unit test for square
This commit is contained in:
Родитель
7219bfc72f
Коммит
66c5f9806c
|
@ -14,7 +14,7 @@ import pytest
|
|||
from .ops_test_utils import unittest_helper, AA, I, precision, PRECISION_TO_TYPE
|
||||
from ...graph import *
|
||||
from ...reader import *
|
||||
from .. import clip, cond, constant, exp, log, sqrt, power, relu, sigmoid, softmax, tanh
|
||||
from .. import clip, cond, constant, exp, log, sqrt, square, power, relu, sigmoid, softmax, tanh
|
||||
|
||||
CLIP_TUPLES = [
|
||||
([1.0], [2.0], [1.5]), # value shouldn't be clipped; gradient is [1.0]
|
||||
|
@ -233,7 +233,7 @@ def test_op_log(tensor, device_id, precision):
|
|||
|
||||
# Backward pass test
|
||||
# ==================
|
||||
# The expected results for the backward pass is exp()
|
||||
# The expected results for the backward pass is log()
|
||||
expected = [[numpy_op_grad(tensor)]]
|
||||
|
||||
unittest_helper(op_node, None, expected, device_id=device_id,
|
||||
|
@ -269,7 +269,43 @@ def test_op_sqrt(tensor, device_id, precision):
|
|||
|
||||
# Backward pass test
|
||||
# ==================
|
||||
# The expected results for the backward pass is exp()
|
||||
# The expected results for the backward pass is sqrt()
|
||||
expected = [[numpy_op_grad(tensor)]]
|
||||
|
||||
unittest_helper(op_node, None, expected, device_id=device_id,
|
||||
precision=precision, clean_up=True, backward_pass=True,
|
||||
input_node=input_node)
|
||||
|
||||
@pytest.mark.parametrize("tensor", TENSORS)
|
||||
def test_op_square(tensor, device_id, precision):
|
||||
|
||||
def numpy_op(x):
|
||||
return np.square(AA(x, dtype=PRECISION_TO_TYPE[precision]))
|
||||
|
||||
# Forward pass test
|
||||
# ==================
|
||||
# we compute the expected output for the forward pass
|
||||
# we need two surrounding brackets
|
||||
# the first for sequences (length=1, since we have dynamic_axis='')
|
||||
# the second for batch of one sample
|
||||
|
||||
expected = [[numpy_op(tensor)]]
|
||||
|
||||
input_node = I([tensor])
|
||||
op_node = square(input_node)
|
||||
|
||||
unittest_helper(op_node, None, expected,
|
||||
device_id=device_id,
|
||||
precision=precision,
|
||||
clean_up=True, backward_pass=False)
|
||||
|
||||
|
||||
def numpy_op_grad(x):
|
||||
return np.multiply(2, AA(x, dtype=PRECISION_TO_TYPE[precision]))
|
||||
|
||||
# Backward pass test
|
||||
# ==================
|
||||
# The expected results for the backward pass is square()
|
||||
expected = [[numpy_op_grad(tensor)]]
|
||||
|
||||
unittest_helper(op_node, None, expected, device_id=device_id,
|
||||
|
|
Загрузка…
Ссылка в новой задаче