Added end-to-end test for CNTK speech workloads using AN4 dataset

This commit is contained in:
Vladimir Ivanov 2015-07-29 19:39:47 -07:00
Родитель a0567f66ba
Коммит 746c2dbd1f
13 изменённых файлов: 58482 добавлений и 0 удалений

Просмотреть файл

@ -0,0 +1,53 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>AN4 License Terms</title>
<meta http-equiv="content-type"
content="text/html; charset=ISO-8859-1">
</head>
<body>
<h2>AN4 License Terms</h2>
<p>This audio database is free for use for any purpose (commercial or otherwise)
subject to the restrictions detailed below.</p>
<pre>
/* ====================================================================
* Copyright (c) 1991-2005 Carnegie Mellon University. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* This work was supported in part by funding from the Defense Advanced
* Research Projects Agency and the National Science Foundation of the
* United States of America, and the CMU Sphinx Speech Consortium.
*
* THIS SOFTWARE IS PROVIDED BY CARNEGIE MELLON UNIVERSITY ``AS IS'' AND
* ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY
* NOR ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ====================================================================
*/
</pre>
</body>
</html>

Двоичные данные
Tests/Speech/Data/Features/000000000.chunk Executable file

Двоичный файл не отображается.

Просмотреть файл

@ -0,0 +1,3 @@
Contents of this directory is a modified version of AN4 dataset pre-processed and optimized for CNTK end-to-end testing.
AN4 dataset is a part of CMU audio databases located at http://www.speech.cs.cmu.edu/databases/an4
This modified version of dataset is distributed under the terms of a AN4 license which can be found in AN4.LICENSE.html

55130
Tests/Speech/Data/glob_0000.mlf Executable file

Разница между файлами не показана из-за своего большого размера Загрузить разницу

948
Tests/Speech/Data/glob_0000.scp Executable file
Просмотреть файл

@ -0,0 +1,948 @@
An4/71/71/cen5-fjam-b.mfc=Features/000000000.chunk[0,367]
An4/213/213/cen4-fsaf2-b.mfc=Features/000000000.chunk[368,805]
An4/513/513/cen7-mgah-b.mfc=Features/000000000.chunk[806,1173]
An4/614/614/cen7-mkdb-b.mfc=Features/000000000.chunk[1174,1421]
An4/507/507/cen1-mgah-b.mfc=Features/000000000.chunk[1422,1669]
An4/693/693/cen8-mmkw-b.mfc=Features/000000000.chunk[1670,2027]
An4/918/918/cen4-mtos-b.mfc=Features/000000000.chunk[2028,2335]
An4/477/477/an257-mewl-b.mfc=Features/000000000.chunk[2336,2943]
An4/454/454/an70-meht-b.mfc=Features/000000000.chunk[2944,3021]
An4/254/254/cen6-ftmj-b.mfc=Features/000000000.chunk[3022,3249]
An4/946/946/cen6-mwhw-b.mfc=Features/000000000.chunk[3250,3467]
An4/122/122/cen4-fkdo-b.mfc=Features/000000000.chunk[3468,3735]
An4/181/181/an183-fnsv-b.mfc=Features/000000000.chunk[3736,4093]
An4/93/93/cen1-fjmd-b.mfc=Features/000000000.chunk[4094,4251]
An4/128/128/an62-flmm2-b.mfc=Features/000000000.chunk[4252,4409]
An4/688/688/cen3-mmkw-b.mfc=Features/000000000.chunk[4410,4617]
An4/872/872/an332-msrb-b.mfc=Features/000000000.chunk[4618,4985]
An4/624/624/cen5-mkem-b.mfc=Features/000000000.chunk[4986,5383]
An4/146/146/cen2-flrp-b.mfc=Features/000000000.chunk[5384,5541]
An4/198/198/cen2-fplp-b.mfc=Features/000000000.chunk[5542,5969]
An4/239/239/cen4-ftal-b.mfc=Features/000000000.chunk[5970,6187]
An4/49/49/an291-ffmm-b.mfc=Features/000000000.chunk[6188,6335]
An4/306/306/cen7-mbmg-b.mfc=Features/000000000.chunk[6336,6733]
An4/252/252/cen4-ftmj-b.mfc=Features/000000000.chunk[6734,7171]
An4/800/800/an359-mscg2-b.mfc=Features/000000000.chunk[7172,7509]
An4/771/771/an236-mrjc2-b.mfc=Features/000000000.chunk[7510,7597]
An4/880/880/cen5-msrb-b.mfc=Features/000000000.chunk[7598,7955]
An4/795/795/cen7-mrmg-b.mfc=Features/000000000.chunk[7956,8293]
An4/821/821/cen7-msct-b.mfc=Features/000000000.chunk[8294,8611]
An4/255/255/cen7-ftmj-b.mfc=Features/000000000.chunk[8612,8949]
An4/580/580/an58-mjhp-b.mfc=Features/000000000.chunk[8950,9267]
An4/70/70/cen4-fjam-b.mfc=Features/000000000.chunk[9268,9595]
An4/528/528/an171-mjda-b.mfc=Features/000000000.chunk[9596,9963]
An4/901/901/an35-mtje-b.mfc=Features/000000000.chunk[9964,10371]
An4/776/776/cen1-mrjc2-b.mfc=Features/000000000.chunk[10372,10779]
An4/908/908/cen7-mtje-b.mfc=Features/000000000.chunk[10780,11257]
An4/603/603/an316-mkdb-b.mfc=Features/000000000.chunk[11258,11565]
An4/544/544/an20-mjdr-b.mfc=Features/000000000.chunk[11566,11853]
An4/243/243/cen8-ftal-b.mfc=Features/000000000.chunk[11854,12071]
An4/891/891/cen3-mtcv-b.mfc=Features/000000000.chunk[12072,12269]
An4/245/245/an212-ftmj-b.mfc=Features/000000000.chunk[12270,12647]
An4/156/156/an119-fmjc-b.mfc=Features/000000000.chunk[12648,13055]
An4/446/446/cen5-meab-b.mfc=Features/000000000.chunk[13056,13483]
An4/801/801/an360-mscg2-b.mfc=Features/000000000.chunk[13484,13601]
An4/538/538/cen6-mjda-b.mfc=Features/000000000.chunk[13602,13799]
An4/282/282/an1-mblw-b.mfc=Features/000000000.chunk[13800,13947]
An4/589/589/cen7-mjhp-b.mfc=Features/000000000.chunk[13948,14275]
An4/710/710/an389-mmtm-b.mfc=Features/000000000.chunk[14276,14603]
An4/638/638/cen6-mmaf-b.mfc=Features/000000000.chunk[14604,14811]
An4/874/874/an334-msrb-b.mfc=Features/000000000.chunk[14812,15029]
An4/40/40/an40-fejs-b.mfc=Features/000000000.chunk[15030,15337]
An4/176/176/cen6-fmjd-b.mfc=Features/000000000.chunk[15338,15545]
An4/732/732/cen8-mnfe-b.mfc=Features/000000000.chunk[15546,15773]
An4/575/575/cen6-mjgk-b.mfc=Features/000000000.chunk[15774,16191]
An4/234/234/an329-ftal-b.mfc=Features/000000000.chunk[16192,16429]
An4/497/497/cen4-mfaa-b.mfc=Features/000000000.chunk[16430,16687]
An4/619/619/an189-mkem-b.mfc=Features/000000000.chunk[16688,16785]
An4/303/303/cen4-mbmg-b.mfc=Features/000000000.chunk[16786,17093]
An4/502/502/an196-mgah-b.mfc=Features/000000000.chunk[17094,17291]
An4/436/436/cen8-mdxs-b.mfc=Features/000000000.chunk[17292,17619]
An4/889/889/cen1-mtcv-b.mfc=Features/000000000.chunk[17620,18227]
An4/697/697/an384-mmsh-b.mfc=Features/000000000.chunk[18228,18475]
An4/413/413/an108-mdxn-b.mfc=Features/000000000.chunk[18476,18643]
An4/165/165/cen8-fmjc-b.mfc=Features/000000000.chunk[18644,18901]
An4/186/186/cen3-fnsv-b.mfc=Features/000000000.chunk[18902,19149]
An4/274/274/cen1-mblb-b.mfc=Features/000000000.chunk[19150,19417]
An4/309/309/an202-mcel-b.mfc=Features/000000000.chunk[19418,19525]
An4/725/725/cen1-mnfe-b.mfc=Features/000000000.chunk[19526,19783]
An4/699/699/cen1-mmsh-b.mfc=Features/000000000.chunk[19784,20051]
An4/833/833/cen6-msjm-b.mfc=Features/000000000.chunk[20052,20299]
An4/857/857/cen4-mskh-b.mfc=Features/000000000.chunk[20300,20687]
An4/734/734/an82-mnjl-b.mfc=Features/000000000.chunk[20688,21025]
An4/340/340/cen3-mcfl-b.mfc=Features/000000000.chunk[21026,21263]
An4/36/36/an36-fejs-b.mfc=Features/000000000.chunk[21264,21641]
An4/690/690/cen5-mmkw-b.mfc=Features/000000000.chunk[21642,22069]
An4/545/545/cen1-mjdr-b.mfc=Features/000000000.chunk[22070,22347]
An4/115/115/an132-fkdo-b.mfc=Features/000000000.chunk[22348,22505]
An4/48/48/cen8-fejs-b.mfc=Features/000000000.chunk[22506,22723]
An4/518/518/an249-mjbh-b.mfc=Features/000000000.chunk[22724,22811]
An4/89/89/an6-fjmd-b.mfc=Features/000000000.chunk[22812,22889]
An4/668/668/an337-mmdg-b.mfc=Features/000000000.chunk[22890,23007]
An4/622/622/cen2-mkem-b.mfc=Features/000000000.chunk[23008,23175]
An4/8/8/cen5-fash-b.mfc=Features/000000000.chunk[23176,23623]
An4/601/601/cen7-mjjs2-b.mfc=Features/000000000.chunk[23624,24051]
An4/480/480/an260-mewl-b.mfc=Features/000000000.chunk[24052,24409]
An4/182/182/an184-fnsv-b.mfc=Features/000000000.chunk[24410,24497]
An4/179/179/an181-fnsv-b.mfc=Features/000000000.chunk[24498,24825]
An4/92/92/an9-fjmd-b.mfc=Features/000000000.chunk[24826,25003]
An4/164/164/cen7-fmjc-b.mfc=Features/000000000.chunk[25004,25251]
An4/16/16/cen2-fbbh-b.mfc=Features/000000000.chunk[25252,25549]
An4/657/657/an49-mmap-b.mfc=Features/000000000.chunk[25550,25867]
An4/723/723/an349-mnfe-b.mfc=Features/000000000.chunk[25868,26325]
An4/700/700/cen2-mmsh-b.mfc=Features/000000000.chunk[26326,26453]
An4/675/675/cen4-mmdg-b.mfc=Features/000000000.chunk[26454,26861]
An4/386/386/an112-mdcs2-b.mfc=Features/000000000.chunk[26862,27129]
An4/152/152/cen8-flrp-b.mfc=Features/000000000.chunk[27130,27347]
An4/740/740/cen3-mnjl-b.mfc=Features/000000000.chunk[27348,27465]
An4/370/370/cen7-mcsc-b.mfc=Features/000000000.chunk[27466,27783]
An4/683/683/an364-mmkw-b.mfc=Features/000000000.chunk[27784,27861]
An4/440/440/an139-meab-b.mfc=Features/000000000.chunk[27862,28089]
An4/789/789/cen1-mrmg-b.mfc=Features/000000000.chunk[28090,28427]
An4/611/611/cen4-mkdb-b.mfc=Features/000000000.chunk[28428,28685]
An4/10/10/an86-fbbh-b.mfc=Features/000000000.chunk[28686,29013]
An4/343/343/cen6-mcfl-b.mfc=Features/000000000.chunk[29014,29251]
An4/438/438/an137-meab-b.mfc=Features/000000000.chunk[29252,29669]
An4/456/456/cen2-meht-b.mfc=Features/000000000.chunk[29670,29817]
An4/489/489/an161-mfaa-b.mfc=Features/000000000.chunk[29818,30075]
An4/53/53/an295-ffmm-b.mfc=Features/000000000.chunk[30076,30363]
An4/702/702/cen4-mmsh-b.mfc=Features/000000000.chunk[30364,30681]
An4/777/777/cen2-mrjc2-b.mfc=Features/000000000.chunk[30682,30999]
An4/873/873/an333-msrb-b.mfc=Features/000000000.chunk[31000,31097]
An4/768/768/cen6-mrcb-b.mfc=Features/000000000.chunk[31098,31275]
An4/552/552/cen8-mjdr-b.mfc=Features/000000000.chunk[31276,31503]
An4/631/631/an54-mmaf-b.mfc=Features/000000000.chunk[31504,31611]
An4/476/476/an256-mewl-b.mfc=Features/000000000.chunk[31612,31689]
An4/151/151/cen7-flrp-b.mfc=Features/000000000.chunk[31690,31937]
An4/920/920/cen6-mtos-b.mfc=Features/000000000.chunk[31938,32145]
An4/358/358/cen8-mcrt-b.mfc=Features/000000000.chunk[32146,32463]
An4/177/177/cen7-fmjd-b.mfc=Features/000000000.chunk[32464,32761]
An4/635/635/cen3-mmaf-b.mfc=Features/000000000.chunk[32762,32929]
An4/719/719/cen8-mmtm-b.mfc=Features/000000000.chunk[32930,33207]
An4/750/750/cen1-mrab-b.mfc=Features/000000000.chunk[33208,33395]
An4/755/755/cen6-mrab-b.mfc=Features/000000000.chunk[33396,33573]
An4/721/721/an347-mnfe-b.mfc=Features/000000000.chunk[33574,33661]
An4/380/380/cen4-mdcs-b.mfc=Features/000000000.chunk[33662,33909]
An4/625/625/cen6-mkem-b.mfc=Features/000000000.chunk[33910,34117]
An4/106/106/cen1-fkai-b.mfc=Features/000000000.chunk[34118,34295]
An4/658/658/an50-mmap-b.mfc=Features/000000000.chunk[34296,34513]
An4/402/402/an210-mdmc-b.mfc=Features/000000000.chunk[34514,35021]
An4/192/192/an91-fplp-b.mfc=Features/000000000.chunk[35022,35469]
An4/416/416/cen1-mdxn-b.mfc=Features/000000000.chunk[35470,35757]
An4/161/161/cen4-fmjc-b.mfc=Features/000000000.chunk[35758,35965]
An4/797/797/an356-mscg2-b.mfc=Features/000000000.chunk[35966,36183]
An4/433/433/cen5-mdxs-b.mfc=Features/000000000.chunk[36184,36691]
An4/57/57/cen4-ffmm-b.mfc=Features/000000000.chunk[36692,37119]
An4/157/157/an120-fmjc-b.mfc=Features/000000000.chunk[37120,37347]
An4/272/272/an374-mblb-b.mfc=Features/000000000.chunk[37348,37575]
An4/549/549/cen5-mjdr-b.mfc=Features/000000000.chunk[37576,37903]
An4/41/41/cen1-fejs-b.mfc=Features/000000000.chunk[37904,38341]
An4/290/290/cen4-mblw-b.mfc=Features/000000000.chunk[38342,38549]
An4/701/701/cen3-mmsh-b.mfc=Features/000000000.chunk[38550,38677]
An4/398/398/an206-mdmc-b.mfc=Features/000000000.chunk[38678,39005]
An4/640/640/cen8-mmaf-b.mfc=Features/000000000.chunk[39006,39323]
An4/904/904/cen3-mtje-b.mfc=Features/000000000.chunk[39324,39541]
An4/686/686/cen1-mmkw-b.mfc=Features/000000000.chunk[39542,40039]
An4/97/97/cen5-fjmd-b.mfc=Features/000000000.chunk[40040,40397]
An4/259/259/an223-fwxs-b.mfc=Features/000000000.chunk[40398,40495]
An4/729/729/cen5-mnfe-b.mfc=Features/000000000.chunk[40496,41033]
An4/709/709/an388-mmtm-b.mfc=Features/000000000.chunk[41034,41131]
An4/692/692/cen7-mmkw-b.mfc=Features/000000000.chunk[41132,41759]
An4/2/2/an253-fash-b.mfc=Features/000000000.chunk[41760,41827]
An4/39/39/an39-fejs-b.mfc=Features/000000000.chunk[41828,42095]
An4/488/488/cen8-mewl-b.mfc=Features/000000000.chunk[42096,42423]
An4/411/411/an106-mdxn-b.mfc=Features/000000000.chunk[42424,42601]
An4/905/905/cen4-mtje-b.mfc=Features/000000000.chunk[42602,43069]
An4/783/783/cen8-mrjc2-b.mfc=Features/000000000.chunk[43070,43417]
An4/205/205/an296-fsaf2-b.mfc=Features/000000000.chunk[43418,43705]
An4/788/788/an285-mrmg-b.mfc=Features/000000000.chunk[43706,44053]
An4/173/173/cen3-fmjd-b.mfc=Features/000000000.chunk[44054,44251]
An4/389/389/an115-mdcs2-b.mfc=Features/000000000.chunk[44252,44579]
An4/412/412/an107-mdxn-b.mfc=Features/000000000.chunk[44580,44867]
An4/69/69/cen3-fjam-b.mfc=Features/000000000.chunk[44868,45045]
An4/84/84/cen5-fjdn-b.mfc=Features/000000000.chunk[45046,45273]
An4/826/826/an229-msjm-b.mfc=Features/000000000.chunk[45274,45361]
An4/722/722/an348-mnfe-b.mfc=Features/000000000.chunk[45362,45589]
An4/490/490/an162-mfaa-b.mfc=Features/000000000.chunk[45590,45897]
An4/335/335/an263-mcfl-b.mfc=Features/000000000.chunk[45898,46275]
An4/854/854/cen1-mskh-b.mfc=Features/000000000.chunk[46276,46503]
An4/334/334/an262-mcfl-b.mfc=Features/000000000.chunk[46504,46851]
An4/403/403/cen1-mdmc-b.mfc=Features/000000000.chunk[46852,47079]
An4/46/46/cen6-fejs-b.mfc=Features/000000000.chunk[47080,47277]
An4/154/154/an117-fmjc-b.mfc=Features/000000000.chunk[47278,47595]
An4/565/565/cen8-mjes-b.mfc=Features/000000000.chunk[47596,47843]
An4/251/251/cen3-ftmj-b.mfc=Features/000000000.chunk[47844,48071]
An4/139/139/an21-flrp-b.mfc=Features/000000000.chunk[48072,48479]
An4/6/6/cen2-fash-b.mfc=Features/000000000.chunk[48480,48607]
An4/76/76/an122-fjdn-b.mfc=Features/000000000.chunk[48608,48765]
An4/817/817/cen3-msct-b.mfc=Features/000000000.chunk[48766,48913]
An4/328/328/cen4-mcen-b.mfc=Features/000000000.chunk[48914,49161]
An4/293/293/cen7-mblw-b.mfc=Features/000000000.chunk[49162,49409]
An4/214/214/cen5-fsaf2-b.mfc=Features/000000000.chunk[49410,49797]
An4/91/91/an8-fjmd-b.mfc=Features/000000000.chunk[49798,49975]
An4/820/820/cen6-msct-b.mfc=Features/000000000.chunk[49976,50213]
An4/300/300/cen1-mbmg-b.mfc=Features/000000000.chunk[50214,50491]
An4/18/18/cen4-fbbh-b.mfc=Features/000000000.chunk[50492,50829]
An4/526/526/cen7-mjbh-b.mfc=Features/000000000.chunk[50830,51067]
An4/408/408/cen6-mdmc-b.mfc=Features/000000000.chunk[51068,51285]
An4/169/169/an194-fmjd-b.mfc=Features/000000000.chunk[51286,51553]
An4/939/939/an154-mwhw-b.mfc=Features/000000000.chunk[51554,51841]
An4/931/931/cen4-mtxj-b.mfc=Features/000000000.chunk[51842,52299]
An4/758/758/an101-mrcb-b.mfc=Features/000000000.chunk[52300,52647]
An4/781/781/cen6-mrjc2-b.mfc=Features/000000000.chunk[52648,52875]
An4/321/321/an127-mcen-b.mfc=Features/000000000.chunk[52876,52973]
An4/199/199/cen3-fplp-b.mfc=Features/000000000.chunk[52974,53271]
An4/494/494/cen1-mfaa-b.mfc=Features/000000000.chunk[53272,53469]
An4/560/560/cen3-mjes-b.mfc=Features/000000000.chunk[53470,53547]
An4/713/713/cen2-mmtm-b.mfc=Features/000000000.chunk[53548,53855]
An4/938/938/an153-mwhw-b.mfc=Features/000000000.chunk[53856,54143]
An4/163/163/cen6-fmjc-b.mfc=Features/000000000.chunk[54144,54321]
An4/338/338/cen1-mcfl-b.mfc=Features/000000000.chunk[54322,54569]
An4/775/775/an240-mrjc2-b.mfc=Features/000000000.chunk[54570,54777]
An4/264/264/cen3-fwxs-b.mfc=Features/000000000.chunk[54778,54925]
An4/224/224/cen2-fsrb-b.mfc=Features/000000000.chunk[54926,55233]
An4/166/166/an191-fmjd-b.mfc=Features/000000000.chunk[55234,55321]
An4/80/80/cen1-fjdn-b.mfc=Features/000000000.chunk[55322,55469]
An4/426/426/an28-mdxs-b.mfc=Features/000000000.chunk[55470,55577]
An4/737/737/an85-mnjl-b.mfc=Features/000000000.chunk[55578,55965]
An4/919/919/cen5-mtos-b.mfc=Features/000000000.chunk[55966,56363]
An4/102/102/an312-fkai-b.mfc=Features/000000000.chunk[56364,56751]
An4/743/743/cen7-mnjl-b.mfc=Features/000000000.chunk[56752,57129]
An4/948/948/cen8-mwhw-b.mfc=Features/000000000.chunk[57130,57347]
An4/17/17/cen3-fbbh-b.mfc=Features/000000000.chunk[57348,57575]
An4/11/11/an87-fbbh-b.mfc=Features/000000000.chunk[57576,57743]
An4/344/344/cen7-mcfl-b.mfc=Features/000000000.chunk[57744,58111]
An4/359/359/an231-mcsc-b.mfc=Features/000000000.chunk[58112,58329]
An4/203/203/cen7-fplp-b.mfc=Features/000000000.chunk[58330,58877]
An4/704/704/cen6-mmsh-b.mfc=Features/000000000.chunk[58878,59035]
An4/331/331/cen7-mcen-b.mfc=Features/000000000.chunk[59036,59323]
An4/736/736/an84-mnjl-b.mfc=Features/000000000.chunk[59324,59511]
An4/121/121/cen3-fkdo-b.mfc=Features/000000000.chunk[59512,59769]
An4/574/574/cen5-mjgk-b.mfc=Features/000000000.chunk[59770,59977]
An4/143/143/an24-flrp-b.mfc=Features/000000000.chunk[59978,60065]
An4/209/209/an300-fsaf2-b.mfc=Features/000000000.chunk[60066,60473]
An4/367/367/cen4-mcsc-b.mfc=Features/000000000.chunk[60474,60731]
An4/38/38/an38-fejs-b.mfc=Features/000000000.chunk[60732,60809]
An4/390/390/cen1-mdcs2-b.mfc=Features/000000000.chunk[60810,61057]
An4/756/756/cen7-mrab-b.mfc=Features/000000000.chunk[61058,61275]
An4/555/555/an158-mjes-b.mfc=Features/000000000.chunk[61276,61613]
An4/680/680/an361-mmkw-b.mfc=Features/000000000.chunk[61614,62041]
An4/578/578/an56-mjhp-b.mfc=Features/000000000.chunk[62042,62419]
An4/655/655/an47-mmap-b.mfc=Features/000000000.chunk[62420,62667]
An4/646/646/cen1-mmal-b.mfc=Features/000000000.chunk[62668,63035]
An4/720/720/an346-mnfe-b.mfc=Features/000000000.chunk[63036,63453]
An4/608/608/cen1-mkdb-b.mfc=Features/000000000.chunk[63454,63721]
An4/441/441/an140-meab-b.mfc=Features/000000000.chunk[63722,64299]
An4/356/356/cen6-mcrt-b.mfc=Features/000000000.chunk[64300,64547]
An4/926/926/an379-mtxj-b.mfc=Features/000000000.chunk[64548,64625]
An4/541/541/an16-mjdr-b.mfc=Features/000000000.chunk[64626,64893]
An4/195/195/an94-fplp-b.mfc=Features/000000000.chunk[64894,65441]
An4/591/591/an176-mjjs2-b.mfc=Features/000000000.chunk[65442,65789]
An4/9/9/cen7-fash-b.mfc=Features/000000000.chunk[65790,66037]
An4/484/484/cen4-mewl-b.mfc=Features/000000000.chunk[66038,66525]
An4/537/537/cen5-mjda-b.mfc=Features/000000000.chunk[66526,66933]
An4/242/242/cen7-ftal-b.mfc=Features/000000000.chunk[66934,67171]
An4/848/848/cen8-msjr-b.mfc=Features/000000000.chunk[67172,67409]
An4/220/220/an168-fsrb-b.mfc=Features/000000000.chunk[67410,67757]
An4/906/906/cen5-mtje-b.mfc=Features/000000000.chunk[67758,68185]
An4/444/444/cen3-meab-b.mfc=Features/000000000.chunk[68186,68373]
An4/88/88/an10-fjmd-b.mfc=Features/000000000.chunk[68374,68531]
An4/561/561/cen4-mjes-b.mfc=Features/000000000.chunk[68532,68919]
An4/728/728/cen4-mnfe-b.mfc=Features/000000000.chunk[68920,69347]
An4/784/784/an281-mrmg-b.mfc=Features/000000000.chunk[69348,69485]
An4/55/55/cen2-ffmm-b.mfc=Features/000000000.chunk[69486,69983]
An4/593/593/an178-mjjs2-b.mfc=Features/000000000.chunk[69984,70061]
An4/327/327/cen3-mcen-b.mfc=Features/000000000.chunk[70062,70309]
An4/4/4/an255-fash-b.mfc=Features/000000000.chunk[70310,70567]
An4/922/922/cen8-mtos-b.mfc=Features/000000000.chunk[70568,70775]
An4/229/229/cen7-fsrb-b.mfc=Features/000000000.chunk[70776,71253]
An4/297/297/an268-mbmg-b.mfc=Features/000000000.chunk[71254,71651]
An4/215/215/cen6-fsaf2-b.mfc=Features/000000000.chunk[71652,71839]
An4/567/567/an217-mjgk-b.mfc=Features/000000000.chunk[71840,71987]
An4/96/96/cen4-fjmd-b.mfc=Features/000000000.chunk[71988,72335]
An4/846/846/cen6-msjr-b.mfc=Features/000000000.chunk[72336,72543]
An4/850/850/an96-mskh-b.mfc=Features/000000000.chunk[72544,72621]
An4/492/492/an164-mfaa-b.mfc=Features/000000000.chunk[72622,72859]
An4/661/661/cen3-mmap-b.mfc=Features/000000000.chunk[72860,72987]
An4/200/200/cen4-fplp-b.mfc=Features/000000000.chunk[72988,73485]
An4/82/82/cen3-fjdn-b.mfc=Features/000000000.chunk[73486,73583]
An4/936/936/an151-mwhw-b.mfc=Features/000000000.chunk[73584,73891]
An4/60/60/cen7-ffmm-b.mfc=Features/000000000.chunk[73892,74379]
An4/183/183/an185-fnsv-b.mfc=Features/000000000.chunk[74380,74477]
An4/667/667/an336-mmdg-b.mfc=Features/000000000.chunk[74478,74785]
An4/576/576/cen7-mjgk-b.mfc=Features/000000000.chunk[74786,74993]
An4/212/212/cen3-fsaf2-b.mfc=Features/000000000.chunk[74994,75101]
An4/779/779/cen4-mrjc2-b.mfc=Features/000000000.chunk[75102,75449]
An4/418/418/cen3-mdxn-b.mfc=Features/000000000.chunk[75450,75637]
An4/636/636/cen4-mmaf-b.mfc=Features/000000000.chunk[75638,75935]
An4/257/257/an221-fwxs-b.mfc=Features/000000000.chunk[75936,76253]
An4/59/59/cen6-ffmm-b.mfc=Features/000000000.chunk[76254,76481]
An4/899/899/an33-mtje-b.mfc=Features/000000000.chunk[76482,76879]
An4/886/886/an303-mtcv-b.mfc=Features/000000000.chunk[76880,77307]
An4/932/932/cen5-mtxj-b.mfc=Features/000000000.chunk[77308,77735]
An4/336/336/an264-mcfl-b.mfc=Features/000000000.chunk[77736,77813]
An4/877/877/cen2-msrb-b.mfc=Features/000000000.chunk[77814,78051]
An4/629/629/an52-mmaf-b.mfc=Features/000000000.chunk[78052,78199]
An4/767/767/cen5-mrcb-b.mfc=Features/000000000.chunk[78200,78547]
An4/374/374/an243-mdcs-b.mfc=Features/000000000.chunk[78548,78635]
An4/437/437/an136-meab-b.mfc=Features/000000000.chunk[78636,79063]
An4/202/202/cen6-fplp-b.mfc=Features/000000000.chunk[79064,79451]
An4/29/29/cen2-fclc-b.mfc=Features/000000000.chunk[79452,79699]
An4/669/669/an338-mmdg-b.mfc=Features/000000000.chunk[79700,80017]
An4/216/216/cen7-fsaf2-b.mfc=Features/000000000.chunk[80018,80395]
An4/227/227/cen5-fsrb-b.mfc=Features/000000000.chunk[80396,80903]
An4/864/864/an278-msmn-b.mfc=Features/000000000.chunk[80904,81311]
An4/794/794/cen6-mrmg-b.mfc=Features/000000000.chunk[81312,81549]
An4/865/865/an279-msmn-b.mfc=Features/000000000.chunk[81550,81837]
An4/111/111/cen6-fkai-b.mfc=Features/000000000.chunk[81838,82015]
An4/774/774/an239-mrjc2-b.mfc=Features/000000000.chunk[82016,82293]
An4/831/831/cen4-msjm-b.mfc=Features/000000000.chunk[82294,82481]
An4/793/793/cen5-mrmg-b.mfc=Features/000000000.chunk[82482,83049]
An4/301/301/cen2-mbmg-b.mfc=Features/000000000.chunk[83050,83237]
An4/325/325/cen1-mcen-b.mfc=Features/000000000.chunk[83238,83485]
An4/210/210/cen1-fsaf2-b.mfc=Features/000000000.chunk[83486,83863]
An4/117/117/an134-fkdo-b.mfc=Features/000000000.chunk[83864,83991]
An4/388/388/an114-mdcs2-b.mfc=Features/000000000.chunk[83992,84289]
An4/718/718/cen7-mmtm-b.mfc=Features/000000000.chunk[84290,84617]
An4/174/174/cen4-fmjd-b.mfc=Features/000000000.chunk[84618,84955]
An4/652/652/cen7-mmal-b.mfc=Features/000000000.chunk[84956,85233]
An4/228/228/cen6-fsrb-b.mfc=Features/000000000.chunk[85234,85451]
An4/373/373/an242-mdcs-b.mfc=Features/000000000.chunk[85452,85729]
An4/175/175/cen5-fmjd-b.mfc=Features/000000000.chunk[85730,86147]
An4/184/184/cen1-fnsv-b.mfc=Features/000000000.chunk[86148,86505]
An4/393/393/cen4-mdcs2-b.mfc=Features/000000000.chunk[86506,86723]
An4/319/319/cen8-mcel-b.mfc=Features/000000000.chunk[86724,86961]
An4/291/291/cen5-mblw-b.mfc=Features/000000000.chunk[86962,87079]
An4/584/584/cen2-mjhp-b.mfc=Features/000000000.chunk[87080,87287]
An4/827/827/an230-msjm-b.mfc=Features/000000000.chunk[87288,87385]
An4/628/628/an51-mmaf-b.mfc=Features/000000000.chunk[87386,87733]
An4/295/295/an266-mbmg-b.mfc=Features/000000000.chunk[87734,87901]
An4/317/317/cen5-mcel-b.mfc=Features/000000000.chunk[87902,88269]
An4/431/431/cen3-mdxs-b.mfc=Features/000000000.chunk[88270,88517]
An4/52/52/an294-ffmm-b.mfc=Features/000000000.chunk[88518,88785]
An4/491/491/an163-mfaa-b.mfc=Features/000000000.chunk[88786,89023]
An4/844/844/cen4-msjr-b.mfc=Features/000000000.chunk[89024,89261]
An4/116/116/an133-fkdo-b.mfc=Features/000000000.chunk[89262,89369]
An4/61/61/cen8-ffmm-b.mfc=Features/000000000.chunk[89370,89717]
An4/118/118/an135-fkdo-b.mfc=Features/000000000.chunk[89718,89995]
An4/131/131/an65-flmm2-b.mfc=Features/000000000.chunk[89996,90233]
An4/878/878/cen3-msrb-b.mfc=Features/000000000.chunk[90234,90431]
An4/352/352/cen2-mcrt-b.mfc=Features/000000000.chunk[90432,90739]
An4/132/132/cen1-flmm2-b.mfc=Features/000000000.chunk[90740,91127]
An4/230/230/cen8-fsrb-b.mfc=Features/000000000.chunk[91128,91425]
An4/933/933/cen6-mtxj-b.mfc=Features/000000000.chunk[91426,91603]
An4/535/535/cen3-mjda-b.mfc=Features/000000000.chunk[91604,91741]
An4/531/531/an174-mjda-b.mfc=Features/000000000.chunk[91742,91859]
An4/525/525/cen6-mjbh-b.mfc=Features/000000000.chunk[91860,92057]
An4/74/74/cen8-fjam-b.mfc=Features/000000000.chunk[92058,92265]
An4/644/644/an324-mmal-b.mfc=Features/000000000.chunk[92266,92363]
An4/240/240/cen5-ftal-b.mfc=Features/000000000.chunk[92364,92601]
An4/726/726/cen2-mnfe-b.mfc=Features/000000000.chunk[92602,92809]
An4/425/425/an27-mdxs-b.mfc=Features/000000000.chunk[92810,93297]
An4/612/612/cen5-mkdb-b.mfc=Features/000000000.chunk[93298,93655]
An4/698/698/an385-mmsh-b.mfc=Features/000000000.chunk[93656,93733]
An4/787/787/an284-mrmg-b.mfc=Features/000000000.chunk[93734,93881]
An4/666/666/cen8-mmap-b.mfc=Features/000000000.chunk[93882,94099]
An4/31/31/cen4-fclc-b.mfc=Features/000000000.chunk[94100,94467]
An4/470/470/cen3-mema-b.mfc=Features/000000000.chunk[94468,94615]
An4/782/782/cen7-mrjc2-b.mfc=Features/000000000.chunk[94616,94943]
An4/824/824/an227-msjm-b.mfc=Features/000000000.chunk[94944,95211]
An4/287/287/cen1-mblw-b.mfc=Features/000000000.chunk[95212,95379]
An4/748/748/an74-mrab-b.mfc=Features/000000000.chunk[95380,95667]
An4/241/241/cen6-ftal-b.mfc=Features/000000000.chunk[95668,95835]
An4/832/832/cen5-msjm-b.mfc=Features/000000000.chunk[95836,96123]
An4/664/664/cen6-mmap-b.mfc=Features/000000000.chunk[96124,96311]
An4/347/347/an142-mcrt-b.mfc=Features/000000000.chunk[96312,96509]
An4/377/377/cen1-mdcs-b.mfc=Features/000000000.chunk[96510,96757]
An4/124/124/cen6-fkdo-b.mfc=Features/000000000.chunk[96758,96995]
An4/724/724/an350-mnfe-b.mfc=Features/000000000.chunk[96996,97133]
An4/442/442/cen1-meab-b.mfc=Features/000000000.chunk[97134,97601]
An4/742/742/cen6-mnjl-b.mfc=Features/000000000.chunk[97602,97809]
An4/500/500/cen7-mfaa-b.mfc=Features/000000000.chunk[97810,98047]
An4/909/909/cen8-mtje-b.mfc=Features/000000000.chunk[98048,98245]
An4/626/626/cen7-mkem-b.mfc=Features/000000000.chunk[98246,98413]
An4/627/627/cen8-mkem-b.mfc=Features/000000000.chunk[98414,98671]
An4/401/401/an209-mdmc-b.mfc=Features/000000000.chunk[98672,98979]
An4/838/838/an353-msjr-b.mfc=Features/000000000.chunk[98980,99057]
An4/415/415/an110-mdxn-b.mfc=Features/000000000.chunk[99058,99265]
An4/225/225/cen3-fsrb-b.mfc=Features/000000000.chunk[99266,99473]
An4/595/595/an180-mjjs2-b.mfc=Features/000000000.chunk[99474,99571]
An4/673/673/cen2-mmdg-b.mfc=Features/000000000.chunk[99572,99859]
An4/162/162/cen5-fmjc-b.mfc=Features/000000000.chunk[99860,100147]
An4/679/679/cen8-mmdg-b.mfc=Features/000000000.chunk[100148,100445]
An4/590/590/cen8-mjhp-b.mfc=Features/000000000.chunk[100446,100673]
An4/299/299/an270-mbmg-b.mfc=Features/000000000.chunk[100674,100881]
An4/805/805/cen4-mscg2-b.mfc=Features/000000000.chunk[100882,101249]
An4/197/197/cen1-fplp-b.mfc=Features/000000000.chunk[101250,101807]
An4/267/267/cen6-fwxs-b.mfc=Features/000000000.chunk[101808,102115]
An4/630/630/an53-mmaf-b.mfc=Features/000000000.chunk[102116,102463]
An4/888/888/an305-mtcv-b.mfc=Features/000000000.chunk[102464,102691]
An4/812/812/an343-msct-b.mfc=Features/000000000.chunk[102692,102879]
An4/233/233/an328-ftal-b.mfc=Features/000000000.chunk[102880,103207]
An4/529/529/an172-mjda-b.mfc=Features/000000000.chunk[103208,103425]
An4/707/707/an386-mmtm-b.mfc=Features/000000000.chunk[103426,103663]
An4/592/592/an177-mjjs2-b.mfc=Features/000000000.chunk[103664,103791]
An4/130/130/an64-flmm2-b.mfc=Features/000000000.chunk[103792,103919]
An4/310/310/an203-mcel-b.mfc=Features/000000000.chunk[103920,104167]
An4/170/170/an195-fmjd-b.mfc=Features/000000000.chunk[104168,104485]
An4/119/119/cen1-fkdo-b.mfc=Features/000000000.chunk[104486,104753]
An4/345/345/cen8-mcfl-b.mfc=Features/000000000.chunk[104754,105011]
An4/365/365/cen2-mcsc-b.mfc=Features/000000000.chunk[105012,105319]
An4/735/735/an83-mnjl-b.mfc=Features/000000000.chunk[105320,105467]
An4/633/633/cen1-mmaf-b.mfc=Features/000000000.chunk[105468,105795]
An4/654/654/an46-mmap-b.mfc=Features/000000000.chunk[105796,105893]
An4/149/149/cen5-flrp-b.mfc=Features/000000000.chunk[105894,106341]
An4/751/751/cen2-mrab-b.mfc=Features/000000000.chunk[106342,106519]
An4/238/238/cen3-ftal-b.mfc=Features/000000000.chunk[106520,106657]
An4/360/360/an232-mcsc-b.mfc=Features/000000000.chunk[106658,106745]
An4/881/881/cen6-msrb-b.mfc=Features/000000000.chunk[106746,106973]
An4/757/757/cen8-mrab-b.mfc=Features/000000000.chunk[106974,107171]
An4/400/400/an208-mdmc-b.mfc=Features/000000000.chunk[107172,107549]
An4/168/168/an193-fmjd-b.mfc=Features/000000000.chunk[107550,107977]
An4/897/897/an31-mtje-b.mfc=Features/000000000.chunk[107978,108345]
An4/530/530/an173-mjda-b.mfc=Features/000000000.chunk[108346,108653]
An4/566/566/an216-mjgk-b.mfc=Features/000000000.chunk[108654,108911]
An4/95/95/cen3-fjmd-b.mfc=Features/000000000.chunk[108912,109009]
An4/43/43/cen3-fejs-b.mfc=Features/000000000.chunk[109010,109287]
An4/753/753/cen4-mrab-b.mfc=Features/000000000.chunk[109288,109615]
An4/405/405/cen3-mdmc-b.mfc=Features/000000000.chunk[109616,109743]
An4/66/66/an80-fjam-b.mfc=Features/000000000.chunk[109744,109831]
An4/858/858/cen5-mskh-b.mfc=Features/000000000.chunk[109832,110219]
An4/852/852/an98-mskh-b.mfc=Features/000000000.chunk[110220,110307]
An4/237/237/cen2-ftal-b.mfc=Features/000000000.chunk[110308,110485]
An4/602/602/cen8-mjjs2-b.mfc=Features/000000000.chunk[110486,110903]
An4/842/842/cen2-msjr-b.mfc=Features/000000000.chunk[110904,111131]
An4/13/13/an89-fbbh-b.mfc=Features/000000000.chunk[111132,111769]
An4/283/283/an2-mblw-b.mfc=Features/000000000.chunk[111770,111917]
An4/460/460/cen6-meht-b.mfc=Features/000000000.chunk[111918,112105]
An4/20/20/cen6-fbbh-b.mfc=Features/000000000.chunk[112106,112343]
An4/308/308/an201-mcel-b.mfc=Features/000000000.chunk[112344,112451]
An4/471/471/cen4-mema-b.mfc=Features/000000000.chunk[112452,112819]
An4/546/546/cen2-mjdr-b.mfc=Features/000000000.chunk[112820,113017]
An4/468/468/cen1-mema-b.mfc=Features/000000000.chunk[113018,113255]
An4/236/236/cen1-ftal-b.mfc=Features/000000000.chunk[113256,113453]
An4/372/372/an241-mdcs-b.mfc=Features/000000000.chunk[113454,113691]
An4/395/395/cen6-mdcs2-b.mfc=Features/000000000.chunk[113692,113869]
An4/945/945/cen5-mwhw-b.mfc=Features/000000000.chunk[113870,114177]
An4/754/754/cen5-mrab-b.mfc=Features/000000000.chunk[114178,114445]
An4/509/509/cen3-mgah-b.mfc=Features/000000000.chunk[114446,114643]
An4/556/556/an159-mjes-b.mfc=Features/000000000.chunk[114644,114721]
An4/594/594/an179-mjjs2-b.mfc=Features/000000000.chunk[114722,115229]
An4/487/487/cen7-mewl-b.mfc=Features/000000000.chunk[115230,115487]
An4/684/684/an365-mmkw-b.mfc=Features/000000000.chunk[115488,115915]
An4/855/855/cen2-mskh-b.mfc=Features/000000000.chunk[115916,116113]
An4/439/439/an138-meab-b.mfc=Features/000000000.chunk[116114,116401]
An4/354/354/cen4-mcrt-b.mfc=Features/000000000.chunk[116402,116879]
An4/26/26/an149-fclc-b.mfc=Features/000000000.chunk[116880,117107]
An4/588/588/cen6-mjhp-b.mfc=Features/000000000.chunk[117108,117275]
An4/823/823/an226-msjm-b.mfc=Features/000000000.chunk[117276,117363]
An4/68/68/cen2-fjam-b.mfc=Features/000000000.chunk[117364,117511]
An4/101/101/an311-fkai-b.mfc=Features/000000000.chunk[117512,117819]
An4/98/98/cen6-fjmd-b.mfc=Features/000000000.chunk[117820,118017]
An4/450/450/an66-meht-b.mfc=Features/000000000.chunk[118018,118285]
An4/662/662/cen4-mmap-b.mfc=Features/000000000.chunk[118286,118753]
An4/452/452/an68-meht-b.mfc=Features/000000000.chunk[118754,118961]
An4/687/687/cen2-mmkw-b.mfc=Features/000000000.chunk[118962,119419]
An4/218/218/an166-fsrb-b.mfc=Features/000000000.chunk[119420,119667]
An4/314/314/cen2-mcel-b.mfc=Features/000000000.chunk[119668,119955]
An4/33/33/cen6-fclc-b.mfc=Features/000000000.chunk[119956,120163]
An4/424/424/an26-mdxs-b.mfc=Features/000000000.chunk[120164,120281]
An4/615/615/cen8-mkdb-b.mfc=Features/000000000.chunk[120282,120529]
An4/298/298/an269-mbmg-b.mfc=Features/000000000.chunk[120530,120927]
An4/527/527/cen8-mjbh-b.mfc=Features/000000000.chunk[120928,121145]
An4/15/15/cen1-fbbh-b.mfc=Features/000000000.chunk[121146,121383]
An4/910/910/an366-mtos-b.mfc=Features/000000000.chunk[121384,121661]
An4/158/158/cen1-fmjc-b.mfc=Features/000000000.chunk[121662,121949]
An4/246/246/an213-ftmj-b.mfc=Features/000000000.chunk[121950,122347]
An4/849/849/an100-mskh-b.mfc=Features/000000000.chunk[122348,122425]
An4/56/56/cen3-ffmm-b.mfc=Features/000000000.chunk[122426,122623]
An4/404/404/cen2-mdmc-b.mfc=Features/000000000.chunk[122624,122871]
An4/351/351/cen1-mcrt-b.mfc=Features/000000000.chunk[122872,123289]
An4/863/863/an277-msmn-b.mfc=Features/000000000.chunk[123290,123377]
An4/322/322/an128-mcen-b.mfc=Features/000000000.chunk[123378,123775]
An4/419/419/cen4-mdxn-b.mfc=Features/000000000.chunk[123776,124043]
An4/86/86/cen7-fjdn-b.mfc=Features/000000000.chunk[124044,124301]
An4/311/311/an204-mcel-b.mfc=Features/000000000.chunk[124302,124399]
An4/142/142/an23-flrp-b.mfc=Features/000000000.chunk[124400,124807]
An4/25/25/an148-fclc-b.mfc=Features/000000000.chunk[124808,125205]
An4/947/947/cen7-mwhw-b.mfc=Features/000000000.chunk[125206,125493]
An4/250/250/cen2-ftmj-b.mfc=Features/000000000.chunk[125494,125781]
An4/381/381/cen5-mdcs-b.mfc=Features/000000000.chunk[125782,126059]
An4/927/927/an380-mtxj-b.mfc=Features/000000000.chunk[126060,126247]
An4/941/941/cen1-mwhw-b.mfc=Features/000000000.chunk[126248,126425]
An4/769/769/cen7-mrcb-b.mfc=Features/000000000.chunk[126426,126863]
An4/685/685/an59-mmkw-b.mfc=Features/000000000.chunk[126864,127411]
An4/72/72/cen6-fjam-b.mfc=Features/000000000.chunk[127412,127699]
An4/420/420/cen5-mdxn-b.mfc=Features/000000000.chunk[127700,127907]
An4/457/457/cen3-meht-b.mfc=Features/000000000.chunk[127908,128095]
An4/279/279/cen6-mblb-b.mfc=Features/000000000.chunk[128096,128263]
An4/656/656/an48-mmap-b.mfc=Features/000000000.chunk[128264,128481]
An4/773/773/an238-mrjc2-b.mfc=Features/000000000.chunk[128482,128559]
An4/562/562/cen5-mjes-b.mfc=Features/000000000.chunk[128560,128797]
An4/811/811/an342-msct-b.mfc=Features/000000000.chunk[128798,129205]
An4/23/23/an146-fclc-b.mfc=Features/000000000.chunk[129206,129543]
An4/391/391/cen2-mdcs2-b.mfc=Features/000000000.chunk[129544,129761]
An4/172/172/cen2-fmjd-b.mfc=Features/000000000.chunk[129762,130099]
An4/185/185/cen2-fnsv-b.mfc=Features/000000000.chunk[130100,130377]
An4/78/78/an124-fjdn-b.mfc=Features/000000000.chunk[130378,130645]
An4/148/148/cen4-flrp-b.mfc=Features/000000000.chunk[130646,130943]
An4/253/253/cen5-ftmj-b.mfc=Features/000000000.chunk[130944,131361]
An4/445/445/cen4-meab-b.mfc=Features/000000000.chunk[131362,131749]
An4/523/523/cen4-mjbh-b.mfc=Features/000000000.chunk[131750,131907]
An4/524/524/cen5-mjbh-b.mfc=Features/000000000.chunk[131908,132325]
An4/428/428/an30-mdxs-b.mfc=Features/000000000.chunk[132326,132423]
An4/315/315/cen3-mcel-b.mfc=Features/000000000.chunk[132424,132611]
An4/281/281/cen8-mblb-b.mfc=Features/000000000.chunk[132612,132819]
An4/570/570/an220-mjgk-b.mfc=Features/000000000.chunk[132820,132987]
An4/727/727/cen3-mnfe-b.mfc=Features/000000000.chunk[132988,133155]
An4/231/231/an326-ftal-b.mfc=Features/000000000.chunk[133156,133273]
An4/193/193/an92-fplp-b.mfc=Features/000000000.chunk[133274,133871]
An4/892/892/cen4-mtcv-b.mfc=Features/000000000.chunk[133872,134479]
An4/834/834/cen7-msjm-b.mfc=Features/000000000.chunk[134480,134747]
An4/144/144/an25-flrp-b.mfc=Features/000000000.chunk[134748,135185]
An4/828/828/cen1-msjm-b.mfc=Features/000000000.chunk[135186,135413]
An4/934/934/cen7-mtxj-b.mfc=Features/000000000.chunk[135414,135661]
An4/387/387/an113-mdcs2-b.mfc=Features/000000000.chunk[135662,136139]
An4/434/434/cen6-mdxs-b.mfc=Features/000000000.chunk[136140,136377]
An4/469/469/cen2-mema-b.mfc=Features/000000000.chunk[136378,136515]
An4/232/232/an327-ftal-b.mfc=Features/000000000.chunk[136516,136673]
An4/378/378/cen2-mdcs-b.mfc=Features/000000000.chunk[136674,136831]
An4/275/275/cen2-mblb-b.mfc=Features/000000000.chunk[136832,137079]
An4/837/837/an352-msjr-b.mfc=Features/000000000.chunk[137080,137207]
An4/447/447/cen6-meab-b.mfc=Features/000000000.chunk[137208,137425]
An4/521/521/cen2-mjbh-b.mfc=Features/000000000.chunk[137426,137573]
An4/733/733/an81-mnjl-b.mfc=Features/000000000.chunk[137574,137791]
An4/510/510/cen4-mgah-b.mfc=Features/000000000.chunk[137792,138119]
An4/276/276/cen3-mblb-b.mfc=Features/000000000.chunk[138120,138227]
An4/894/894/cen6-mtcv-b.mfc=Features/000000000.chunk[138228,138465]
An4/741/741/cen5-mnjl-b.mfc=Features/000000000.chunk[138466,138783]
An4/898/898/an32-mtje-b.mfc=Features/000000000.chunk[138784,138881]
An4/532/532/an175-mjda-b.mfc=Features/000000000.chunk[138882,138959]
An4/150/150/cen6-flrp-b.mfc=Features/000000000.chunk[138960,139177]
An4/280/280/cen7-mblb-b.mfc=Features/000000000.chunk[139178,139555]
An4/902/902/cen1-mtje-b.mfc=Features/000000000.chunk[139556,139813]
An4/896/896/cen8-mtcv-b.mfc=Features/000000000.chunk[139814,140101]
An4/900/900/an34-mtje-b.mfc=Features/000000000.chunk[140102,140209]
An4/323/323/an129-mcen-b.mfc=Features/000000000.chunk[140210,140357]
An4/579/579/an57-mjhp-b.mfc=Features/000000000.chunk[140358,140595]
An4/451/451/an67-meht-b.mfc=Features/000000000.chunk[140596,140673]
An4/830/830/cen3-msjm-b.mfc=Features/000000000.chunk[140674,140851]
An4/75/75/an121-fjdn-b.mfc=Features/000000000.chunk[140852,140919]
An4/194/194/an93-fplp-b.mfc=Features/000000000.chunk[140920,141027]
An4/620/620/an190-mkem-b.mfc=Features/000000000.chunk[141028,141295]
An4/266/266/cen5-fwxs-b.mfc=Features/000000000.chunk[141296,141713]
An4/659/659/cen1-mmap-b.mfc=Features/000000000.chunk[141714,141931]
An4/903/903/cen2-mtje-b.mfc=Features/000000000.chunk[141932,142359]
An4/189/189/cen6-fnsv-b.mfc=Features/000000000.chunk[142360,142617]
An4/271/271/an373-mblb-b.mfc=Features/000000000.chunk[142618,143015]
An4/67/67/cen1-fjam-b.mfc=Features/000000000.chunk[143016,143253]
An4/219/219/an167-fsrb-b.mfc=Features/000000000.chunk[143254,143511]
An4/778/778/cen3-mrjc2-b.mfc=Features/000000000.chunk[143512,143719]
An4/814/814/an345-msct-b.mfc=Features/000000000.chunk[143720,144287]
An4/829/829/cen2-msjm-b.mfc=Features/000000000.chunk[144288,144525]
An4/47/47/cen7-fejs-b.mfc=Features/000000000.chunk[144526,144823]
An4/799/799/an358-mscg2-b.mfc=Features/000000000.chunk[144824,145241]
An4/804/804/cen3-mscg2-b.mfc=Features/000000000.chunk[145242,145469]
An4/329/329/cen5-mcen-b.mfc=Features/000000000.chunk[145470,145887]
An4/600/600/cen6-mjjs2-b.mfc=Features/000000000.chunk[145888,146225]
An4/876/876/cen1-msrb-b.mfc=Features/000000000.chunk[146226,146493]
An4/708/708/an387-mmtm-b.mfc=Features/000000000.chunk[146494,146781]
An4/24/24/an147-fclc-b.mfc=Features/000000000.chunk[146782,147069]
An4/808/808/cen7-mscg2-b.mfc=Features/000000000.chunk[147070,147457]
An4/313/313/cen1-mcel-b.mfc=Features/000000000.chunk[147458,147765]
An4/482/482/cen2-mewl-b.mfc=Features/000000000.chunk[147766,147923]
An4/51/51/an293-ffmm-b.mfc=Features/000000000.chunk[147924,148261]
An4/935/935/cen8-mtxj-b.mfc=Features/000000000.chunk[148262,148529]
An4/244/244/an211-ftmj-b.mfc=Features/000000000.chunk[148530,148737]
An4/396/396/cen7-mdcs2-b.mfc=Features/000000000.chunk[148738,148945]
An4/745/745/an71-mrab-b.mfc=Features/000000000.chunk[148946,149253]
An4/569/569/an219-mjgk-b.mfc=Features/000000000.chunk[149254,149331]
An4/277/277/cen4-mblb-b.mfc=Features/000000000.chunk[149332,149599]
An4/371/371/cen8-mcsc-b.mfc=Features/000000000.chunk[149600,149847]
An4/650/650/cen5-mmal-b.mfc=Features/000000000.chunk[149848,150175]
An4/135/135/cen4-flmm2-b.mfc=Features/000000000.chunk[150176,150793]
An4/206/206/an297-fsaf2-b.mfc=Features/000000000.chunk[150794,151221]
An4/294/294/cen8-mblw-b.mfc=Features/000000000.chunk[151222,151419]
An4/85/85/cen6-fjdn-b.mfc=Features/000000000.chunk[151420,151567]
An4/785/785/an282-mrmg-b.mfc=Features/000000000.chunk[151568,151695]
An4/406/406/cen4-mdmc-b.mfc=Features/000000000.chunk[151696,152323]
An4/474/474/cen7-mema-b.mfc=Features/000000000.chunk[152324,152561]
An4/790/790/cen2-mrmg-b.mfc=Features/000000000.chunk[152562,152919]
An4/463/463/an286-mema-b.mfc=Features/000000000.chunk[152920,153027]
An4/559/559/cen2-mjes-b.mfc=Features/000000000.chunk[153028,153255]
An4/353/353/cen3-mcrt-b.mfc=Features/000000000.chunk[153256,153523]
An4/435/435/cen7-mdxs-b.mfc=Features/000000000.chunk[153524,153941]
An4/145/145/cen1-flrp-b.mfc=Features/000000000.chunk[153942,154229]
An4/278/278/cen5-mblb-b.mfc=Features/000000000.chunk[154230,154557]
An4/517/517/an248-mjbh-b.mfc=Features/000000000.chunk[154558,154765]
An4/65/65/an79-fjam-b.mfc=Features/000000000.chunk[154766,155073]
An4/341/341/cen4-mcfl-b.mfc=Features/000000000.chunk[155074,155411]
An4/520/520/cen1-mjbh-b.mfc=Features/000000000.chunk[155412,155679]
An4/137/137/cen7-flmm2-b.mfc=Features/000000000.chunk[155680,155967]
An4/806/806/cen5-mscg2-b.mfc=Features/000000000.chunk[155968,156415]
An4/429/429/cen1-mdxs-b.mfc=Features/000000000.chunk[156416,156933]
An4/610/610/cen3-mkdb-b.mfc=Features/000000000.chunk[156934,157151]
An4/869/869/cen7-msmn-b.mfc=Features/000000000.chunk[157152,157539]
An4/141/141/an22-flrp-b.mfc=Features/000000000.chunk[157540,157637]
An4/791/791/cen3-mrmg-b.mfc=Features/000000000.chunk[157638,157805]
An4/289/289/cen3-mblw-b.mfc=Features/000000000.chunk[157806,157963]
An4/711/711/an390-mmtm-b.mfc=Features/000000000.chunk[157964,158061]
An4/432/432/cen4-mdxs-b.mfc=Features/000000000.chunk[158062,158369]
An4/350/350/an145-mcrt-b.mfc=Features/000000000.chunk[158370,158557]
An4/670/670/an339-mmdg-b.mfc=Features/000000000.chunk[158558,158905]
An4/581/581/an59-mjhp-b.mfc=Features/000000000.chunk[158906,159203]
An4/461/461/cen7-meht-b.mfc=Features/000000000.chunk[159204,159531]
An4/103/103/an313-fkai-b.mfc=Features/000000000.chunk[159532,160009]
An4/263/263/cen2-fwxs-b.mfc=Features/000000000.chunk[160010,160317]
An4/362/362/an234-mcsc-b.mfc=Features/000000000.chunk[160318,160415]
An4/478/478/an258-mewl-b.mfc=Features/000000000.chunk[160416,160633]
An4/786/786/an283-mrmg-b.mfc=Features/000000000.chunk[160634,161131]
An4/512/512/cen6-mgah-b.mfc=Features/000000000.chunk[161132,161369]
An4/847/847/cen7-msjr-b.mfc=Features/000000000.chunk[161370,161647]
An4/498/498/cen5-mfaa-b.mfc=Features/000000000.chunk[161648,161975]
An4/916/916/cen2-mtos-b.mfc=Features/000000000.chunk[161976,162233]
An4/410/410/cen8-mdmc-b.mfc=Features/000000000.chunk[162234,162561]
An4/459/459/cen5-meht-b.mfc=Features/000000000.chunk[162562,162859]
An4/223/223/cen1-fsrb-b.mfc=Features/000000000.chunk[162860,163137]
An4/764/764/cen2-mrcb-b.mfc=Features/000000000.chunk[163138,163325]
An4/564/564/cen7-mjes-b.mfc=Features/000000000.chunk[163326,163663]
An4/5/5/cen1-fash-b.mfc=Features/000000000.chunk[163664,164011]
An4/129/129/an63-flmm2-b.mfc=Features/000000000.chunk[164012,164249]
An4/369/369/cen6-mcsc-b.mfc=Features/000000000.chunk[164250,164457]
An4/87/87/cen8-fjdn-b.mfc=Features/000000000.chunk[164458,164625]
An4/167/167/an192-fmjd-b.mfc=Features/000000000.chunk[164626,165043]
An4/598/598/cen4-mjjs2-b.mfc=Features/000000000.chunk[165044,165511]
An4/188/188/cen5-fnsv-b.mfc=Features/000000000.chunk[165512,166029]
An4/749/749/an75-mrab-b.mfc=Features/000000000.chunk[166030,166347]
An4/582/582/an60-mjhp-b.mfc=Features/000000000.chunk[166348,166435]
An4/160/160/cen3-fmjc-b.mfc=Features/000000000.chunk[166436,166633]
An4/180/180/an182-fnsv-b.mfc=Features/000000000.chunk[166634,166761]
An4/682/682/an363-mmkw-b.mfc=Features/000000000.chunk[166762,167379]
An4/339/339/cen2-mcfl-b.mfc=Features/000000000.chunk[167380,167907]
An4/921/921/cen7-mtos-b.mfc=Features/000000000.chunk[167908,168075]
An4/421/421/cen6-mdxn-b.mfc=Features/000000000.chunk[168076,168253]
An4/247/247/an214-ftmj-b.mfc=Features/000000000.chunk[168254,168391]
An4/815/815/cen1-msct-b.mfc=Features/000000000.chunk[168392,168659]
An4/671/671/an340-mmdg-b.mfc=Features/000000000.chunk[168660,168787]
An4/616/616/an186-mkem-b.mfc=Features/000000000.chunk[168788,169105]
An4/196/196/an95-fplp-b.mfc=Features/000000000.chunk[169106,169733]
An4/235/235/an330-ftal-b.mfc=Features/000000000.chunk[169734,169901]
An4/268/268/cen7-fwxs-b.mfc=Features/000000000.chunk[169902,170319]
An4/506/506/an200-mgah-b.mfc=Features/000000000.chunk[170320,170417]
An4/647/647/cen2-mmal-b.mfc=Features/000000000.chunk[170418,170615]
An4/127/127/an61-flmm2-b.mfc=Features/000000000.chunk[170616,170873]
An4/803/803/cen2-mscg2-b.mfc=Features/000000000.chunk[170874,171151]
An4/475/475/cen8-mema-b.mfc=Features/000000000.chunk[171152,171499]
An4/472/472/cen5-mema-b.mfc=Features/000000000.chunk[171500,171617]
An4/599/599/cen5-mjjs2-b.mfc=Features/000000000.chunk[171618,172245]
An4/108/108/cen3-fkai-b.mfc=Features/000000000.chunk[172246,172353]
An4/357/357/cen7-mcrt-b.mfc=Features/000000000.chunk[172354,172711]
An4/342/342/cen5-mcfl-b.mfc=Features/000000000.chunk[172712,173029]
An4/714/714/cen3-mmtm-b.mfc=Features/000000000.chunk[173030,173177]
An4/747/747/an73-mrab-b.mfc=Features/000000000.chunk[173178,173325]
An4/643/643/an323-mmal-b.mfc=Features/000000000.chunk[173326,173523]
An4/99/99/cen7-fjmd-b.mfc=Features/000000000.chunk[173524,173741]
An4/503/503/an197-mgah-b.mfc=Features/000000000.chunk[173742,173949]
An4/533/533/cen1-mjda-b.mfc=Features/000000000.chunk[173950,174167]
An4/691/691/cen6-mmkw-b.mfc=Features/000000000.chunk[174168,174525]
An4/305/305/cen6-mbmg-b.mfc=Features/000000000.chunk[174526,174763]
An4/191/191/cen8-fnsv-b.mfc=Features/000000000.chunk[174764,175101]
An4/772/772/an237-mrjc2-b.mfc=Features/000000000.chunk[175102,175239]
An4/273/273/an375-mblb-b.mfc=Features/000000000.chunk[175240,175467]
An4/660/660/cen2-mmap-b.mfc=Features/000000000.chunk[175468,175615]
An4/540/540/cen8-mjda-b.mfc=Features/000000000.chunk[175616,175903]
An4/930/930/cen3-mtxj-b.mfc=Features/000000000.chunk[175904,176001]
An4/346/346/an141-mcrt-b.mfc=Features/000000000.chunk[176002,176089]
An4/125/125/cen7-fkdo-b.mfc=Features/000000000.chunk[176090,176447]
An4/107/107/cen2-fkai-b.mfc=Features/000000000.chunk[176448,176605]
An4/504/504/an198-mgah-b.mfc=Features/000000000.chunk[176606,176843]
An4/316/316/cen4-mcel-b.mfc=Features/000000000.chunk[176844,177161]
An4/840/840/an355-msjr-b.mfc=Features/000000000.chunk[177162,177359]
An4/689/689/cen4-mmkw-b.mfc=Features/000000000.chunk[177360,177877]
An4/113/113/cen8-fkai-b.mfc=Features/000000000.chunk[177878,178095]
An4/548/548/cen4-mjdr-b.mfc=Features/000000000.chunk[178096,178533]
An4/915/915/cen1-mtos-b.mfc=Features/000000000.chunk[178534,178741]
An4/326/326/cen2-mcen-b.mfc=Features/000000000.chunk[178742,178989]
An4/770/770/cen8-mrcb-b.mfc=Features/000000000.chunk[178990,179267]
An4/618/618/an188-mkem-b.mfc=Features/000000000.chunk[179268,179515]
An4/543/543/an19-mjdr-b.mfc=Features/000000000.chunk[179516,179923]
An4/597/597/cen2-mjjs2-b.mfc=Features/000000000.chunk[179924,180391]
An4/304/304/cen5-mbmg-b.mfc=Features/000000000.chunk[180392,180779]
An4/613/613/cen6-mkdb-b.mfc=Features/000000000.chunk[180780,180947]
An4/551/551/cen7-mjdr-b.mfc=Features/000000000.chunk[180948,181235]
An4/260/260/an224-fwxs-b.mfc=Features/000000000.chunk[181236,181553]
An4/810/810/an341-msct-b.mfc=Features/000000000.chunk[181554,181651]
An4/211/211/cen2-fsaf2-b.mfc=Features/000000000.chunk[181652,181959]
An4/3/3/an254-fash-b.mfc=Features/000000000.chunk[181960,182047]
An4/285/285/an4-mblw-b.mfc=Features/000000000.chunk[182048,182185]
An4/651/651/cen6-mmal-b.mfc=Features/000000000.chunk[182186,182343]
An4/862/862/an276-msmn-b.mfc=Features/000000000.chunk[182344,182631]
An4/296/296/an267-mbmg-b.mfc=Features/000000000.chunk[182632,182969]
An4/261/261/an225-fwxs-b.mfc=Features/000000000.chunk[182970,183067]
An4/705/705/cen7-mmsh-b.mfc=Features/000000000.chunk[183068,183285]
An4/28/28/cen1-fclc-b.mfc=Features/000000000.chunk[183286,183713]
An4/382/382/cen6-mdcs-b.mfc=Features/000000000.chunk[183714,183891]
An4/765/765/cen3-mrcb-b.mfc=Features/000000000.chunk[183892,184069]
An4/499/499/cen6-mfaa-b.mfc=Features/000000000.chunk[184070,184247]
An4/7/7/cen4-fash-b.mfc=Features/000000000.chunk[184248,184605]
An4/110/110/cen5-fkai-b.mfc=Features/000000000.chunk[184606,184913]
An4/893/893/cen5-mtcv-b.mfc=Features/000000000.chunk[184914,185201]
An4/677/677/cen6-mmdg-b.mfc=Features/000000000.chunk[185202,185509]
An4/204/204/cen8-fplp-b.mfc=Features/000000000.chunk[185510,185897]
An4/427/427/an29-mdxs-b.mfc=Features/000000000.chunk[185898,186005]
An4/284/284/an3-mblw-b.mfc=Features/000000000.chunk[186006,186133]
An4/348/348/an143-mcrt-b.mfc=Features/000000000.chunk[186134,186241]
An4/449/449/cen8-meab-b.mfc=Features/000000000.chunk[186242,186549]
An4/423/423/cen8-mdxn-b.mfc=Features/000000000.chunk[186550,186817]
An4/466/466/an289-mema-b.mfc=Features/000000000.chunk[186818,186985]
An4/508/508/cen2-mgah-b.mfc=Features/000000000.chunk[186986,187243]
An4/1/1/an251-fash-b.mfc=Features/000000000.chunk[187244,187341]
An4/399/399/an207-mdmc-b.mfc=Features/000000000.chunk[187342,187799]
An4/21/21/cen7-fbbh-b.mfc=Features/000000000.chunk[187800,188107]
An4/573/573/cen4-mjgk-b.mfc=Features/000000000.chunk[188108,188525]
An4/706/706/cen8-mmsh-b.mfc=Features/000000000.chunk[188526,188743]
An4/609/609/cen2-mkdb-b.mfc=Features/000000000.chunk[188744,188911]
An4/839/839/an354-msjr-b.mfc=Features/000000000.chunk[188912,189299]
An4/312/312/an205-mcel-b.mfc=Features/000000000.chunk[189300,189657]
An4/63/63/an77-fjam-b.mfc=Features/000000000.chunk[189658,189965]
An4/678/678/cen7-mmdg-b.mfc=Features/000000000.chunk[189966,190503]
An4/761/761/an104-mrcb-b.mfc=Features/000000000.chunk[190504,190601]
An4/642/642/an322-mmal-b.mfc=Features/000000000.chunk[190602,190929]
An4/262/262/cen1-fwxs-b.mfc=Features/000000000.chunk[190930,191347]
An4/171/171/cen1-fmjd-b.mfc=Features/000000000.chunk[191348,191665]
An4/114/114/an131-fkdo-b.mfc=Features/000000000.chunk[191666,192263]
An4/853/853/an99-mskh-b.mfc=Features/000000000.chunk[192264,192521]
An4/333/333/an261-mcfl-b.mfc=Features/000000000.chunk[192522,192619]
An4/112/112/cen7-fkai-b.mfc=Features/000000000.chunk[192620,192777]
An4/265/265/cen4-fwxs-b.mfc=Features/000000000.chunk[192778,193325]
An4/813/813/an344-msct-b.mfc=Features/000000000.chunk[193326,193723]
An4/496/496/cen3-mfaa-b.mfc=Features/000000000.chunk[193724,193881]
An4/178/178/cen8-fmjd-b.mfc=Features/000000000.chunk[193882,194129]
An4/54/54/cen1-ffmm-b.mfc=Features/000000000.chunk[194130,194457]
An4/596/596/cen1-mjjs2-b.mfc=Features/000000000.chunk[194458,194895]
An4/875/875/an335-msrb-b.mfc=Features/000000000.chunk[194896,195033]
An4/430/430/cen2-mdxs-b.mfc=Features/000000000.chunk[195034,195281]
An4/928/928/cen1-mtxj-b.mfc=Features/000000000.chunk[195282,195529]
An4/493/493/an165-mfaa-b.mfc=Features/000000000.chunk[195530,195807]
An4/887/887/an304-mtcv-b.mfc=Features/000000000.chunk[195808,195905]
An4/859/859/cen6-mskh-b.mfc=Features/000000000.chunk[195906,196083]
An4/883/883/cen8-msrb-b.mfc=Features/000000000.chunk[196084,196301]
An4/871/871/an331-msrb-b.mfc=Features/000000000.chunk[196302,196479]
An4/836/836/an351-msjr-b.mfc=Features/000000000.chunk[196480,196757]
An4/553/553/an156-mjes-b.mfc=Features/000000000.chunk[196758,197075]
An4/861/861/cen8-mskh-b.mfc=Features/000000000.chunk[197076,197333]
An4/248/248/an215-ftmj-b.mfc=Features/000000000.chunk[197334,197441]
An4/77/77/an123-fjdn-b.mfc=Features/000000000.chunk[197442,197569]
An4/417/417/cen2-mdxn-b.mfc=Features/000000000.chunk[197570,197787]
An4/856/856/cen3-mskh-b.mfc=Features/000000000.chunk[197788,197965]
An4/44/44/cen4-fejs-b.mfc=Features/000000000.chunk[197966,198493]
An4/645/645/an325-mmal-b.mfc=Features/000000000.chunk[198494,198581]
An4/453/453/an69-meht-b.mfc=Features/000000000.chunk[198582,198669]
An4/639/639/cen7-mmaf-b.mfc=Features/000000000.chunk[198670,198957]
An4/907/907/cen6-mtje-b.mfc=Features/000000000.chunk[198958,199175]
An4/330/330/cen6-mcen-b.mfc=Features/000000000.chunk[199176,199373]
An4/258/258/an222-fwxs-b.mfc=Features/000000000.chunk[199374,199461]
An4/746/746/an72-mrab-b.mfc=Features/000000000.chunk[199462,199549]
An4/752/752/cen3-mrab-b.mfc=Features/000000000.chunk[199550,199677]
An4/663/663/cen5-mmap-b.mfc=Features/000000000.chunk[199678,199945]
An4/843/843/cen3-msjr-b.mfc=Features/000000000.chunk[199946,200083]
An4/674/674/cen3-mmdg-b.mfc=Features/000000000.chunk[200084,200321]
An4/105/105/an315-fkai-b.mfc=Features/000000000.chunk[200322,200519]
An4/604/604/an317-mkdb-b.mfc=Features/000000000.chunk[200520,200657]
An4/557/557/an160-mjes-b.mfc=Features/000000000.chunk[200658,201035]
An4/320/320/an126-mcen-b.mfc=Features/000000000.chunk[201036,201123]
An4/605/605/an318-mkdb-b.mfc=Features/000000000.chunk[201124,201251]
An4/731/731/cen7-mnfe-b.mfc=Features/000000000.chunk[201252,201649]
An4/467/467/an290-mema-b.mfc=Features/000000000.chunk[201650,201907]
An4/368/368/cen5-mcsc-b.mfc=Features/000000000.chunk[201908,202045]
An4/672/672/cen1-mmdg-b.mfc=Features/000000000.chunk[202046,202463]
An4/744/744/cen8-mnjl-b.mfc=Features/000000000.chunk[202464,202721]
An4/37/37/an37-fejs-b.mfc=Features/000000000.chunk[202722,203189]
An4/376/376/an245-mdcs-b.mfc=Features/000000000.chunk[203190,203447]
An4/64/64/an78-fjam-b.mfc=Features/000000000.chunk[203448,203645]
An4/27/27/an150-fclc-b.mfc=Features/000000000.chunk[203646,204073]
An4/917/917/cen3-mtos-b.mfc=Features/000000000.chunk[204074,204311]
An4/637/637/cen5-mmaf-b.mfc=Features/000000000.chunk[204312,204659]
An4/464/464/an287-mema-b.mfc=Features/000000000.chunk[204660,204907]
An4/187/187/cen4-fnsv-b.mfc=Features/000000000.chunk[204908,205375]
An4/385/385/an111-mdcs2-b.mfc=Features/000000000.chunk[205376,205573]
An4/885/885/an302-mtcv-b.mfc=Features/000000000.chunk[205574,205981]
An4/914/914/an370-mtos-b.mfc=Features/000000000.chunk[205982,206439]
An4/153/153/an116-fmjc-b.mfc=Features/000000000.chunk[206440,206667]
An4/375/375/an244-mdcs-b.mfc=Features/000000000.chunk[206668,206915]
An4/868/868/cen6-msmn-b.mfc=Features/000000000.chunk[206916,207093]
An4/495/495/cen2-mfaa-b.mfc=Features/000000000.chunk[207094,207221]
An4/712/712/cen1-mmtm-b.mfc=Features/000000000.chunk[207222,207509]
An4/364/364/cen1-mcsc-b.mfc=Features/000000000.chunk[207510,207987]
An4/739/739/cen2-mnjl-b.mfc=Features/000000000.chunk[207988,208185]
An4/256/256/cen8-ftmj-b.mfc=Features/000000000.chunk[208186,208473]
An4/222/222/an170-fsrb-b.mfc=Features/000000000.chunk[208474,208721]
An4/332/332/cen8-mcen-b.mfc=Features/000000000.chunk[208722,208979]
An4/759/759/an102-mrcb-b.mfc=Features/000000000.chunk[208980,209057]
An4/571/571/cen1-mjgk-b.mfc=Features/000000000.chunk[209058,209245]
An4/585/585/cen3-mjhp-b.mfc=Features/000000000.chunk[209246,209413]
An4/422/422/cen7-mdxn-b.mfc=Features/000000000.chunk[209414,209681]
An4/50/50/an292-ffmm-b.mfc=Features/000000000.chunk[209682,209849]
An4/483/483/cen3-mewl-b.mfc=Features/000000000.chunk[209850,210167]
An4/104/104/an314-fkai-b.mfc=Features/000000000.chunk[210168,210535]
An4/641/641/an321-mmal-b.mfc=Features/000000000.chunk[210536,210833]
An4/798/798/an357-mscg2-b.mfc=Features/000000000.chunk[210834,210931]
An4/42/42/cen2-fejs-b.mfc=Features/000000000.chunk[210932,211159]
An4/632/632/an55-mmaf-b.mfc=Features/000000000.chunk[211160,211347]
An4/716/716/cen5-mmtm-b.mfc=Features/000000000.chunk[211348,211585]
An4/19/19/cen5-fbbh-b.mfc=Features/000000000.chunk[211586,211873]
An4/923/923/an376-mtxj-b.mfc=Features/000000000.chunk[211874,212041]
An4/890/890/cen2-mtcv-b.mfc=Features/000000000.chunk[212042,212179]
An4/825/825/an228-msjm-b.mfc=Features/000000000.chunk[212180,212537]
An4/379/379/cen3-mdcs-b.mfc=Features/000000000.chunk[212538,212745]
An4/870/870/cen8-msmn-b.mfc=Features/000000000.chunk[212746,213333]
An4/623/623/cen4-mkem-b.mfc=Features/000000000.chunk[213334,213461]
An4/703/703/cen5-mmsh-b.mfc=Features/000000000.chunk[213462,213679]
An4/126/126/cen8-fkdo-b.mfc=Features/000000000.chunk[213680,213937]
An4/79/79/an125-fjdn-b.mfc=Features/000000000.chunk[213938,214045]
An4/384/384/cen8-mdcs-b.mfc=Features/000000000.chunk[214046,214303]
An4/681/681/an362-mmkw-b.mfc=Features/000000000.chunk[214304,214741]
An4/913/913/an369-mtos-b.mfc=Features/000000000.chunk[214742,214839]
An4/392/392/cen3-mdcs2-b.mfc=Features/000000000.chunk[214840,215007]
An4/217/217/cen8-fsaf2-b.mfc=Features/000000000.chunk[215008,215205]
An4/409/409/cen7-mdmc-b.mfc=Features/000000000.chunk[215206,215533]
An4/515/515/an246-mjbh-b.mfc=Features/000000000.chunk[215534,215621]
An4/90/90/an7-fjmd-b.mfc=Features/000000000.chunk[215622,215839]
An4/760/760/an103-mrcb-b.mfc=Features/000000000.chunk[215840,216247]
An4/62/62/an76-fjam-b.mfc=Features/000000000.chunk[216248,216335]
An4/822/822/cen8-msct-b.mfc=Features/000000000.chunk[216336,216563]
An4/462/462/cen8-meht-b.mfc=Features/000000000.chunk[216564,216761]
An4/292/292/cen6-mblw-b.mfc=Features/000000000.chunk[216762,216929]
An4/676/676/cen5-mmdg-b.mfc=Features/000000000.chunk[216930,217477]
An4/572/572/cen2-mjgk-b.mfc=Features/000000000.chunk[217478,217695]
An4/363/363/an235-mcsc-b.mfc=Features/000000000.chunk[217696,217773]
An4/522/522/cen3-mjbh-b.mfc=Features/000000000.chunk[217774,217931]
An4/924/924/an377-mtxj-b.mfc=Features/000000000.chunk[217932,218299]
An4/816/816/cen2-msct-b.mfc=Features/000000000.chunk[218300,218547]
An4/485/485/cen5-mewl-b.mfc=Features/000000000.chunk[218548,218915]
An4/621/621/cen1-mkem-b.mfc=Features/000000000.chunk[218916,219183]
An4/577/577/cen8-mjgk-b.mfc=Features/000000000.chunk[219184,219391]
An4/318/318/cen6-mcel-b.mfc=Features/000000000.chunk[219392,219619]
An4/792/792/cen4-mrmg-b.mfc=Features/000000000.chunk[219620,219977]
An4/841/841/cen1-msjr-b.mfc=Features/000000000.chunk[219978,220345]
An4/763/763/cen1-mrcb-b.mfc=Features/000000000.chunk[220346,220553]
An4/458/458/cen4-meht-b.mfc=Features/000000000.chunk[220554,220751]
An4/715/715/cen4-mmtm-b.mfc=Features/000000000.chunk[220752,221289]
An4/607/607/an320-mkdb-b.mfc=Features/000000000.chunk[221290,221527]
An4/208/208/an299-fsaf2-b.mfc=Features/000000000.chunk[221528,221925]
An4/134/134/cen3-flmm2-b.mfc=Features/000000000.chunk[221926,222103]
An4/649/649/cen4-mmal-b.mfc=Features/000000000.chunk[222104,222391]
An4/911/911/an367-mtos-b.mfc=Features/000000000.chunk[222392,222799]
An4/730/730/cen6-mnfe-b.mfc=Features/000000000.chunk[222800,223087]
An4/349/349/an144-mcrt-b.mfc=Features/000000000.chunk[223088,223485]
An4/324/324/an130-mcen-b.mfc=Features/000000000.chunk[223486,223553]
An4/501/501/cen8-mfaa-b.mfc=Features/000000000.chunk[223554,223751]
An4/226/226/cen4-fsrb-b.mfc=Features/000000000.chunk[223752,224189]
An4/547/547/cen3-mjdr-b.mfc=Features/000000000.chunk[224190,224357]
An4/414/414/an109-mdxn-b.mfc=Features/000000000.chunk[224358,224625]
An4/201/201/cen5-fplp-b.mfc=Features/000000000.chunk[224626,225233]
An4/221/221/an169-fsrb-b.mfc=Features/000000000.chunk[225234,225391]
An4/12/12/an88-fbbh-b.mfc=Features/000000000.chunk[225392,225859]
An4/879/879/cen4-msrb-b.mfc=Features/000000000.chunk[225860,226267]
An4/563/563/cen6-mjes-b.mfc=Features/000000000.chunk[226268,226415]
An4/123/123/cen5-fkdo-b.mfc=Features/000000000.chunk[226416,226813]
An4/207/207/an298-fsaf2-b.mfc=Features/000000000.chunk[226814,226911]
An4/617/617/an187-mkem-b.mfc=Features/000000000.chunk[226912,227079]
An4/866/866/cen4-msmn-b.mfc=Features/000000000.chunk[227080,227517]
An4/943/943/cen3-mwhw-b.mfc=Features/000000000.chunk[227518,227625]
An4/542/542/an18-mjdr-b.mfc=Features/000000000.chunk[227626,227783]
An4/762/762/an105-mrcb-b.mfc=Features/000000000.chunk[227784,227931]
An4/465/465/an288-mema-b.mfc=Features/000000000.chunk[227932,228019]
An4/249/249/cen1-ftmj-b.mfc=Features/000000000.chunk[228020,228257]
An4/307/307/cen8-mbmg-b.mfc=Features/000000000.chunk[228258,228585]
An4/802/802/cen1-mscg2-b.mfc=Features/000000000.chunk[228586,228823]
An4/73/73/cen7-fjam-b.mfc=Features/000000000.chunk[228824,229061]
An4/554/554/an157-mjes-b.mfc=Features/000000000.chunk[229062,229189]
An4/539/539/cen7-mjda-b.mfc=Features/000000000.chunk[229190,229517]
An4/505/505/an199-mgah-b.mfc=Features/000000000.chunk[229518,229615]
An4/780/780/cen5-mrjc2-b.mfc=Features/000000000.chunk[229616,229993]
An4/100/100/cen8-fjmd-b.mfc=Features/000000000.chunk[229994,230211]
An4/696/696/an383-mmsh-b.mfc=Features/000000000.chunk[230212,230349]
An4/486/486/cen6-mewl-b.mfc=Features/000000000.chunk[230350,230547]
An4/32/32/cen5-fclc-b.mfc=Features/000000000.chunk[230548,230975]
An4/835/835/cen8-msjm-b.mfc=Features/000000000.chunk[230976,231193]
An4/514/514/cen8-mgah-b.mfc=Features/000000000.chunk[231194,231541]
An4/694/694/an381-mmsh-b.mfc=Features/000000000.chunk[231542,231779]
An4/867/867/cen5-msmn-b.mfc=Features/000000000.chunk[231780,232107]
An4/366/366/cen3-mcsc-b.mfc=Features/000000000.chunk[232108,232335]
An4/912/912/an368-mtos-b.mfc=Features/000000000.chunk[232336,232753]
An4/738/738/cen1-mnjl-b.mfc=Features/000000000.chunk[232754,233161]
An4/270/270/an372-mblb-b.mfc=Features/000000000.chunk[233162,233459]
An4/155/155/an118-fmjc-b.mfc=Features/000000000.chunk[233460,233707]
An4/558/558/cen1-mjes-b.mfc=Features/000000000.chunk[233708,233925]
An4/606/606/an319-mkdb-b.mfc=Features/000000000.chunk[233926,234273]
An4/819/819/cen5-msct-b.mfc=Features/000000000.chunk[234274,234671]
An4/288/288/cen2-mblw-b.mfc=Features/000000000.chunk[234672,234829]
An4/120/120/cen2-fkdo-b.mfc=Features/000000000.chunk[234830,235117]
An4/536/536/cen4-mjda-b.mfc=Features/000000000.chunk[235118,235695]
An4/302/302/cen3-mbmg-b.mfc=Features/000000000.chunk[235696,235843]
An4/860/860/cen7-mskh-b.mfc=Features/000000000.chunk[235844,236141]
An4/269/269/an371-mblb-b.mfc=Features/000000000.chunk[236142,236509]
An4/455/455/cen1-meht-b.mfc=Features/000000000.chunk[236510,236717]
An4/286/286/an5-mblw-b.mfc=Features/000000000.chunk[236718,236815]
An4/136/136/cen6-flmm2-b.mfc=Features/000000000.chunk[236816,237043]
An4/481/481/cen1-mewl-b.mfc=Features/000000000.chunk[237044,237471]
An4/58/58/cen5-ffmm-b.mfc=Features/000000000.chunk[237472,237959]
An4/583/583/cen1-mjhp-b.mfc=Features/000000000.chunk[237960,238337]
An4/534/534/cen2-mjda-b.mfc=Features/000000000.chunk[238338,238555]
An4/940/940/an155-mwhw-b.mfc=Features/000000000.chunk[238556,238693]
An4/882/882/cen7-msrb-b.mfc=Features/000000000.chunk[238694,239061]
An4/473/473/cen6-mema-b.mfc=Features/000000000.chunk[239062,239239]
An4/937/937/an152-mwhw-b.mfc=Features/000000000.chunk[239240,239337]
An4/94/94/cen2-fjmd-b.mfc=Features/000000000.chunk[239338,239615]
An4/83/83/cen4-fjdn-b.mfc=Features/000000000.chunk[239616,239763]
An4/568/568/an218-mjgk-b.mfc=Features/000000000.chunk[239764,239851]
An4/45/45/cen5-fejs-b.mfc=Features/000000000.chunk[239852,240259]
An4/766/766/cen4-mrcb-b.mfc=Features/000000000.chunk[240260,240537]
An4/929/929/cen2-mtxj-b.mfc=Features/000000000.chunk[240538,240695]
An4/634/634/cen2-mmaf-b.mfc=Features/000000000.chunk[240696,240953]
An4/337/337/an265-mcfl-b.mfc=Features/000000000.chunk[240954,241051]
An4/884/884/an301-mtcv-b.mfc=Features/000000000.chunk[241052,241429]
An4/516/516/an247-mjbh-b.mfc=Features/000000000.chunk[241430,241507]
An4/796/796/cen8-mrmg-b.mfc=Features/000000000.chunk[241508,241725]
An4/397/397/cen8-mdcs2-b.mfc=Features/000000000.chunk[241726,241973]
An4/648/648/cen3-mmal-b.mfc=Features/000000000.chunk[241974,242151]
An4/81/81/cen2-fjdn-b.mfc=Features/000000000.chunk[242152,242329]
An4/807/807/cen6-mscg2-b.mfc=Features/000000000.chunk[242330,242617]
An4/717/717/cen6-mmtm-b.mfc=Features/000000000.chunk[242618,242845]
An4/394/394/cen5-mdcs2-b.mfc=Features/000000000.chunk[242846,243113]
An4/895/895/cen7-mtcv-b.mfc=Features/000000000.chunk[243114,243461]
An4/140/140/an2121-flrp-b.mfc=Features/000000000.chunk[243462,243779]
An4/653/653/cen8-mmal-b.mfc=Features/000000000.chunk[243780,243957]
An4/355/355/cen5-mcrt-b.mfc=Features/000000000.chunk[243958,244555]
An4/159/159/cen2-fmjc-b.mfc=Features/000000000.chunk[244556,244803]
An4/443/443/cen2-meab-b.mfc=Features/000000000.chunk[244804,245111]
An4/942/942/cen2-mwhw-b.mfc=Features/000000000.chunk[245112,245329]
An4/809/809/cen8-mscg2-b.mfc=Features/000000000.chunk[245330,245637]
An4/519/519/an250-mjbh-b.mfc=Features/000000000.chunk[245638,245725]
An4/944/944/cen4-mwhw-b.mfc=Features/000000000.chunk[245726,246083]
An4/190/190/cen7-fnsv-b.mfc=Features/000000000.chunk[246084,246471]
An4/925/925/an378-mtxj-b.mfc=Features/000000000.chunk[246472,246619]
An4/665/665/cen7-mmap-b.mfc=Features/000000000.chunk[246620,246907]
An4/448/448/cen7-meab-b.mfc=Features/000000000.chunk[246908,247345]
An4/845/845/cen5-msjr-b.mfc=Features/000000000.chunk[247346,247563]
An4/818/818/cen4-msct-b.mfc=Features/000000000.chunk[247564,247821]
An4/695/695/an382-mmsh-b.mfc=Features/000000000.chunk[247822,248089]
An4/511/511/cen5-mgah-b.mfc=Features/000000000.chunk[248090,248567]
An4/479/479/an259-mewl-b.mfc=Features/000000000.chunk[248568,248705]
An4/35/35/cen8-fclc-b.mfc=Features/000000000.chunk[248706,248973]
An4/109/109/cen4-fkai-b.mfc=Features/000000000.chunk[248974,249221]
An4/14/14/an90-fbbh-b.mfc=Features/000000000.chunk[249222,249319]
An4/586/586/cen4-mjhp-b.mfc=Features/000000000.chunk[249320,249647]
An4/133/133/cen2-flmm2-b.mfc=Features/000000000.chunk[249648,249845]
An4/30/30/cen3-fclc-b.mfc=Features/000000000.chunk[249846,250033]
An4/383/383/cen7-mdcs-b.mfc=Features/000000000.chunk[250034,250381]
An4/34/34/cen7-fclc-b.mfc=Features/000000000.chunk[250382,250679]
An4/851/851/an97-mskh-b.mfc=Features/000000000.chunk[250680,250817]
An4/147/147/cen3-flrp-b.mfc=Features/000000000.chunk[250818,250975]
An4/550/550/cen6-mjdr-b.mfc=Features/000000000.chunk[250976,251143]
An4/407/407/cen5-mdmc-b.mfc=Features/000000000.chunk[251144,251521]
An4/587/587/cen5-mjhp-b.mfc=Features/000000000.chunk[251522,251799]
An4/22/22/cen8-fbbh-b.mfc=Features/000000000.chunk[251800,252077]
An4/138/138/cen8-flmm2-b.mfc=Features/000000000.chunk[252078,252655]
An4/361/361/an233-mcsc-b.mfc=Features/000000000.chunk[252656,252733]

Просмотреть файл

@ -0,0 +1,132 @@
_ah_[2]
_ah_[3]
_ah_[4]
_hmm_[2]
_hmm_[3]
_hmm_[4]
_noise_[2]
_noise_[3]
_noise_[4]
aa_s2_1
aa_s3_1
aa_s4_1
ae_s2_1
ae_s3_1
ae_s4_1
ah_s2_1
ah_s3_1
ah_s4_1
ao_s2_1
ao_s3_1
ao_s4_1
aw_s2_1
aw_s3_1
aw_s4_1
ax_s2_1
ax_s3_1
ax_s4_1
ay_s2_1
ay_s3_1
ay_s4_1
b_s2_1
b_s3_1
b_s4_1
ch_s2_1
ch_s3_1
ch_s4_1
d_s2_1
d_s3_1
d_s4_1
dh_s2_1
dh_s3_1
dh_s4_1
eh_s2_1
eh_s3_1
eh_s4_1
er_s2_1
er_s3_1
er_s4_1
ey_s2_1
ey_s3_1
ey_s4_1
f_s2_1
f_s3_1
f_s4_1
g_s2_1
g_s3_1
g_s4_1
hh_s2_1
hh_s3_1
hh_s4_1
ih_s2_1
ih_s3_1
ih_s4_1
iy_s2_1
iy_s3_1
iy_s4_1
jh_s2_1
jh_s3_1
jh_s4_1
k_s2_1
k_s3_1
k_s4_1
l_s2_1
l_s3_1
l_s4_1
m_s2_1
m_s3_1
m_s4_1
n_s2_1
n_s3_1
n_s4_1
ng_s2_1
ng_s3_1
ng_s4_1
ow_s2_1
ow_s3_1
ow_s4_1
oy_s2_1
oy_s3_1
oy_s4_1
p_s2_1
p_s3_1
p_s4_1
r_s2_1
r_s3_1
r_s4_1
s_s2_1
s_s3_1
s_s4_1
sh_s2_1
sh_s3_1
sh_s4_1
sil[2]
sil[3]
sil[4]
t_s2_1
t_s3_1
t_s4_1
th_s2_1
th_s3_1
th_s4_1
uh_s2_1
uh_s3_1
uh_s4_1
uw_s2_1
uw_s3_1
uw_s4_1
v_s2_1
v_s3_1
v_s4_1
w_s2_1
w_s3_1
w_s4_1
y_s2_1
y_s3_1
y_s4_1
z_s2_1
z_s3_1
z_s4_1
zh_s2_1
zh_s3_1
zh_s4_1

Просмотреть файл

@ -0,0 +1,758 @@
=== Running /home/vlivan/cntk/bin/x86_64.gpu.release.acml/cntk configFile=/home/vlivan/cntk/Tests/Speech/QuickE2E/cntk.config RunDir=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_cpu DataDir=/home/vlivan/cntk/Tests/Speech/Data DeviceId=Auto
running on localhost at 2015/07/29 19:11:01
command line options:
configFile=/home/vlivan/cntk/Tests/Speech/QuickE2E/cntk.config RunDir=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_cpu DataDir=/home/vlivan/cntk/Tests/Speech/Data DeviceId=Auto
>>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
precision=float
command=speechTrain
deviceId=$DeviceId$
parallelTrain=false
speechTrain=[
action=train
modelPath=$RunDir$/models/cntkSpeech.dnn
deviceId=$DeviceId$
traceLevel=1
SimpleNetworkBuilder=[
layerSizes=363:512:512:132
trainingCriterion=CrossEntropyWithSoftmax
evalCriterion=ErrorPrediction
layerTypes=Sigmoid
initValueScale=1.0
applyMeanVarNorm=true
uniformInit=true
needPrior=true
]
SGD=[
epochSize=20480
minibatchSize=64:256:1024:
learningRatesPerMB=1.0:0.5:0.1
numMBsToShowResult=10
momentumPerMB=0.9:0.656119
dropoutRate=0.0
maxEpochs=3
keepCheckPointFiles=true
AutoAdjust=[
reduceLearnRateIfImproveLessThan=0
loadBestModel=true
increaseLearnRateIfImproveMoreThan=1000000000
learnRateDecreaseFactor=0.5
learnRateIncreaseFactor=1.382
autoAdjustLR=AdjustAfterEpoch
]
clippingThresholdPerSample=1#INF
]
reader=[
readerType=HTKMLFReader
readMethod=blockRandomize
miniBatchMode=Partial
randomize=Auto
verbosity=0
features=[
dim=363
type=Real
scpFile=glob_0000.scp
]
labels=[
mlfFile=$DataDir$/glob_0000.mlf
labelMappingFile=$DataDir$/state.list
labelDim=132
labelType=Category
]
]
]
RunDir=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_cpu
DataDir=/home/vlivan/cntk/Tests/Speech/Data
DeviceId=Auto
<<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
precision=float
command=speechTrain
deviceId=Auto
parallelTrain=false
speechTrain=[
action=train
modelPath=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_cpu/models/cntkSpeech.dnn
deviceId=Auto
traceLevel=1
SimpleNetworkBuilder=[
layerSizes=363:512:512:132
trainingCriterion=CrossEntropyWithSoftmax
evalCriterion=ErrorPrediction
layerTypes=Sigmoid
initValueScale=1.0
applyMeanVarNorm=true
uniformInit=true
needPrior=true
]
SGD=[
epochSize=20480
minibatchSize=64:256:1024:
learningRatesPerMB=1.0:0.5:0.1
numMBsToShowResult=10
momentumPerMB=0.9:0.656119
dropoutRate=0.0
maxEpochs=3
keepCheckPointFiles=true
AutoAdjust=[
reduceLearnRateIfImproveLessThan=0
loadBestModel=true
increaseLearnRateIfImproveMoreThan=1000000000
learnRateDecreaseFactor=0.5
learnRateIncreaseFactor=1.382
autoAdjustLR=AdjustAfterEpoch
]
clippingThresholdPerSample=1#INF
]
reader=[
readerType=HTKMLFReader
readMethod=blockRandomize
miniBatchMode=Partial
randomize=Auto
verbosity=0
features=[
dim=363
type=Real
scpFile=glob_0000.scp
]
labels=[
mlfFile=/home/vlivan/cntk/Tests/Speech/Data/glob_0000.mlf
labelMappingFile=/home/vlivan/cntk/Tests/Speech/Data/state.list
labelDim=132
labelType=Category
]
]
]
RunDir=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_cpu
DataDir=/home/vlivan/cntk/Tests/Speech/Data
DeviceId=Auto
<<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: cntk.config:command=speechTrain
configparameters: cntk.config:DataDir=/home/vlivan/cntk/Tests/Speech/Data
configparameters: cntk.config:deviceId=Auto
configparameters: cntk.config:parallelTrain=false
configparameters: cntk.config:precision=float
configparameters: cntk.config:RunDir=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_cpu
configparameters: cntk.config:speechTrain=[
action=train
modelPath=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_cpu/models/cntkSpeech.dnn
deviceId=Auto
traceLevel=1
SimpleNetworkBuilder=[
layerSizes=363:512:512:132
trainingCriterion=CrossEntropyWithSoftmax
evalCriterion=ErrorPrediction
layerTypes=Sigmoid
initValueScale=1.0
applyMeanVarNorm=true
uniformInit=true
needPrior=true
]
SGD=[
epochSize=20480
minibatchSize=64:256:1024:
learningRatesPerMB=1.0:0.5:0.1
numMBsToShowResult=10
momentumPerMB=0.9:0.656119
dropoutRate=0.0
maxEpochs=3
keepCheckPointFiles=true
AutoAdjust=[
reduceLearnRateIfImproveLessThan=0
loadBestModel=true
increaseLearnRateIfImproveMoreThan=1000000000
learnRateDecreaseFactor=0.5
learnRateIncreaseFactor=1.382
autoAdjustLR=AdjustAfterEpoch
]
clippingThresholdPerSample=1#INF
]
reader=[
readerType=HTKMLFReader
readMethod=blockRandomize
miniBatchMode=Partial
randomize=Auto
verbosity=0
features=[
dim=363
type=Real
scpFile=glob_0000.scp
]
labels=[
mlfFile=/home/vlivan/cntk/Tests/Speech/Data/glob_0000.mlf
labelMappingFile=/home/vlivan/cntk/Tests/Speech/Data/state.list
labelDim=132
labelType=Category
]
]
]
<<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
command: speechTrain
precision = float
lsof: WARNING: can't stat() ext4 file system /var/lib/docker/aufs
Output information may be incomplete.
LockDevice: Capture device 0 and lock it for exclusive use
LockDevice: Capture device 0 and lock it for exclusive use
SimpleNetworkBuilder Using GPU 0
reading script file glob_0000.scp ... 948 entries
total 132 state names in state list /home/vlivan/cntk/Tests/Speech/Data/state.list
htkmlfreader: reading MLF file /home/vlivan/cntk/Tests/Speech/Data/glob_0000.mlf ...parse the line 55130
total 948 entries
...............................................................................................feature set 0: 252734 frames in 948 out of 948 utterances
label set 0: 129 classes
minibatchutterancesource: 948 utterances grouped into 3 chunks, av. chunk size: 316.0 utterances, 84244.7 frames
GetTrainCriterionNodes ...
GetEvalCriterionNodes ...
Validating node CrossEntropyWithSoftmax
Validating --> labels = InputValue
Validating --> W2 = LearnableParameter
Validating --> W1 = LearnableParameter
Validating --> W0 = LearnableParameter
Validating --> features = InputValue
Validating --> MeanOfFeatures = Mean(features[363, 3])
Validating --> InvStdOfFeatures = InvStdDev(features[363, 3])
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 3], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 3])
Validating --> B0 = LearnableParameter
Validating --> W0*features+B0 = Plus(W0*features[512, 3], B0[512, 1])
Validating --> H1 = Sigmoid(W0*features+B0[512, 3])
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 3])
Validating --> B1 = LearnableParameter
Validating --> W1*H1+B1 = Plus(W1*H1[512, 3], B1[512, 1])
Validating --> H2 = Sigmoid(W1*H1+B1[512, 3])
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 3])
Validating --> B2 = LearnableParameter
Validating --> HLast = Plus(W2*H1[132, 3], B2[132, 1])
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax(labels[132, 3], HLast[132, 3])
Found 3 PreCompute nodes
NodeName: InvStdOfFeatures
NodeName: MeanOfFeatures
NodeName: Prior
minibatchiterator: epoch 0: frames [0..252734] (first utterance at frame 0) with 1 datapasses
requiredata: determined feature kind as 33-dimensional 'USER' with frame shift 10.0 ms
Validating node InvStdOfFeatures
Validating --> features = InputValue
Validating --> InvStdOfFeatures = InvStdDev(features[363, 64])
Validating node MeanOfFeatures
Validating --> features = InputValue
Validating --> MeanOfFeatures = Mean(features[363, 64])
Validating node Prior
Validating --> labels = InputValue
Validating --> Prior = Mean(labels[132, 64])
Set Max Temp Mem Size For Convolution Nodes to 0 samples.
Starting Epoch 1: learning rate per sample = 0.015625 momentum = 0.900000
minibatchiterator: epoch 0: frames [0..20480] (first utterance at frame 0) with 1 datapasses
Validating node EvalErrorPrediction
Validating --> labels = InputValue
Validating --> W2 = LearnableParameter
Validating --> W1 = LearnableParameter
Validating --> W0 = LearnableParameter
Validating --> features = InputValue
Validating --> MeanOfFeatures = Mean(features[363, 64])
Validating --> InvStdOfFeatures = InvStdDev(features[363, 64])
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 64], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 64])
Validating --> B0 = LearnableParameter
Validating --> W0*features+B0 = Plus(W0*features[512, 64], B0[512, 1])
Validating --> H1 = Sigmoid(W0*features+B0[512, 64])
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 64])
Validating --> B1 = LearnableParameter
Validating --> W1*H1+B1 = Plus(W1*H1[512, 64], B1[512, 1])
Validating --> H2 = Sigmoid(W1*H1+B1[512, 64])
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 64])
Validating --> B2 = LearnableParameter
Validating --> HLast = Plus(W2*H1[132, 64], B2[132, 1])
Validating --> EvalErrorPrediction = ErrorPrediction(labels[132, 64], HLast[132, 64])
Epoch[1 of 3]-Minibatch[1-10 of 320]: SamplesSeen = 640; TrainLossPerSample = 4.3213539; EvalErr[0]PerSample = 0.89999998; TotalTime=0.064177; TotalTimePerSample=0.00010027656, SamplesPerSecond=9972
Epoch[1 of 3]-Minibatch[11-20 of 320]: SamplesSeen = 640; TrainLossPerSample = 4.1507101; EvalErr[0]PerSample = 0.8671875; TotalTime=0.060664; TotalTimePerSample=9.47875e-05, SamplesPerSecond=10549
Epoch[1 of 3]-Minibatch[21-30 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.9990096; EvalErr[0]PerSample = 0.87656248; TotalTime=0.062395; TotalTimePerSample=9.7492187e-05, SamplesPerSecond=10257
Epoch[1 of 3]-Minibatch[31-40 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.8694596; EvalErr[0]PerSample = 0.87656248; TotalTime=0.058102; TotalTimePerSample=9.0784375e-05, SamplesPerSecond=11015
Epoch[1 of 3]-Minibatch[41-50 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.8021927; EvalErr[0]PerSample = 0.87812501; TotalTime=0.058272; TotalTimePerSample=9.105e-05, SamplesPerSecond=10982
Epoch[1 of 3]-Minibatch[51-60 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.7289093; EvalErr[0]PerSample = 0.86874998; TotalTime=0.056752; TotalTimePerSample=8.8675e-05, SamplesPerSecond=11277
Epoch[1 of 3]-Minibatch[61-70 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.5618699; EvalErr[0]PerSample = 0.82343751; TotalTime=0.06015; TotalTimePerSample=9.3984375e-05, SamplesPerSecond=10640
Epoch[1 of 3]-Minibatch[71-80 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.4279053; EvalErr[0]PerSample = 0.80781251; TotalTime=0.061573; TotalTimePerSample=9.6207812e-05, SamplesPerSecond=10394
Epoch[1 of 3]-Minibatch[81-90 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.3392854; EvalErr[0]PerSample = 0.7734375; TotalTime=0.057831; TotalTimePerSample=9.0360938e-05, SamplesPerSecond=11066
Epoch[1 of 3]-Minibatch[91-100 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.3639894; EvalErr[0]PerSample = 0.84375; TotalTime=0.05709; TotalTimePerSample=8.9203125e-05, SamplesPerSecond=11210
WARNING: The same matrix with dim [1, 1] has been transferred between different devices for 20 times.
Epoch[1 of 3]-Minibatch[101-110 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.2122345; EvalErr[0]PerSample = 0.75312501; TotalTime=0.061065; TotalTimePerSample=9.5414062e-05, SamplesPerSecond=10480
Epoch[1 of 3]-Minibatch[111-120 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.3126526; EvalErr[0]PerSample = 0.78750002; TotalTime=0.058543; TotalTimePerSample=9.1473437e-05, SamplesPerSecond=10932
Epoch[1 of 3]-Minibatch[121-130 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.1408203; EvalErr[0]PerSample = 0.74687499; TotalTime=0.0605; TotalTimePerSample=9.453125e-05, SamplesPerSecond=10578
Epoch[1 of 3]-Minibatch[131-140 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.006897; EvalErr[0]PerSample = 0.69687498; TotalTime=0.054623; TotalTimePerSample=8.5348438e-05, SamplesPerSecond=11716
Epoch[1 of 3]-Minibatch[141-150 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.0049591; EvalErr[0]PerSample = 0.72343749; TotalTime=0.059955; TotalTimePerSample=9.3679687e-05, SamplesPerSecond=10674
Epoch[1 of 3]-Minibatch[151-160 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.9785829; EvalErr[0]PerSample = 0.73906249; TotalTime=0.060773; TotalTimePerSample=9.4957812e-05, SamplesPerSecond=10530
Epoch[1 of 3]-Minibatch[161-170 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.8568604; EvalErr[0]PerSample = 0.70781249; TotalTime=0.060235; TotalTimePerSample=9.4117187e-05, SamplesPerSecond=10625
Epoch[1 of 3]-Minibatch[171-180 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.6905334; EvalErr[0]PerSample = 0.671875; TotalTime=0.064974; TotalTimePerSample=0.00010152188, SamplesPerSecond=9850
Epoch[1 of 3]-Minibatch[181-190 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.7865357; EvalErr[0]PerSample = 0.70468748; TotalTime=0.05438; TotalTimePerSample=8.496875e-05, SamplesPerSecond=11769
Epoch[1 of 3]-Minibatch[191-200 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.5770202; EvalErr[0]PerSample = 0.6484375; TotalTime=0.063006; TotalTimePerSample=9.8446875e-05, SamplesPerSecond=10157
Epoch[1 of 3]-Minibatch[201-210 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.6157165; EvalErr[0]PerSample = 0.6640625; TotalTime=0.058268; TotalTimePerSample=9.104375e-05, SamplesPerSecond=10983
Epoch[1 of 3]-Minibatch[211-220 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.552362; EvalErr[0]PerSample = 0.65781248; TotalTime=0.059349; TotalTimePerSample=9.2732812e-05, SamplesPerSecond=10783
Epoch[1 of 3]-Minibatch[221-230 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.4821167; EvalErr[0]PerSample = 0.625; TotalTime=0.061069; TotalTimePerSample=9.5420313e-05, SamplesPerSecond=10479
Epoch[1 of 3]-Minibatch[231-240 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.3877869; EvalErr[0]PerSample = 0.62812501; TotalTime=0.055723; TotalTimePerSample=8.7067188e-05, SamplesPerSecond=11485
Epoch[1 of 3]-Minibatch[241-250 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.3690064; EvalErr[0]PerSample = 0.6484375; TotalTime=0.061959; TotalTimePerSample=9.6810937e-05, SamplesPerSecond=10329
Epoch[1 of 3]-Minibatch[251-260 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.4396729; EvalErr[0]PerSample = 0.6328125; TotalTime=0.062976; TotalTimePerSample=9.84e-05, SamplesPerSecond=10162
Epoch[1 of 3]-Minibatch[261-270 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.3028197; EvalErr[0]PerSample = 0.61250001; TotalTime=0.060925; TotalTimePerSample=9.5195312e-05, SamplesPerSecond=10504
Epoch[1 of 3]-Minibatch[271-280 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.1966858; EvalErr[0]PerSample = 0.55937499; TotalTime=0.060799; TotalTimePerSample=9.4998438e-05, SamplesPerSecond=10526
Epoch[1 of 3]-Minibatch[281-290 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.2898011; EvalErr[0]PerSample = 0.60468751; TotalTime=0.055702; TotalTimePerSample=8.7034375e-05, SamplesPerSecond=11489
Epoch[1 of 3]-Minibatch[291-300 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.1775086; EvalErr[0]PerSample = 0.62187499; TotalTime=0.061515; TotalTimePerSample=9.6117187e-05, SamplesPerSecond=10403
Epoch[1 of 3]-Minibatch[301-310 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.2626343; EvalErr[0]PerSample = 0.59687501; TotalTime=0.059247; TotalTimePerSample=9.2573438e-05, SamplesPerSecond=10802
Epoch[1 of 3]-Minibatch[311-320 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.1507263; EvalErr[0]PerSample = 0.5625; TotalTime=0.059464; TotalTimePerSample=9.29125e-05, SamplesPerSecond=10762
Finished Epoch[1]: [Training Set] TrainLossPerSample = 2.9799569; EvalErrPerSample = 0.72216797; Ave LearnRatePerSample = 0.015625; EpochTime=1.913549
Starting Epoch 2: learning rate per sample = 0.001953 momentum = 0.656119
minibatchiterator: epoch 1: frames [20480..40960] (first utterance at frame 20480) with 1 datapasses
Epoch[2 of 3]-Minibatch[1-10 of 80]: SamplesSeen = 2560; TrainLossPerSample = 2.0159853; EvalErr[0]PerSample = 0.54140627; TotalTime=0.100302; TotalTimePerSample=3.9180469e-05, SamplesPerSecond=25522
Epoch[2 of 3]-Minibatch[11-20 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.9881856; EvalErr[0]PerSample = 0.54296875; TotalTime=0.093995; TotalTimePerSample=3.6716797e-05, SamplesPerSecond=27235
Epoch[2 of 3]-Minibatch[21-30 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.9869812; EvalErr[0]PerSample = 0.54140627; TotalTime=0.09237; TotalTimePerSample=3.6082031e-05, SamplesPerSecond=27714
Epoch[2 of 3]-Minibatch[31-40 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.9312614; EvalErr[0]PerSample = 0.5277344; TotalTime=0.092894; TotalTimePerSample=3.6286719e-05, SamplesPerSecond=27558
Epoch[2 of 3]-Minibatch[41-50 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.9006774; EvalErr[0]PerSample = 0.52656251; TotalTime=0.08927; TotalTimePerSample=3.4871094e-05, SamplesPerSecond=28677
Epoch[2 of 3]-Minibatch[51-60 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.9711578; EvalErr[0]PerSample = 0.54140627; TotalTime=0.091869; TotalTimePerSample=3.5886328e-05, SamplesPerSecond=27865
Epoch[2 of 3]-Minibatch[61-70 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.8951813; EvalErr[0]PerSample = 0.52031249; TotalTime=0.092242; TotalTimePerSample=3.6032031e-05, SamplesPerSecond=27753
Epoch[2 of 3]-Minibatch[71-80 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.904506; EvalErr[0]PerSample = 0.53164065; TotalTime=0.094062; TotalTimePerSample=3.6742969e-05, SamplesPerSecond=27216
Finished Epoch[2]: [Training Set] TrainLossPerSample = 1.949242; EvalErrPerSample = 0.53417969; Ave LearnRatePerSample = 0.001953125; EpochTime=0.747962
Starting Epoch 3: learning rate per sample = 0.000098 momentum = 0.656119
minibatchiterator: epoch 2: frames [40960..61440] (first utterance at frame 40960) with 1 datapasses
Epoch[3 of 3]-Minibatch[1-10 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.8735985; EvalErr[0]PerSample = 0.51933593; TotalTime=0.27124; TotalTimePerSample=2.6488281e-05, SamplesPerSecond=37752
Epoch[3 of 3]-Minibatch[11-20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.8665626; EvalErr[0]PerSample = 0.51748049; TotalTime=0.266098; TotalTimePerSample=2.5986133e-05, SamplesPerSecond=38482
Finished Epoch[3]: [Training Set] TrainLossPerSample = 1.8700806; EvalErrPerSample = 0.51840824; Ave LearnRatePerSample = 9.765625146e-05; EpochTime=0.539342
COMPLETED
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
WARNING:
You should always run with libnvidia-ml.so that is installed with your
NVIDIA Display Driver. By default it's installed in /usr/lib and /usr/lib64.
libnvidia-ml.so in GDK package is a stub library that is attached only for
build purposes (e.g. machine that you build your application doesn't have
to have Display Driver installed).
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Linked to libnvidia-ml library at wrong path : /usr/src/gdk/nvml/lib/libnvidia-ml.so.1
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
WARNING:
You should always run with libnvidia-ml.so that is installed with your
NVIDIA Display Driver. By default it's installed in /usr/lib and /usr/lib64.
libnvidia-ml.so in GDK package is a stub library that is attached only for
build purposes (e.g. machine that you build your application doesn't have
to have Display Driver installed).
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
=== Deleting last epoch data
==== Re-running from checkpoint
running on localhost at 2015/07/29 19:11:07
command line options:
configFile=/home/vlivan/cntk/Tests/Speech/QuickE2E/cntk.config RunDir=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_cpu DataDir=/home/vlivan/cntk/Tests/Speech/Data DeviceId=Auto
>>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
precision=float
command=speechTrain
deviceId=$DeviceId$
parallelTrain=false
speechTrain=[
action=train
modelPath=$RunDir$/models/cntkSpeech.dnn
deviceId=$DeviceId$
traceLevel=1
SimpleNetworkBuilder=[
layerSizes=363:512:512:132
trainingCriterion=CrossEntropyWithSoftmax
evalCriterion=ErrorPrediction
layerTypes=Sigmoid
initValueScale=1.0
applyMeanVarNorm=true
uniformInit=true
needPrior=true
]
SGD=[
epochSize=20480
minibatchSize=64:256:1024:
learningRatesPerMB=1.0:0.5:0.1
numMBsToShowResult=10
momentumPerMB=0.9:0.656119
dropoutRate=0.0
maxEpochs=3
keepCheckPointFiles=true
AutoAdjust=[
reduceLearnRateIfImproveLessThan=0
loadBestModel=true
increaseLearnRateIfImproveMoreThan=1000000000
learnRateDecreaseFactor=0.5
learnRateIncreaseFactor=1.382
autoAdjustLR=AdjustAfterEpoch
]
clippingThresholdPerSample=1#INF
]
reader=[
readerType=HTKMLFReader
readMethod=blockRandomize
miniBatchMode=Partial
randomize=Auto
verbosity=0
features=[
dim=363
type=Real
scpFile=glob_0000.scp
]
labels=[
mlfFile=$DataDir$/glob_0000.mlf
labelMappingFile=$DataDir$/state.list
labelDim=132
labelType=Category
]
]
]
RunDir=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_cpu
DataDir=/home/vlivan/cntk/Tests/Speech/Data
DeviceId=Auto
<<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
precision=float
command=speechTrain
deviceId=Auto
parallelTrain=false
speechTrain=[
action=train
modelPath=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_cpu/models/cntkSpeech.dnn
deviceId=Auto
traceLevel=1
SimpleNetworkBuilder=[
layerSizes=363:512:512:132
trainingCriterion=CrossEntropyWithSoftmax
evalCriterion=ErrorPrediction
layerTypes=Sigmoid
initValueScale=1.0
applyMeanVarNorm=true
uniformInit=true
needPrior=true
]
SGD=[
epochSize=20480
minibatchSize=64:256:1024:
learningRatesPerMB=1.0:0.5:0.1
numMBsToShowResult=10
momentumPerMB=0.9:0.656119
dropoutRate=0.0
maxEpochs=3
keepCheckPointFiles=true
AutoAdjust=[
reduceLearnRateIfImproveLessThan=0
loadBestModel=true
increaseLearnRateIfImproveMoreThan=1000000000
learnRateDecreaseFactor=0.5
learnRateIncreaseFactor=1.382
autoAdjustLR=AdjustAfterEpoch
]
clippingThresholdPerSample=1#INF
]
reader=[
readerType=HTKMLFReader
readMethod=blockRandomize
miniBatchMode=Partial
randomize=Auto
verbosity=0
features=[
dim=363
type=Real
scpFile=glob_0000.scp
]
labels=[
mlfFile=/home/vlivan/cntk/Tests/Speech/Data/glob_0000.mlf
labelMappingFile=/home/vlivan/cntk/Tests/Speech/Data/state.list
labelDim=132
labelType=Category
]
]
]
RunDir=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_cpu
DataDir=/home/vlivan/cntk/Tests/Speech/Data
DeviceId=Auto
<<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: cntk.config:command=speechTrain
configparameters: cntk.config:DataDir=/home/vlivan/cntk/Tests/Speech/Data
configparameters: cntk.config:deviceId=Auto
configparameters: cntk.config:parallelTrain=false
configparameters: cntk.config:precision=float
configparameters: cntk.config:RunDir=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_cpu
configparameters: cntk.config:speechTrain=[
action=train
modelPath=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_cpu/models/cntkSpeech.dnn
deviceId=Auto
traceLevel=1
SimpleNetworkBuilder=[
layerSizes=363:512:512:132
trainingCriterion=CrossEntropyWithSoftmax
evalCriterion=ErrorPrediction
layerTypes=Sigmoid
initValueScale=1.0
applyMeanVarNorm=true
uniformInit=true
needPrior=true
]
SGD=[
epochSize=20480
minibatchSize=64:256:1024:
learningRatesPerMB=1.0:0.5:0.1
numMBsToShowResult=10
momentumPerMB=0.9:0.656119
dropoutRate=0.0
maxEpochs=3
keepCheckPointFiles=true
AutoAdjust=[
reduceLearnRateIfImproveLessThan=0
loadBestModel=true
increaseLearnRateIfImproveMoreThan=1000000000
learnRateDecreaseFactor=0.5
learnRateIncreaseFactor=1.382
autoAdjustLR=AdjustAfterEpoch
]
clippingThresholdPerSample=1#INF
]
reader=[
readerType=HTKMLFReader
readMethod=blockRandomize
miniBatchMode=Partial
randomize=Auto
verbosity=0
features=[
dim=363
type=Real
scpFile=glob_0000.scp
]
labels=[
mlfFile=/home/vlivan/cntk/Tests/Speech/Data/glob_0000.mlf
labelMappingFile=/home/vlivan/cntk/Tests/Speech/Data/state.list
labelDim=132
labelType=Category
]
]
]
<<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
command: speechTrain
precision = float
lsof: WARNING: can't stat() ext4 file system /var/lib/docker/aufs
Output information may be incomplete.
LockDevice: Capture device 0 and lock it for exclusive use
LockDevice: Capture device 0 and lock it for exclusive use
SimpleNetworkBuilder Using GPU 0
reading script file glob_0000.scp ... 948 entries
total 132 state names in state list /home/vlivan/cntk/Tests/Speech/Data/state.list
htkmlfreader: reading MLF file /home/vlivan/cntk/Tests/Speech/Data/glob_0000.mlf ...parse the line 55130
total 948 entries
...............................................................................................feature set 0: 252734 frames in 948 out of 948 utterances
label set 0: 129 classes
minibatchutterancesource: 948 utterances grouped into 3 chunks, av. chunk size: 316.0 utterances, 84244.7 frames
Starting from checkpoint. Load Network From File /tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_cpu/models/cntkSpeech.dnn.2.
Printing Gradient Computation Node Order ...
CrossEntropyWithSoftmax[0, 0] = CrossEntropyWithSoftmax(labels[132, 256], HLast[0, 0])
HLast[0, 0] = Plus(W2*H1[0, 0], B2[132, 1])
B2[132, 1] = LearnableParameter
W2*H1[0, 0] = Times(W2[132, 512], H2[0, 0])
H2[0, 0] = Sigmoid(W1*H1+B1[0, 0])
W1*H1+B1[0, 0] = Plus(W1*H1[0, 0], B1[512, 1])
B1[512, 1] = LearnableParameter
W1*H1[0, 0] = Times(W1[512, 512], H1[0, 0])
H1[0, 0] = Sigmoid(W0*features+B0[0, 0])
W0*features+B0[0, 0] = Plus(W0*features[0, 0], B0[512, 1])
B0[512, 1] = LearnableParameter
W0*features[0, 0] = Times(W0[512, 363], MVNormalizedFeatures[0, 0])
MVNormalizedFeatures[0, 0] = PerDimMeanVarNormalization(features[363, 256], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
InvStdOfFeatures[363, 1] = InvStdDev(features[363, 256])
MeanOfFeatures[363, 1] = Mean(features[363, 256])
features[363, 256] = InputValue
W0[512, 363] = LearnableParameter
W1[512, 512] = LearnableParameter
W2[132, 512] = LearnableParameter
labels[132, 256] = InputValue
Validating node CrossEntropyWithSoftmax
Validating --> labels = InputValue
Validating --> W2 = LearnableParameter
Validating --> W1 = LearnableParameter
Validating --> W0 = LearnableParameter
Validating --> features = InputValue
Validating --> MeanOfFeatures = Mean(features[363, 256])
Validating --> InvStdOfFeatures = InvStdDev(features[363, 256])
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 256], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 256])
Validating --> B0 = LearnableParameter
Validating --> W0*features+B0 = Plus(W0*features[512, 256], B0[512, 1])
Validating --> H1 = Sigmoid(W0*features+B0[512, 256])
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 256])
Validating --> B1 = LearnableParameter
Validating --> W1*H1+B1 = Plus(W1*H1[512, 256], B1[512, 1])
Validating --> H2 = Sigmoid(W1*H1+B1[512, 256])
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 256])
Validating --> B2 = LearnableParameter
Validating --> HLast = Plus(W2*H1[132, 256], B2[132, 1])
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax(labels[132, 256], HLast[132, 256])
Validating node ScaledLogLikelihood
Validating --> W2 = LearnableParameter
Validating --> W1 = LearnableParameter
Validating --> W0 = LearnableParameter
Validating --> features = InputValue
Validating --> MeanOfFeatures = Mean(features[363, 256])
Validating --> InvStdOfFeatures = InvStdDev(features[363, 256])
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 256], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 256])
Validating --> B0 = LearnableParameter
Validating --> W0*features+B0 = Plus(W0*features[512, 256], B0[512, 1])
Validating --> H1 = Sigmoid(W0*features+B0[512, 256])
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 256])
Validating --> B1 = LearnableParameter
Validating --> W1*H1+B1 = Plus(W1*H1[512, 256], B1[512, 1])
Validating --> H2 = Sigmoid(W1*H1+B1[512, 256])
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 256])
Validating --> B2 = LearnableParameter
Validating --> HLast = Plus(W2*H1[132, 256], B2[132, 1])
Validating --> labels = InputValue
Validating --> Prior = Mean(labels[132, 256])
Validating --> LogOfPrior = Log(Prior[132, 1])
Validating --> ScaledLogLikelihood = Minus(HLast[132, 256], LogOfPrior[132, 1])
Validating node EvalErrorPrediction
Validating --> labels = InputValue
Validating --> W2 = LearnableParameter
Validating --> W1 = LearnableParameter
Validating --> W0 = LearnableParameter
Validating --> features = InputValue
Validating --> MeanOfFeatures = Mean(features[363, 256])
Validating --> InvStdOfFeatures = InvStdDev(features[363, 256])
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 256], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 256])
Validating --> B0 = LearnableParameter
Validating --> W0*features+B0 = Plus(W0*features[512, 256], B0[512, 1])
Validating --> H1 = Sigmoid(W0*features+B0[512, 256])
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 256])
Validating --> B1 = LearnableParameter
Validating --> W1*H1+B1 = Plus(W1*H1[512, 256], B1[512, 1])
Validating --> H2 = Sigmoid(W1*H1+B1[512, 256])
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 256])
Validating --> B2 = LearnableParameter
Validating --> HLast = Plus(W2*H1[132, 256], B2[132, 1])
Validating --> EvalErrorPrediction = ErrorPrediction(labels[132, 256], HLast[132, 256])
GetTrainCriterionNodes ...
GetEvalCriterionNodes ...
Validating node CrossEntropyWithSoftmax
Validating --> labels = InputValue
Validating --> W2 = LearnableParameter
Validating --> W1 = LearnableParameter
Validating --> W0 = LearnableParameter
Validating --> features = InputValue
Validating --> MeanOfFeatures = Mean(features[363, 256])
Validating --> InvStdOfFeatures = InvStdDev(features[363, 256])
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 256], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 256])
Validating --> B0 = LearnableParameter
Validating --> W0*features+B0 = Plus(W0*features[512, 256], B0[512, 1])
Validating --> H1 = Sigmoid(W0*features+B0[512, 256])
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 256])
Validating --> B1 = LearnableParameter
Validating --> W1*H1+B1 = Plus(W1*H1[512, 256], B1[512, 1])
Validating --> H2 = Sigmoid(W1*H1+B1[512, 256])
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 256])
Validating --> B2 = LearnableParameter
Validating --> HLast = Plus(W2*H1[132, 256], B2[132, 1])
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax(labels[132, 256], HLast[132, 256])
No PreCompute nodes found, skipping PreCompute step
Set Max Temp Mem Size For Convolution Nodes to 0 samples.
Starting Epoch 3: learning rate per sample = 0.000098 momentum = 0.656119
minibatchiterator: epoch 2: frames [40960..61440] (first utterance at frame 40960) with 1 datapasses
requiredata: determined feature kind as 33-dimensional 'USER' with frame shift 10.0 ms
Validating node EvalErrorPrediction
Validating --> labels = InputValue
Validating --> W2 = LearnableParameter
Validating --> W1 = LearnableParameter
Validating --> W0 = LearnableParameter
Validating --> features = InputValue
Validating --> MeanOfFeatures = Mean(features[363, 1024])
Validating --> InvStdOfFeatures = InvStdDev(features[363, 1024])
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 1024], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 1024])
Validating --> B0 = LearnableParameter
Validating --> W0*features+B0 = Plus(W0*features[512, 1024], B0[512, 1])
Validating --> H1 = Sigmoid(W0*features+B0[512, 1024])
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 1024])
Validating --> B1 = LearnableParameter
Validating --> W1*H1+B1 = Plus(W1*H1[512, 1024], B1[512, 1])
Validating --> H2 = Sigmoid(W1*H1+B1[512, 1024])
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 1024])
Validating --> B2 = LearnableParameter
Validating --> HLast = Plus(W2*H1[132, 1024], B2[132, 1])
Validating --> EvalErrorPrediction = ErrorPrediction(labels[132, 1024], HLast[132, 1024])
Epoch[3 of 3]-Minibatch[1-10 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.8735985; EvalErr[0]PerSample = 0.51933593; TotalTime=0.390092; TotalTimePerSample=3.8094922e-05, SamplesPerSecond=26250
Epoch[3 of 3]-Minibatch[11-20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.8665626; EvalErr[0]PerSample = 0.51748049; TotalTime=0.261875; TotalTimePerSample=2.557373e-05, SamplesPerSecond=39102
Finished Epoch[3]: [Training Set] TrainLossPerSample = 1.8700806; EvalErrPerSample = 0.51840824; Ave LearnRatePerSample = 9.765625146e-05; EpochTime=0.770276
COMPLETED
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
WARNING:
You should always run with libnvidia-ml.so that is installed with your
NVIDIA Display Driver. By default it's installed in /usr/lib and /usr/lib64.
libnvidia-ml.so in GDK package is a stub library that is attached only for
build purposes (e.g. machine that you build your application doesn't have
to have Display Driver installed).
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Linked to libnvidia-ml library at wrong path : /usr/src/gdk/nvml/lib/libnvidia-ml.so.1
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
WARNING:
You should always run with libnvidia-ml.so that is installed with your
NVIDIA Display Driver. By default it's installed in /usr/lib and /usr/lib64.
libnvidia-ml.so in GDK package is a stub library that is attached only for
build purposes (e.g. machine that you build your application doesn't have
to have Display Driver installed).
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Просмотреть файл

@ -0,0 +1,758 @@
=== Running /home/vlivan/cntk/bin/x86_64.gpu.release.acml/cntk configFile=/home/vlivan/cntk/Tests/Speech/QuickE2E/cntk.config RunDir=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_gpu DataDir=/home/vlivan/cntk/Tests/Speech/Data DeviceId=Auto
running on localhost at 2015/07/29 19:11:08
command line options:
configFile=/home/vlivan/cntk/Tests/Speech/QuickE2E/cntk.config RunDir=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_gpu DataDir=/home/vlivan/cntk/Tests/Speech/Data DeviceId=Auto
>>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
precision=float
command=speechTrain
deviceId=$DeviceId$
parallelTrain=false
speechTrain=[
action=train
modelPath=$RunDir$/models/cntkSpeech.dnn
deviceId=$DeviceId$
traceLevel=1
SimpleNetworkBuilder=[
layerSizes=363:512:512:132
trainingCriterion=CrossEntropyWithSoftmax
evalCriterion=ErrorPrediction
layerTypes=Sigmoid
initValueScale=1.0
applyMeanVarNorm=true
uniformInit=true
needPrior=true
]
SGD=[
epochSize=20480
minibatchSize=64:256:1024:
learningRatesPerMB=1.0:0.5:0.1
numMBsToShowResult=10
momentumPerMB=0.9:0.656119
dropoutRate=0.0
maxEpochs=3
keepCheckPointFiles=true
AutoAdjust=[
reduceLearnRateIfImproveLessThan=0
loadBestModel=true
increaseLearnRateIfImproveMoreThan=1000000000
learnRateDecreaseFactor=0.5
learnRateIncreaseFactor=1.382
autoAdjustLR=AdjustAfterEpoch
]
clippingThresholdPerSample=1#INF
]
reader=[
readerType=HTKMLFReader
readMethod=blockRandomize
miniBatchMode=Partial
randomize=Auto
verbosity=0
features=[
dim=363
type=Real
scpFile=glob_0000.scp
]
labels=[
mlfFile=$DataDir$/glob_0000.mlf
labelMappingFile=$DataDir$/state.list
labelDim=132
labelType=Category
]
]
]
RunDir=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_gpu
DataDir=/home/vlivan/cntk/Tests/Speech/Data
DeviceId=Auto
<<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
precision=float
command=speechTrain
deviceId=Auto
parallelTrain=false
speechTrain=[
action=train
modelPath=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_gpu/models/cntkSpeech.dnn
deviceId=Auto
traceLevel=1
SimpleNetworkBuilder=[
layerSizes=363:512:512:132
trainingCriterion=CrossEntropyWithSoftmax
evalCriterion=ErrorPrediction
layerTypes=Sigmoid
initValueScale=1.0
applyMeanVarNorm=true
uniformInit=true
needPrior=true
]
SGD=[
epochSize=20480
minibatchSize=64:256:1024:
learningRatesPerMB=1.0:0.5:0.1
numMBsToShowResult=10
momentumPerMB=0.9:0.656119
dropoutRate=0.0
maxEpochs=3
keepCheckPointFiles=true
AutoAdjust=[
reduceLearnRateIfImproveLessThan=0
loadBestModel=true
increaseLearnRateIfImproveMoreThan=1000000000
learnRateDecreaseFactor=0.5
learnRateIncreaseFactor=1.382
autoAdjustLR=AdjustAfterEpoch
]
clippingThresholdPerSample=1#INF
]
reader=[
readerType=HTKMLFReader
readMethod=blockRandomize
miniBatchMode=Partial
randomize=Auto
verbosity=0
features=[
dim=363
type=Real
scpFile=glob_0000.scp
]
labels=[
mlfFile=/home/vlivan/cntk/Tests/Speech/Data/glob_0000.mlf
labelMappingFile=/home/vlivan/cntk/Tests/Speech/Data/state.list
labelDim=132
labelType=Category
]
]
]
RunDir=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_gpu
DataDir=/home/vlivan/cntk/Tests/Speech/Data
DeviceId=Auto
<<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: cntk.config:command=speechTrain
configparameters: cntk.config:DataDir=/home/vlivan/cntk/Tests/Speech/Data
configparameters: cntk.config:deviceId=Auto
configparameters: cntk.config:parallelTrain=false
configparameters: cntk.config:precision=float
configparameters: cntk.config:RunDir=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_gpu
configparameters: cntk.config:speechTrain=[
action=train
modelPath=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_gpu/models/cntkSpeech.dnn
deviceId=Auto
traceLevel=1
SimpleNetworkBuilder=[
layerSizes=363:512:512:132
trainingCriterion=CrossEntropyWithSoftmax
evalCriterion=ErrorPrediction
layerTypes=Sigmoid
initValueScale=1.0
applyMeanVarNorm=true
uniformInit=true
needPrior=true
]
SGD=[
epochSize=20480
minibatchSize=64:256:1024:
learningRatesPerMB=1.0:0.5:0.1
numMBsToShowResult=10
momentumPerMB=0.9:0.656119
dropoutRate=0.0
maxEpochs=3
keepCheckPointFiles=true
AutoAdjust=[
reduceLearnRateIfImproveLessThan=0
loadBestModel=true
increaseLearnRateIfImproveMoreThan=1000000000
learnRateDecreaseFactor=0.5
learnRateIncreaseFactor=1.382
autoAdjustLR=AdjustAfterEpoch
]
clippingThresholdPerSample=1#INF
]
reader=[
readerType=HTKMLFReader
readMethod=blockRandomize
miniBatchMode=Partial
randomize=Auto
verbosity=0
features=[
dim=363
type=Real
scpFile=glob_0000.scp
]
labels=[
mlfFile=/home/vlivan/cntk/Tests/Speech/Data/glob_0000.mlf
labelMappingFile=/home/vlivan/cntk/Tests/Speech/Data/state.list
labelDim=132
labelType=Category
]
]
]
<<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
command: speechTrain
precision = float
lsof: WARNING: can't stat() ext4 file system /var/lib/docker/aufs
Output information may be incomplete.
LockDevice: Capture device 0 and lock it for exclusive use
LockDevice: Capture device 0 and lock it for exclusive use
SimpleNetworkBuilder Using GPU 0
reading script file glob_0000.scp ... 948 entries
total 132 state names in state list /home/vlivan/cntk/Tests/Speech/Data/state.list
htkmlfreader: reading MLF file /home/vlivan/cntk/Tests/Speech/Data/glob_0000.mlf ...parse the line 55130
total 948 entries
...............................................................................................feature set 0: 252734 frames in 948 out of 948 utterances
label set 0: 129 classes
minibatchutterancesource: 948 utterances grouped into 3 chunks, av. chunk size: 316.0 utterances, 84244.7 frames
GetTrainCriterionNodes ...
GetEvalCriterionNodes ...
Validating node CrossEntropyWithSoftmax
Validating --> labels = InputValue
Validating --> W2 = LearnableParameter
Validating --> W1 = LearnableParameter
Validating --> W0 = LearnableParameter
Validating --> features = InputValue
Validating --> MeanOfFeatures = Mean(features[363, 3])
Validating --> InvStdOfFeatures = InvStdDev(features[363, 3])
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 3], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 3])
Validating --> B0 = LearnableParameter
Validating --> W0*features+B0 = Plus(W0*features[512, 3], B0[512, 1])
Validating --> H1 = Sigmoid(W0*features+B0[512, 3])
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 3])
Validating --> B1 = LearnableParameter
Validating --> W1*H1+B1 = Plus(W1*H1[512, 3], B1[512, 1])
Validating --> H2 = Sigmoid(W1*H1+B1[512, 3])
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 3])
Validating --> B2 = LearnableParameter
Validating --> HLast = Plus(W2*H1[132, 3], B2[132, 1])
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax(labels[132, 3], HLast[132, 3])
Found 3 PreCompute nodes
NodeName: InvStdOfFeatures
NodeName: MeanOfFeatures
NodeName: Prior
minibatchiterator: epoch 0: frames [0..252734] (first utterance at frame 0) with 1 datapasses
requiredata: determined feature kind as 33-dimensional 'USER' with frame shift 10.0 ms
Validating node InvStdOfFeatures
Validating --> features = InputValue
Validating --> InvStdOfFeatures = InvStdDev(features[363, 64])
Validating node MeanOfFeatures
Validating --> features = InputValue
Validating --> MeanOfFeatures = Mean(features[363, 64])
Validating node Prior
Validating --> labels = InputValue
Validating --> Prior = Mean(labels[132, 64])
Set Max Temp Mem Size For Convolution Nodes to 0 samples.
Starting Epoch 1: learning rate per sample = 0.015625 momentum = 0.900000
minibatchiterator: epoch 0: frames [0..20480] (first utterance at frame 0) with 1 datapasses
Validating node EvalErrorPrediction
Validating --> labels = InputValue
Validating --> W2 = LearnableParameter
Validating --> W1 = LearnableParameter
Validating --> W0 = LearnableParameter
Validating --> features = InputValue
Validating --> MeanOfFeatures = Mean(features[363, 64])
Validating --> InvStdOfFeatures = InvStdDev(features[363, 64])
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 64], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 64])
Validating --> B0 = LearnableParameter
Validating --> W0*features+B0 = Plus(W0*features[512, 64], B0[512, 1])
Validating --> H1 = Sigmoid(W0*features+B0[512, 64])
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 64])
Validating --> B1 = LearnableParameter
Validating --> W1*H1+B1 = Plus(W1*H1[512, 64], B1[512, 1])
Validating --> H2 = Sigmoid(W1*H1+B1[512, 64])
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 64])
Validating --> B2 = LearnableParameter
Validating --> HLast = Plus(W2*H1[132, 64], B2[132, 1])
Validating --> EvalErrorPrediction = ErrorPrediction(labels[132, 64], HLast[132, 64])
Epoch[1 of 3]-Minibatch[1-10 of 320]: SamplesSeen = 640; TrainLossPerSample = 4.3213539; EvalErr[0]PerSample = 0.89999998; TotalTime=0.064294; TotalTimePerSample=0.00010045938, SamplesPerSecond=9954
Epoch[1 of 3]-Minibatch[11-20 of 320]: SamplesSeen = 640; TrainLossPerSample = 4.1507101; EvalErr[0]PerSample = 0.8671875; TotalTime=0.055813; TotalTimePerSample=8.7207812e-05, SamplesPerSecond=11466
Epoch[1 of 3]-Minibatch[21-30 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.9990096; EvalErr[0]PerSample = 0.87656248; TotalTime=0.062703; TotalTimePerSample=9.7973437e-05, SamplesPerSecond=10206
Epoch[1 of 3]-Minibatch[31-40 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.8694596; EvalErr[0]PerSample = 0.87656248; TotalTime=0.059923; TotalTimePerSample=9.3629687e-05, SamplesPerSecond=10680
Epoch[1 of 3]-Minibatch[41-50 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.8021927; EvalErr[0]PerSample = 0.87812501; TotalTime=0.061061; TotalTimePerSample=9.5407812e-05, SamplesPerSecond=10481
Epoch[1 of 3]-Minibatch[51-60 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.7289093; EvalErr[0]PerSample = 0.86874998; TotalTime=0.062101; TotalTimePerSample=9.7032813e-05, SamplesPerSecond=10305
Epoch[1 of 3]-Minibatch[61-70 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.5618699; EvalErr[0]PerSample = 0.82343751; TotalTime=0.056094; TotalTimePerSample=8.7646875e-05, SamplesPerSecond=11409
Epoch[1 of 3]-Minibatch[71-80 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.4279053; EvalErr[0]PerSample = 0.80781251; TotalTime=0.063459; TotalTimePerSample=9.9154687e-05, SamplesPerSecond=10085
Epoch[1 of 3]-Minibatch[81-90 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.3392854; EvalErr[0]PerSample = 0.7734375; TotalTime=0.062265; TotalTimePerSample=9.7289063e-05, SamplesPerSecond=10278
Epoch[1 of 3]-Minibatch[91-100 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.3639894; EvalErr[0]PerSample = 0.84375; TotalTime=0.059843; TotalTimePerSample=9.3504687e-05, SamplesPerSecond=10694
WARNING: The same matrix with dim [1, 1] has been transferred between different devices for 20 times.
Epoch[1 of 3]-Minibatch[101-110 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.2122345; EvalErr[0]PerSample = 0.75312501; TotalTime=0.062375; TotalTimePerSample=9.7460937e-05, SamplesPerSecond=10260
Epoch[1 of 3]-Minibatch[111-120 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.3126526; EvalErr[0]PerSample = 0.78750002; TotalTime=0.061085; TotalTimePerSample=9.5445313e-05, SamplesPerSecond=10477
Epoch[1 of 3]-Minibatch[121-130 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.1408203; EvalErr[0]PerSample = 0.74687499; TotalTime=0.064562; TotalTimePerSample=0.00010087812, SamplesPerSecond=9912
Epoch[1 of 3]-Minibatch[131-140 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.006897; EvalErr[0]PerSample = 0.69687498; TotalTime=0.0575; TotalTimePerSample=8.984375e-05, SamplesPerSecond=11130
Epoch[1 of 3]-Minibatch[141-150 of 320]: SamplesSeen = 640; TrainLossPerSample = 3.0049591; EvalErr[0]PerSample = 0.72343749; TotalTime=0.058338; TotalTimePerSample=9.1153125e-05, SamplesPerSecond=10970
Epoch[1 of 3]-Minibatch[151-160 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.9785829; EvalErr[0]PerSample = 0.73906249; TotalTime=0.064603; TotalTimePerSample=0.00010094219, SamplesPerSecond=9906
Epoch[1 of 3]-Minibatch[161-170 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.8568604; EvalErr[0]PerSample = 0.70781249; TotalTime=0.060368; TotalTimePerSample=9.4325e-05, SamplesPerSecond=10601
Epoch[1 of 3]-Minibatch[171-180 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.6905334; EvalErr[0]PerSample = 0.671875; TotalTime=0.059125; TotalTimePerSample=9.2382812e-05, SamplesPerSecond=10824
Epoch[1 of 3]-Minibatch[181-190 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.7865357; EvalErr[0]PerSample = 0.70468748; TotalTime=0.056113; TotalTimePerSample=8.7676563e-05, SamplesPerSecond=11405
Epoch[1 of 3]-Minibatch[191-200 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.5770202; EvalErr[0]PerSample = 0.6484375; TotalTime=0.060745; TotalTimePerSample=9.4914062e-05, SamplesPerSecond=10535
Epoch[1 of 3]-Minibatch[201-210 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.6157165; EvalErr[0]PerSample = 0.6640625; TotalTime=0.059709; TotalTimePerSample=9.3295312e-05, SamplesPerSecond=10718
Epoch[1 of 3]-Minibatch[211-220 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.552362; EvalErr[0]PerSample = 0.65781248; TotalTime=0.061917; TotalTimePerSample=9.6745313e-05, SamplesPerSecond=10336
Epoch[1 of 3]-Minibatch[221-230 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.4821167; EvalErr[0]PerSample = 0.625; TotalTime=0.053813; TotalTimePerSample=8.4082813e-05, SamplesPerSecond=11893
Epoch[1 of 3]-Minibatch[231-240 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.3877869; EvalErr[0]PerSample = 0.62812501; TotalTime=0.061932; TotalTimePerSample=9.676875e-05, SamplesPerSecond=10333
Epoch[1 of 3]-Minibatch[241-250 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.3690064; EvalErr[0]PerSample = 0.6484375; TotalTime=0.059294; TotalTimePerSample=9.2646875e-05, SamplesPerSecond=10793
Epoch[1 of 3]-Minibatch[251-260 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.4396729; EvalErr[0]PerSample = 0.6328125; TotalTime=0.060513; TotalTimePerSample=9.4551562e-05, SamplesPerSecond=10576
Epoch[1 of 3]-Minibatch[261-270 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.3028197; EvalErr[0]PerSample = 0.61250001; TotalTime=0.06037; TotalTimePerSample=9.4328125e-05, SamplesPerSecond=10601
Epoch[1 of 3]-Minibatch[271-280 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.1966858; EvalErr[0]PerSample = 0.55937499; TotalTime=0.056485; TotalTimePerSample=8.8257812e-05, SamplesPerSecond=11330
Epoch[1 of 3]-Minibatch[281-290 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.2898011; EvalErr[0]PerSample = 0.60468751; TotalTime=0.059356; TotalTimePerSample=9.274375e-05, SamplesPerSecond=10782
Epoch[1 of 3]-Minibatch[291-300 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.1775086; EvalErr[0]PerSample = 0.62187499; TotalTime=0.059501; TotalTimePerSample=9.2970312e-05, SamplesPerSecond=10756
Epoch[1 of 3]-Minibatch[301-310 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.2626343; EvalErr[0]PerSample = 0.59687501; TotalTime=0.064342; TotalTimePerSample=0.00010053437, SamplesPerSecond=9946
Epoch[1 of 3]-Minibatch[311-320 of 320]: SamplesSeen = 640; TrainLossPerSample = 2.1507263; EvalErr[0]PerSample = 0.5625; TotalTime=0.064522; TotalTimePerSample=0.00010081563, SamplesPerSecond=9919
Finished Epoch[1]: [Training Set] TrainLossPerSample = 2.9799569; EvalErrPerSample = 0.72216797; Ave LearnRatePerSample = 0.015625; EpochTime=1.935613
Starting Epoch 2: learning rate per sample = 0.001953 momentum = 0.656119
minibatchiterator: epoch 1: frames [20480..40960] (first utterance at frame 20480) with 1 datapasses
Epoch[2 of 3]-Minibatch[1-10 of 80]: SamplesSeen = 2560; TrainLossPerSample = 2.0159853; EvalErr[0]PerSample = 0.54140627; TotalTime=0.102487; TotalTimePerSample=4.0033984e-05, SamplesPerSecond=24978
Epoch[2 of 3]-Minibatch[11-20 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.9881856; EvalErr[0]PerSample = 0.54296875; TotalTime=0.09473; TotalTimePerSample=3.7003906e-05, SamplesPerSecond=27024
Epoch[2 of 3]-Minibatch[21-30 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.9869812; EvalErr[0]PerSample = 0.54140627; TotalTime=0.091318; TotalTimePerSample=3.5671094e-05, SamplesPerSecond=28033
Epoch[2 of 3]-Minibatch[31-40 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.9312614; EvalErr[0]PerSample = 0.5277344; TotalTime=0.092408; TotalTimePerSample=3.6096875e-05, SamplesPerSecond=27703
Epoch[2 of 3]-Minibatch[41-50 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.9006774; EvalErr[0]PerSample = 0.52656251; TotalTime=0.098698; TotalTimePerSample=3.8553906e-05, SamplesPerSecond=25937
Epoch[2 of 3]-Minibatch[51-60 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.9711578; EvalErr[0]PerSample = 0.54140627; TotalTime=0.0896; TotalTimePerSample=3.5e-05, SamplesPerSecond=28571
Epoch[2 of 3]-Minibatch[61-70 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.8951813; EvalErr[0]PerSample = 0.52031249; TotalTime=0.092477; TotalTimePerSample=3.6123828e-05, SamplesPerSecond=27682
Epoch[2 of 3]-Minibatch[71-80 of 80]: SamplesSeen = 2560; TrainLossPerSample = 1.904506; EvalErr[0]PerSample = 0.53164065; TotalTime=0.091179; TotalTimePerSample=3.5616797e-05, SamplesPerSecond=28076
Finished Epoch[2]: [Training Set] TrainLossPerSample = 1.949242; EvalErrPerSample = 0.53417969; Ave LearnRatePerSample = 0.001953125; EpochTime=0.753703
Starting Epoch 3: learning rate per sample = 0.000098 momentum = 0.656119
minibatchiterator: epoch 2: frames [40960..61440] (first utterance at frame 40960) with 1 datapasses
Epoch[3 of 3]-Minibatch[1-10 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.8735985; EvalErr[0]PerSample = 0.51933593; TotalTime=0.27395; TotalTimePerSample=2.675293e-05, SamplesPerSecond=37379
Epoch[3 of 3]-Minibatch[11-20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.8665626; EvalErr[0]PerSample = 0.51748049; TotalTime=0.261453; TotalTimePerSample=2.553252e-05, SamplesPerSecond=39165
Finished Epoch[3]: [Training Set] TrainLossPerSample = 1.8700806; EvalErrPerSample = 0.51840824; Ave LearnRatePerSample = 9.765625146e-05; EpochTime=0.537273
COMPLETED
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
WARNING:
You should always run with libnvidia-ml.so that is installed with your
NVIDIA Display Driver. By default it's installed in /usr/lib and /usr/lib64.
libnvidia-ml.so in GDK package is a stub library that is attached only for
build purposes (e.g. machine that you build your application doesn't have
to have Display Driver installed).
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Linked to libnvidia-ml library at wrong path : /usr/src/gdk/nvml/lib/libnvidia-ml.so.1
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
WARNING:
You should always run with libnvidia-ml.so that is installed with your
NVIDIA Display Driver. By default it's installed in /usr/lib and /usr/lib64.
libnvidia-ml.so in GDK package is a stub library that is attached only for
build purposes (e.g. machine that you build your application doesn't have
to have Display Driver installed).
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
=== Deleting last epoch data
==== Re-running from checkpoint
running on localhost at 2015/07/29 19:11:14
command line options:
configFile=/home/vlivan/cntk/Tests/Speech/QuickE2E/cntk.config RunDir=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_gpu DataDir=/home/vlivan/cntk/Tests/Speech/Data DeviceId=Auto
>>>>>>>>>>>>>>>>>>>> RAW CONFIG (VARIABLES NOT RESOLVED) >>>>>>>>>>>>>>>>>>>>
precision=float
command=speechTrain
deviceId=$DeviceId$
parallelTrain=false
speechTrain=[
action=train
modelPath=$RunDir$/models/cntkSpeech.dnn
deviceId=$DeviceId$
traceLevel=1
SimpleNetworkBuilder=[
layerSizes=363:512:512:132
trainingCriterion=CrossEntropyWithSoftmax
evalCriterion=ErrorPrediction
layerTypes=Sigmoid
initValueScale=1.0
applyMeanVarNorm=true
uniformInit=true
needPrior=true
]
SGD=[
epochSize=20480
minibatchSize=64:256:1024:
learningRatesPerMB=1.0:0.5:0.1
numMBsToShowResult=10
momentumPerMB=0.9:0.656119
dropoutRate=0.0
maxEpochs=3
keepCheckPointFiles=true
AutoAdjust=[
reduceLearnRateIfImproveLessThan=0
loadBestModel=true
increaseLearnRateIfImproveMoreThan=1000000000
learnRateDecreaseFactor=0.5
learnRateIncreaseFactor=1.382
autoAdjustLR=AdjustAfterEpoch
]
clippingThresholdPerSample=1#INF
]
reader=[
readerType=HTKMLFReader
readMethod=blockRandomize
miniBatchMode=Partial
randomize=Auto
verbosity=0
features=[
dim=363
type=Real
scpFile=glob_0000.scp
]
labels=[
mlfFile=$DataDir$/glob_0000.mlf
labelMappingFile=$DataDir$/state.list
labelDim=132
labelType=Category
]
]
]
RunDir=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_gpu
DataDir=/home/vlivan/cntk/Tests/Speech/Data
DeviceId=Auto
<<<<<<<<<<<<<<<<<<<< RAW CONFIG (VARIABLES NOT RESOLVED) <<<<<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>> RAW CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
precision=float
command=speechTrain
deviceId=Auto
parallelTrain=false
speechTrain=[
action=train
modelPath=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_gpu/models/cntkSpeech.dnn
deviceId=Auto
traceLevel=1
SimpleNetworkBuilder=[
layerSizes=363:512:512:132
trainingCriterion=CrossEntropyWithSoftmax
evalCriterion=ErrorPrediction
layerTypes=Sigmoid
initValueScale=1.0
applyMeanVarNorm=true
uniformInit=true
needPrior=true
]
SGD=[
epochSize=20480
minibatchSize=64:256:1024:
learningRatesPerMB=1.0:0.5:0.1
numMBsToShowResult=10
momentumPerMB=0.9:0.656119
dropoutRate=0.0
maxEpochs=3
keepCheckPointFiles=true
AutoAdjust=[
reduceLearnRateIfImproveLessThan=0
loadBestModel=true
increaseLearnRateIfImproveMoreThan=1000000000
learnRateDecreaseFactor=0.5
learnRateIncreaseFactor=1.382
autoAdjustLR=AdjustAfterEpoch
]
clippingThresholdPerSample=1#INF
]
reader=[
readerType=HTKMLFReader
readMethod=blockRandomize
miniBatchMode=Partial
randomize=Auto
verbosity=0
features=[
dim=363
type=Real
scpFile=glob_0000.scp
]
labels=[
mlfFile=/home/vlivan/cntk/Tests/Speech/Data/glob_0000.mlf
labelMappingFile=/home/vlivan/cntk/Tests/Speech/Data/state.list
labelDim=132
labelType=Category
]
]
]
RunDir=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_gpu
DataDir=/home/vlivan/cntk/Tests/Speech/Data
DeviceId=Auto
<<<<<<<<<<<<<<<<<<<< RAW CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
>>>>>>>>>>>>>>>>>>>> PROCESSED CONFIG WITH ALL VARIABLES RESOLVED >>>>>>>>>>>>>>>>>>>>
configparameters: cntk.config:command=speechTrain
configparameters: cntk.config:DataDir=/home/vlivan/cntk/Tests/Speech/Data
configparameters: cntk.config:deviceId=Auto
configparameters: cntk.config:parallelTrain=false
configparameters: cntk.config:precision=float
configparameters: cntk.config:RunDir=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_gpu
configparameters: cntk.config:speechTrain=[
action=train
modelPath=/tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_gpu/models/cntkSpeech.dnn
deviceId=Auto
traceLevel=1
SimpleNetworkBuilder=[
layerSizes=363:512:512:132
trainingCriterion=CrossEntropyWithSoftmax
evalCriterion=ErrorPrediction
layerTypes=Sigmoid
initValueScale=1.0
applyMeanVarNorm=true
uniformInit=true
needPrior=true
]
SGD=[
epochSize=20480
minibatchSize=64:256:1024:
learningRatesPerMB=1.0:0.5:0.1
numMBsToShowResult=10
momentumPerMB=0.9:0.656119
dropoutRate=0.0
maxEpochs=3
keepCheckPointFiles=true
AutoAdjust=[
reduceLearnRateIfImproveLessThan=0
loadBestModel=true
increaseLearnRateIfImproveMoreThan=1000000000
learnRateDecreaseFactor=0.5
learnRateIncreaseFactor=1.382
autoAdjustLR=AdjustAfterEpoch
]
clippingThresholdPerSample=1#INF
]
reader=[
readerType=HTKMLFReader
readMethod=blockRandomize
miniBatchMode=Partial
randomize=Auto
verbosity=0
features=[
dim=363
type=Real
scpFile=glob_0000.scp
]
labels=[
mlfFile=/home/vlivan/cntk/Tests/Speech/Data/glob_0000.mlf
labelMappingFile=/home/vlivan/cntk/Tests/Speech/Data/state.list
labelDim=132
labelType=Category
]
]
]
<<<<<<<<<<<<<<<<<<<< PROCESSED CONFIG WITH ALL VARIABLES RESOLVED <<<<<<<<<<<<<<<<<<<<
command: speechTrain
precision = float
lsof: WARNING: can't stat() ext4 file system /var/lib/docker/aufs
Output information may be incomplete.
LockDevice: Capture device 0 and lock it for exclusive use
LockDevice: Capture device 0 and lock it for exclusive use
SimpleNetworkBuilder Using GPU 0
reading script file glob_0000.scp ... 948 entries
total 132 state names in state list /home/vlivan/cntk/Tests/Speech/Data/state.list
htkmlfreader: reading MLF file /home/vlivan/cntk/Tests/Speech/Data/glob_0000.mlf ...parse the line 55130
total 948 entries
...............................................................................................feature set 0: 252734 frames in 948 out of 948 utterances
label set 0: 129 classes
minibatchutterancesource: 948 utterances grouped into 3 chunks, av. chunk size: 316.0 utterances, 84244.7 frames
Starting from checkpoint. Load Network From File /tmp/cntk-test-20150729191101.973007/Speech_QuickE2E@release_gpu/models/cntkSpeech.dnn.2.
Printing Gradient Computation Node Order ...
CrossEntropyWithSoftmax[0, 0] = CrossEntropyWithSoftmax(labels[132, 256], HLast[0, 0])
HLast[0, 0] = Plus(W2*H1[0, 0], B2[132, 1])
B2[132, 1] = LearnableParameter
W2*H1[0, 0] = Times(W2[132, 512], H2[0, 0])
H2[0, 0] = Sigmoid(W1*H1+B1[0, 0])
W1*H1+B1[0, 0] = Plus(W1*H1[0, 0], B1[512, 1])
B1[512, 1] = LearnableParameter
W1*H1[0, 0] = Times(W1[512, 512], H1[0, 0])
H1[0, 0] = Sigmoid(W0*features+B0[0, 0])
W0*features+B0[0, 0] = Plus(W0*features[0, 0], B0[512, 1])
B0[512, 1] = LearnableParameter
W0*features[0, 0] = Times(W0[512, 363], MVNormalizedFeatures[0, 0])
MVNormalizedFeatures[0, 0] = PerDimMeanVarNormalization(features[363, 256], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
InvStdOfFeatures[363, 1] = InvStdDev(features[363, 256])
MeanOfFeatures[363, 1] = Mean(features[363, 256])
features[363, 256] = InputValue
W0[512, 363] = LearnableParameter
W1[512, 512] = LearnableParameter
W2[132, 512] = LearnableParameter
labels[132, 256] = InputValue
Validating node CrossEntropyWithSoftmax
Validating --> labels = InputValue
Validating --> W2 = LearnableParameter
Validating --> W1 = LearnableParameter
Validating --> W0 = LearnableParameter
Validating --> features = InputValue
Validating --> MeanOfFeatures = Mean(features[363, 256])
Validating --> InvStdOfFeatures = InvStdDev(features[363, 256])
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 256], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 256])
Validating --> B0 = LearnableParameter
Validating --> W0*features+B0 = Plus(W0*features[512, 256], B0[512, 1])
Validating --> H1 = Sigmoid(W0*features+B0[512, 256])
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 256])
Validating --> B1 = LearnableParameter
Validating --> W1*H1+B1 = Plus(W1*H1[512, 256], B1[512, 1])
Validating --> H2 = Sigmoid(W1*H1+B1[512, 256])
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 256])
Validating --> B2 = LearnableParameter
Validating --> HLast = Plus(W2*H1[132, 256], B2[132, 1])
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax(labels[132, 256], HLast[132, 256])
Validating node ScaledLogLikelihood
Validating --> W2 = LearnableParameter
Validating --> W1 = LearnableParameter
Validating --> W0 = LearnableParameter
Validating --> features = InputValue
Validating --> MeanOfFeatures = Mean(features[363, 256])
Validating --> InvStdOfFeatures = InvStdDev(features[363, 256])
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 256], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 256])
Validating --> B0 = LearnableParameter
Validating --> W0*features+B0 = Plus(W0*features[512, 256], B0[512, 1])
Validating --> H1 = Sigmoid(W0*features+B0[512, 256])
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 256])
Validating --> B1 = LearnableParameter
Validating --> W1*H1+B1 = Plus(W1*H1[512, 256], B1[512, 1])
Validating --> H2 = Sigmoid(W1*H1+B1[512, 256])
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 256])
Validating --> B2 = LearnableParameter
Validating --> HLast = Plus(W2*H1[132, 256], B2[132, 1])
Validating --> labels = InputValue
Validating --> Prior = Mean(labels[132, 256])
Validating --> LogOfPrior = Log(Prior[132, 1])
Validating --> ScaledLogLikelihood = Minus(HLast[132, 256], LogOfPrior[132, 1])
Validating node EvalErrorPrediction
Validating --> labels = InputValue
Validating --> W2 = LearnableParameter
Validating --> W1 = LearnableParameter
Validating --> W0 = LearnableParameter
Validating --> features = InputValue
Validating --> MeanOfFeatures = Mean(features[363, 256])
Validating --> InvStdOfFeatures = InvStdDev(features[363, 256])
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 256], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 256])
Validating --> B0 = LearnableParameter
Validating --> W0*features+B0 = Plus(W0*features[512, 256], B0[512, 1])
Validating --> H1 = Sigmoid(W0*features+B0[512, 256])
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 256])
Validating --> B1 = LearnableParameter
Validating --> W1*H1+B1 = Plus(W1*H1[512, 256], B1[512, 1])
Validating --> H2 = Sigmoid(W1*H1+B1[512, 256])
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 256])
Validating --> B2 = LearnableParameter
Validating --> HLast = Plus(W2*H1[132, 256], B2[132, 1])
Validating --> EvalErrorPrediction = ErrorPrediction(labels[132, 256], HLast[132, 256])
GetTrainCriterionNodes ...
GetEvalCriterionNodes ...
Validating node CrossEntropyWithSoftmax
Validating --> labels = InputValue
Validating --> W2 = LearnableParameter
Validating --> W1 = LearnableParameter
Validating --> W0 = LearnableParameter
Validating --> features = InputValue
Validating --> MeanOfFeatures = Mean(features[363, 256])
Validating --> InvStdOfFeatures = InvStdDev(features[363, 256])
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 256], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 256])
Validating --> B0 = LearnableParameter
Validating --> W0*features+B0 = Plus(W0*features[512, 256], B0[512, 1])
Validating --> H1 = Sigmoid(W0*features+B0[512, 256])
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 256])
Validating --> B1 = LearnableParameter
Validating --> W1*H1+B1 = Plus(W1*H1[512, 256], B1[512, 1])
Validating --> H2 = Sigmoid(W1*H1+B1[512, 256])
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 256])
Validating --> B2 = LearnableParameter
Validating --> HLast = Plus(W2*H1[132, 256], B2[132, 1])
Validating --> CrossEntropyWithSoftmax = CrossEntropyWithSoftmax(labels[132, 256], HLast[132, 256])
No PreCompute nodes found, skipping PreCompute step
Set Max Temp Mem Size For Convolution Nodes to 0 samples.
Starting Epoch 3: learning rate per sample = 0.000098 momentum = 0.656119
minibatchiterator: epoch 2: frames [40960..61440] (first utterance at frame 40960) with 1 datapasses
requiredata: determined feature kind as 33-dimensional 'USER' with frame shift 10.0 ms
Validating node EvalErrorPrediction
Validating --> labels = InputValue
Validating --> W2 = LearnableParameter
Validating --> W1 = LearnableParameter
Validating --> W0 = LearnableParameter
Validating --> features = InputValue
Validating --> MeanOfFeatures = Mean(features[363, 1024])
Validating --> InvStdOfFeatures = InvStdDev(features[363, 1024])
Validating --> MVNormalizedFeatures = PerDimMeanVarNormalization(features[363, 1024], MeanOfFeatures[363, 1], InvStdOfFeatures[363, 1])
Validating --> W0*features = Times(W0[512, 363], MVNormalizedFeatures[363, 1024])
Validating --> B0 = LearnableParameter
Validating --> W0*features+B0 = Plus(W0*features[512, 1024], B0[512, 1])
Validating --> H1 = Sigmoid(W0*features+B0[512, 1024])
Validating --> W1*H1 = Times(W1[512, 512], H1[512, 1024])
Validating --> B1 = LearnableParameter
Validating --> W1*H1+B1 = Plus(W1*H1[512, 1024], B1[512, 1])
Validating --> H2 = Sigmoid(W1*H1+B1[512, 1024])
Validating --> W2*H1 = Times(W2[132, 512], H2[512, 1024])
Validating --> B2 = LearnableParameter
Validating --> HLast = Plus(W2*H1[132, 1024], B2[132, 1])
Validating --> EvalErrorPrediction = ErrorPrediction(labels[132, 1024], HLast[132, 1024])
Epoch[3 of 3]-Minibatch[1-10 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.8735985; EvalErr[0]PerSample = 0.51933593; TotalTime=0.430752; TotalTimePerSample=4.2065625e-05, SamplesPerSecond=23772
Epoch[3 of 3]-Minibatch[11-20 of 20]: SamplesSeen = 10240; TrainLossPerSample = 1.8665626; EvalErr[0]PerSample = 0.51748049; TotalTime=0.2702; TotalTimePerSample=2.6386719e-05, SamplesPerSecond=37897
Finished Epoch[3]: [Training Set] TrainLossPerSample = 1.8700806; EvalErrPerSample = 0.51840824; Ave LearnRatePerSample = 9.765625146e-05; EpochTime=0.868162
COMPLETED
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
WARNING:
You should always run with libnvidia-ml.so that is installed with your
NVIDIA Display Driver. By default it's installed in /usr/lib and /usr/lib64.
libnvidia-ml.so in GDK package is a stub library that is attached only for
build purposes (e.g. machine that you build your application doesn't have
to have Display Driver installed).
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Linked to libnvidia-ml library at wrong path : /usr/src/gdk/nvml/lib/libnvidia-ml.so.1
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
WARNING:
You should always run with libnvidia-ml.so that is installed with your
NVIDIA Display Driver. By default it's installed in /usr/lib and /usr/lib64.
libnvidia-ml.so in GDK package is a stub library that is attached only for
build purposes (e.g. machine that you build your application doesn't have
to have Display Driver installed).
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Просмотреть файл

@ -0,0 +1,63 @@
precision=float
command=speechTrain
deviceId=$DeviceId$
parallelTrain=false
speechTrain=[
action=train
modelPath=$RunDir$/models/cntkSpeech.dnn
deviceId=$DeviceId$
traceLevel=1
SimpleNetworkBuilder=[
layerSizes=363:512:512:132
trainingCriterion=CrossEntropyWithSoftmax
evalCriterion=ErrorPrediction
layerTypes=Sigmoid
initValueScale=1.0
applyMeanVarNorm=true
uniformInit=true
needPrior=true
]
SGD=[
epochSize=20480
minibatchSize=64:256:1024:
learningRatesPerMB=1.0:0.5:0.1
numMBsToShowResult=10
momentumPerMB=0.9:0.656119
dropoutRate=0.0
maxEpochs=3
keepCheckPointFiles=true
AutoAdjust=[
reduceLearnRateIfImproveLessThan=0
loadBestModel=true
increaseLearnRateIfImproveMoreThan=1000000000
learnRateDecreaseFactor=0.5
learnRateIncreaseFactor=1.382
autoAdjustLR=AdjustAfterEpoch
]
clippingThresholdPerSample=1#INF
]
reader=[
readerType=HTKMLFReader
readMethod=blockRandomize
miniBatchMode=Partial
randomize=Auto
verbosity=0
features=[
dim=363
type=Real
scpFile=glob_0000.scp
]
labels=[
mlfFile=$DataDir$/glob_0000.mlf
labelMappingFile=$DataDir$/state.list
labelDim=132
labelType=Category
]
]
]

17
Tests/Speech/QuickE2E/run-test Executable file
Просмотреть файл

@ -0,0 +1,17 @@
#!/bin/bash
CNTK_BINARY=$TEST_BUILD_LOCATION/x86_64.gpu.$TEST_FLAVOR.acml/cntk
if [ "$TEST_DEVICE" == "CPU" ]; then
CNTK_DEVICE_ID=-1
else
CNTK_DEVICE_ID=Auto
fi
CNTK_ARGS="configFile=$TEST_DIR/cntk.config RunDir=$TEST_RUN_DIR DataDir=$TEST_DATA_DIR DeviceId=$CNTK_DEVICE_ID"
MODELS_DIR=$TEST_RUN_DIR/models
[ -d $MODELS_DIR ] && rm -rf $MODELS_DIR
mkdir -p $MODELS_DIR || exit $?
echo === Running $CNTK_BINARY $CNTK_ARGS
$CNTK_BINARY $CNTK_ARGS || exit $?
echo === Deleting last epoch data
rm $TEST_RUN_DIR/models/*.dnn
echo ==== Re-running from checkpoint
$CNTK_BINARY $CNTK_ARGS || exit $?

Просмотреть файл

@ -0,0 +1,27 @@
dataDir: ../Data
testCases:
CNTK Run must be completed:
patterns:
- ^COMPLETED
Must train epochs in exactly same order and parameters:
patterns:
- ^Starting Epoch {{integer}}
- learning rate per sample = {{float}}
- momentum = {{float}}
Epochs must be finished with expected results:
patterns:
- ^Finished Epoch[{{integer}}]
- TrainLossPerSample = {{float,tolerance=1%}}
- EvalErrPerSample = {{float,tolerance=1%}}
- Ave LearnRatePerSample = {{float,tolerance=1%}}
Per-minibatch training results must match:
patterns:
- ^ Epoch[{{integer}} of {{integer}}]-Minibatch[{{integer}}-{{integer}} of {{integer}}]
- SamplesSeen = {{integer}}
- TrainLossPerSample = {{float,tolerance=1%}}
- EvalErr[0]PerSample = {{float,tolerance=1%}}

551
Tests/TestDriver.py Executable file
Просмотреть файл

@ -0,0 +1,551 @@
#!/usr/bin/env python
# ----------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# ---------------------------------------------------------
# This is a test driver for running end-to-end CNTK tests
#
# ----- Running a test and/or updating baselines ------
# For instructions see:
# ./TestDriver.py --help
#
# ---- Adding the tests: -------
# File system organization:
# Each test suite (e.g. Speech) has its own directory inside Tests
# Each test (e.g. QuickE2E) has its own directory within test suite
#
# Each test directory has a following components:
# - testcases.yml - main test confuguration file, whcih defines all test cases
# - run-test - (run-test) script
# - baseline*.txt - baseline files whith a captured expected output of run-test script
#
# ----- testcases.yml format -------
# dataDir: <path> #<relative-path-to the data directory
#
# testCases:
# <name of the testcase 1>:
# patterns:
# - <pattern 1> # see pattern language
# - <pattern 2>
# - .....
#
# <name of the testcase 2>:
# patterns:
# - <pattern 1>
# - <pattern 2>
# - .....
# .....
#
# ----- pattern language --------
# Multpile patterns of the same testcase are matching a *single* line of text
# Pattern is essentiually a substring which has to be found in a line
# if pattern starts with ^ then matching is constrained to look only at the beginning of the line
#
# pattern can have one or multiple placelohders wrapped with double-curly braces: {{...}}
# this placeholders can match any text conforming to the type constraint. Available placeholders
# {{integer}} - matches any (positive or negative integer) value
# {{float}} - matches any float value
# {{float,tolerance=0.00001}} - matches float value with given absolute tolerance: 0.00001 in this example
# {{float,tolerance=2%}} - matches float value with relative tolerance, 2% in this example
#
# At runtime patterns are compiled by TestDriver.py to regular expressions
#
# ---- Baseline files ----
# Order of searching baseline files, depends on the current mode for a given test:
#
# 1. baseline.<flavor>.<device>.txt
# 2. baseline.<flavor>.txt
# 3. baseline.<device>.txt
# 4. baseline.txt
# where <flavor> = { debug | release }
# <device> = { cpu | gpu }
#
# ----- Algorithm ------
# Baseline verification:
# For each testcase
# - filter all lines which matches
# - if no lines found then abord with an error - since either baseline and/or pattern are invalid
# Running test:
# Run test script (run-test) and capture output:
#
# For each testcase
# - filter all matching lines from baseline
# - filter all matching lines from test output
# - compare filtered lines one by one, ensuring that substrings defined by patterns are matching
#
# In practice, TestDriver performs 1 pass through the output of run-test performing a real-time
# matching against all test-cases/pattern simulteneously
#
import sys, os, argparse, traceback, yaml, subprocess, random, re, time
thisDir = os.path.dirname(os.path.realpath(__file__))
# This class encapsulates an instance of the test
class Test:
# "Suite/TestName" => instance of Test
allTestsIndexedByFullName = {}
# suite - name of the test suite
# name - name of the test
# path to the testcases.yml file
def __init__(self, suite, name, pathToYmlFile):
self.suite = suite
self.name = name
self.fullName = suite + "/" + name
# computing location of test directory (yml file directory)
self.testDir = os.path.dirname(pathToYmlFile)
# parsing yml file with testcases
with open(pathToYmlFile, "r") as f:
self.rawYamlData = yaml.safe_load(f.read())
# finding location of data directory
if self.rawYamlData["dataDir"]:
self.dataDir = os.path.realpath(os.path.join(self.testDir, self.rawYamlData["dataDir"]))
else:
self.dataDir = self.testDir
testCasesYaml = self.rawYamlData["testCases"]
self.testCases = []
for name in testCasesYaml.keys():
try:
self.testCases.append(TestCase(name, testCasesYaml[name]))
except Exception as e:
print >>sys.stderr, "ERROR registering test case: " + name
raise
# Populates Tests.allTestsIndexedByFullName by scanning directory tree
# and finding all testcases.yml files
@staticmethod
def discoverAllTests():
for dirName, subdirList, fileList in os.walk(thisDir):
if 'testcases.yml' in fileList:
testDir = dirName
testName = os.path.basename(dirName)
suiteDir = os.path.dirname(dirName)
# sute name will be derived from the path components
suiteName = os.path.relpath(suiteDir, thisDir).replace('\\', '/')
try:
test = Test(suiteName, testName, dirName + "/testcases.yml")
Test.allTestsIndexedByFullName[test.fullName.lower()] = test
except Exception as e:
print >>sys.stderr, "ERROR registering test: " + dirName
traceback.print_exc()
sys.exit(1)
# Runs this test
# flavor - "debug" or "release"
# device - "cpu" or "gpu"
# args - command line arguments from argparse
# returns an instance of TestRunResult
def run(self, flavor, device, args):
# Locating and reading baseline file
baselineFile = self.findBaselineFile(flavor, device)
if baselineFile == None:
return TestRunResult.fatalError("Baseline file sanity check", "Can't find baseline file")
with open(baselineFile, "r") as f:
baseline = f.read().split("\n")
if args.verbose:
print "Baseline:", baselineFile
# Before running the test, pre-creating TestCaseRunResult object for each test case
# and compute filtered lines from baseline file.
# Note: some test cases might fail at this time if baseline and/or patterns are inconsistant
result = TestRunResult()
result.succeeded = True
if not args.update_baseline:
for testCase in self.testCases:
testCaseRunResult = testCase.processBaseline(baseline)
if not testCaseRunResult.succeeded:
result.succeeded = False
result.testCaseRunResults.append(testCaseRunResult)
# preparing run directory
runDir = os.path.join(args.run_dir, "{0}_{1}@{2}_{3}".format(self.suite, self.name, flavor, device))
if not os.path.isdir(runDir):
os.makedirs(runDir)
# preparing environment for the test script
os.environ["TEST_FLAVOR"] = flavor
os.environ["TEST_DEVICE"] = device
os.environ["TEST_BUILD_LOCATION"] = args.build_location
os.environ["TEST_DIR"] = self.testDir
os.environ["TEST_DATA_DIR"] = self.dataDir
os.environ["TEST_RUN_DIR"] = runDir
# WORKAROUND: changing current dir to the dataDir so relative paths in SCP files work as expected
os.chdir(self.dataDir)
# Running test script
#TODO:port this properly to windows
# Writing standard output to the file and to the console (if --verbose)
logFile = os.path.join(runDir, "output.txt")
allLines = []
if args.verbose:
print self.fullName + ":>" + logFile
with open(logFile, "w") as output:
cmdLine = ["bash", "-c", self.testDir + "/run-test 2>&1"]
process = subprocess.Popen(cmdLine, stdout=subprocess.PIPE)
while True:
line = process.stdout.readline()
if not line:
break
if len(line)>0 and line[-1]=='\n':
line=line[:len(line)-1]
if args.verbose:
print self.fullName + ": " + line
print >>output, line
allLines.append(line)
output.flush()
for testCaseRunResult in result.testCaseRunResults:
testCaseRunResult.testCase.processLine(line, testCaseRunResult, args.verbose)
exitCode = process.wait()
success = True
# checking exit code
if exitCode != 0:
return TestRunResult.fatalError("Exit code must be 0", "==> got exit code {0} when running: {1}".format(exitCode, " ".join(cmdLine)), logFile = logFile)
# saving log file path, so it can be reported later
result.logFile = logFile
# finalizing verification - need to check whether we have any unmatched lines
for testCaseRunResult in result.testCaseRunResults:
testCaseRunResult.testCase.finalize(testCaseRunResult)
if not testCaseRunResult.succeeded:
result.succeeded = False
if args.update_baseline and result.succeeded:
# When running in --update-baseline mode
# verifying that new output is succesfully matching every pattern in the testcases.yml
# If this is not the case then baseline update will be rejected
for testCase in self.testCases:
testCaseRunResult = testCase.processBaseline(allLines)
if not testCaseRunResult.succeeded:
result.succeeded = False
result.testCaseRunResults.append(testCaseRunResult)
if result.succeeded:
if args.verbose:
print "Updating baseline file", baselineFile
with open(baselineFile, "w") as f:
f.write("\n".join(allLines))
return result
# Finds a location of a baseline file by probing different names in the following order:
# baseline.$flavor.$device.txt
# baseline.$flavor.txt
# baseline.$device.txt
# baseline.txt
def findBaselineFile(self, flavor, device):
for f in ["." + flavor.lower(), ""]:
for d in ["." + device.lower(), ""]:
candidateName = "baseline" + f + d + ".txt";
fullPath = os.path.join(self.testDir, candidateName)
if os.path.isfile(fullPath):
return fullPath
return None
# This class encapsulates one testcase (in testcases.yml file)
class TestCase:
def __init__(self, name, yamlNode):
self.name = name
self.patterns = []
if "patterns" in yamlNode:
for pattern in yamlNode["patterns"]:
try:
self.patterns.append(TestPattern(pattern))
except Exception as e:
print >>sys.stderr, "ERROR registering pattern: " + pattern
raise
# Processes the baseline file and return an instance of TestCaseRunResult
# which is ready to be passed into processLine
def processBaseline(self, baseline):
result = TestCaseRunResult(self.name, True)
result.diagnostics = ""
result.testCase = self
# filter all lines of baseline file leaving only those which match ALL the patterns
filteredLines = []
for line in baseline:
if all([p.match(line) for p in self.patterns]):
filteredLines.append(line)
if len(filteredLines) == 0:
result.succeeded = False
result.diagnostics+="Baseline file doesn't have any lines matching all patterns defined in the test case.\n"\
"Possible cause: patterns are wrong and/or baseline file doesn't have required line"
result.expectedLines = filteredLines
return result
# Runs this test case and report result into TestCaseRunResult
def processLine(self, line, result, verbose):
if all([p.match(line) for p in self.patterns]):
if len(result.expectedLines) > 0:
# we have mathed line in the output and at leat one remaining unmatched in a baseline
expected = result.expectedLines[0]
# running comparison logic for each pattern
failedPatterns = []
for p in self.patterns:
if not p.compare(expected, line):
result.succeeded = False
failedPatterns.append(p)
# in the case of failure - reporting mismatched lines
if len(failedPatterns)>0:
result.diagnostics+=("Baseline: {0}\n"+
"Output: {1}\n"
).format(expected, line)
if verbose:
print "[FAILED]: Testcase", self.name
print "Baseline:", expected
# also show all failed patterns
for p in failedPatterns:
msg = "Failed pattern: " + p.patternText
if verbose:
print msg
result.diagnostics+=msg+"\n"
# removing this line, since we already matched it (whether succesfully or not - doesn't matter)
del result.expectedLines[0]
else:
# we have matched line in the output - but don't have any remaining unmatched in a baseline
result.succeeded = False
result.diagnostics+=("Unexpected (extra) line in the output which matches the pattern, but doesn't appear in baseline file.\n"+
"Extra line: {0}"
).format(line)
# called once for each TestCaseRunResult at the end to check for unmatched patterns
def finalize(self, result):
if len(result.expectedLines) > 0:
result.succeeded = False
result.diagnostics+=("{0} expected lines weren't observed in the output.\n"+
"First unmatched: {1}"
).format(len(result.expectedLines), result.expectedLines[0])
# This encapsulates parsing and evaluation of a test patterns occurring in testcases.yml file
class TestPattern:
# maps a type (specified in {{...}} expressions) to a regular expression
typeTable = {
"integer" : r"\s*-?[0-9]+",
"float" : r"\s*-?([0-9]*\.[0-9]+|[0-9]+)(e[+-]?[0-9]+)?"
}
def __init__(self, patternText):
self.patternText = str(patternText)
if len(patternText) == 0:
raise Exception("Empty pattern")
if patternText[0]=='^':
patternText = patternText[1:]
prefix = "^"
else:
prefix = ".*?"
# After parsing this will be a list of tuples (dataType, tolerance) for each {{...}} section from left to right
self.groupInfo = []
# Transforming our pattern into a sigle regular expression
# processing {{...}} fragments and escaping all regex special characters
self.regexText = prefix + re.sub(r"(\{\{[^}]+\}\}|[\[\]\.\*\+\{\}\(\)\$\^\\\|\?])", self.patternParse, patternText)
# Compiling it to perform a check (fail-fast) and for faster matching later
self.regex = re.compile(self.regexText)
# this is a callback method passed to re.sub call above - it performs the core parsing logic
def patternParse(self, match):
fragment = match.group(1)
if len(fragment) == 1:
# this is a spexcial character of regex
return "\\" + fragment;
else:
# parsing {{...}} expressions
m = re.match(r"{{(integer|float)(,tolerance=([-0-9\.e]*)(%?))?}}", fragment)
dataType = m.group(1)
if m.group(3):
tolerance = float(m.group(3))
if m.group(4) == "%":
# using minus sign to indicate that it is a relative value
tolerance = - tolerance/100.0;
else:
tolerance = 0.0
# saving information about data type and tolerance
self.groupInfo.append((dataType, tolerance))
# converting this to regex which mathes specific type
# All {{...}} sections are converted to regex groups named as G0, G1, G2...
return "(?P<G{0}>{1})".format(len(self.groupInfo)-1, TestPattern.typeTable[dataType])
# Checks wether given line matches this pattern
# returns True or False
def match(self, line):
return self.regex.match(line) != None
# Compares a line from baseline log and a line from real output against this pattern
# return true or false
def compare(self, expected, actual):
em = self.regex.match(expected)
am = self.regex.match(actual)
if em == None and am == None:
return True
if em == None or am == None:
return False
for i in range(0, len(self.groupInfo)):
dataType, tolerance = self.groupInfo[i]
groupId = "G"+str(i)
expectedText = em.group(groupId).strip()
actualText = am.group(groupId).strip()
if dataType=="integer":
return int(expectedText) == int(actualText)
elif dataType=="float":
epsilon = tolerance if tolerance > 0 else abs(float(expectedText)*tolerance)
return abs(float(expectedText)-float(actualText)) <= epsilon
else:
return False;
return True
class TestRunResult:
def __init__(self):
self.succeeded = False;
self.testCaseRunResults = [] # list of TestCaseRunResult
@staticmethod
def fatalError(name, diagnostics, logFile = None):
r = TestRunResult()
r.testCaseRunResults.append(TestCaseRunResult(name, False, diagnostics))
r.logFile = logFile
return r
class TestCaseRunResult:
def __init__(self, testCaseName, succeeded, diagnostics = None):
self.testCaseName = testCaseName
self.succeeded = succeeded
self.diagnostics = diagnostics
self.expectedLines = [] # list of remaining unmatched expected lines from the baseline file for this test case run
# Lists all available tests
def listCommand(args):
for t in Test.allTestsIndexedByFullName.values():
print t.fullName
# Runs given test(s) or all tests
def runCommand(args):
if len(args.test) > 0:
testsToRun = []
for name in args.test:
if name.lower() in Test.allTestsIndexedByFullName:
testsToRun.append(Test.allTestsIndexedByFullName[name.lower()])
else:
print >>sys.stderr, "ERROR: test not found", name
return 1
else:
testsToRun = Test.allTestsIndexedByFullName.values()
devices = ["cpu", "gpu"]
if (args.device):
args.device = args.device.lower()
if not args.device in devices:
print >>sys.stderr, "--device must be one of", devices
return 1
devices = [args.device]
flavors = ["debug", "release"]
if (args.flavor):
args.flavor = args.flavor.lower()
if not args.flavor in flavors:
print >>sys.stderr, "--flavor must be one of", flavors
return 1
flavors = [args.flavor]
print "CNTK Test Driver is started"
print "Running tests: ", " ".join([y.fullName for y in testsToRun])
print "Build location: ", args.build_location
print "Run location: ", args.run_dir
print "Flavors: ", " ".join(flavors)
print "Devices: ", " ".join(devices)
if (args.update_baseline):
print "*** Running in automatic baseline update mode ***"
print ""
succeededCount, totalCount = 0, 0
for test in testsToRun:
for flavor in flavors:
for device in devices:
totalCount = totalCount + 1
# Printing the test which is about to run (without terminating the line)
sys.stdout.write("Running test {0} ({1} {2}) - ".format(test.fullName, flavor, device));
# in verbose mode, terminate the line, since there will be a lot of output
if args.verbose:
sys.stdout.write("\n");
sys.stdout.flush()
# Running the test and collecting a run results
result = test.run(flavor, device, args)
if args.verbose:
# writing the test name one more time (after possibly long verbose output)
sys.stdout.write("Test finished {0} ({1} {2}) - ".format(test.fullName, flavor, device));
if result.succeeded:
succeededCount = succeededCount + 1
# in no-verbose mode this will be printed in the same line as 'Running test...'
print "[OK]"
else:
print "[FAILED]"
# Showing per-test-case results:
for testCaseRunResult in result.testCaseRunResults:
if testCaseRunResult.succeeded:
# Printing 'OK' test cases only in verbose mode
if (args.verbose):
print(" [OK] " + testCaseRunResult.testCaseName);
else:
# 'FAILED' + detailed diagnostics with proper indendtation
print(" [FAILED] " + testCaseRunResult.testCaseName);
if testCaseRunResult.diagnostics:
for line in testCaseRunResult.diagnostics.split('\n'):
print " " + line;
# In non-verbose mode log wasn't piped to the stdout, showing log file path for conveniencce
if not result.succeeded and not args.verbose and result.logFile:
print " See log file for details:", result.logFile
if args.update_baseline:
print "{0}/{1} baselines updated, {2} failed".format(succeededCount, totalCount, totalCount - succeededCount)
else:
print "{0}/{1} tests passed, {2} failed".format(succeededCount, totalCount, totalCount - succeededCount)
if succeededCount != totalCount:
sys.exit(10)
# ======================= Entry point =======================
parser = argparse.ArgumentParser(description="TestDriver - CNTK Test Driver")
subparsers = parser.add_subparsers(help="command to execute. Run TestDriver.py <command> --help for command-specific help")
runSubparser = subparsers.add_parser("run", help="run test(s)")
runSubparser.add_argument("test", nargs="*",
help="optional test name(s) to run, specified as Suite/TestName. "
"Use list command to list available tests. "
"If not specified then all tests will be run.")
#TODO: port paths to Windows
defaultBuildLocation=os.path.realpath(os.path.join(thisDir, "..", "bin"))
runSubparser.add_argument("-b", "--build-location", default=defaultBuildLocation, help="location of the CNTK build to run")
runSubparser.add_argument("-d", "--device", help="cpu|gpu - run on a specific device")
runSubparser.add_argument("-f", "--flavor", help="release|debug - run only a specific flavor")
#TODO: port paths to Windows
defaultRunDir=os.path.join("/tmp", "cntk-test-{0}.{1}".format(time.strftime("%Y%m%d%H%M%S"), random.randint(0,1000000)))
runSubparser.add_argument("-r", "--run-dir", default=defaultRunDir, help="directory where to store test output, default: a random dir within /tmp")
runSubparser.add_argument("--update-baseline", action='store_true', help="update baseline file(s) instead of matching them")
runSubparser.add_argument("-v", "--verbose", action='store_true', help="verbose output - dump all output of test script")
runSubparser.set_defaults(func=runCommand)
listSubparser = subparsers.add_parser("list", help="list available tests")
listSubparser.set_defaults(func=listCommand)
if len(sys.argv)==1:
parser.print_help()
sys.exit(1)
args = parser.parse_args(sys.argv[1:])
# discover all the tests
Test.discoverAllTests()
# execute the command
args.func(args)

42
ThirdPartyNotices.txt Normal file
Просмотреть файл

@ -0,0 +1,42 @@
=== AN4 dataset ====
Contents of Tests/Speech/Data directory is a modified version of AN4 dataset pre-processed and optimized for CNTK end-to-end testing.
AN4 dataset is a part of CMU audio databases located at http://www.speech.cs.cmu.edu/databases/an4
This modified version of dataset is distributed under the terms of a AN4 license:
/* ====================================================================
* Copyright (c) 1991-2005 Carnegie Mellon University. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* This work was supported in part by funding from the Defense Advanced
* Research Projects Agency and the National Science Foundation of the
* United States of America, and the CMU Sphinx Speech Consortium.
*
* THIS SOFTWARE IS PROVIDED BY CARNEGIE MELLON UNIVERSITY ``AS IS'' AND
* ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY
* NOR ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ====================================================================
*/