Updated docs, test and nb spell mistakes

This commit is contained in:
REDMOND\sayanpa 2017-02-09 19:35:30 -08:00
Родитель fccd6a48bd
Коммит 752c59e02f
4 изменённых файлов: 19 добавлений и 18 удалений

Просмотреть файл

@ -10,17 +10,18 @@ import numpy as np
abs_path = os.path.dirname(os.path.abspath(__file__))
notebook = os.path.join(abs_path, "..", "..", "..", "..", "Tutorials", "CNTK_106B_LSTM_Timeseries_with_IOT_Data.ipynb")
notebook_timeoutSeconds = 450
def test_cntk_106B_lstm_timeseries_with_iot_data_noErrors(nb):
errors = [output for cell in nb.cells if 'outputs' in cell
for output in cell['outputs'] if output.output_type == "error"]
assert errors == []
expectedEvalErrorByDeviceId = {-1: 0.000085, 0: 0.000085}
expectedEvalErrorByDeviceId = { -1: 0.000085, 0: 0.000085 }
def test_cntk_106B_lstm_timeseries_with_iot_data_evalCorrect(nb, device_id):
testCell = [cell for cell in nb.cells
if cell.cell_type == 'code' and re.search('# Print the test error', cell.source)]
assert len(testCell) == 1
m = re.match(r"mse for test: (?P<actualEvalError>\d+\.\d+)\r?$", testCell[0].outputs[0]['text'])
assert np.isclose(float(m.group('actualEvalError')), expectedEvalErrorByDeviceId[device_id], atol=0.00001)
assert np.isclose(float(m.group('actualEvalError')), expectedEvalErrorByDeviceId[device_id], atol=0.00001)

Просмотреть файл

@ -99,7 +99,7 @@
"category": ["Image"],
"name": "MNIST Feed Forward OCR",
"url": "https://github.com/Microsoft/CNTK/blob/master/Tutorials/CNTK_103B_MNIST_FeedForwardNetwork.ipynb",
"description": "Use Feed Forward networks on an OCR problem.",
"description": "Recognize hand written digits (OCR) with MNIST data.",
"language": ["Python"],
"type": ["Tutorial", "Recipe"]
},
@ -107,7 +107,7 @@
"category": ["Image"],
"name": "MNIST Autoencoder Dim Reduction",
"url": "https://github.com/Microsoft/CNTK/blob/master/Tutorials/CNTK_105_Basic_Autoencoder_for_Dimensionality_Reduction.ipynb",
"description": "Use Autoencoder for dimensionality reduction.",
"description": "Compress (using autoencoder) hand written digits from MNIST data with no human input (unsupervised learning).",
"language": ["Python"],
"type": ["Tutorial", "Recipe"]
},
@ -131,7 +131,7 @@
"category": ["Image"],
"name": "Generative Adversarial Networks (GAN)",
"url": "https://github.com/Microsoft/CNTK/blob/master/Tutorials/CNTK_206_Basic_GAN.ipynb",
"description": "This tutorial is a basic implementation of GAN networks. This allows us generate realistic looking MNIST images.",
"description": "This tutorial is a basic implementation of GAN networks. This allows us generate realistic looking MNIST images with no human input (unsupervised learning).",
"language": ["Python"],
"type": ["Tutorial", "Recipe"]
},
@ -203,7 +203,7 @@
"category": ["Numeric"],
"name": "Feed Forward Classification",
"url": "https://github.com/Microsoft/CNTK/blob/master/Tutorials/CNTK_102_FeedForward.ipynb",
"description": "Use Feed Forward networks on a classification problem with CNTK and NumPy.",
"description": "Classify cancer using simulated data (Feed Forward) with Numpy",
"language": ["Python"],
"type": ["Tutorial"]
},
@ -219,7 +219,7 @@
"category": ["Numeric"],
"name": "Logistic Regression",
"url": "https://github.com/Microsoft/CNTK/blob/master/Tutorials/CNTK_101_LogisticRegression.ipynb",
"description": "Logistic regression example with Synthetic data.",
"description": "Classify cancer using simulated data (Logistic Regression).",
"language": ["Python", "BrainScript"],
"type": ["Tutorial", "Recipe"]
},
@ -235,7 +235,7 @@
"category": ["Numeric"],
"name": "LSTM based Timeseries with real world data",
"url": "https://github.com/Microsoft/CNTK/blob/master/Tutorials/CNTK_106B_LSTM_Timeseries_with_IOT_Data.ipynb",
"description": "Timeseries modeling with LSTMs using real world data.",
"description": "Forecasting using data from an IOT device.",
"language": ["Python"],
"type": ["Tutorial", "Recipe"]
},
@ -347,7 +347,7 @@
"category": ["Speech", "Text"],
"name": "Sequence-to-Sequence",
"url": "https://github.com/Microsoft/CNTK/blob/master/Tutorials/CNTK_204_Sequence_To_Sequence.ipynb",
"description": "The input is a sequence with a dynamic length, and the output is also a sequence with some dynamic length. This is a natural fit for machine translation , automatic text summarization , word to pronunciation models and even parse tree generation.",
"description": "Translate text from one domain (grapheme) to other (phoneme). The input is a sequence with a dynamic length, and the output is also a sequence with some dynamic length. This is a natural fit for machine translation , automatic text summarization , word to pronunciation models and even parse tree generation.",
"language": ["Python"],
"type": ["Tutorial"]
},

Различия файлов скрыты, потому что одна или несколько строк слишком длинны

Просмотреть файл

@ -17,7 +17,7 @@ Tutorials
CNTK 105 Part A: `Data preparation <https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_103A_MNIST_DataLoader.ipynb>`_ , Part B: `Feed Forward autoencoder`_
#. *Forecasting using data from an IOT device*
CNTK 106: LSTM based forecasting - Part A: `with simulated data <https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_106A_LSTM_Timeseries_with_Simulated_Data.ipynb>`_
CNTK 106: LSTM based forecasting - Part A: `with simulated data <https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_106A_LSTM_Timeseries_with_Simulated_Data.ipynb>`_, Part B: `with real IOT data <https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_106B_LSTM_Timeseries_with_IOT_Data.ipynb>`_
#. *Recognize objects in images from CIFAR-10 data*
CNTK 201 Part A: `Data preparation <https://github.com/Microsoft/CNTK/blob/v2.0.beta10.0/Tutorials/CNTK_201A_CIFAR-10_DataLoader.ipynb>`_, Part B: `VGG and ResNet classifiers`_