updated SLUHandsOn tests
This commit is contained in:
Родитель
9e73e6fda5
Коммит
769b2602a2
|
@ -46,11 +46,12 @@ DenseLayer{outDim, bias = true, activation=(x=>x), init='heNormal', initValueSca
|
|||
|
||||
# EmbeddingLayer -- create a linear embedding layer
|
||||
EmbeddingLayer {outDim, # dimension of embedding
|
||||
init='heNormal', initValueScale=1,
|
||||
embeddingPath = '', transpose = false} = # load a fixed embedding from a path instead
|
||||
{
|
||||
shape = if transpose then (Inferred : outDim) else (outDim : Inferred)
|
||||
E = if embeddingPath == ''
|
||||
then ParameterTensor {shape, init='heNormal'} # learnable
|
||||
then ParameterTensor {shape, init=init, initValueScale=initValueScale} # learnable
|
||||
else ParameterTensor {shape, initFromFilePath = embeddingPath, learningRateMultiplier = 0} # fixed from file
|
||||
TimesOp = if transpose then TransposeTimes else Times
|
||||
apply (x) = TimesOp (E, x) # x is expected to be sparse one-hot
|
||||
|
|
|
@ -21,9 +21,9 @@ TrainTagger = {
|
|||
hiddenDim = 300
|
||||
|
||||
model = Sequential (
|
||||
EmbeddingLayer {embDim} : # embedding
|
||||
RecurrentLSTMLayer {hiddenDim, goBackwards=false} : # LSTM
|
||||
DenseLayer {labelDim, initValueScale=7} # output layer
|
||||
EmbeddingLayer {embDim, init='uniform'} : # embedding
|
||||
RecurrentLSTMLayer {hiddenDim, goBackwards=false, init='uniform'} : # LSTM
|
||||
DenseLayer {labelDim, init='uniform', initValueScale=7} # output layer
|
||||
)
|
||||
|
||||
# features
|
||||
|
|
|
@ -20,11 +20,11 @@ TrainTagger = {
|
|||
hiddenDim = 300
|
||||
|
||||
model = Sequential (
|
||||
EmbeddingLayer {embDim} : # embedding
|
||||
EmbeddingLayer {embDim, init='uniform'} : # embedding
|
||||
BatchNormalizationLayer {normalizationTimeConstant=2048} : ##### added
|
||||
RecurrentLSTMLayer {hiddenDim, goBackwards=false} : # LSTM
|
||||
RecurrentLSTMLayer {hiddenDim, goBackwards=false, init='uniform'} : # LSTM
|
||||
BatchNormalizationLayer {normalizationTimeConstant=2048} : ##### added
|
||||
DenseLayer {labelDim, initValueScale=7} # output layer
|
||||
DenseLayer {labelDim, init='uniform', initValueScale=7} # output layer
|
||||
)
|
||||
|
||||
# features
|
||||
|
|
|
@ -22,12 +22,12 @@ TrainTagger = {
|
|||
LookaheadLayer (x) = Splice (x : FutureValue (0, x, defaultHiddenActivation=0))
|
||||
|
||||
model = Sequential (
|
||||
EmbeddingLayer {embDim} : # embedding
|
||||
EmbeddingLayer {embDim, init='uniform'} : # embedding
|
||||
LookaheadLayer : ##### added
|
||||
BatchNormalizationLayer {normalizationTimeConstant=2048} :
|
||||
RecurrentLSTMLayer {hiddenDim, goBackwards=false} : # LSTM
|
||||
RecurrentLSTMLayer {hiddenDim, goBackwards=false, init='uniform'} : # LSTM
|
||||
BatchNormalizationLayer {normalizationTimeConstant=2048} :
|
||||
DenseLayer {labelDim, initValueScale=7} # output layer
|
||||
DenseLayer {labelDim, init='uniform', initValueScale=7} # output layer
|
||||
)
|
||||
|
||||
# features
|
||||
|
|
|
@ -20,17 +20,17 @@ TrainTagger = {
|
|||
hiddenDim = 150
|
||||
|
||||
BiRecurrentLSTMLayer {outDim} = {
|
||||
F = RecurrentLSTMLayer {outDim, goBackwards=false}
|
||||
G = RecurrentLSTMLayer {outDim, goBackwards=true}
|
||||
F = RecurrentLSTMLayer {outDim, goBackwards=false, init='uniform'}
|
||||
G = RecurrentLSTMLayer {outDim, goBackwards=true, init='uniform'}
|
||||
apply (x) = Splice (F(x):G(x))
|
||||
}.apply
|
||||
|
||||
model = Sequential (
|
||||
EmbeddingLayer {embDim} :
|
||||
EmbeddingLayer {embDim, init='uniform'} :
|
||||
BatchNormalizationLayer {normalizationTimeConstant=2048} :
|
||||
BiRecurrentLSTMLayer {hiddenDim} :
|
||||
BatchNormalizationLayer {normalizationTimeConstant=2048} :
|
||||
DenseLayer {labelDim, initValueScale=7}
|
||||
DenseLayer {labelDim, init='uniform', initValueScale=7}
|
||||
)
|
||||
|
||||
# features
|
||||
|
|
|
@ -20,17 +20,17 @@ TrainTagger = {
|
|||
hiddenDim = 150
|
||||
|
||||
BiRecurrentLSTMLayer {outDim} = {
|
||||
F = RecurrentLSTMLayer {outDim, goBackwards=false}
|
||||
G = RecurrentLSTMLayer {outDim, goBackwards=true}
|
||||
F = RecurrentLSTMLayer {outDim, goBackwards=false, init='uniform'}
|
||||
G = RecurrentLSTMLayer {outDim, goBackwards=true, init='uniform'}
|
||||
apply (x) = Splice (BS.Sequences.Last(F(x)):BS.Sequences.First(G(x)))
|
||||
}.apply
|
||||
|
||||
model = Sequential (
|
||||
EmbeddingLayer {embDim} :
|
||||
EmbeddingLayer {embDim, init='uniform'} :
|
||||
BatchNormalizationLayer {normalizationTimeConstant=2048} :
|
||||
BiRecurrentLSTMLayer {hiddenDim} :
|
||||
BatchNormalizationLayer {normalizationTimeConstant=2048} :
|
||||
DenseLayer {intentDim, initValueScale=7}
|
||||
DenseLayer {intentDim, init='uniform', initValueScale=7}
|
||||
)
|
||||
|
||||
# features
|
||||
|
|
Загрузка…
Ссылка в новой задаче