switched convnet to new reader architecture
This commit is contained in:
Родитель
ea3b31fa17
Коммит
6e32e40608
|
@ -9,6 +9,9 @@ RootDir = "." ; DataDir = "$RootDir$" ; ModelDir = "$RootDir$/Output/Models"
|
|||
|
||||
modelPath = "$ModelDir$/01_Convolution"
|
||||
|
||||
# image reading pipeline
|
||||
imageTransforms = ( [ type = "Scale" ; width = 32 ; height = 32 ; channels = 3 ; interpolations = "linear" ] : [ type = "Transpose" ] )
|
||||
|
||||
# Training without BN
|
||||
TrainConvNet = [
|
||||
action = "train"
|
||||
|
@ -66,57 +69,14 @@ TrainConvNet = [
|
|||
reader = [
|
||||
verbosity = 0
|
||||
randomize = true
|
||||
deserializers = (
|
||||
[
|
||||
type = "ImageDeserializer" ; module = "ImageReader"
|
||||
file = "$DataDir$/cifar-10-batches-py/train_map.txt"
|
||||
input = [
|
||||
features = [
|
||||
transforms = (
|
||||
[ type = "Crop" ; cropType = "center" ; cropRatio = 1.0 ; jitterType = "uniRatio" ] :
|
||||
[
|
||||
type = "Scale"
|
||||
width = 32
|
||||
height = 32
|
||||
channels = 3
|
||||
interpolations = "linear"
|
||||
]:[
|
||||
type = "Mean"
|
||||
]:[
|
||||
type = "Transpose"
|
||||
]
|
||||
)
|
||||
]
|
||||
labels = [ labelDim = 10 ]
|
||||
]
|
||||
deserializers = ([
|
||||
type = "ImageDeserializer" ; module = "ImageReader"
|
||||
file = "$DataDir$/cifar-10-batches-py/train_map.txt"
|
||||
input = [
|
||||
features = [ transforms = $imageTransforms$ ]
|
||||
labels = [ labelDim = 10 ]
|
||||
]
|
||||
)
|
||||
]
|
||||
|
||||
reader_newer = [
|
||||
readerType = "ImageReader"
|
||||
file = "$DataDir$/cifar-10-batches-py/train_map.txt"
|
||||
randomize = "auto"
|
||||
prefetch = true
|
||||
features = [
|
||||
width = 32
|
||||
height = 32
|
||||
channels = 3
|
||||
#cropType = "random"
|
||||
#cropRatio = 0.8
|
||||
#jitterType = "uniRatio"
|
||||
#interpolations = "linear"
|
||||
#meanFile = "$DataDir$/cifar-10-batches-py/CIFAR-10_mean.xml"
|
||||
]
|
||||
labels = [ labelDim = 10 ]
|
||||
]
|
||||
reader_old = [
|
||||
readerType = "CNTKTextFormatReader"
|
||||
file = "$DataDir$/Train_cntk_text.txt"
|
||||
input = [
|
||||
features = [ dim = 3072 ; format = "dense" ]
|
||||
labels = [ dim = 10 ; format = "dense" ]
|
||||
]
|
||||
])
|
||||
]
|
||||
]
|
||||
|
||||
|
@ -179,12 +139,16 @@ TrainConvNetWithBN = [
|
|||
]
|
||||
|
||||
reader = [
|
||||
readerType = "CNTKTextFormatReader"
|
||||
file = "$DataDir$/Train_cntk_text.txt"
|
||||
input = [
|
||||
features = [ dim = 3072 ; format = "dense" ]
|
||||
labels = [ dim = 10 ; format = "dense" ]
|
||||
]
|
||||
verbosity = 0
|
||||
randomize = true
|
||||
deserializers = ([
|
||||
type = "ImageDeserializer" ; module = "ImageReader"
|
||||
file = "$DataDir$/cifar-10-batches-py/train_map.txt"
|
||||
input = [
|
||||
features = [ transforms = ( [ type = "Scale" ; width = 32 ; height = 32 ; channels = 3 ; interpolations = "linear" ] : [ type = "Transpose" ] ) ]
|
||||
labels = [ labelDim = 10 ]
|
||||
]
|
||||
])
|
||||
]
|
||||
]
|
||||
|
||||
|
@ -193,60 +157,16 @@ Eval = [
|
|||
action = "eval"
|
||||
minibatchSize = 16
|
||||
evalNodeNames = errs:top5Errs # also test top-5 error rate
|
||||
reader_old = [
|
||||
readerType = "CNTKTextFormatReader"
|
||||
file = "$DataDir$/Test_cntk_text.txt"
|
||||
input = [
|
||||
features = [ dim = 3072 ; format = "dense" ]
|
||||
labels = [ dim = 10 ; format = "dense" ]
|
||||
]
|
||||
]
|
||||
reader_newer = [
|
||||
readerType = "ImageReader"
|
||||
file = "$DataDir$/cifar-10-batches-py/test_map.txt"
|
||||
randomize = "auto"
|
||||
prefetch = true
|
||||
features = [
|
||||
width = 32
|
||||
height = 32
|
||||
channels = 3
|
||||
#cropType = "random"
|
||||
#cropRatio = 0.8
|
||||
#jitterType = "uniRatio"
|
||||
#interpolations = "linear"
|
||||
#meanFile = "$DataDir$/cifar-10-batches-py/CIFAR-10_mean.xml"
|
||||
]
|
||||
labels = [
|
||||
labelDim = 10
|
||||
]
|
||||
]
|
||||
reader = [
|
||||
verbosity = 0
|
||||
randomize = true
|
||||
deserializers = (
|
||||
[
|
||||
type = "ImageDeserializer" ; module = "ImageReader"
|
||||
file = "$DataDir$/cifar-10-batches-py/train_map.txt"
|
||||
input = [
|
||||
features = [
|
||||
transforms = (
|
||||
[ type = "Crop" ; cropType = "center" ; cropRatio = 1.0 ; jitterType = "uniRatio" ] :
|
||||
[
|
||||
type = "Scale"
|
||||
width = 32
|
||||
height = 32
|
||||
channels = 3
|
||||
interpolations = "linear"
|
||||
]:[
|
||||
type = "Mean"
|
||||
]:[
|
||||
type = "Transpose"
|
||||
]
|
||||
)
|
||||
]
|
||||
labels = [ labelDim = 10 ]
|
||||
]
|
||||
deserializers = ([
|
||||
type = "ImageDeserializer" ; module = "ImageReader"
|
||||
file = "$DataDir$/cifar-10-batches-py/train_map.txt"
|
||||
input = [
|
||||
features = [ transforms = $imageTransforms$ ]
|
||||
labels = [ labelDim = 10 ]
|
||||
]
|
||||
)
|
||||
])
|
||||
]
|
||||
]
|
||||
|
|
Загрузка…
Ссылка в новой задаче