sample = 0.020000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 13:01:59: Starting minibatch loop.
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70650452 * 250; EvalErrorPrediction = 0.55200000 * 250; time = 0.0123s; samplesPerSecond = 20247.8
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.69701831 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0112s; samplesPerSecond = 22393.4
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.71089587 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0126s; samplesPerSecond = 19907.6
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.72980273 * 250; EvalErrorPrediction = 0.56000000 * 250; time = 0.0113s; samplesPerSecond = 22042.0
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70902783 * 250; EvalErrorPrediction = 0.52800000 * 250; time = 0.0131s; samplesPerSecond = 19088.3
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72657300 * 250; EvalErrorPrediction = 0.54400000 * 250; time = 0.0138s; samplesPerSecond = 18059.7
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.69319678 * 250; EvalErrorPrediction = 0.43200000 * 250; time = 0.0148s; samplesPerSecond = 16917.0
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.73563477 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0164s; samplesPerSecond = 15236.5
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.71463281 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0123s; samplesPerSecond = 20321.9
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.75213428 * 250; EvalErrorPrediction = 0.47200000 * 250; time = 0.0167s; samplesPerSecond = 14944.1
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.75931445 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0131s; samplesPerSecond = 19105.8
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.73075293 * 250; EvalErrorPrediction = 0.50800000 * 250; time = 0.0132s; samplesPerSecond = 18886.5
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.76701953 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0128s; samplesPerSecond = 19574.1
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.70451270 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0128s; samplesPerSecond = 19467.4
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70539941 * 250; EvalErrorPrediction = 0.50400000 * 250; time = 0.0143s; samplesPerSecond = 17444.7
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.72700293 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0123s; samplesPerSecond = 20391.5
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70096191 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0143s; samplesPerSecond = 17465.4
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.69437305 * 250; EvalErrorPrediction = 0.49600000 * 250; time = 0.0117s; samplesPerSecond = 21367.5
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.69161621 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0137s; samplesPerSecond = 18200.3
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.73388281 * 250; EvalErrorPrediction = 0.55200000 * 250; time = 0.0115s; samplesPerSecond = 21782.7
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.72255664 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0127s; samplesPerSecond = 19745.7
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70414551 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0131s; samplesPerSecond = 19017.2
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69976758 * 250; EvalErrorPrediction = 0.46000000 * 250; time = 0.0137s; samplesPerSecond = 18191.1
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.72419141 * 250; EvalErrorPrediction = 0.51600000 * 250; time = 0.0143s; samplesPerSecond = 17444.7
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69943945 * 250; EvalErrorPrediction = 0.51200000 * 250; time = 0.0109s; samplesPerSecond = 22891.7
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69206445 * 250; EvalErrorPrediction = 0.47600000 * 250; time = 0.0133s; samplesPerSecond = 18739.2
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.68771680 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0130s; samplesPerSecond = 19291.6
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69878516 * 250; EvalErrorPrediction = 0.44000000 * 250; time = 0.0130s; samplesPerSecond = 19230.8
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.71889844 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0118s; samplesPerSecond = 21168.5
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.70086523 * 250; EvalErrorPrediction = 0.52400000 * 250; time = 0.0128s; samplesPerSecond = 19577.1
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.70878320 * 250; EvalErrorPrediction = 0.53200000 * 250; time = 0.0129s; samplesPerSecond = 19432.6
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.70674414 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0126s; samplesPerSecond = 19767.5
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69707422 * 250; EvalErrorPrediction = 0.50000000 * 250; time = 0.0121s; samplesPerSecond = 20736.6
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.68588281 * 250; EvalErrorPrediction = 0.40800000 * 250; time = 0.0124s; samplesPerSecond = 20109.4
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.67734766 * 250; EvalErrorPrediction = 0.45600000 * 250; time = 0.0127s; samplesPerSecond = 19727.0
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.67958008 * 250; EvalErrorPrediction = 0.48000000 * 250; time = 0.0127s; samplesPerSecond = 19615.5
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.66424805 * 250; EvalErrorPrediction = 0.46800000 * 250; time = 0.0117s; samplesPerSecond = 21292.9
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.62412500 * 250; EvalErrorPrediction = 0.20400000 * 250; time = 0.0127s; samplesPerSecond = 19624.8
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.58007422 * 250; EvalErrorPrediction = 0.16000000 * 250; time = 0.0130s; samplesPerSecond = 19157.1
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.52764648 * 250; EvalErrorPrediction = 0.19200000 * 250; time = 0.0143s; samplesPerSecond = 17521.7
|
||||
05/03/2016 13:02:00: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.69975483 * 10000; EvalErrorPrediction = 0.46850000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=0.526194s
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 1- 10]: CrossEntropyWithSoftmax = 0.70650452 * 250; EvalClassificationError = 0.55200000 * 250; time = 0.0123s; samplesPerSecond = 20247.8
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 11- 20]: CrossEntropyWithSoftmax = 0.69701831 * 250; EvalClassificationError = 0.47600000 * 250; time = 0.0112s; samplesPerSecond = 22393.4
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 21- 30]: CrossEntropyWithSoftmax = 0.71089587 * 250; EvalClassificationError = 0.50400000 * 250; time = 0.0126s; samplesPerSecond = 19907.6
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 31- 40]: CrossEntropyWithSoftmax = 0.72980273 * 250; EvalClassificationError = 0.56000000 * 250; time = 0.0113s; samplesPerSecond = 22042.0
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 41- 50]: CrossEntropyWithSoftmax = 0.70902783 * 250; EvalClassificationError = 0.52800000 * 250; time = 0.0131s; samplesPerSecond = 19088.3
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 51- 60]: CrossEntropyWithSoftmax = 0.72657300 * 250; EvalClassificationError = 0.54400000 * 250; time = 0.0138s; samplesPerSecond = 18059.7
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 61- 70]: CrossEntropyWithSoftmax = 0.69319678 * 250; EvalClassificationError = 0.43200000 * 250; time = 0.0148s; samplesPerSecond = 16917.0
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 71- 80]: CrossEntropyWithSoftmax = 0.73563477 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0164s; samplesPerSecond = 15236.5
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 81- 90]: CrossEntropyWithSoftmax = 0.71463281 * 250; EvalClassificationError = 0.51200000 * 250; time = 0.0123s; samplesPerSecond = 20321.9
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 91- 100]: CrossEntropyWithSoftmax = 0.75213428 * 250; EvalClassificationError = 0.47200000 * 250; time = 0.0167s; samplesPerSecond = 14944.1
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 101- 110]: CrossEntropyWithSoftmax = 0.75931445 * 250; EvalClassificationError = 0.53200000 * 250; time = 0.0131s; samplesPerSecond = 19105.8
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 111- 120]: CrossEntropyWithSoftmax = 0.73075293 * 250; EvalClassificationError = 0.50800000 * 250; time = 0.0132s; samplesPerSecond = 18886.5
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 121- 130]: CrossEntropyWithSoftmax = 0.76701953 * 250; EvalClassificationError = 0.53200000 * 250; time = 0.0128s; samplesPerSecond = 19574.1
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 131- 140]: CrossEntropyWithSoftmax = 0.70451270 * 250; EvalClassificationError = 0.46800000 * 250; time = 0.0128s; samplesPerSecond = 19467.4
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 141- 150]: CrossEntropyWithSoftmax = 0.70539941 * 250; EvalClassificationError = 0.50400000 * 250; time = 0.0143s; samplesPerSecond = 17444.7
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 151- 160]: CrossEntropyWithSoftmax = 0.72700293 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0123s; samplesPerSecond = 20391.5
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 161- 170]: CrossEntropyWithSoftmax = 0.70096191 * 250; EvalClassificationError = 0.45600000 * 250; time = 0.0143s; samplesPerSecond = 17465.4
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 171- 180]: CrossEntropyWithSoftmax = 0.69437305 * 250; EvalClassificationError = 0.49600000 * 250; time = 0.0117s; samplesPerSecond = 21367.5
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 181- 190]: CrossEntropyWithSoftmax = 0.69161621 * 250; EvalClassificationError = 0.46800000 * 250; time = 0.0137s; samplesPerSecond = 18200.3
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 191- 200]: CrossEntropyWithSoftmax = 0.73388281 * 250; EvalClassificationError = 0.55200000 * 250; time = 0.0115s; samplesPerSecond = 21782.7
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 201- 210]: CrossEntropyWithSoftmax = 0.72255664 * 250; EvalClassificationError = 0.46800000 * 250; time = 0.0127s; samplesPerSecond = 19745.7
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 211- 220]: CrossEntropyWithSoftmax = 0.70414551 * 250; EvalClassificationError = 0.45600000 * 250; time = 0.0131s; samplesPerSecond = 19017.2
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 221- 230]: CrossEntropyWithSoftmax = 0.69976758 * 250; EvalClassificationError = 0.46000000 * 250; time = 0.0137s; samplesPerSecond = 18191.1
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 231- 240]: CrossEntropyWithSoftmax = 0.72419141 * 250; EvalClassificationError = 0.51600000 * 250; time = 0.0143s; samplesPerSecond = 17444.7
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 241- 250]: CrossEntropyWithSoftmax = 0.69943945 * 250; EvalClassificationError = 0.51200000 * 250; time = 0.0109s; samplesPerSecond = 22891.7
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 251- 260]: CrossEntropyWithSoftmax = 0.69206445 * 250; EvalClassificationError = 0.47600000 * 250; time = 0.0133s; samplesPerSecond = 18739.2
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 261- 270]: CrossEntropyWithSoftmax = 0.68771680 * 250; EvalClassificationError = 0.45600000 * 250; time = 0.0130s; samplesPerSecond = 19291.6
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 271- 280]: CrossEntropyWithSoftmax = 0.69878516 * 250; EvalClassificationError = 0.44000000 * 250; time = 0.0130s; samplesPerSecond = 19230.8
|
||||
05/03/2016 13:01:59: Epoch[ 1 of 3]-Minibatch[ 281- 290]: CrossEntropyWithSoftmax = 0.71889844 * 250; EvalClassificationError = 0.45600000 * 250; time = 0.0118s; samplesPerSecond = 21168.5
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 291- 300]: CrossEntropyWithSoftmax = 0.70086523 * 250; EvalClassificationError = 0.52400000 * 250; time = 0.0128s; samplesPerSecond = 19577.1
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 301- 310]: CrossEntropyWithSoftmax = 0.70878320 * 250; EvalClassificationError = 0.53200000 * 250; time = 0.0129s; samplesPerSecond = 19432.6
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 311- 320]: CrossEntropyWithSoftmax = 0.70674414 * 250; EvalClassificationError = 0.48000000 * 250; time = 0.0126s; samplesPerSecond = 19767.5
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 321- 330]: CrossEntropyWithSoftmax = 0.69707422 * 250; EvalClassificationError = 0.50000000 * 250; time = 0.0121s; samplesPerSecond = 20736.6
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 331- 340]: CrossEntropyWithSoftmax = 0.68588281 * 250; EvalClassificationError = 0.40800000 * 250; time = 0.0124s; samplesPerSecond = 20109.4
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 341- 350]: CrossEntropyWithSoftmax = 0.67734766 * 250; EvalClassificationError = 0.45600000 * 250; time = 0.0127s; samplesPerSecond = 19727.0
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 351- 360]: CrossEntropyWithSoftmax = 0.67958008 * 250; EvalClassificationError = 0.48000000 * 250; time = 0.0127s; samplesPerSecond = 19615.5
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 361- 370]: CrossEntropyWithSoftmax = 0.66424805 * 250; EvalClassificationError = 0.46800000 * 250; time = 0.0117s; samplesPerSecond = 21292.9
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 371- 380]: CrossEntropyWithSoftmax = 0.62412500 * 250; EvalClassificationError = 0.20400000 * 250; time = 0.0127s; samplesPerSecond = 19624.8
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 381- 390]: CrossEntropyWithSoftmax = 0.58007422 * 250; EvalClassificationError = 0.16000000 * 250; time = 0.0130s; samplesPerSecond = 19157.1
|
||||
05/03/2016 13:02:00: Epoch[ 1 of 3]-Minibatch[ 391- 400]: CrossEntropyWithSoftmax = 0.52764648 * 250; EvalClassificationError = 0.19200000 * 250; time = 0.0143s; samplesPerSecond = 17521.7
|
||||
05/03/2016 13:02:00: Finished Epoch[ 1 of 3]: [Training] CrossEntropyWithSoftmax = 0.69975483 * 10000; EvalClassificationError = 0.46850000 * 10000; totalSamplesSeen = 10000; learningRatePerSample = 0.02; epochTime=0.526194s
|
||||
05/03/2016 13:02:00: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu/Models/simple.dnn.1'
|
||||
|
||||
05/03/2016 13:02:00: Starting Epoch 2: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 13:02:00: Starting minibatch loop.
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.44832977 * 250; EvalErrorPrediction = 0.15200000 * 250; time = 0.0124s; samplesPerSecond = 20205.3
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.40085291 * 250; EvalErrorPrediction = 0.12400000 * 250; time = 0.0142s; samplesPerSecond = 17631.7
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.33487201 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0129s; samplesPerSecond = 19405.4
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.29081885 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0125s; samplesPerSecond = 20016.0
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.26279236 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0118s; samplesPerSecond = 21188.2
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.25220630 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0138s; samplesPerSecond = 18158.0
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.20988293 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0129s; samplesPerSecond = 19447.7
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.21577441 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0148s; samplesPerSecond = 16846.4
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.16622900 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0157s; samplesPerSecond = 15967.3
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.17637866 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0144s; samplesPerSecond = 17315.4
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.22185278 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0123s; samplesPerSecond = 20366.6
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.17055811 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0151s; samplesPerSecond = 16564.0
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.16481055 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0140s; samplesPerSecond = 17910.9
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13871704 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0156s; samplesPerSecond = 16005.1
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16922363 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0143s; samplesPerSecond = 17454.4
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.15403345 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0135s; samplesPerSecond = 18485.7
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.22255859 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0108s; samplesPerSecond = 23079.8
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18146851 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0133s; samplesPerSecond = 18843.7
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.15611523 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0131s; samplesPerSecond = 19081.1
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.17320215 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0137s; samplesPerSecond = 18192.4
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15727930 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0117s; samplesPerSecond = 21404.1
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.16195410 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0119s; samplesPerSecond = 21088.1
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.16121338 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0128s; samplesPerSecond = 19546.5
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.15427100 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0125s; samplesPerSecond = 20011.2
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.14844775 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0141s; samplesPerSecond = 17743.1
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.15055713 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0108s; samplesPerSecond = 23067.0
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.15467627 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0132s; samplesPerSecond = 18965.3
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.17615869 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0140s; samplesPerSecond = 17872.5
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.22356104 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0121s; samplesPerSecond = 20650.9
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16514209 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0109s; samplesPerSecond = 22946.3
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17355859 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0129s; samplesPerSecond = 19372.3
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13117578 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0138s; samplesPerSecond = 18151.5
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.13956104 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0121s; samplesPerSecond = 20743.4
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.18397363 * 250; EvalErrorPrediction = 0.09600000 * 250; time = 0.0105s; samplesPerSecond = 23741.7
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.15222656 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0126s; samplesPerSecond = 19909.2
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.18856396 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0145s; samplesPerSecond = 17207.0
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.17513330 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0130s; samplesPerSecond = 19199.8
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15008252 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0108s; samplesPerSecond = 23043.6
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.12125342 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0127s; samplesPerSecond = 19668.0
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15408496 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0141s; samplesPerSecond = 17788.5
|
||||
05/03/2016 13:02:00: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.19333879 * 10000; EvalErrorPrediction = 0.07700000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.525411s
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.44832977 * 250; EvalClassificationError = 0.15200000 * 250; time = 0.0124s; samplesPerSecond = 20205.3
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.40085291 * 250; EvalClassificationError = 0.12400000 * 250; time = 0.0142s; samplesPerSecond = 17631.7
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.33487201 * 250; EvalClassificationError = 0.09600000 * 250; time = 0.0129s; samplesPerSecond = 19405.4
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.29081885 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0125s; samplesPerSecond = 20016.0
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.26279236 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0118s; samplesPerSecond = 21188.2
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.25220630 * 250; EvalClassificationError = 0.09600000 * 250; time = 0.0138s; samplesPerSecond = 18158.0
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.20988293 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0129s; samplesPerSecond = 19447.7
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.21577441 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0148s; samplesPerSecond = 16846.4
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.16622900 * 250; EvalClassificationError = 0.04000000 * 250; time = 0.0157s; samplesPerSecond = 15967.3
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.17637866 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0144s; samplesPerSecond = 17315.4
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.22185278 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0123s; samplesPerSecond = 20366.6
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.17055811 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0151s; samplesPerSecond = 16564.0
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.16481055 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0140s; samplesPerSecond = 17910.9
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.13871704 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0156s; samplesPerSecond = 16005.1
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.16922363 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0143s; samplesPerSecond = 17454.4
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.15403345 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0135s; samplesPerSecond = 18485.7
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.22255859 * 250; EvalClassificationError = 0.11200000 * 250; time = 0.0108s; samplesPerSecond = 23079.8
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.18146851 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0133s; samplesPerSecond = 18843.7
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.15611523 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0131s; samplesPerSecond = 19081.1
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.17320215 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0137s; samplesPerSecond = 18192.4
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.15727930 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0117s; samplesPerSecond = 21404.1
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.16195410 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0119s; samplesPerSecond = 21088.1
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.16121338 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0128s; samplesPerSecond = 19546.5
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.15427100 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0125s; samplesPerSecond = 20011.2
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.14844775 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0141s; samplesPerSecond = 17743.1
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.15055713 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0108s; samplesPerSecond = 23067.0
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.15467627 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0132s; samplesPerSecond = 18965.3
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.17615869 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0140s; samplesPerSecond = 17872.5
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.22356104 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0121s; samplesPerSecond = 20650.9
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16514209 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0109s; samplesPerSecond = 22946.3
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.17355859 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0129s; samplesPerSecond = 19372.3
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.13117578 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0138s; samplesPerSecond = 18151.5
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.13956104 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0121s; samplesPerSecond = 20743.4
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.18397363 * 250; EvalClassificationError = 0.09600000 * 250; time = 0.0105s; samplesPerSecond = 23741.7
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.15222656 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0126s; samplesPerSecond = 19909.2
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.18856396 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0145s; samplesPerSecond = 17207.0
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.17513330 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0130s; samplesPerSecond = 19199.8
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15008252 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0108s; samplesPerSecond = 23043.6
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.12125342 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0127s; samplesPerSecond = 19668.0
|
||||
05/03/2016 13:02:00: Epoch[ 2 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.15408496 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0141s; samplesPerSecond = 17788.5
|
||||
05/03/2016 13:02:00: Finished Epoch[ 2 of 3]: [Training] CrossEntropyWithSoftmax = 0.19333879 * 10000; EvalClassificationError = 0.07700000 * 10000; totalSamplesSeen = 20000; learningRatePerSample = 0.0080000004; epochTime=0.525411s
|
||||
05/03/2016 13:02:00: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu/Models/simple.dnn.2'
|
||||
|
||||
05/03/2016 13:02:00: Starting Epoch 3: learning rate per sample = 0.008000 effective momentum = 0.900000 momentum as time constant = 237.3 samples
|
||||
|
||||
05/03/2016 13:02:00: Starting minibatch loop.
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.10746781 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0126s; samplesPerSecond = 19806.7
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.17648278 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0122s; samplesPerSecond = 20429.8
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14106094 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0126s; samplesPerSecond = 19838.1
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.16348077 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0127s; samplesPerSecond = 19745.7
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.11767151 * 250; EvalErrorPrediction = 0.04000000 * 250; time = 0.0110s; samplesPerSecond = 22787.3
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.16217944 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0137s; samplesPerSecond = 18292.2
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.16171204 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0147s; samplesPerSecond = 16977.9
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.19844067 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0130s; samplesPerSecond = 19285.7
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.19984509 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0116s; samplesPerSecond = 21585.2
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.13727051 * 250; EvalErrorPrediction = 0.05200000 * 250; time = 0.0133s; samplesPerSecond = 18839.5
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.20126648 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0150s; samplesPerSecond = 16709.0
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.17913672 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0138s; samplesPerSecond = 18066.2
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.15983582 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0138s; samplesPerSecond = 18131.7
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16260010 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0126s; samplesPerSecond = 19798.8
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.19813428 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0122s; samplesPerSecond = 20453.2
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.10295117 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0124s; samplesPerSecond = 20091.6
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17117065 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0127s; samplesPerSecond = 19762.8
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16661938 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0127s; samplesPerSecond = 19620.2
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.12718042 * 250; EvalErrorPrediction = 0.05600000 * 250; time = 0.0108s; samplesPerSecond = 23156.7
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.11923853 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0139s; samplesPerSecond = 17989.5
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.12890332 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0129s; samplesPerSecond = 19340.9
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.18205469 * 250; EvalErrorPrediction = 0.10000000 * 250; time = 0.0124s; samplesPerSecond = 20182.4
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.13154199 * 250; EvalErrorPrediction = 0.06000000 * 250; time = 0.0111s; samplesPerSecond = 22599.9
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.19668359 * 250; EvalErrorPrediction = 0.10400000 * 250; time = 0.0139s; samplesPerSecond = 17922.4
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.15817578 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0126s; samplesPerSecond = 19915.6
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.11871240 * 250; EvalErrorPrediction = 0.04400000 * 250; time = 0.0136s; samplesPerSecond = 18378.3
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.13730908 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0107s; samplesPerSecond = 23384.2
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.20024854 * 250; EvalErrorPrediction = 0.09200000 * 250; time = 0.0134s; samplesPerSecond = 18719.6
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.18850244 * 250; EvalErrorPrediction = 0.10800000 * 250; time = 0.0131s; samplesPerSecond = 19151.2
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16640479 * 250; EvalErrorPrediction = 0.07200000 * 250; time = 0.0108s; samplesPerSecond = 23086.2
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.11872168 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0107s; samplesPerSecond = 23347.0
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.16090430 * 250; EvalErrorPrediction = 0.08800000 * 250; time = 0.0127s; samplesPerSecond = 19730.1
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.16162939 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0137s; samplesPerSecond = 18205.7
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.12408594 * 250; EvalErrorPrediction = 0.04800000 * 250; time = 0.0109s; samplesPerSecond = 22839.4
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13544434 * 250; EvalErrorPrediction = 0.06800000 * 250; time = 0.0126s; samplesPerSecond = 19893.4
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.20890771 * 250; EvalErrorPrediction = 0.11200000 * 250; time = 0.0129s; samplesPerSecond = 19366.3
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16674365 * 250; EvalErrorPrediction = 0.08400000 * 250; time = 0.0146s; samplesPerSecond = 17116.3
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15033398 * 250; EvalErrorPrediction = 0.06400000 * 250; time = 0.0131s; samplesPerSecond = 19152.7
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.16547705 * 250; EvalErrorPrediction = 0.07600000 * 250; time = 0.0120s; samplesPerSecond = 20752.1
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.16792480 * 250; EvalErrorPrediction = 0.08000000 * 250; time = 0.0129s; samplesPerSecond = 19450.7
|
||||
05/03/2016 13:02:01: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15806136 * 10000; EvalErrorPrediction = 0.07470000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.511151s
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 1- 10, 2.50%]: CrossEntropyWithSoftmax = 0.10746781 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0126s; samplesPerSecond = 19806.7
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 11- 20, 5.00%]: CrossEntropyWithSoftmax = 0.17648278 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0122s; samplesPerSecond = 20429.8
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 21- 30, 7.50%]: CrossEntropyWithSoftmax = 0.14106094 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0126s; samplesPerSecond = 19838.1
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 31- 40, 10.00%]: CrossEntropyWithSoftmax = 0.16348077 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0127s; samplesPerSecond = 19745.7
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 41- 50, 12.50%]: CrossEntropyWithSoftmax = 0.11767151 * 250; EvalClassificationError = 0.04000000 * 250; time = 0.0110s; samplesPerSecond = 22787.3
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 51- 60, 15.00%]: CrossEntropyWithSoftmax = 0.16217944 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0137s; samplesPerSecond = 18292.2
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 61- 70, 17.50%]: CrossEntropyWithSoftmax = 0.16171204 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0147s; samplesPerSecond = 16977.9
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 71- 80, 20.00%]: CrossEntropyWithSoftmax = 0.19844067 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0130s; samplesPerSecond = 19285.7
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 81- 90, 22.50%]: CrossEntropyWithSoftmax = 0.19984509 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0116s; samplesPerSecond = 21585.2
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 91- 100, 25.00%]: CrossEntropyWithSoftmax = 0.13727051 * 250; EvalClassificationError = 0.05200000 * 250; time = 0.0133s; samplesPerSecond = 18839.5
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 101- 110, 27.50%]: CrossEntropyWithSoftmax = 0.20126648 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0150s; samplesPerSecond = 16709.0
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 111- 120, 30.00%]: CrossEntropyWithSoftmax = 0.17913672 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0138s; samplesPerSecond = 18066.2
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 121- 130, 32.50%]: CrossEntropyWithSoftmax = 0.15983582 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0138s; samplesPerSecond = 18131.7
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 131- 140, 35.00%]: CrossEntropyWithSoftmax = 0.16260010 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0126s; samplesPerSecond = 19798.8
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 141- 150, 37.50%]: CrossEntropyWithSoftmax = 0.19813428 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0122s; samplesPerSecond = 20453.2
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 151- 160, 40.00%]: CrossEntropyWithSoftmax = 0.10295117 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0124s; samplesPerSecond = 20091.6
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 161- 170, 42.50%]: CrossEntropyWithSoftmax = 0.17117065 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0127s; samplesPerSecond = 19762.8
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 171- 180, 45.00%]: CrossEntropyWithSoftmax = 0.16661938 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0127s; samplesPerSecond = 19620.2
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 181- 190, 47.50%]: CrossEntropyWithSoftmax = 0.12718042 * 250; EvalClassificationError = 0.05600000 * 250; time = 0.0108s; samplesPerSecond = 23156.7
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 191- 200, 50.00%]: CrossEntropyWithSoftmax = 0.11923853 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0139s; samplesPerSecond = 17989.5
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 201- 210, 52.50%]: CrossEntropyWithSoftmax = 0.12890332 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0129s; samplesPerSecond = 19340.9
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 211- 220, 55.00%]: CrossEntropyWithSoftmax = 0.18205469 * 250; EvalClassificationError = 0.10000000 * 250; time = 0.0124s; samplesPerSecond = 20182.4
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 221- 230, 57.50%]: CrossEntropyWithSoftmax = 0.13154199 * 250; EvalClassificationError = 0.06000000 * 250; time = 0.0111s; samplesPerSecond = 22599.9
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 231- 240, 60.00%]: CrossEntropyWithSoftmax = 0.19668359 * 250; EvalClassificationError = 0.10400000 * 250; time = 0.0139s; samplesPerSecond = 17922.4
|
||||
05/03/2016 13:02:00: Epoch[ 3 of 3]-Minibatch[ 241- 250, 62.50%]: CrossEntropyWithSoftmax = 0.15817578 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0126s; samplesPerSecond = 19915.6
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 251- 260, 65.00%]: CrossEntropyWithSoftmax = 0.11871240 * 250; EvalClassificationError = 0.04400000 * 250; time = 0.0136s; samplesPerSecond = 18378.3
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 261- 270, 67.50%]: CrossEntropyWithSoftmax = 0.13730908 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0107s; samplesPerSecond = 23384.2
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 271- 280, 70.00%]: CrossEntropyWithSoftmax = 0.20024854 * 250; EvalClassificationError = 0.09200000 * 250; time = 0.0134s; samplesPerSecond = 18719.6
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 281- 290, 72.50%]: CrossEntropyWithSoftmax = 0.18850244 * 250; EvalClassificationError = 0.10800000 * 250; time = 0.0131s; samplesPerSecond = 19151.2
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 291- 300, 75.00%]: CrossEntropyWithSoftmax = 0.16640479 * 250; EvalClassificationError = 0.07200000 * 250; time = 0.0108s; samplesPerSecond = 23086.2
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 301- 310, 77.50%]: CrossEntropyWithSoftmax = 0.11872168 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0107s; samplesPerSecond = 23347.0
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 311- 320, 80.00%]: CrossEntropyWithSoftmax = 0.16090430 * 250; EvalClassificationError = 0.08800000 * 250; time = 0.0127s; samplesPerSecond = 19730.1
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 321- 330, 82.50%]: CrossEntropyWithSoftmax = 0.16162939 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0137s; samplesPerSecond = 18205.7
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 331- 340, 85.00%]: CrossEntropyWithSoftmax = 0.12408594 * 250; EvalClassificationError = 0.04800000 * 250; time = 0.0109s; samplesPerSecond = 22839.4
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 341- 350, 87.50%]: CrossEntropyWithSoftmax = 0.13544434 * 250; EvalClassificationError = 0.06800000 * 250; time = 0.0126s; samplesPerSecond = 19893.4
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 351- 360, 90.00%]: CrossEntropyWithSoftmax = 0.20890771 * 250; EvalClassificationError = 0.11200000 * 250; time = 0.0129s; samplesPerSecond = 19366.3
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 361- 370, 92.50%]: CrossEntropyWithSoftmax = 0.16674365 * 250; EvalClassificationError = 0.08400000 * 250; time = 0.0146s; samplesPerSecond = 17116.3
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 371- 380, 95.00%]: CrossEntropyWithSoftmax = 0.15033398 * 250; EvalClassificationError = 0.06400000 * 250; time = 0.0131s; samplesPerSecond = 19152.7
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 381- 390, 97.50%]: CrossEntropyWithSoftmax = 0.16547705 * 250; EvalClassificationError = 0.07600000 * 250; time = 0.0120s; samplesPerSecond = 20752.1
|
||||
05/03/2016 13:02:01: Epoch[ 3 of 3]-Minibatch[ 391- 400, 100.00%]: CrossEntropyWithSoftmax = 0.16792480 * 250; EvalClassificationError = 0.08000000 * 250; time = 0.0129s; samplesPerSecond = 19450.7
|
||||
05/03/2016 13:02:01: Finished Epoch[ 3 of 3]: [Training] CrossEntropyWithSoftmax = 0.15806136 * 10000; EvalClassificationError = 0.07470000 * 10000; totalSamplesSeen = 30000; learningRatePerSample = 0.0080000004; epochTime=0.511151s
|
||||
05/03/2016 13:02:01: SGD: Saving checkpoint model 'E:\cygwin64\tmp\cntk-test-20160503140157.802427\CNTKTextFormatReader\Examples\Other\Simple2d_Simple@release_gpu/Models/simple.dnn'
|
||||
05/03/2016 13:02:01: CNTKCommandTrainEnd: Simple_Demo_Train
|
||||
|
||||
|
@ -607,7 +607,7 @@ Post-processing network...
|
|||
|
||||
7 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -636,7 +636,7 @@ Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *1] -> [2 x 1 x *1]
|
|||
Validating --> B2 = LearnableParameter() : -> [2 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *1], [2 x 1] -> [2 x 1 x *1]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *1], [2 x 1 x *1] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *1] -> [2 x 1 x *1]
|
||||
Validating --> Prior = Mean (labels) : [2 x *1] -> [2]
|
||||
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
|
||||
|
@ -660,7 +660,7 @@ Allocating matrices for forward and/or backward propagation.
|
|||
|
||||
Memory Sharing Structure:
|
||||
|
||||
0000000000000000: {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalErrorPrediction Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
|
||||
0000000000000000: {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [EvalClassificationError Gradient[1]] [H1 Gradient[50 x 1 x *1]] [H2 Gradient[50 x 1 x *1]] [HLast Gradient[2 x 1 x *1]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *1]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *1]] [PosteriorProb Value[2 x 1 x *1]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *1]] [ScaledLogLikelihood Value[2 x 1 x *1]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *1]] [W0*features+B0 Gradient[50 x 1 x *1]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *1]] [W1*H1+B1 Gradient[50 x 1 x *1]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *1]] [features Gradient[2 x *1]] [labels Gradient[2 x *1]] }
|
||||
000000501A591090: {[W0*features+B0 Value[50 x 1 x *1]] }
|
||||
000000501A591130: {[W1*H1 Value[50 x 1 x *1]] }
|
||||
000000501A5916D0: {[W1*H1+B1 Value[50 x 1 x *1]] }
|
||||
|
@ -672,7 +672,7 @@ Memory Sharing Structure:
|
|||
000000501A592850: {[LogOfPrior Value[2]] }
|
||||
000000501A5928F0: {[H2 Value[50 x 1 x *1]] }
|
||||
000000501A592B70: {[W2 Value[2 x 50]] }
|
||||
000000501A592D50: {[EvalErrorPrediction Value[1]] }
|
||||
000000501A592D50: {[EvalClassificationError Value[1]] }
|
||||
000000501A592DF0: {[CrossEntropyWithSoftmax Value[1]] }
|
||||
0000005024E60C70: {[W1 Value[50 x 50]] }
|
||||
0000005024E613F0: {[W0 Value[50 x 2]] }
|
||||
|
@ -685,7 +685,7 @@ Memory Sharing Structure:
|
|||
0000005024E62430: {[features Value[2 x *1]] }
|
||||
0000005024E624D0: {[B1 Value[50 x 1]] }
|
||||
|
||||
05/03/2016 13:02:01: Final Results: Minibatch[1-1]: EvalErrorPrediction = 0.05638474 * 603; CrossEntropyWithSoftmax = 0.12740351 * 603; perplexity = 1.13587526
|
||||
05/03/2016 13:02:01: Final Results: Minibatch[1-1]: EvalClassificationError = 0.05638474 * 603; CrossEntropyWithSoftmax = 0.12740351 * 603; perplexity = 1.13587526
|
||||
|
||||
05/03/2016 13:02:01: Action "test" complete.
|
||||
|
||||
|
@ -701,7 +701,7 @@ Post-processing network...
|
|||
|
||||
8 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -731,7 +731,7 @@ Validating --> W2*H1 = Times (W2, H2) : [2 x 50], [50 x 1 x *2] -> [2 x 1 x *2]
|
|||
Validating --> B2 = LearnableParameter() : -> [2 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [2 x 1 x *2], [2 x 1] -> [2 x 1 x *2]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [2 x *2], [2 x 1 x *2] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [2 x *2], [2 x 1 x *2] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [2 x *2], [2 x 1 x *2] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [2 x 1 x *2] -> [2 x 1 x *2]
|
||||
Validating --> Prior = Mean (labels) : [2 x *2] -> [2]
|
||||
Validating --> LogOfPrior = Log (Prior) : [2] -> [2]
|
||||
|
@ -754,7 +754,7 @@ Allocating matrices for forward and/or backward propagation.
|
|||
|
||||
Memory Sharing Structure:
|
||||
|
||||
0000000000000000: {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [CrossEntropyWithSoftmax Value[1]] [EvalErrorPrediction Gradient[1]] [EvalErrorPrediction Value[1]] [H1 Gradient[50 x 1 x *2]] [H2 Gradient[50 x 1 x *2]] [HLast Gradient[2 x 1 x *2]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *2]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *2]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *2]] [ScaledLogLikelihood Value[2 x 1 x *2]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *2]] [W0*features+B0 Gradient[50 x 1 x *2]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *2]] [W1*H1+B1 Gradient[50 x 1 x *2]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *2]] [features Gradient[2 x *2]] [labels Gradient[2 x *2]] }
|
||||
0000000000000000: {[B0 Gradient[50 x 1]] [B1 Gradient[50 x 1]] [B2 Gradient[2 x 1]] [CrossEntropyWithSoftmax Gradient[1]] [CrossEntropyWithSoftmax Value[1]] [EvalClassificationError Gradient[1]] [EvalClassificationError Value[1]] [H1 Gradient[50 x 1 x *2]] [H2 Gradient[50 x 1 x *2]] [HLast Gradient[2 x 1 x *2]] [InvStdOfFeatures Gradient[2]] [LogOfPrior Gradient[2]] [MVNormalizedFeatures Gradient[2 x *2]] [MeanOfFeatures Gradient[2]] [PosteriorProb Gradient[2 x 1 x *2]] [Prior Gradient[2]] [ScaledLogLikelihood Gradient[2 x 1 x *2]] [ScaledLogLikelihood Value[2 x 1 x *2]] [W0 Gradient[50 x 2]] [W0*features Gradient[50 x *2]] [W0*features+B0 Gradient[50 x 1 x *2]] [W1 Gradient[50 x 50]] [W1*H1 Gradient[50 x 1 x *2]] [W1*H1+B1 Gradient[50 x 1 x *2]] [W2 Gradient[2 x 50]] [W2*H1 Gradient[2 x 1 x *2]] [features Gradient[2 x *2]] [labels Gradient[2 x *2]] }
|
||||
000000501A5914F0: {[InvStdOfFeatures Value[2]] }
|
||||
000000501A591590: {[MeanOfFeatures Value[2]] }
|
||||
000000501A5916D0: {[labels Value[2 x *2]] }
|
||||
|
|
|
@ -21,7 +21,7 @@ testCases:
|
|||
patterns:
|
||||
- Finished Epoch[{{integer}} of {{integer}}]
|
||||
- CrossEntropyWithSoftmax = {{float,tolerance=0.05}} * {{integer}}
|
||||
- EvalErrorPrediction = {{float,tolerance=0.05}} * {{integer}}
|
||||
- EvalClassificationError = {{float,tolerance=0.05}} * {{integer}}
|
||||
- totalSamplesSeen = {{integer}}
|
||||
- learningRatePerSample = {{float,tolerance=0.1%}}
|
||||
|
||||
|
@ -29,10 +29,10 @@ testCases:
|
|||
patterns:
|
||||
- Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}}
|
||||
- CrossEntropyWithSoftmax = {{float,tolerance=0.05}} * {{integer}}
|
||||
- EvalErrorPrediction = {{float,tolerance=0.05}} * {{integer}}
|
||||
- EvalClassificationError = {{float,tolerance=0.05}} * {{integer}}
|
||||
|
||||
Final test results must match:
|
||||
patterns:
|
||||
- "Final Results: Minibatch[{{integer}}-{{integer}}]"
|
||||
- CrossEntropyWithSoftmax = {{float,tolerance=0.05}} * {{integer}}
|
||||
- EvalErrorPrediction = {{float,tolerance=0.05}} * {{integer}}
|
||||
- EvalClassificationError = {{float,tolerance=0.05}} * {{integer}}
|
|
@ -65,7 +65,7 @@ speechTrain = [
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 363:512:512:132
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
applyMeanVarNorm = true
|
||||
needPrior = true
|
||||
|
@ -139,7 +139,7 @@ speechTrain = [
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 363:512:512:132
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
applyMeanVarNorm = true
|
||||
needPrior = true
|
||||
|
@ -214,7 +214,7 @@ configparameters: FeedForward.cntk:speechTrain=[
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 363:512:512:132
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
applyMeanVarNorm = true
|
||||
needPrior = true
|
||||
|
@ -290,7 +290,7 @@ Post-processing network...
|
|||
|
||||
7 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -319,7 +319,7 @@ Validating --> W2*H1 = Times (W2, H2) : [132 x 512], [512 x 1 x *] -> [132 x 1 x
|
|||
Validating --> B2 = LearnableParameter() : -> [132 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [132 x 1 x *], [132 x 1] -> [132 x 1 x *]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [132 x *], [132 x 1 x *] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [132 x *], [132 x 1 x *] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [132 x *], [132 x 1 x *] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [132 x 1 x *] -> [132 x 1 x *]
|
||||
Validating --> Prior = Mean (labels) : [132 x *] -> [132]
|
||||
Validating --> LogOfPrior = Log (Prior) : [132] -> [132]
|
||||
|
@ -343,14 +343,14 @@ Post-processing network complete.
|
|||
|
||||
05/03/2016 13:22:23: Evaluation criterion node(s):
|
||||
|
||||
05/03/2016 13:22:23: EvalErrorPrediction = ErrorPrediction
|
||||
05/03/2016 13:22:23: EvalClassificationError = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
||||
Memory Sharing Structure:
|
||||
|
||||
0000000000000000: {[EvalErrorPrediction Gradient[1]] [InvStdOfFeatures Gradient[363]] [LogOfPrior Gradient[132]] [MVNormalizedFeatures Gradient[363 x *]] [MeanOfFeatures Gradient[363]] [PosteriorProb Gradient[132 x 1 x *]] [PosteriorProb Value[132 x 1 x *]] [Prior Gradient[132]] [ScaledLogLikelihood Gradient[132 x 1 x *]] [features Gradient[363 x *]] [labels Gradient[132 x *]] }
|
||||
0000000000000000: {[EvalClassificationError Gradient[1]] [InvStdOfFeatures Gradient[363]] [LogOfPrior Gradient[132]] [MVNormalizedFeatures Gradient[363 x *]] [MeanOfFeatures Gradient[363]] [PosteriorProb Gradient[132 x 1 x *]] [PosteriorProb Value[132 x 1 x *]] [Prior Gradient[132]] [ScaledLogLikelihood Gradient[132 x 1 x *]] [features Gradient[363 x *]] [labels Gradient[132 x *]] }
|
||||
000000BDD334C430: {[features Value[363 x *]] }
|
||||
000000BDD334C4D0: {[W0 Value[512 x 363]] }
|
||||
000000BDD334C610: {[MeanOfFeatures Value[363]] }
|
||||
|
@ -359,7 +359,7 @@ Memory Sharing Structure:
|
|||
000000BDD334CE30: {[B1 Value[512 x 1]] }
|
||||
000000BDD334D1F0: {[InvStdOfFeatures Value[363]] }
|
||||
000000BDD5BCA080: {[Prior Value[132]] }
|
||||
000000BDD5BCA120: {[EvalErrorPrediction Value[1]] }
|
||||
000000BDD5BCA120: {[EvalClassificationError Value[1]] }
|
||||
000000BDD5BCA260: {[W2 Value[132 x 512]] }
|
||||
000000BDD5BCA440: {[labels Value[132 x *]] }
|
||||
000000BDD5BCA6C0: {[MVNormalizedFeatures Value[363 x *]] }
|
||||
|
@ -396,7 +396,7 @@ requiredata: determined feature kind as 33-dimensional 'USER' with frame shift 1
|
|||
minibatchiterator: epoch 0: frames [0..2048] (first utterance at frame 0), data subset 0 of 1, with 1 datapasses
|
||||
|
||||
05/03/2016 13:22:24: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1), distributed reading is ENABLED.
|
||||
05/03/2016 13:22:25: Finished Epoch[ 1 of 1]: [Training] CrossEntropyWithSoftmax = 4.48531419 * 2048; EvalErrorPrediction = 0.90722656 * 2048; totalSamplesSeen = 2048; learningRatePerSample = 0.00390625; epochTime=0.288909s
|
||||
05/03/2016 13:22:25: Finished Epoch[ 1 of 1]: [Training] CrossEntropyWithSoftmax = 4.48531419 * 2048; EvalClassificationError = 0.90722656 * 2048; totalSamplesSeen = 2048; learningRatePerSample = 0.00390625; epochTime=0.288909s
|
||||
05/03/2016 13:22:25: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_cpu/Models/cntkSpeechFF.dnn'
|
||||
05/03/2016 13:22:25: CNTKCommandTrainEnd: speechTrain
|
||||
|
||||
|
|
|
@ -65,7 +65,7 @@ speechTrain = [
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 363:512:512:132
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
applyMeanVarNorm = true
|
||||
needPrior = true
|
||||
|
@ -139,7 +139,7 @@ speechTrain = [
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 363:512:512:132
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
applyMeanVarNorm = true
|
||||
needPrior = true
|
||||
|
@ -214,7 +214,7 @@ configparameters: FeedForward.cntk:speechTrain=[
|
|||
SimpleNetworkBuilder = [
|
||||
layerSizes = 363:512:512:132
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
evalCriterion = "ClassificationError"
|
||||
layerTypes = "Sigmoid"
|
||||
applyMeanVarNorm = true
|
||||
needPrior = true
|
||||
|
@ -291,7 +291,7 @@ Post-processing network...
|
|||
|
||||
7 roots:
|
||||
CrossEntropyWithSoftmax = CrossEntropyWithSoftmax()
|
||||
EvalErrorPrediction = ErrorPrediction()
|
||||
EvalClassificationError = ClassificationError()
|
||||
InvStdOfFeatures = InvStdDev()
|
||||
MeanOfFeatures = Mean()
|
||||
PosteriorProb = Softmax()
|
||||
|
@ -320,7 +320,7 @@ Validating --> W2*H1 = Times (W2, H2) : [132 x 512], [512 x 1 x *] -> [132 x 1 x
|
|||
Validating --> B2 = LearnableParameter() : -> [132 x 1]
|
||||
Validating --> HLast = Plus (W2*H1, B2) : [132 x 1 x *], [132 x 1] -> [132 x 1 x *]
|
||||
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax (labels, HLast) : [132 x *], [132 x 1 x *] -> [1]
|
||||
Validating --> EvalErrorPrediction = ErrorPrediction (labels, HLast) : [132 x *], [132 x 1 x *] -> [1]
|
||||
Validating --> EvalClassificationError = ClassificationError (labels, HLast) : [132 x *], [132 x 1 x *] -> [1]
|
||||
Validating --> PosteriorProb = Softmax (HLast) : [132 x 1 x *] -> [132 x 1 x *]
|
||||
Validating --> Prior = Mean (labels) : [132 x *] -> [132]
|
||||
Validating --> LogOfPrior = Log (Prior) : [132] -> [132]
|
||||
|
@ -344,14 +344,14 @@ Post-processing network complete.
|
|||
|
||||
05/03/2016 13:22:26: Evaluation criterion node(s):
|
||||
|
||||
05/03/2016 13:22:26: EvalErrorPrediction = ErrorPrediction
|
||||
05/03/2016 13:22:26: EvalClassificationError = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
||||
Memory Sharing Structure:
|
||||
|
||||
0000000000000000: {[EvalErrorPrediction Gradient[1]] [InvStdOfFeatures Gradient[363]] [LogOfPrior Gradient[132]] [MVNormalizedFeatures Gradient[363 x *]] [MeanOfFeatures Gradient[363]] [PosteriorProb Gradient[132 x 1 x *]] [PosteriorProb Value[132 x 1 x *]] [Prior Gradient[132]] [ScaledLogLikelihood Gradient[132 x 1 x *]] [features Gradient[363 x *]] [labels Gradient[132 x *]] }
|
||||
0000000000000000: {[EvalClassificationError Gradient[1]] [InvStdOfFeatures Gradient[363]] [LogOfPrior Gradient[132]] [MVNormalizedFeatures Gradient[363 x *]] [MeanOfFeatures Gradient[363]] [PosteriorProb Gradient[132 x 1 x *]] [PosteriorProb Value[132 x 1 x *]] [Prior Gradient[132]] [ScaledLogLikelihood Gradient[132 x 1 x *]] [features Gradient[363 x *]] [labels Gradient[132 x *]] }
|
||||
00000087D360C610: {[features Value[363 x *]] }
|
||||
00000087EB4FEEF0: {[W0 Value[512 x 363]] }
|
||||
00000087EB4FF530: {[B1 Value[512 x 1]] }
|
||||
|
@ -368,7 +368,7 @@ Memory Sharing Structure:
|
|||
00000087EDA2B8D0: {[W0 Gradient[512 x 363]] [W0*features+B0 Value[512 x 1 x *]] }
|
||||
00000087EDA2BB50: {[CrossEntropyWithSoftmax Value[1]] }
|
||||
00000087EDA2BC90: {[W0*features+B0 Gradient[512 x 1 x *]] [W1*H1 Value[512 x 1 x *]] }
|
||||
00000087EDA2C0F0: {[EvalErrorPrediction Value[1]] }
|
||||
00000087EDA2C0F0: {[EvalClassificationError Value[1]] }
|
||||
00000087EDA2C190: {[W0*features Value[512 x *]] }
|
||||
00000087EDA2C2D0: {[H1 Value[512 x 1 x *]] [W0*features Gradient[512 x *]] }
|
||||
00000087EDA2C370: {[W2*H1 Gradient[132 x 1 x *]] }
|
||||
|
@ -397,7 +397,7 @@ requiredata: determined feature kind as 33-dimensional 'USER' with frame shift 1
|
|||
minibatchiterator: epoch 0: frames [0..2048] (first utterance at frame 0), data subset 0 of 1, with 1 datapasses
|
||||
|
||||
05/03/2016 13:22:27: Starting minibatch loop, DataParallelSGD training (MyRank = 0, NumNodes = 1, NumGradientBits = 1), distributed reading is ENABLED.
|
||||
05/03/2016 13:22:27: Finished Epoch[ 1 of 1]: [Training] CrossEntropyWithSoftmax = 4.42832291 * 2048; EvalErrorPrediction = 0.91357422 * 2048; totalSamplesSeen = 2048; learningRatePerSample = 0.00390625; epochTime=0.052947s
|
||||
05/03/2016 13:22:27: Finished Epoch[ 1 of 1]: [Training] CrossEntropyWithSoftmax = 4.42832291 * 2048; EvalClassificationError = 0.91357422 * 2048; totalSamplesSeen = 2048; learningRatePerSample = 0.00390625; epochTime=0.052947s
|
||||
05/03/2016 13:22:27: SGD: Saving checkpoint model 'C:\Users\svcphil\AppData\Local\Temp\cntk-test-20160503132211.330996\Examples\Speech\AN4_FeedForward@release_gpu/Models/cntkSpeechFF.dnn'
|
||||
05/03/2016 13:22:27: CNTKCommandTrainEnd: speechTrain
|
||||
|
||||
|
|
|
@ -241,7 +241,7 @@ Post-processing network...
|
|||
|
||||
6 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
featNorm.xMean = Mean()
|
||||
featNorm.xStdDev = InvStdDev()
|
||||
logPrior.prior = Mean()
|
||||
|
@ -385,7 +385,7 @@ Validating --> unnamed174 = Times (W, LSTMoutput3.output) : [132 x 512], [512 x
|
|||
Validating --> b = LearnableParameter() : -> [132 x 1]
|
||||
Validating --> LSTMoutputW = Plus (unnamed174, b) : [132 x 1 x *], [132 x 1] -> [132 x 1 x *]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, LSTMoutputW) : [132 x *], [132 x 1 x *] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, LSTMoutputW) : [132 x *], [132 x 1 x *] -> [1]
|
||||
Validating --> err = ClassificationError (labels, LSTMoutputW) : [132 x *], [132 x 1 x *] -> [1]
|
||||
Validating --> logPrior.prior = Mean (labels) : [132 x *] -> [132]
|
||||
Validating --> logPrior.logPrior = Log (logPrior.prior) : [132] -> [132]
|
||||
Validating --> scaledLogLikelihood = Minus (LSTMoutputW, logPrior.logPrior) : [132 x 1 x *], [132] -> [132 x 1 x *]
|
||||
|
@ -426,7 +426,7 @@ Post-processing network complete.
|
|||
|
||||
05/03/2016 13:22:29: Evaluation criterion node(s):
|
||||
|
||||
05/03/2016 13:22:29: err = ErrorPrediction
|
||||
05/03/2016 13:22:29: err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
|
|
@ -242,7 +242,7 @@ Post-processing network...
|
|||
|
||||
6 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
featNorm.xMean = Mean()
|
||||
featNorm.xStdDev = InvStdDev()
|
||||
logPrior.prior = Mean()
|
||||
|
@ -386,7 +386,7 @@ Validating --> unnamed174 = Times (W, LSTMoutput3.output) : [132 x 512], [512 x
|
|||
Validating --> b = LearnableParameter() : -> [132 x 1]
|
||||
Validating --> LSTMoutputW = Plus (unnamed174, b) : [132 x 1 x *], [132 x 1] -> [132 x 1 x *]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, LSTMoutputW) : [132 x *], [132 x 1 x *] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, LSTMoutputW) : [132 x *], [132 x 1 x *] -> [1]
|
||||
Validating --> err = ClassificationError (labels, LSTMoutputW) : [132 x *], [132 x 1 x *] -> [1]
|
||||
Validating --> logPrior.prior = Mean (labels) : [132 x *] -> [132]
|
||||
Validating --> logPrior.logPrior = Log (logPrior.prior) : [132] -> [132]
|
||||
Validating --> scaledLogLikelihood = Minus (LSTMoutputW, logPrior.logPrior) : [132 x 1 x *], [132] -> [132 x 1 x *]
|
||||
|
@ -427,7 +427,7 @@ Post-processing network complete.
|
|||
|
||||
05/03/2016 13:22:43: Evaluation criterion node(s):
|
||||
|
||||
05/03/2016 13:22:43: err = ErrorPrediction
|
||||
05/03/2016 13:22:43: err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
|
|
@ -103,6 +103,6 @@ DNN=[
|
|||
ol = DNNLastLayer(hiddenDim, labelDim, h2_d, fc3WScale, fc3BValue)
|
||||
|
||||
ce = CrossEntropyWithSoftmax(labels, ol, tag = "criterion")
|
||||
err = ErrorPrediction(labels, ol, tag = "evaluation")
|
||||
err = ClassificationError(labels, ol, tag = "evaluation")
|
||||
OutputNodes = ol
|
||||
]
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
m1 = LoadModel("$curModel$", format="cntk")
|
||||
SetDefaultModel(m1)
|
||||
|
||||
errTop5 = ErrorPrediction(labels, outputNodes.z, Const(5), tag="evaluation")
|
||||
errTop5 = ClassificationError(labels, outputNodes.z, Const(5), tag="evaluation")
|
||||
|
||||
SaveModel(m1, "$newModel$", format="cntk")
|
||||
|
|
|
@ -320,10 +320,10 @@ Post-processing network...
|
|||
3 roots:
|
||||
OutputNodes.z = Plus
|
||||
CE = CrossEntropyWithSoftmax
|
||||
Err = ErrorPrediction
|
||||
Err = ClassificationError
|
||||
FormNestedNetwork: WARNING: Was called twice for OutputNodes.z Plus operation
|
||||
FormNestedNetwork: WARNING: Was called twice for CE CrossEntropyWithSoftmax operation
|
||||
FormNestedNetwork: WARNING: Was called twice for Err ErrorPrediction operation
|
||||
FormNestedNetwork: WARNING: Was called twice for Err ClassificationError operation
|
||||
|
||||
|
||||
Validating for node OutputNodes.z. 45 nodes to process in pass 1.
|
||||
|
@ -674,7 +674,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node Err. 29 nodes to process in pass 2.
|
||||
|
||||
|
@ -724,7 +724,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node Err, final verification.
|
||||
|
||||
|
@ -774,7 +774,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
17 out of 47 nodes do not share the minibatch layout with the input data.
|
||||
|
||||
|
@ -786,7 +786,7 @@ Training criterion node(s):
|
|||
CE = CrossEntropyWithSoftmax
|
||||
|
||||
Evaluation criterion node(s):
|
||||
Err = ErrorPrediction
|
||||
Err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -821,10 +821,10 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
CE = CrossEntropyWithSoftmax
|
||||
Err = ErrorPrediction
|
||||
Err = ClassificationError
|
||||
OutputNodes.z = Plus
|
||||
FormNestedNetwork: WARNING: Was called twice for CE CrossEntropyWithSoftmax operation
|
||||
FormNestedNetwork: WARNING: Was called twice for Err ErrorPrediction operation
|
||||
FormNestedNetwork: WARNING: Was called twice for Err ClassificationError operation
|
||||
FormNestedNetwork: WARNING: Was called twice for OutputNodes.z Plus operation
|
||||
|
||||
|
||||
|
@ -1029,7 +1029,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node Err. 29 nodes to process in pass 2.
|
||||
|
||||
|
@ -1079,7 +1079,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node Err, final verification.
|
||||
|
||||
|
@ -1129,7 +1129,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
17 out of 47 nodes do not share the minibatch layout with the input data.
|
||||
|
||||
|
@ -1286,12 +1286,12 @@ Post-processing network...
|
|||
|
||||
4 roots:
|
||||
CE = CrossEntropyWithSoftmax
|
||||
Err = ErrorPrediction
|
||||
errTop5 = ErrorPrediction
|
||||
Err = ClassificationError
|
||||
errTop5 = ClassificationError
|
||||
OutputNodes.z = Plus
|
||||
FormNestedNetwork: WARNING: Was called twice for CE CrossEntropyWithSoftmax operation
|
||||
FormNestedNetwork: WARNING: Was called twice for Err ErrorPrediction operation
|
||||
FormNestedNetwork: WARNING: Was called twice for errTop5 ErrorPrediction operation
|
||||
FormNestedNetwork: WARNING: Was called twice for Err ClassificationError operation
|
||||
FormNestedNetwork: WARNING: Was called twice for errTop5 ClassificationError operation
|
||||
FormNestedNetwork: WARNING: Was called twice for OutputNodes.z Plus operation
|
||||
|
||||
|
||||
|
@ -1496,7 +1496,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node Err. 29 nodes to process in pass 2.
|
||||
|
||||
|
@ -1546,7 +1546,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node Err, final verification.
|
||||
|
||||
|
@ -1596,7 +1596,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
17 out of 47 nodes do not share the minibatch layout with the input data.
|
||||
|
||||
|
@ -1650,7 +1650,7 @@ Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSiz
|
|||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> unnamed125 = LearnableParameter -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node errTop5. 29 nodes to process in pass 2.
|
||||
|
||||
|
@ -1701,7 +1701,7 @@ Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSiz
|
|||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> unnamed125 = LearnableParameter -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node errTop5, final verification.
|
||||
|
||||
|
@ -1752,7 +1752,7 @@ Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSiz
|
|||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> unnamed125 = LearnableParameter -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
|
||||
18 out of 48 nodes do not share the minibatch layout with the input data.
|
||||
|
||||
|
@ -1909,12 +1909,12 @@ Post-processing network...
|
|||
|
||||
4 roots:
|
||||
CE = CrossEntropyWithSoftmax
|
||||
errTop5 = ErrorPrediction
|
||||
Err = ErrorPrediction
|
||||
errTop5 = ClassificationError
|
||||
Err = ClassificationError
|
||||
OutputNodes.z = Plus
|
||||
FormNestedNetwork: WARNING: Was called twice for CE CrossEntropyWithSoftmax operation
|
||||
FormNestedNetwork: WARNING: Was called twice for errTop5 ErrorPrediction operation
|
||||
FormNestedNetwork: WARNING: Was called twice for Err ErrorPrediction operation
|
||||
FormNestedNetwork: WARNING: Was called twice for errTop5 ClassificationError operation
|
||||
FormNestedNetwork: WARNING: Was called twice for Err ClassificationError operation
|
||||
FormNestedNetwork: WARNING: Was called twice for OutputNodes.z Plus operation
|
||||
|
||||
|
||||
|
@ -2120,7 +2120,7 @@ Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSiz
|
|||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> unnamed125 = LearnableParameter -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node errTop5. 29 nodes to process in pass 2.
|
||||
|
||||
|
@ -2171,7 +2171,7 @@ Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSiz
|
|||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> unnamed125 = LearnableParameter -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node errTop5, final verification.
|
||||
|
||||
|
@ -2222,7 +2222,7 @@ Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSiz
|
|||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> unnamed125 = LearnableParameter -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
|
||||
18 out of 48 nodes do not share the minibatch layout with the input data.
|
||||
|
||||
|
@ -2275,7 +2275,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node Err. 29 nodes to process in pass 2.
|
||||
|
||||
|
@ -2325,7 +2325,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node Err, final verification.
|
||||
|
||||
|
@ -2375,7 +2375,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
17 out of 47 nodes do not share the minibatch layout with the input data.
|
||||
|
||||
|
@ -2531,6 +2531,6 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
|
|||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
Minibatch[1-32]: Samples Seen = 500 Err: ErrorPrediction/Sample = 0.998 errTop5: ErrorPrediction/Sample = 0.992 CE: CrossEntropyWithSoftmax/Sample = 6.9591762
|
||||
Final Results: Minibatch[1-32]: Samples Seen = 500 Err: ErrorPrediction/Sample = 0.998 errTop5: ErrorPrediction/Sample = 0.992 CE: CrossEntropyWithSoftmax/Sample = 6.9591762 perplexity = 1052.766
|
||||
Minibatch[1-32]: Samples Seen = 500 Err: ClassificationError/Sample = 0.998 errTop5: ClassificationError/Sample = 0.992 CE: CrossEntropyWithSoftmax/Sample = 6.9591762
|
||||
Final Results: Minibatch[1-32]: Samples Seen = 500 Err: ClassificationError/Sample = 0.998 errTop5: ClassificationError/Sample = 0.992 CE: CrossEntropyWithSoftmax/Sample = 6.9591762 perplexity = 1052.766
|
||||
__COMPLETED__
|
||||
|
|
|
@ -341,7 +341,7 @@ Post-processing network...
|
|||
3 roots:
|
||||
OutputNodes.z = Plus()
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
|
||||
Validating network. 48 nodes to process in pass 1.
|
||||
|
||||
|
@ -392,7 +392,7 @@ Validating --> OutputNodes.b = LearnableParameter() : -> [1000]
|
|||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [1000 x *], [1000] -> [1000 x *]
|
||||
Validating --> labels = InputValue() : -> [1000 x *]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [1000 x *], [1000 x *] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, OutputNodes.z) : [1000 x *], [1000 x *] -> [1]
|
||||
Validating --> err = ClassificationError (labels, OutputNodes.z) : [1000 x *], [1000 x *] -> [1]
|
||||
|
||||
Validating network. 30 nodes to process in pass 2.
|
||||
|
||||
|
@ -428,7 +428,7 @@ Post-processing network complete.
|
|||
|
||||
05/03/2016 18:06:53: Evaluation criterion node(s):
|
||||
|
||||
05/03/2016 18:06:53: err = ErrorPrediction
|
||||
05/03/2016 18:06:53: err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -535,7 +535,7 @@ Post-processing network...
|
|||
3 roots:
|
||||
OutputNodes.z = Plus()
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
|
||||
Validating network. 48 nodes to process in pass 1.
|
||||
|
||||
|
@ -586,7 +586,7 @@ Validating --> OutputNodes.b = LearnableParameter() : -> [1000]
|
|||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [1000 x *1], [1000] -> [1000 x *1]
|
||||
Validating --> labels = InputValue() : -> [1000 x *1]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [1000 x *1], [1000 x *1] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, OutputNodes.z) : [1000 x *1], [1000 x *1] -> [1]
|
||||
Validating --> err = ClassificationError (labels, OutputNodes.z) : [1000 x *1], [1000 x *1] -> [1]
|
||||
|
||||
Validating network. 30 nodes to process in pass 2.
|
||||
|
||||
|
@ -621,8 +621,8 @@ Post-processing network...
|
|||
4 roots:
|
||||
OutputNodes.z = Plus()
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
errTop5 = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
errTop5 = ClassificationError()
|
||||
|
||||
Validating network. 50 nodes to process in pass 1.
|
||||
|
||||
|
@ -673,9 +673,9 @@ Validating --> OutputNodes.b = LearnableParameter() : -> [1000]
|
|||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [1000 x *1], [1000] -> [1000 x *1]
|
||||
Validating --> labels = InputValue() : -> [1000 x *1]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [1000 x *1], [1000 x *1] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, OutputNodes.z) : [1000 x *1], [1000 x *1] -> [1]
|
||||
Validating --> err = ClassificationError (labels, OutputNodes.z) : [1000 x *1], [1000 x *1] -> [1]
|
||||
Validating --> unnamed137 = LearnableParameter() : -> [1 x 1]
|
||||
Validating --> errTop5 = ErrorPrediction (labels, OutputNodes.z, unnamed137) : [1000 x *1], [1000 x *1], [1 x 1] -> [1]
|
||||
Validating --> errTop5 = ClassificationError (labels, OutputNodes.z, unnamed137) : [1000 x *1], [1000 x *1], [1 x 1] -> [1]
|
||||
|
||||
Validating network. 31 nodes to process in pass 2.
|
||||
|
||||
|
@ -704,8 +704,8 @@ Post-processing network...
|
|||
4 roots:
|
||||
OutputNodes.z = Plus()
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
errTop5 = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
errTop5 = ClassificationError()
|
||||
|
||||
Validating network. 50 nodes to process in pass 1.
|
||||
|
||||
|
@ -756,9 +756,9 @@ Validating --> OutputNodes.b = LearnableParameter() : -> [1000]
|
|||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [1000 x *2], [1000] -> [1000 x *2]
|
||||
Validating --> labels = InputValue() : -> [1000 x *2]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [1000 x *2], [1000 x *2] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, OutputNodes.z) : [1000 x *2], [1000 x *2] -> [1]
|
||||
Validating --> err = ClassificationError (labels, OutputNodes.z) : [1000 x *2], [1000 x *2] -> [1]
|
||||
Validating --> unnamed137 = LearnableParameter() : -> [1 x 1]
|
||||
Validating --> errTop5 = ErrorPrediction (labels, OutputNodes.z, unnamed137) : [1000 x *2], [1000 x *2], [1 x 1] -> [1]
|
||||
Validating --> errTop5 = ClassificationError (labels, OutputNodes.z, unnamed137) : [1000 x *2], [1000 x *2], [1 x 1] -> [1]
|
||||
|
||||
Validating network. 31 nodes to process in pass 2.
|
||||
|
||||
|
|
|
@ -319,10 +319,10 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
OutputNodes.z = Plus
|
||||
Err = ErrorPrediction
|
||||
Err = ClassificationError
|
||||
CE = CrossEntropyWithSoftmax
|
||||
FormNestedNetwork: WARNING: Was called twice for OutputNodes.z Plus operation
|
||||
FormNestedNetwork: WARNING: Was called twice for Err ErrorPrediction operation
|
||||
FormNestedNetwork: WARNING: Was called twice for Err ClassificationError operation
|
||||
FormNestedNetwork: WARNING: Was called twice for CE CrossEntropyWithSoftmax operation
|
||||
|
||||
|
||||
|
@ -521,7 +521,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node Err. 29 nodes to process in pass 2.
|
||||
|
||||
|
@ -571,7 +571,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node Err, final verification.
|
||||
|
||||
|
@ -621,7 +621,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
17 out of 47 nodes do not share the minibatch layout with the input data.
|
||||
|
||||
|
@ -786,7 +786,7 @@ Training criterion node(s):
|
|||
CE = CrossEntropyWithSoftmax
|
||||
|
||||
Evaluation criterion node(s):
|
||||
Err = ErrorPrediction
|
||||
Err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -821,10 +821,10 @@ Post-processing network...
|
|||
|
||||
3 roots:
|
||||
CE = CrossEntropyWithSoftmax
|
||||
Err = ErrorPrediction
|
||||
Err = ClassificationError
|
||||
OutputNodes.z = Plus
|
||||
FormNestedNetwork: WARNING: Was called twice for CE CrossEntropyWithSoftmax operation
|
||||
FormNestedNetwork: WARNING: Was called twice for Err ErrorPrediction operation
|
||||
FormNestedNetwork: WARNING: Was called twice for Err ClassificationError operation
|
||||
FormNestedNetwork: WARNING: Was called twice for OutputNodes.z Plus operation
|
||||
|
||||
|
||||
|
@ -1029,7 +1029,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node Err. 29 nodes to process in pass 2.
|
||||
|
||||
|
@ -1079,7 +1079,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node Err, final verification.
|
||||
|
||||
|
@ -1129,7 +1129,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
17 out of 47 nodes do not share the minibatch layout with the input data.
|
||||
|
||||
|
@ -1286,12 +1286,12 @@ Post-processing network...
|
|||
|
||||
4 roots:
|
||||
CE = CrossEntropyWithSoftmax
|
||||
errTop5 = ErrorPrediction
|
||||
Err = ErrorPrediction
|
||||
errTop5 = ClassificationError
|
||||
Err = ClassificationError
|
||||
OutputNodes.z = Plus
|
||||
FormNestedNetwork: WARNING: Was called twice for CE CrossEntropyWithSoftmax operation
|
||||
FormNestedNetwork: WARNING: Was called twice for errTop5 ErrorPrediction operation
|
||||
FormNestedNetwork: WARNING: Was called twice for Err ErrorPrediction operation
|
||||
FormNestedNetwork: WARNING: Was called twice for errTop5 ClassificationError operation
|
||||
FormNestedNetwork: WARNING: Was called twice for Err ClassificationError operation
|
||||
FormNestedNetwork: WARNING: Was called twice for OutputNodes.z Plus operation
|
||||
|
||||
|
||||
|
@ -1497,7 +1497,7 @@ Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSiz
|
|||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> unnamed125 = LearnableParameter -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node errTop5. 29 nodes to process in pass 2.
|
||||
|
||||
|
@ -1548,7 +1548,7 @@ Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSiz
|
|||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> unnamed125 = LearnableParameter -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node errTop5, final verification.
|
||||
|
||||
|
@ -1599,7 +1599,7 @@ Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSiz
|
|||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> unnamed125 = LearnableParameter -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
|
||||
18 out of 48 nodes do not share the minibatch layout with the input data.
|
||||
|
||||
|
@ -1652,7 +1652,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node Err. 29 nodes to process in pass 2.
|
||||
|
||||
|
@ -1702,7 +1702,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node Err, final verification.
|
||||
|
||||
|
@ -1752,7 +1752,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
17 out of 47 nodes do not share the minibatch layout with the input data.
|
||||
|
||||
|
@ -1908,12 +1908,12 @@ Post-processing network complete.
|
|||
Post-processing network...
|
||||
|
||||
4 roots:
|
||||
Err = ErrorPrediction
|
||||
errTop5 = ErrorPrediction
|
||||
Err = ClassificationError
|
||||
errTop5 = ClassificationError
|
||||
OutputNodes.z = Plus
|
||||
CE = CrossEntropyWithSoftmax
|
||||
FormNestedNetwork: WARNING: Was called twice for Err ErrorPrediction operation
|
||||
FormNestedNetwork: WARNING: Was called twice for errTop5 ErrorPrediction operation
|
||||
FormNestedNetwork: WARNING: Was called twice for Err ClassificationError operation
|
||||
FormNestedNetwork: WARNING: Was called twice for errTop5 ClassificationError operation
|
||||
FormNestedNetwork: WARNING: Was called twice for OutputNodes.z Plus operation
|
||||
FormNestedNetwork: WARNING: Was called twice for CE CrossEntropyWithSoftmax operation
|
||||
|
||||
|
@ -1966,7 +1966,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node Err. 29 nodes to process in pass 2.
|
||||
|
||||
|
@ -2016,7 +2016,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node Err, final verification.
|
||||
|
||||
|
@ -2066,7 +2066,7 @@ Validating --> h2_d = Dropout(h2.y[4096, MBSize 0]) -> [4096 [4096 {1}], MBSize
|
|||
Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSize 0]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> Err = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
Validating --> Err = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0]) -> [1 [1 {1}], 1]
|
||||
|
||||
17 out of 47 nodes do not share the minibatch layout with the input data.
|
||||
|
||||
|
@ -2120,7 +2120,7 @@ Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSiz
|
|||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> unnamed125 = LearnableParameter -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node errTop5. 29 nodes to process in pass 2.
|
||||
|
||||
|
@ -2171,7 +2171,7 @@ Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSiz
|
|||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> unnamed125 = LearnableParameter -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
|
||||
Validating for node errTop5, final verification.
|
||||
|
||||
|
@ -2222,7 +2222,7 @@ Validating --> OutputNodes.t = Times(OutputNodes.W[1000, 4096], h2_d[4096, MBSiz
|
|||
Validating --> OutputNodes.b = LearnableParameter -> [1000 [1000 {1}], 1]
|
||||
Validating --> OutputNodes.z = Plus(OutputNodes.t[1000, MBSize 0], OutputNodes.b[1000, 1]) -> [1000 [1000 {1}], MBSize 0]
|
||||
Validating --> unnamed125 = LearnableParameter -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ErrorPrediction(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
Validating --> errTop5 = ClassificationError(labels[1000, MBSize 0], OutputNodes.z[1000, MBSize 0], unnamed125[1, 1]) -> [1 [1 {1}], 1]
|
||||
|
||||
18 out of 48 nodes do not share the minibatch layout with the input data.
|
||||
|
||||
|
@ -2979,6 +2979,6 @@ CUDA error 11 [c:\tools\cub-1.4.1\cub\device\dispatch/dispatch_radix_sort.cuh, 7
|
|||
CUDA error 11 [c:\tools\cub-1.4.1\cub\device\dispatch/dispatch_radix_sort.cuh, 796]: invalid argument
|
||||
CUDA error 11 [c:\tools\cub-1.4.1\cub\device\dispatch/dispatch_radix_sort.cuh, 796]: invalid argument
|
||||
CUDA error 11 [c:\tools\cub-1.4.1\cub\device\dispatch/dispatch_radix_sort.cuh, 796]: invalid argument
|
||||
Minibatch[1-32]: Samples Seen = 500 Err: ErrorPrediction/Sample = 1 errTop5: ErrorPrediction/Sample = 0.992 CE: CrossEntropyWithSoftmax/Sample = 6.9566009
|
||||
Final Results: Minibatch[1-32]: Samples Seen = 500 Err: ErrorPrediction/Sample = 1 errTop5: ErrorPrediction/Sample = 0.992 CE: CrossEntropyWithSoftmax/Sample = 6.9566009 perplexity = 1050.0582
|
||||
Minibatch[1-32]: Samples Seen = 500 Err: ClassificationError/Sample = 1 errTop5: ClassificationError/Sample = 0.992 CE: CrossEntropyWithSoftmax/Sample = 6.9566009
|
||||
Final Results: Minibatch[1-32]: Samples Seen = 500 Err: ClassificationError/Sample = 1 errTop5: ClassificationError/Sample = 0.992 CE: CrossEntropyWithSoftmax/Sample = 6.9566009 perplexity = 1050.0582
|
||||
__COMPLETED__
|
||||
|
|
|
@ -339,7 +339,7 @@ Post-processing network...
|
|||
3 roots:
|
||||
OutputNodes.z = Plus()
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
|
||||
Validating network. 48 nodes to process in pass 1.
|
||||
|
||||
|
@ -390,7 +390,7 @@ Validating --> OutputNodes.b = LearnableParameter() : -> [1000]
|
|||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [1000 x *], [1000] -> [1000 x *]
|
||||
Validating --> labels = InputValue() : -> [1000 x *]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [1000 x *], [1000 x *] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, OutputNodes.z) : [1000 x *], [1000 x *] -> [1]
|
||||
Validating --> err = ClassificationError (labels, OutputNodes.z) : [1000 x *], [1000 x *] -> [1]
|
||||
|
||||
Validating network. 30 nodes to process in pass 2.
|
||||
|
||||
|
@ -426,7 +426,7 @@ Post-processing network complete.
|
|||
|
||||
05/03/2016 14:11:02: Evaluation criterion node(s):
|
||||
|
||||
05/03/2016 14:11:02: err = ErrorPrediction
|
||||
05/03/2016 14:11:02: err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -533,7 +533,7 @@ Post-processing network...
|
|||
3 roots:
|
||||
OutputNodes.z = Plus()
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
|
||||
Validating network. 48 nodes to process in pass 1.
|
||||
|
||||
|
@ -584,7 +584,7 @@ Validating --> OutputNodes.b = LearnableParameter() : -> [1000]
|
|||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [1000 x *1], [1000] -> [1000 x *1]
|
||||
Validating --> labels = InputValue() : -> [1000 x *1]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [1000 x *1], [1000 x *1] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, OutputNodes.z) : [1000 x *1], [1000 x *1] -> [1]
|
||||
Validating --> err = ClassificationError (labels, OutputNodes.z) : [1000 x *1], [1000 x *1] -> [1]
|
||||
|
||||
Validating network. 30 nodes to process in pass 2.
|
||||
|
||||
|
@ -619,8 +619,8 @@ Post-processing network...
|
|||
4 roots:
|
||||
OutputNodes.z = Plus()
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
errTop5 = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
errTop5 = ClassificationError()
|
||||
|
||||
Validating network. 50 nodes to process in pass 1.
|
||||
|
||||
|
@ -671,9 +671,9 @@ Validating --> OutputNodes.b = LearnableParameter() : -> [1000]
|
|||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [1000 x *1], [1000] -> [1000 x *1]
|
||||
Validating --> labels = InputValue() : -> [1000 x *1]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [1000 x *1], [1000 x *1] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, OutputNodes.z) : [1000 x *1], [1000 x *1] -> [1]
|
||||
Validating --> err = ClassificationError (labels, OutputNodes.z) : [1000 x *1], [1000 x *1] -> [1]
|
||||
Validating --> unnamed137 = LearnableParameter() : -> [1 x 1]
|
||||
Validating --> errTop5 = ErrorPrediction (labels, OutputNodes.z, unnamed137) : [1000 x *1], [1000 x *1], [1 x 1] -> [1]
|
||||
Validating --> errTop5 = ClassificationError (labels, OutputNodes.z, unnamed137) : [1000 x *1], [1000 x *1], [1 x 1] -> [1]
|
||||
|
||||
Validating network. 31 nodes to process in pass 2.
|
||||
|
||||
|
@ -702,8 +702,8 @@ Post-processing network...
|
|||
4 roots:
|
||||
OutputNodes.z = Plus()
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
errTop5 = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
errTop5 = ClassificationError()
|
||||
|
||||
Validating network. 50 nodes to process in pass 1.
|
||||
|
||||
|
@ -754,9 +754,9 @@ Validating --> OutputNodes.b = LearnableParameter() : -> [1000]
|
|||
Validating --> OutputNodes.z = Plus (OutputNodes.t, OutputNodes.b) : [1000 x *2], [1000] -> [1000 x *2]
|
||||
Validating --> labels = InputValue() : -> [1000 x *2]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, OutputNodes.z) : [1000 x *2], [1000 x *2] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, OutputNodes.z) : [1000 x *2], [1000 x *2] -> [1]
|
||||
Validating --> err = ClassificationError (labels, OutputNodes.z) : [1000 x *2], [1000 x *2] -> [1]
|
||||
Validating --> unnamed137 = LearnableParameter() : -> [1 x 1]
|
||||
Validating --> errTop5 = ErrorPrediction (labels, OutputNodes.z, unnamed137) : [1000 x *2], [1000 x *2], [1 x 1] -> [1]
|
||||
Validating --> errTop5 = ClassificationError (labels, OutputNodes.z, unnamed137) : [1000 x *2], [1000 x *2], [1 x 1] -> [1]
|
||||
|
||||
Validating network. 31 nodes to process in pass 2.
|
||||
|
||||
|
|
|
@ -107,7 +107,7 @@ train = [
|
|||
h1 = DNNSigmoidLayer((4 : 4 : cMap2/*cudnn: CHW*/), h1Dim, pool2, 1).out
|
||||
ol = DNNLayer(h1Dim, labelDim, h1, 1).out
|
||||
ce = CrossEntropyWithSoftmax(labels, ol, tag="criterion")
|
||||
err = ErrorPrediction(labels, ol, tag="evaluation")
|
||||
err = ClassificationError(labels, ol, tag="evaluation")
|
||||
outputNodes = ol
|
||||
]
|
||||
SGD = [
|
||||
|
@ -227,7 +227,7 @@ train = [
|
|||
h1 = DNNSigmoidLayer((4 : 4 : cMap2/*cudnn: CHW*/), h1Dim, pool2, 1).out
|
||||
ol = DNNLayer(h1Dim, labelDim, h1, 1).out
|
||||
ce = CrossEntropyWithSoftmax(labels, ol, tag="criterion")
|
||||
err = ErrorPrediction(labels, ol, tag="evaluation")
|
||||
err = ClassificationError(labels, ol, tag="evaluation")
|
||||
outputNodes = ol
|
||||
]
|
||||
SGD = [
|
||||
|
@ -372,7 +372,7 @@ configparameters: Image_QuickE2E.cntk:train=[
|
|||
h1 = DNNSigmoidLayer((4 : 4 : cMap2/*cudnn: CHW*/), h1Dim, pool2, 1).out
|
||||
ol = DNNLayer(h1Dim, labelDim, h1, 1).out
|
||||
ce = CrossEntropyWithSoftmax(labels, ol, tag="criterion")
|
||||
err = ErrorPrediction(labels, ol, tag="evaluation")
|
||||
err = ClassificationError(labels, ol, tag="evaluation")
|
||||
outputNodes = ol
|
||||
]
|
||||
SGD = [
|
||||
|
@ -421,7 +421,7 @@ Post-processing network...
|
|||
|
||||
2 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
|
||||
Validating network. 27 nodes to process in pass 1.
|
||||
|
||||
|
@ -451,7 +451,7 @@ Validating --> ol.out.PlusArgs[0] = Times (ol.W, h1.out) : [10 x 128], [128 x *]
|
|||
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
|
||||
Validating --> ol.out = Plus (ol.out.PlusArgs[0], ol.b) : [10 x *], [10 x 1] -> [10 x 1 x *]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.out) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, ol.out) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> err = ClassificationError (labels, ol.out) : [10 x *], [10 x 1 x *] -> [1]
|
||||
|
||||
Validating network. 16 nodes to process in pass 2.
|
||||
|
||||
|
@ -479,7 +479,7 @@ Post-processing network complete.
|
|||
|
||||
05/03/2016 18:05:56: Evaluation criterion node(s):
|
||||
|
||||
05/03/2016 18:05:56: err = ErrorPrediction
|
||||
05/03/2016 18:05:56: err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -572,7 +572,7 @@ Post-processing network...
|
|||
|
||||
2 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
|
||||
Validating network. 27 nodes to process in pass 1.
|
||||
|
||||
|
@ -602,7 +602,7 @@ Validating --> ol.out.PlusArgs[0] = Times (ol.W, h1.out) : [10 x 128], [128 x *1
|
|||
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
|
||||
Validating --> ol.out = Plus (ol.out.PlusArgs[0], ol.b) : [10 x *1], [10 x 1] -> [10 x 1 x *1]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.out) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, ol.out) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> err = ClassificationError (labels, ol.out) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
|
||||
Validating network. 16 nodes to process in pass 2.
|
||||
|
||||
|
@ -775,7 +775,7 @@ train = [
|
|||
h1 = DNNSigmoidLayer((4 : 4 : cMap2/*cudnn: CHW*/), h1Dim, pool2, 1).out
|
||||
ol = DNNLayer(h1Dim, labelDim, h1, 1).out
|
||||
ce = CrossEntropyWithSoftmax(labels, ol, tag="criterion")
|
||||
err = ErrorPrediction(labels, ol, tag="evaluation")
|
||||
err = ClassificationError(labels, ol, tag="evaluation")
|
||||
outputNodes = ol
|
||||
]
|
||||
SGD = [
|
||||
|
@ -896,7 +896,7 @@ train = [
|
|||
h1 = DNNSigmoidLayer((4 : 4 : cMap2/*cudnn: CHW*/), h1Dim, pool2, 1).out
|
||||
ol = DNNLayer(h1Dim, labelDim, h1, 1).out
|
||||
ce = CrossEntropyWithSoftmax(labels, ol, tag="criterion")
|
||||
err = ErrorPrediction(labels, ol, tag="evaluation")
|
||||
err = ClassificationError(labels, ol, tag="evaluation")
|
||||
outputNodes = ol
|
||||
]
|
||||
SGD = [
|
||||
|
@ -1043,7 +1043,7 @@ configparameters: Image_QuickE2E.cntk:train=[
|
|||
h1 = DNNSigmoidLayer((4 : 4 : cMap2/*cudnn: CHW*/), h1Dim, pool2, 1).out
|
||||
ol = DNNLayer(h1Dim, labelDim, h1, 1).out
|
||||
ce = CrossEntropyWithSoftmax(labels, ol, tag="criterion")
|
||||
err = ErrorPrediction(labels, ol, tag="evaluation")
|
||||
err = ClassificationError(labels, ol, tag="evaluation")
|
||||
outputNodes = ol
|
||||
]
|
||||
SGD = [
|
||||
|
@ -1092,7 +1092,7 @@ Post-processing network...
|
|||
|
||||
2 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
|
||||
Validating network. 27 nodes to process in pass 1.
|
||||
|
||||
|
@ -1122,7 +1122,7 @@ Validating --> ol.out.PlusArgs[0] = Times (ol.W, h1.out) : [10 x 128], [128 x *]
|
|||
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
|
||||
Validating --> ol.out = Plus (ol.out.PlusArgs[0], ol.b) : [10 x *], [10 x 1] -> [10 x 1 x *]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.out) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, ol.out) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> err = ClassificationError (labels, ol.out) : [10 x *], [10 x 1 x *] -> [1]
|
||||
|
||||
Validating network. 16 nodes to process in pass 2.
|
||||
|
||||
|
@ -1150,7 +1150,7 @@ Post-processing network complete.
|
|||
|
||||
05/03/2016 18:05:56: Evaluation criterion node(s):
|
||||
|
||||
05/03/2016 18:05:56: err = ErrorPrediction
|
||||
05/03/2016 18:05:56: err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -1215,7 +1215,7 @@ Post-processing network...
|
|||
|
||||
2 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
|
||||
Validating network. 27 nodes to process in pass 1.
|
||||
|
||||
|
@ -1245,7 +1245,7 @@ Validating --> ol.out.PlusArgs[0] = Times (ol.W, h1.out) : [10 x 128], [128 x *1
|
|||
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
|
||||
Validating --> ol.out = Plus (ol.out.PlusArgs[0], ol.b) : [10 x *1], [10 x 1] -> [10 x 1 x *1]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.out) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, ol.out) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> err = ClassificationError (labels, ol.out) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
|
||||
Validating network. 16 nodes to process in pass 2.
|
||||
|
||||
|
|
|
@ -105,7 +105,7 @@ train = [
|
|||
h1 = DNNSigmoidLayer((4 : 4 : cMap2/*cudnn: CHW*/), h1Dim, pool2, 1).out
|
||||
ol = DNNLayer(h1Dim, labelDim, h1, 1).out
|
||||
ce = CrossEntropyWithSoftmax(labels, ol, tag="criterion")
|
||||
err = ErrorPrediction(labels, ol, tag="evaluation")
|
||||
err = ClassificationError(labels, ol, tag="evaluation")
|
||||
outputNodes = ol
|
||||
]
|
||||
SGD = [
|
||||
|
@ -224,7 +224,7 @@ train = [
|
|||
h1 = DNNSigmoidLayer((4 : 4 : cMap2/*cudnn: CHW*/), h1Dim, pool2, 1).out
|
||||
ol = DNNLayer(h1Dim, labelDim, h1, 1).out
|
||||
ce = CrossEntropyWithSoftmax(labels, ol, tag="criterion")
|
||||
err = ErrorPrediction(labels, ol, tag="evaluation")
|
||||
err = ClassificationError(labels, ol, tag="evaluation")
|
||||
outputNodes = ol
|
||||
]
|
||||
SGD = [
|
||||
|
@ -368,7 +368,7 @@ configparameters: Image_QuickE2E.cntk:train=[
|
|||
h1 = DNNSigmoidLayer((4 : 4 : cMap2/*cudnn: CHW*/), h1Dim, pool2, 1).out
|
||||
ol = DNNLayer(h1Dim, labelDim, h1, 1).out
|
||||
ce = CrossEntropyWithSoftmax(labels, ol, tag="criterion")
|
||||
err = ErrorPrediction(labels, ol, tag="evaluation")
|
||||
err = ClassificationError(labels, ol, tag="evaluation")
|
||||
outputNodes = ol
|
||||
]
|
||||
SGD = [
|
||||
|
@ -416,7 +416,7 @@ Post-processing network...
|
|||
|
||||
2 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
|
||||
Validating network. 27 nodes to process in pass 1.
|
||||
|
||||
|
@ -446,7 +446,7 @@ Validating --> ol.out.PlusArgs[0] = Times (ol.W, h1.out) : [10 x 128], [128 x *]
|
|||
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
|
||||
Validating --> ol.out = Plus (ol.out.PlusArgs[0], ol.b) : [10 x *], [10 x 1] -> [10 x 1 x *]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.out) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, ol.out) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> err = ClassificationError (labels, ol.out) : [10 x *], [10 x 1 x *] -> [1]
|
||||
|
||||
Validating network. 16 nodes to process in pass 2.
|
||||
|
||||
|
@ -474,7 +474,7 @@ Post-processing network complete.
|
|||
|
||||
04/20/2016 13:14:17: Evaluation criterion node(s):
|
||||
|
||||
04/20/2016 13:14:17: err = ErrorPrediction
|
||||
04/20/2016 13:14:17: err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -530,7 +530,7 @@ Post-processing network...
|
|||
|
||||
2 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
|
||||
Validating network. 27 nodes to process in pass 1.
|
||||
|
||||
|
@ -560,7 +560,7 @@ Validating --> ol.out.PlusArgs[0] = Times (ol.W, h1.out) : [10 x 128], [128 x *1
|
|||
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
|
||||
Validating --> ol.out = Plus (ol.out.PlusArgs[0], ol.b) : [10 x *1], [10 x 1] -> [10 x 1 x *1]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.out) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, ol.out) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> err = ClassificationError (labels, ol.out) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
|
||||
Validating network. 16 nodes to process in pass 2.
|
||||
|
||||
|
@ -585,7 +585,7 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
|
|||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
Final Results: Minibatch[1-1]: * 100 err: ErrorPrediction/Sample = 0.9 ce: CrossEntropyWithSoftmax/Sample = 2.3315085 perplexity = 10.293457
|
||||
Final Results: Minibatch[1-1]: * 100 err: ClassificationError/Sample = 0.9 ce: CrossEntropyWithSoftmax/Sample = 2.3315085 perplexity = 10.293457
|
||||
|
||||
04/20/2016 13:14:19: Action "test" complete.
|
||||
|
||||
|
@ -699,7 +699,7 @@ train = [
|
|||
h1 = DNNSigmoidLayer((4 : 4 : cMap2/*cudnn: CHW*/), h1Dim, pool2, 1).out
|
||||
ol = DNNLayer(h1Dim, labelDim, h1, 1).out
|
||||
ce = CrossEntropyWithSoftmax(labels, ol, tag="criterion")
|
||||
err = ErrorPrediction(labels, ol, tag="evaluation")
|
||||
err = ClassificationError(labels, ol, tag="evaluation")
|
||||
outputNodes = ol
|
||||
]
|
||||
SGD = [
|
||||
|
@ -819,7 +819,7 @@ train = [
|
|||
h1 = DNNSigmoidLayer((4 : 4 : cMap2/*cudnn: CHW*/), h1Dim, pool2, 1).out
|
||||
ol = DNNLayer(h1Dim, labelDim, h1, 1).out
|
||||
ce = CrossEntropyWithSoftmax(labels, ol, tag="criterion")
|
||||
err = ErrorPrediction(labels, ol, tag="evaluation")
|
||||
err = ClassificationError(labels, ol, tag="evaluation")
|
||||
outputNodes = ol
|
||||
]
|
||||
SGD = [
|
||||
|
@ -965,7 +965,7 @@ configparameters: Image_QuickE2E.cntk:train=[
|
|||
h1 = DNNSigmoidLayer((4 : 4 : cMap2/*cudnn: CHW*/), h1Dim, pool2, 1).out
|
||||
ol = DNNLayer(h1Dim, labelDim, h1, 1).out
|
||||
ce = CrossEntropyWithSoftmax(labels, ol, tag="criterion")
|
||||
err = ErrorPrediction(labels, ol, tag="evaluation")
|
||||
err = ClassificationError(labels, ol, tag="evaluation")
|
||||
outputNodes = ol
|
||||
]
|
||||
SGD = [
|
||||
|
@ -1013,7 +1013,7 @@ Post-processing network...
|
|||
|
||||
2 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
|
||||
Validating network. 27 nodes to process in pass 1.
|
||||
|
||||
|
@ -1043,7 +1043,7 @@ Validating --> ol.out.PlusArgs[0] = Times (ol.W, h1.out) : [10 x 128], [128 x *]
|
|||
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
|
||||
Validating --> ol.out = Plus (ol.out.PlusArgs[0], ol.b) : [10 x *], [10 x 1] -> [10 x 1 x *]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.out) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, ol.out) : [10 x *], [10 x 1 x *] -> [1]
|
||||
Validating --> err = ClassificationError (labels, ol.out) : [10 x *], [10 x 1 x *] -> [1]
|
||||
|
||||
Validating network. 16 nodes to process in pass 2.
|
||||
|
||||
|
@ -1071,7 +1071,7 @@ Post-processing network complete.
|
|||
|
||||
04/20/2016 13:14:20: Evaluation criterion node(s):
|
||||
|
||||
04/20/2016 13:14:20: err = ErrorPrediction
|
||||
04/20/2016 13:14:20: err = ClassificationError
|
||||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
|
@ -1100,7 +1100,7 @@ Post-processing network...
|
|||
|
||||
2 roots:
|
||||
ce = CrossEntropyWithSoftmax()
|
||||
err = ErrorPrediction()
|
||||
err = ClassificationError()
|
||||
|
||||
Validating network. 27 nodes to process in pass 1.
|
||||
|
||||
|
@ -1130,7 +1130,7 @@ Validating --> ol.out.PlusArgs[0] = Times (ol.W, h1.out) : [10 x 128], [128 x *1
|
|||
Validating --> ol.b = LearnableParameter() : -> [10 x 1]
|
||||
Validating --> ol.out = Plus (ol.out.PlusArgs[0], ol.b) : [10 x *1], [10 x 1] -> [10 x 1 x *1]
|
||||
Validating --> ce = CrossEntropyWithSoftmax (labels, ol.out) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> err = ErrorPrediction (labels, ol.out) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
Validating --> err = ClassificationError (labels, ol.out) : [10 x *1], [10 x 1 x *1] -> [1]
|
||||
|
||||
Validating network. 16 nodes to process in pass 2.
|
||||
|
||||
|
@ -1155,7 +1155,7 @@ evalNodeNames are not specified, using all the default evalnodes and training cr
|
|||
|
||||
|
||||
Allocating matrices for forward and/or backward propagation.
|
||||
Final Results: Minibatch[1-1]: * 100 err: ErrorPrediction/Sample = 0.9 ce: CrossEntropyWithSoftmax/Sample = 2.3327824 perplexity = 10.306579
|
||||
Final Results: Minibatch[1-1]: * 100 err: ClassificationError/Sample = 0.9 ce: CrossEntropyWithSoftmax/Sample = 2.3327824 perplexity = 10.306579
|
||||
|
||||
04/20/2016 13:14:21: Action "test" complete.
|
||||
|
||||
|
|
|
@ -87,7 +87,7 @@ train = [
|
|||
ol = DNNLayer(h1Dim, labelDim, h1, 1).out
|
||||
|
||||
ce = CrossEntropyWithSoftmax(labels, ol, tag="criterion")
|
||||
err = ErrorPrediction(labels, ol, tag="evaluation")
|
||||
err = ClassificationError(labels, ol, tag="evaluation")
|
||||
]
|
||||
|
||||
SGD = [
|
||||
|
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -19,7 +19,7 @@ testCases:
|
|||
- ^MPI Rank {{integer}}
|
||||
- Finished Epoch[{{integer}} of {{integer}}]
|
||||
- CrossEntropyWithSoftmax = {{float,tolerance=0%}}
|
||||
- EvalErrorPrediction = {{float,tolerance=0%}}
|
||||
- EvalClassificationError = {{float,tolerance=0%}}
|
||||
- learningRatePerSample = {{float,tolerance=0.001%}}
|
||||
|
||||
Per-minibatch training results must match for each MPI Rank:
|
||||
|
@ -28,7 +28,7 @@ testCases:
|
|||
- Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}}
|
||||
- " * {{integer}}; "
|
||||
- CrossEntropyWithSoftmax = {{float,tolerance=0%}}
|
||||
- EvalErrorPrediction = {{float,tolerance=0%}}
|
||||
- EvalClassificationError = {{float,tolerance=0%}}
|
||||
|
||||
DataParallelSGD training parameters must match for each MPI Rank:
|
||||
patterns:
|
||||
|
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
Некоторые файлы не были показаны из-за слишком большого количества измененных файлов Показать больше
Загрузка…
Ссылка в новой задаче