Initial demo sample structure and content
and addressed CR comments
|
@ -0,0 +1,12 @@
|
|||
There are several examples for training different networks on image corpora
|
||||
in the folder 'ExampleSetups/Image/' including:
|
||||
|
||||
* MNIST
|
||||
* CIFAR-10
|
||||
* ImageNet
|
||||
|
||||
For those examples the data has to be downloaded and converted
|
||||
(python scripts are provided in the corresponding folder).
|
||||
These examples also show how to train convolutional neural networks (CNN) with CNTK.
|
||||
|
||||
We recommend to start with the MNIST example.
|
|
@ -0,0 +1,25 @@
|
|||
# CNTK Demos and Example Setups
|
||||
|
||||
This folder contains a few self-contained demos to get started with CNTK.
|
||||
The data for the demos is contained in the corresponding Data folders.
|
||||
Each demo folder has a Readme file that explains how to run it on Windows and Linux.
|
||||
How to run the demos on Philly (https://phillywebportal.azurewebsites.net/index.aspx) is
|
||||
explained in the Philly portal wiki (Philly is an internal GPU cluster for Microsoft production runs).
|
||||
The demos cover different domains such as Speech and Text classification
|
||||
and show different types of networks including FF, CNN RNN and LSTM.
|
||||
|
||||
Further examples are provided in the folder 'ExampleSetups'.
|
||||
A popular example is the MNIST handwritten digits classification task.
|
||||
You can find this example in 'ExampleSetups/Images/MNIST'.
|
||||
The examples in 'ExampleSetups' might require downloading data which in some cases is not free of charge.
|
||||
See individual folders for more information.
|
||||
|
||||
The four examples shown in the table below provide a good introduction to CNTK.
|
||||
Additional more complex examples can be found in the 'ExampleSetups' folder.
|
||||
|
||||
|Folder | Domain | Network types |
|
||||
|:------------------------|:-------------------------------------------------|:----------------|
|
||||
Demos/Simple2d | Synthetic 2d data | FF (CPU and GPU)
|
||||
Demos/Speech | Speech data (CMU AN4) | FF and LSTM
|
||||
Demos/Text | Text data (penn treebank) | RNN
|
||||
ExampleSetups/Image/MNIST | Image data (MNIST handwritten digit recognition) | CNN
|
|
@ -1,100 +0,0 @@
|
|||
RootDir=..
|
||||
command=Simple_Demo:Simple_Demo_Output
|
||||
|
||||
# deviceId=-1 for CPU, >=0 for GPU devices
|
||||
DeviceNumber=-1
|
||||
|
||||
#stderr=Demo
|
||||
|
||||
precision=float
|
||||
|
||||
modelPath=models/simple.dnn
|
||||
deviceId=$DeviceNumber$
|
||||
|
||||
outputNodeNames=ScaledLogLikelihood
|
||||
traceLevel=1
|
||||
|
||||
#######################################
|
||||
# TRAINING CONFIG (Simple, Fixed LR) #
|
||||
#######################################
|
||||
|
||||
Simple_Demo=[
|
||||
action=train
|
||||
|
||||
# Notation xxx:yyy*n:zzz is equivalent to xxx,
|
||||
# then yyy repeated n times, then zzz
|
||||
# example: 10:20*3:5 is equivalent to 10:20:20:20:5
|
||||
SimpleNetworkBuilder=[
|
||||
# 2 input, 2 50-element hidden, 2 output
|
||||
layerSizes=2:50*2:2
|
||||
trainingCriterion=CrossEntropyWithSoftmax
|
||||
evalCriterion=ErrorPrediction
|
||||
layerTypes=Sigmoid
|
||||
initValueScale=1.0
|
||||
applyMeanVarNorm=true
|
||||
uniformInit=true
|
||||
needPrior=true
|
||||
]
|
||||
|
||||
SGD=[
|
||||
# epochSize=0 means epochSize is the size of
|
||||
# the training set. Must be evenly divisible
|
||||
# into number of data frames.
|
||||
epochSize=0
|
||||
minibatchSize=25
|
||||
learningRatesPerMB=0.5:0.2*20:0.1
|
||||
momentumPerMB=0.9
|
||||
dropoutRate=0.0
|
||||
maxEpochs=50
|
||||
]
|
||||
|
||||
# Parameter values for the reader
|
||||
reader=[
|
||||
# reader to use
|
||||
readerType=UCIFastReader
|
||||
file=$RootDir$/Demos/Simple/SimpleDataTrain.txt
|
||||
|
||||
miniBatchMode=Partial
|
||||
randomize=Auto
|
||||
verbosity=1
|
||||
|
||||
features=[
|
||||
dim=2 # two-dimensional input data
|
||||
start=0 # Start with first element on line
|
||||
]
|
||||
|
||||
labels=[
|
||||
start=2 # Skip two elements
|
||||
dim=1 # One label dimension
|
||||
labelDim=2 # Two labels possible
|
||||
labelMappingFile=$RootDir$/Demos/Simple/SimpleMapping.txt
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
#######################################
|
||||
# OUTPUT RESUTLS (Simple) #
|
||||
#######################################
|
||||
|
||||
Simple_Demo_Output=[
|
||||
action=write
|
||||
|
||||
|
||||
# Parameter values for the reader
|
||||
reader=[
|
||||
# reader to use
|
||||
readerType=UCIFastReader
|
||||
file=$RootDir$/Demos/Simple/SimpleDataTest.txt
|
||||
features=[
|
||||
dim=2
|
||||
start=0
|
||||
]
|
||||
labels=[
|
||||
start=2
|
||||
dim=1
|
||||
labelDim=2
|
||||
labelMappingFile=$RootDir$/Demos/Simple/SimpleMapping.txt
|
||||
]
|
||||
]
|
||||
outputPath=SimpleOutput # Dump output as text
|
||||
]
|
|
@ -1,114 +0,0 @@
|
|||
# This is a configuration for parallel training of a simple feed-forward neural netowrk using data-parallel SGD.
|
||||
# The configuration is identical to the Simple.config except for the few additional parallelism related options.
|
||||
|
||||
RootDir=..
|
||||
command=Simple_multigpu_Demo:Simple_multigpu_Demo_Output
|
||||
|
||||
# deviceId=-1 for CPU, >=0 for GPU devices
|
||||
DeviceNumber=Auto
|
||||
stderr=Demo
|
||||
|
||||
precision=float
|
||||
|
||||
modelPath=models_multigpu/simple.dnn
|
||||
deviceId=$DeviceNumber$
|
||||
|
||||
outputNodeNames=ScaledLogLikelihood
|
||||
traceLevel=1
|
||||
|
||||
parallelTrain=true
|
||||
|
||||
#######################################
|
||||
# TRAINING CONFIG (Simple, Fixed LR) #
|
||||
#######################################
|
||||
|
||||
Simple_multigpu_Demo=[
|
||||
action=train
|
||||
|
||||
# Notation xxx:yyy*n:zzz is equivalent to xxx,
|
||||
# then yyy repeated n times, then zzz
|
||||
# example: 10:20*3:5 is equivalent to 10:20:20:20:5
|
||||
SimpleNetworkBuilder=[
|
||||
# 2 input, 2 50-element hidden, 2 output
|
||||
layerSizes=2:50*2:2
|
||||
trainingCriterion=CrossEntropyWithSoftmax
|
||||
evalCriterion=ErrorPrediction
|
||||
layerTypes=Sigmoid
|
||||
initValueScale=1.0
|
||||
applyMeanVarNorm=true
|
||||
uniformInit=true
|
||||
needPrior=true
|
||||
]
|
||||
|
||||
SGD=[
|
||||
# epochSize=0 means epochSize is the size of
|
||||
# the training set. Must be evenly divisible
|
||||
# into number of data frames.
|
||||
epochSize=0
|
||||
minibatchSize=25
|
||||
learningRatesPerMB=0.5:0.2*20:0.1
|
||||
momentumPerMB=0.9
|
||||
dropoutRate=0.0
|
||||
maxEpochs=50
|
||||
|
||||
ParallelTrain=[
|
||||
parallelizationMethod=DataParallelSGD
|
||||
#distributedMBReading=true
|
||||
parallelizationStartEpoch=2
|
||||
DataParallelSGD=[
|
||||
gradientBits=1
|
||||
#useZeroThresholdFor1BitQuantization=false
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
# Parameter values for the reader
|
||||
reader=[
|
||||
# reader to use
|
||||
readerType=UCIFastReader
|
||||
file=$RootDir$/Demos/Simple/SimpleDataTrain.txt
|
||||
|
||||
miniBatchMode=Partial
|
||||
randomize=Auto
|
||||
verbosity=1
|
||||
|
||||
features=[
|
||||
dim=2 # two-dimensional input data
|
||||
start=0 # Start with first element on line
|
||||
]
|
||||
|
||||
labels=[
|
||||
start=2 # Skip two elements
|
||||
dim=1 # One label dimension
|
||||
labelDim=2 # Two labels possible
|
||||
labelMappingFile=$RootDir$/Demos/Simple/SimpleMapping.txt
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
#######################################
|
||||
# OUTPUT RESUTLS (Simple) #
|
||||
#######################################
|
||||
|
||||
Simple_multigpu_Demo_Output=[
|
||||
action=write
|
||||
|
||||
|
||||
# Parameter values for the reader
|
||||
reader=[
|
||||
# reader to use
|
||||
readerType=UCIFastReader
|
||||
file=$RootDir$/Demos/Simple/SimpleDataTest.txt
|
||||
features=[
|
||||
dim=2
|
||||
start=0
|
||||
]
|
||||
labels=[
|
||||
start=2
|
||||
dim=1
|
||||
labelDim=2
|
||||
labelMappingFile=$RootDir$/Demos/Simple/SimpleMapping.txt
|
||||
]
|
||||
]
|
||||
outputPath=SimpleOutput # Dump output as text
|
||||
]
|
|
@ -1,6 +1,6 @@
|
|||
%%
|
||||
% Create training and test sets for the simple CNTK demo. Plot the results
|
||||
% Create some 2-dimensional data for the testing the CNTK Toolkit
|
||||
% Create 2-dimensional data for the testing the CNTK Toolkit
|
||||
|
||||
N = 10000;
|
||||
x = 2*(rand(N,1) - 0.5); % Uniform from -1 to 1
|
До Ширина: | Высота: | Размер: 177 KiB После Ширина: | Высота: | Размер: 177 KiB |
До Ширина: | Высота: | Размер: 11 KiB После Ширина: | Высота: | Размер: 11 KiB |
До Ширина: | Высота: | Размер: 22 KiB После Ширина: | Высота: | Размер: 22 KiB |
|
@ -0,0 +1,150 @@
|
|||
# This is a configuration for parallel training of a simple feed-forward neural network using data-parallel SGD.
|
||||
# The configuration is identical to the Simple.config except for the few additional parallelism related options.
|
||||
|
||||
# Parameters can be overwritten on the command line
|
||||
# for example: cntk configFile=myConfigFile RootDir=../..
|
||||
# For running from Visual Studio add
|
||||
# currentDirectory=$(SolutionDir)/<path to corresponding data folder>
|
||||
RootDir = ".."
|
||||
|
||||
ConfigDir = "$RootDir$/Config"
|
||||
DataDir = "$RootDir$/Data"
|
||||
OutputDir = "$RootDir$/Output"
|
||||
ModelDir = "$OutputDir$/Models"
|
||||
|
||||
# deviceId = -1 for CPU, >= 0 for GPU devices, "auto" chooses the best GPU, or CPU if no usable GPU is available
|
||||
deviceId = "auto"
|
||||
|
||||
command = Multigpu_Demo_Train:Multigpu_Demo_Test
|
||||
|
||||
precision = "float"
|
||||
traceLevel = 1
|
||||
modelPath = "$ModelDir$/multigpu.dnn"
|
||||
outputNodeNames = ScaledLogLikelihood
|
||||
stderr = "$OutputDir$/DemoOut"
|
||||
parallelTrain = true
|
||||
|
||||
#######################################
|
||||
# TRAINING CONFIG #
|
||||
#######################################
|
||||
|
||||
Multigpu_Demo_Train=[
|
||||
action = "train"
|
||||
|
||||
# Notation xxx:yyy*n:zzz is equivalent to xxx, then yyy repeated n times, then zzz
|
||||
# Example: 10:20*3:5 is equivalent to 10:20:20:20:5
|
||||
SimpleNetworkBuilder = [
|
||||
# 2 input, 2 50-element hidden, 2 output
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
uniformInit = true
|
||||
needPrior = true
|
||||
]
|
||||
|
||||
SGD = [
|
||||
# epochSize = 0 means epochSize is the size of the training set
|
||||
epochSize = 0
|
||||
minibatchSize = 25
|
||||
learningRatesPerMB = 0.5:0.2*20:0.1
|
||||
momentumPerMB = 0.9
|
||||
dropoutRate = 0.0
|
||||
maxEpochs = 10
|
||||
|
||||
# Additional optional parameters are: distributedMBReading
|
||||
parallelTrain = [
|
||||
parallelizationMethod = "DataParallelSGD"
|
||||
parallelizationStartEpoch = 2
|
||||
|
||||
# Additional optional parameters are: useZeroThresholdFor1BitQuantization
|
||||
dataParallelSGD = [
|
||||
gradientBits = 1
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
# Parameter values for the reader
|
||||
reader = [
|
||||
readerType = "UCIFastReader"
|
||||
file = "$DataDir$/SimpleDataTrain.txt"
|
||||
miniBatchMode = "partial"
|
||||
randomize = "auto"
|
||||
verbosity = 1
|
||||
|
||||
features = [
|
||||
dim = 2 # two-dimensional input data
|
||||
start = 0 # Start with first element on line
|
||||
]
|
||||
|
||||
labels = [
|
||||
start = 2 # Skip two elements
|
||||
dim = 1 # One label dimension
|
||||
labelDim = 2 # Two labels possible
|
||||
labelMappingFile = "$DataDir$/SimpleMapping.txt"
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
########################################
|
||||
# TEST RESULTS #
|
||||
# (computes prediction error and #
|
||||
# perplexity on a test set and #
|
||||
# writes the output to the console.) #
|
||||
########################################
|
||||
|
||||
Multigpu_Demo_Test=[
|
||||
action = "test"
|
||||
|
||||
# Parameter values for the reader
|
||||
reader = [
|
||||
readerType = "UCIFastReader"
|
||||
file = "$DataDir$/SimpleDataTest.txt"
|
||||
randomize = "none"
|
||||
|
||||
features = [
|
||||
dim = 2
|
||||
start = 0
|
||||
]
|
||||
|
||||
labels = [
|
||||
start = 2
|
||||
dim = 1
|
||||
labelDim = 2
|
||||
labelMappingFile = "$DataDir$/SimpleMapping.txt"
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
########################################
|
||||
# OUTPUT RESULTS #
|
||||
# (Computes the labels for a test set #
|
||||
# and writes the results to a file.) #
|
||||
########################################
|
||||
|
||||
Multigpu_Demo_Output=[
|
||||
action = "write"
|
||||
|
||||
# Parameter values for the reader
|
||||
reader = [
|
||||
readerType = "UCIFastReader"
|
||||
file = "$DataDir$/SimpleDataTest.txt"
|
||||
randomize = "none"
|
||||
|
||||
features = [
|
||||
dim = 2
|
||||
start = 0
|
||||
]
|
||||
|
||||
labels = [
|
||||
start = 2
|
||||
dim = 1
|
||||
labelDim = 2
|
||||
labelMappingFile = "$DataDir$/SimpleMapping.txt"
|
||||
]
|
||||
]
|
||||
|
||||
outputPath = "$OutputDir$/MultigpuOutput" # Dump output as text
|
||||
]
|
|
@ -0,0 +1,134 @@
|
|||
# Parameters can be overwritten on the command line
|
||||
# for example: cntk configFile=myConfigFile RootDir=../..
|
||||
# For running from Visual Studio add
|
||||
# currentDirectory=$(SolutionDir)/<path to corresponding data folder>
|
||||
RootDir = ".."
|
||||
|
||||
ConfigDir = "$RootDir$/Config"
|
||||
DataDir = "$RootDir$/Data"
|
||||
OutputDir = "$RootDir$/Output"
|
||||
ModelDir = "$OutputDir$/Models"
|
||||
|
||||
# deviceId=-1 for CPU, >=0 for GPU devices, "auto" chooses the best GPU, or CPU if no usable GPU is available
|
||||
deviceId = -1
|
||||
|
||||
command = Simple_Demo_Train:Simple_Demo_Test
|
||||
|
||||
precision = "float"
|
||||
traceLevel = 1
|
||||
modelPath = "$ModelDir$/simple.dnn"
|
||||
outputNodeNames = ScaledLogLikelihood
|
||||
|
||||
#######################################
|
||||
# TRAINING CONFIG #
|
||||
#######################################
|
||||
|
||||
Simple_Demo_Train = [
|
||||
action = "train"
|
||||
|
||||
# Notation xxx:yyy*n:zzz is equivalent to xxx, then yyy repeated n times, then zzz
|
||||
# Example: 10:20*3:5 is equivalent to 10:20:20:20:5
|
||||
SimpleNetworkBuilder = [
|
||||
# 2 input, 2 50-element hidden, 2 output
|
||||
layerSizes = 2:50*2:2
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
uniformInit = true
|
||||
needPrior = true
|
||||
]
|
||||
|
||||
SGD = [
|
||||
# epochSize = 0 means epochSize is the size of the training set
|
||||
epochSize = 0
|
||||
minibatchSize = 25
|
||||
learningRatesPerMB = 0.5:0.2*20:0.1
|
||||
momentumPerMB = 0.9
|
||||
dropoutRate = 0.0
|
||||
maxEpochs = 10
|
||||
]
|
||||
|
||||
# Parameter values for the reader
|
||||
reader = [
|
||||
readerType = "UCIFastReader"
|
||||
file = "$DataDir$/SimpleDataTrain.txt"
|
||||
miniBatchMode = "partial"
|
||||
randomize = "auto"
|
||||
verbosity = 1
|
||||
|
||||
features = [
|
||||
dim = 2 # two-dimensional input data
|
||||
start = 0 # Start with first element on line
|
||||
]
|
||||
|
||||
labels = [
|
||||
start = 2 # Skip two elements
|
||||
dim = 1 # One label dimension
|
||||
labelDim = 2 # Two labels possible
|
||||
labelMappingFile = "$DataDir$/SimpleMapping.txt"
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
########################################
|
||||
# TEST RESULTS #
|
||||
# (computes prediction error and #
|
||||
# perplexity on a test set and #
|
||||
# writes the output to the console.) #
|
||||
########################################
|
||||
|
||||
Simple_Demo_Test = [
|
||||
action = "test"
|
||||
|
||||
# Parameter values for the reader
|
||||
reader = [
|
||||
readerType = "UCIFastReader"
|
||||
file = "$DataDir$/SimpleDataTest.txt"
|
||||
randomize = "none"
|
||||
|
||||
features = [
|
||||
dim = 2
|
||||
start = 0
|
||||
]
|
||||
|
||||
labels = [
|
||||
start = 2
|
||||
dim = 1
|
||||
labelDim = 2
|
||||
labelMappingFile = "$DataDir$/SimpleMapping.txt"
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
########################################
|
||||
# OUTPUT RESULTS #
|
||||
# (Computes the labels for a test set #
|
||||
# and writes the results to a file.) #
|
||||
########################################
|
||||
|
||||
Simple_Demo_Output=[
|
||||
action = "write"
|
||||
|
||||
# Parameter values for the reader
|
||||
reader = [
|
||||
readerType = "UCIFastReader"
|
||||
file = "$DataDir$/SimpleDataTest.txt"
|
||||
randomize = "none"
|
||||
|
||||
features = [
|
||||
dim = 2
|
||||
start = 0
|
||||
]
|
||||
|
||||
labels = [
|
||||
start = 2
|
||||
dim = 1
|
||||
labelDim = 2
|
||||
labelMappingFile = "$DataDir$/SimpleMapping.txt"
|
||||
]
|
||||
]
|
||||
|
||||
outputPath = "$OutputDir$/SimpleOutput" # Dump output as text
|
||||
]
|
|
@ -1,94 +1,94 @@
|
|||
-1 -1 0
|
||||
-1 -0.99 0
|
||||
-1 -0.98 0
|
||||
-1 -0.97 0
|
||||
-1 -0.96 0
|
||||
-1 -0.95 0
|
||||
-1 -0.94 0
|
||||
-1 -0.93 0
|
||||
-1 -0.92 0
|
||||
-1 -0.91 0
|
||||
-1 -0.9 0
|
||||
-1 -0.89 0
|
||||
-1 -0.88 0
|
||||
-1 -0.87 0
|
||||
-1 -0.86 0
|
||||
-1 -0.85 0
|
||||
-1 -0.84 0
|
||||
-1 -0.83 0
|
||||
-1 -0.82 0
|
||||
-1 -0.81 0
|
||||
-1 -0.8 0
|
||||
-1 -0.79 0
|
||||
-1 -0.78 0
|
||||
-1 -0.77 0
|
||||
-1 -0.76 0
|
||||
-1 -0.75 0
|
||||
-1 -0.74 0
|
||||
-1 -0.73 0
|
||||
-1 -0.72 0
|
||||
-1 -0.71 0
|
||||
-1 -0.7 0
|
||||
-1 -0.69 0
|
||||
-1 -0.68 0
|
||||
-1 -0.67 0
|
||||
-1 -0.66 0
|
||||
-1 -0.65 0
|
||||
-1 -0.64 0
|
||||
-1 -0.63 0
|
||||
-1 -0.62 0
|
||||
-1 -0.61 0
|
||||
-1 -0.6 0
|
||||
-1 -0.59 0
|
||||
-1 -0.58 0
|
||||
-1 -0.57 0
|
||||
-1 -0.56 0
|
||||
-1 -0.55 0
|
||||
-1 -0.54 0
|
||||
-1 -0.53 0
|
||||
-1 -0.52 0
|
||||
-1 -0.51 0
|
||||
-1 -0.5 0
|
||||
-1 -0.49 0
|
||||
-1 -0.48 0
|
||||
-1 -0.47 0
|
||||
-1 -0.46 0
|
||||
-1 -0.45 0
|
||||
-1 -0.44 0
|
||||
-1 -0.43 0
|
||||
-1 -0.42 0
|
||||
-1 -0.41 0
|
||||
-1 -0.4 0
|
||||
-1 -0.39 0
|
||||
-1 -0.38 0
|
||||
-1 -0.37 0
|
||||
-1 -0.36 0
|
||||
-1 -0.35 0
|
||||
-1 -0.34 0
|
||||
-1 -0.33 0
|
||||
-1 -0.32 0
|
||||
-1 -0.31 0
|
||||
-1 -0.3 0
|
||||
-1 -0.29 0
|
||||
-1 -0.28 0
|
||||
-1 -0.27 0
|
||||
-1 -0.26 0
|
||||
-1 -0.25 0
|
||||
-1 -0.24 0
|
||||
-1 -0.23 0
|
||||
-1 -0.22 0
|
||||
-1 -0.21 0
|
||||
-1 -0.2 0
|
||||
-1 -0.19 0
|
||||
-1 -0.18 0
|
||||
-1 -0.17 0
|
||||
-1 -0.16 0
|
||||
-1 -0.15 0
|
||||
-1 -0.14 0
|
||||
-1 -0.13 0
|
||||
-1 -0.12 0
|
||||
-1 -0.11 0
|
||||
-1 -0.1 0
|
||||
-1 -1 1
|
||||
-1 -0.99 1
|
||||
-1 -0.98 1
|
||||
-1 -0.97 1
|
||||
-1 -0.96 1
|
||||
-1 -0.95 1
|
||||
-1 -0.94 1
|
||||
-1 -0.93 1
|
||||
-1 -0.92 1
|
||||
-1 -0.91 1
|
||||
-1 -0.9 1
|
||||
-1 -0.89 1
|
||||
-1 -0.88 1
|
||||
-1 -0.87 1
|
||||
-1 -0.86 1
|
||||
-1 -0.85 1
|
||||
-1 -0.84 1
|
||||
-1 -0.83 1
|
||||
-1 -0.82 1
|
||||
-1 -0.81 1
|
||||
-1 -0.8 1
|
||||
-1 -0.79 1
|
||||
-1 -0.78 1
|
||||
-1 -0.77 1
|
||||
-1 -0.76 1
|
||||
-1 -0.75 1
|
||||
-1 -0.74 1
|
||||
-1 -0.73 1
|
||||
-1 -0.72 1
|
||||
-1 -0.71 1
|
||||
-1 -0.7 1
|
||||
-1 -0.69 1
|
||||
-1 -0.68 1
|
||||
-1 -0.67 1
|
||||
-1 -0.66 1
|
||||
-1 -0.65 1
|
||||
-1 -0.64 1
|
||||
-1 -0.63 1
|
||||
-1 -0.62 1
|
||||
-1 -0.61 1
|
||||
-1 -0.6 1
|
||||
-1 -0.59 1
|
||||
-1 -0.58 1
|
||||
-1 -0.57 1
|
||||
-1 -0.56 1
|
||||
-1 -0.55 1
|
||||
-1 -0.54 1
|
||||
-1 -0.53 1
|
||||
-1 -0.52 1
|
||||
-1 -0.51 1
|
||||
-1 -0.5 1
|
||||
-1 -0.49 1
|
||||
-1 -0.48 1
|
||||
-1 -0.47 1
|
||||
-1 -0.46 1
|
||||
-1 -0.45 1
|
||||
-1 -0.44 1
|
||||
-1 -0.43 1
|
||||
-1 -0.42 1
|
||||
-1 -0.41 1
|
||||
-1 -0.4 1
|
||||
-1 -0.39 1
|
||||
-1 -0.38 1
|
||||
-1 -0.37 1
|
||||
-1 -0.36 1
|
||||
-1 -0.35 1
|
||||
-1 -0.34 1
|
||||
-1 -0.33 1
|
||||
-1 -0.32 1
|
||||
-1 -0.31 1
|
||||
-1 -0.3 1
|
||||
-1 -0.29 1
|
||||
-1 -0.28 1
|
||||
-1 -0.27 1
|
||||
-1 -0.26 1
|
||||
-1 -0.25 1
|
||||
-1 -0.24 1
|
||||
-1 -0.23 1
|
||||
-1 -0.22 1
|
||||
-1 -0.21 1
|
||||
-1 -0.2 1
|
||||
-1 -0.19 1
|
||||
-1 -0.18 1
|
||||
-1 -0.17 1
|
||||
-1 -0.16 1
|
||||
-1 -0.15 1
|
||||
-1 -0.14 1
|
||||
-1 -0.13 1
|
||||
-1 -0.12 1
|
||||
-1 -0.11 1
|
||||
-1 -0.1 1
|
||||
-1 -0.09 0
|
||||
-1 -0.08 0
|
||||
-1 -0.07 0
|
||||
|
@ -198,98 +198,98 @@
|
|||
-1 0.97 0
|
||||
-1 0.98 0
|
||||
-1 0.99 0
|
||||
-1 1 0
|
||||
0 -1 0
|
||||
0 -0.99 0
|
||||
0 -0.98 0
|
||||
0 -0.97 0
|
||||
0 -0.96 0
|
||||
0 -0.95 0
|
||||
0 -0.94 0
|
||||
0 -0.93 0
|
||||
0 -0.92 0
|
||||
0 -0.91 0
|
||||
0 -0.9 0
|
||||
0 -0.89 0
|
||||
0 -0.88 0
|
||||
0 -0.87 0
|
||||
0 -0.86 0
|
||||
0 -0.85 0
|
||||
0 -0.84 0
|
||||
0 -0.83 0
|
||||
0 -0.82 0
|
||||
0 -0.81 0
|
||||
0 -0.8 0
|
||||
0 -0.79 0
|
||||
0 -0.78 0
|
||||
0 -0.77 0
|
||||
0 -0.76 0
|
||||
0 -0.75 0
|
||||
0 -0.74 0
|
||||
0 -0.73 0
|
||||
0 -0.72 0
|
||||
0 -0.71 0
|
||||
0 -0.7 0
|
||||
0 -0.69 0
|
||||
0 -0.68 0
|
||||
0 -0.67 0
|
||||
0 -0.66 0
|
||||
0 -0.65 0
|
||||
0 -0.64 0
|
||||
0 -0.63 0
|
||||
0 -0.62 0
|
||||
0 -0.61 0
|
||||
0 -0.6 0
|
||||
0 -0.59 0
|
||||
0 -0.58 0
|
||||
0 -0.57 0
|
||||
0 -0.56 0
|
||||
0 -0.55 0
|
||||
0 -0.54 0
|
||||
0 -0.53 0
|
||||
0 -0.52 0
|
||||
0 -0.51 0
|
||||
0 -0.5 0
|
||||
0 -0.49 0
|
||||
0 -0.48 0
|
||||
0 -0.47 0
|
||||
0 -0.46 0
|
||||
0 -0.45 0
|
||||
0 -0.44 0
|
||||
0 -0.43 0
|
||||
0 -0.42 0
|
||||
0 -0.41 0
|
||||
0 -0.4 0
|
||||
0 -0.39 0
|
||||
0 -0.38 0
|
||||
0 -0.37 0
|
||||
0 -0.36 0
|
||||
0 -0.35 0
|
||||
0 -0.34 0
|
||||
0 -0.33 0
|
||||
0 -0.32 0
|
||||
0 -0.31 0
|
||||
0 -0.3 0
|
||||
0 -0.29 0
|
||||
0 -0.28 0
|
||||
0 -0.27 0
|
||||
0 -0.26 0
|
||||
0 -0.25 0
|
||||
0 -0.24 0
|
||||
0 -0.23 0
|
||||
0 -0.22 0
|
||||
0 -0.21 0
|
||||
0 -0.2 0
|
||||
0 -0.19 0
|
||||
0 -0.18 0
|
||||
0 -0.17 0
|
||||
0 -0.16 0
|
||||
0 -0.15 0
|
||||
0 -0.14 0
|
||||
0 -0.13 0
|
||||
0 -0.12 0
|
||||
0 -0.11 0
|
||||
0 -0.1 0
|
||||
-1 0 0
|
||||
0 -1 1
|
||||
0 -0.99 1
|
||||
0 -0.98 1
|
||||
0 -0.97 1
|
||||
0 -0.96 1
|
||||
0 -0.95 1
|
||||
0 -0.94 1
|
||||
0 -0.93 1
|
||||
0 -0.92 1
|
||||
0 -0.91 1
|
||||
0 -0.9 1
|
||||
0 -0.89 1
|
||||
0 -0.88 1
|
||||
0 -0.87 1
|
||||
0 -0.86 1
|
||||
0 -0.85 1
|
||||
0 -0.84 1
|
||||
0 -0.83 1
|
||||
0 -0.82 1
|
||||
0 -0.81 1
|
||||
0 -0.8 1
|
||||
0 -0.79 1
|
||||
0 -0.78 1
|
||||
0 -0.77 1
|
||||
0 -0.76 1
|
||||
0 -0.75 1
|
||||
0 -0.74 1
|
||||
0 -0.73 1
|
||||
0 -0.72 1
|
||||
0 -0.71 1
|
||||
0 -0.7 1
|
||||
0 -0.69 1
|
||||
0 -0.68 1
|
||||
0 -0.67 1
|
||||
0 -0.66 1
|
||||
0 -0.65 1
|
||||
0 -0.64 1
|
||||
0 -0.63 1
|
||||
0 -0.62 1
|
||||
0 -0.61 1
|
||||
0 -0.6 1
|
||||
0 -0.59 1
|
||||
0 -0.58 1
|
||||
0 -0.57 1
|
||||
0 -0.56 1
|
||||
0 -0.55 1
|
||||
0 -0.54 1
|
||||
0 -0.53 1
|
||||
0 -0.52 1
|
||||
0 -0.51 1
|
||||
0 -0.5 1
|
||||
0 -0.49 1
|
||||
0 -0.48 1
|
||||
0 -0.47 1
|
||||
0 -0.46 1
|
||||
0 -0.45 1
|
||||
0 -0.44 1
|
||||
0 -0.43 1
|
||||
0 -0.42 1
|
||||
0 -0.41 1
|
||||
0 -0.4 1
|
||||
0 -0.39 1
|
||||
0 -0.38 1
|
||||
0 -0.37 1
|
||||
0 -0.36 1
|
||||
0 -0.35 1
|
||||
0 -0.34 1
|
||||
0 -0.33 1
|
||||
0 -0.32 1
|
||||
0 -0.31 1
|
||||
0 -0.3 1
|
||||
0 -0.29 1
|
||||
0 -0.28 1
|
||||
0 -0.27 1
|
||||
0 -0.26 1
|
||||
0 -0.25 1
|
||||
0 -0.24 1
|
||||
0 -0.23 1
|
||||
0 -0.22 1
|
||||
0 -0.21 1
|
||||
0 -0.2 1
|
||||
0 -0.19 1
|
||||
0 -0.18 1
|
||||
0 -0.17 1
|
||||
0 -0.16 1
|
||||
0 -0.15 1
|
||||
0 -0.14 1
|
||||
0 -0.13 1
|
||||
0 -0.12 1
|
||||
0 -0.11 1
|
||||
0 -0.1 1
|
||||
0 -0.09 0
|
||||
0 -0.08 0
|
||||
0 -0.07 0
|
||||
|
@ -400,106 +400,106 @@
|
|||
0 0.98 0
|
||||
0 0.99 0
|
||||
0 1 0
|
||||
1 -1 0
|
||||
1 -0.99 0
|
||||
1 -0.98 0
|
||||
1 -0.97 0
|
||||
1 -0.96 0
|
||||
1 -0.95 0
|
||||
1 -0.94 0
|
||||
1 -0.93 0
|
||||
1 -0.92 0
|
||||
1 -0.91 0
|
||||
1 -0.9 0
|
||||
1 -0.89 0
|
||||
1 -0.88 0
|
||||
1 -0.87 0
|
||||
1 -0.86 0
|
||||
1 -0.85 0
|
||||
1 -0.84 0
|
||||
1 -0.83 0
|
||||
1 -0.82 0
|
||||
1 -0.81 0
|
||||
1 -0.8 0
|
||||
1 -0.79 0
|
||||
1 -0.78 0
|
||||
1 -0.77 0
|
||||
1 -0.76 0
|
||||
1 -0.75 0
|
||||
1 -0.74 0
|
||||
1 -0.73 0
|
||||
1 -0.72 0
|
||||
1 -0.71 0
|
||||
1 -0.7 0
|
||||
1 -0.69 0
|
||||
1 -0.68 0
|
||||
1 -0.67 0
|
||||
1 -0.66 0
|
||||
1 -0.65 0
|
||||
1 -0.64 0
|
||||
1 -0.63 0
|
||||
1 -0.62 0
|
||||
1 -0.61 0
|
||||
1 -0.6 0
|
||||
1 -0.59 0
|
||||
1 -0.58 0
|
||||
1 -0.57 0
|
||||
1 -0.56 0
|
||||
1 -0.55 0
|
||||
1 -0.54 0
|
||||
1 -0.53 0
|
||||
1 -0.52 0
|
||||
1 -0.51 0
|
||||
1 -0.5 0
|
||||
1 -0.49 0
|
||||
1 -0.48 0
|
||||
1 -0.47 0
|
||||
1 -0.46 0
|
||||
1 -0.45 0
|
||||
1 -0.44 0
|
||||
1 -0.43 0
|
||||
1 -0.42 0
|
||||
1 -0.41 0
|
||||
1 -0.4 0
|
||||
1 -0.39 0
|
||||
1 -0.38 0
|
||||
1 -0.37 0
|
||||
1 -0.36 0
|
||||
1 -0.35 0
|
||||
1 -0.34 0
|
||||
1 -0.33 0
|
||||
1 -0.32 0
|
||||
1 -0.31 0
|
||||
1 -0.3 0
|
||||
1 -0.29 0
|
||||
1 -0.28 0
|
||||
1 -0.27 0
|
||||
1 -0.26 0
|
||||
1 -0.25 0
|
||||
1 -0.24 0
|
||||
1 -0.23 0
|
||||
1 -0.22 0
|
||||
1 -0.21 0
|
||||
1 -0.2 0
|
||||
1 -0.19 0
|
||||
1 -0.18 0
|
||||
1 -0.17 0
|
||||
1 -0.16 0
|
||||
1 -0.15 0
|
||||
1 -0.14 0
|
||||
1 -0.13 0
|
||||
1 -0.12 0
|
||||
1 -0.11 0
|
||||
1 -0.1 0
|
||||
1 -0.09 0
|
||||
1 -0.08 0
|
||||
1 -0.07 0
|
||||
1 -0.06 0
|
||||
1 -0.05 0
|
||||
1 -0.04 0
|
||||
1 -0.03 0
|
||||
1 -0.02 0
|
||||
1 -0.01 0
|
||||
1 -1 1
|
||||
1 -0.99 1
|
||||
1 -0.98 1
|
||||
1 -0.97 1
|
||||
1 -0.96 1
|
||||
1 -0.95 1
|
||||
1 -0.94 1
|
||||
1 -0.93 1
|
||||
1 -0.92 1
|
||||
1 -0.91 1
|
||||
1 -0.9 1
|
||||
1 -0.89 1
|
||||
1 -0.88 1
|
||||
1 -0.87 1
|
||||
1 -0.86 1
|
||||
1 -0.85 1
|
||||
1 -0.84 1
|
||||
1 -0.83 1
|
||||
1 -0.82 1
|
||||
1 -0.81 1
|
||||
1 -0.8 1
|
||||
1 -0.79 1
|
||||
1 -0.78 1
|
||||
1 -0.77 1
|
||||
1 -0.76 1
|
||||
1 -0.75 1
|
||||
1 -0.74 1
|
||||
1 -0.73 1
|
||||
1 -0.72 1
|
||||
1 -0.71 1
|
||||
1 -0.7 1
|
||||
1 -0.69 1
|
||||
1 -0.68 1
|
||||
1 -0.67 1
|
||||
1 -0.66 1
|
||||
1 -0.65 1
|
||||
1 -0.64 1
|
||||
1 -0.63 1
|
||||
1 -0.62 1
|
||||
1 -0.61 1
|
||||
1 -0.6 1
|
||||
1 -0.59 1
|
||||
1 -0.58 1
|
||||
1 -0.57 1
|
||||
1 -0.56 1
|
||||
1 -0.55 1
|
||||
1 -0.54 1
|
||||
1 -0.53 1
|
||||
1 -0.52 1
|
||||
1 -0.51 1
|
||||
1 -0.5 1
|
||||
1 -0.49 1
|
||||
1 -0.48 1
|
||||
1 -0.47 1
|
||||
1 -0.46 1
|
||||
1 -0.45 1
|
||||
1 -0.44 1
|
||||
1 -0.43 1
|
||||
1 -0.42 1
|
||||
1 -0.41 1
|
||||
1 -0.4 1
|
||||
1 -0.39 1
|
||||
1 -0.38 1
|
||||
1 -0.37 1
|
||||
1 -0.36 1
|
||||
1 -0.35 1
|
||||
1 -0.34 1
|
||||
1 -0.33 1
|
||||
1 -0.32 1
|
||||
1 -0.31 1
|
||||
1 -0.3 1
|
||||
1 -0.29 1
|
||||
1 -0.28 1
|
||||
1 -0.27 1
|
||||
1 -0.26 1
|
||||
1 -0.25 1
|
||||
1 -0.24 1
|
||||
1 -0.23 1
|
||||
1 -0.22 1
|
||||
1 -0.21 1
|
||||
1 -0.2 1
|
||||
1 -0.19 1
|
||||
1 -0.18 1
|
||||
1 -0.17 1
|
||||
1 -0.16 1
|
||||
1 -0.15 1
|
||||
1 -0.14 1
|
||||
1 -0.13 1
|
||||
1 -0.12 1
|
||||
1 -0.11 1
|
||||
1 -0.1 1
|
||||
1 -0.09 1
|
||||
1 -0.08 1
|
||||
1 -0.07 1
|
||||
1 -0.06 1
|
||||
1 -0.05 1
|
||||
1 -0.04 1
|
||||
1 -0.03 1
|
||||
1 -0.02 1
|
||||
1 -0.01 1
|
||||
1 0 0
|
||||
1 0.01 0
|
||||
1 0.02 0
|
|
@ -0,0 +1,80 @@
|
|||
# CNTK example: Simple2d
|
||||
|
||||
## Overview
|
||||
|
||||
|:--------|:---|
|
||||
Data: |Two dimensional synthetic data
|
||||
Purpose: |Showcase how to train a simple CNTK network (CPU and GPU) and how to use it for scoring (decoding)
|
||||
Network: |SimpleNetworkBuilder, 2 hidden layers with 50 sigmoid nodes each, cross entropy with softmax
|
||||
Training: |Stochastic gradient descent with momentum
|
||||
Comments: |There are two config files: Simple.config uses a single CPU or GPU, Multigpu.config uses data-parallel SGD for training on multiple GPUs
|
||||
|
||||
## Running the example
|
||||
|
||||
### Getting the data
|
||||
|
||||
The data for this example is already contained in the folder Demos/Simple2d/Data/.
|
||||
|
||||
### Setup
|
||||
|
||||
Compile the sources to generate the cntk executable (not required if you downloaded the binaries).
|
||||
|
||||
__Windows:__ Add the folder of the cntk executable to your path
|
||||
(e.g. `set PATH=%PATH%;c:/src/cntk/x64/Debug/;`)
|
||||
or prefix the call to the cntk executable with the corresponding folder.
|
||||
|
||||
__Linux:__ Add the folder of the cntk executable to your path
|
||||
(e.g. `export PATH=$PATH:$HOME/src/cntk/build/debug/bin/`)
|
||||
or prefix the call to the cntk executable with the corresponding folder.
|
||||
|
||||
### Run
|
||||
|
||||
Run the example from the Demos/Simple2d/Data folder using:
|
||||
|
||||
`cntk configFile=../Config/Simple.config`
|
||||
|
||||
or run from any folder and specify the Data folder as the `currentDirectory`,
|
||||
e.g. running from the Demos/Simple2d folder using:
|
||||
|
||||
`cntk configFile=Config/Simple.config currentDirectory=Data`
|
||||
|
||||
The output folder will be created inside Demos/Simple2d/.
|
||||
|
||||
## Details
|
||||
|
||||
### Config files
|
||||
|
||||
The config files define a `RootDir` variable and sevearal other variables for directories.
|
||||
The `ConfigDir` and `ModelDir` variables define the folders for additional config files and for model files.
|
||||
These variables will be overwritten when running on the Philly cluster.
|
||||
__It is therefore recommended to generally use `ConfigDir` and `ModelDir` in all config files.__
|
||||
To run on CPU set `deviceId = -1`, to run on GPU set deviceId to "auto" or a specific value >= 0.
|
||||
|
||||
Both config files are nearly identical.
|
||||
Multigpu.config has some additional parameters for parallel training (see parallelTrain in the file).
|
||||
Both files define the following three commands: train, test and output.
|
||||
By default only train and test are executed:
|
||||
|
||||
`command=Simple_Demo_Train:Simple_Demo_Test`
|
||||
|
||||
The prediction error on the test data is written to stdout.
|
||||
The trained models for each epoch are stored in the output models folder.
|
||||
In the case of the Multigpu config the console output is written to a file `stderr = DemoOut`.
|
||||
|
||||
### Additional files
|
||||
|
||||
The 'AdditionalFiles' folder contains the Matlab script that generates the
|
||||
training and test data as well as the plots that are provided in the folder.
|
||||
The data is synthetic 2d data representing two classes that are separated by a sinusoidal boundary.
|
||||
SimpleDemoDataReference.png shows a plot of the training data.
|
||||
|
||||
![training data plot](AdditionalFiles/SimpleDemoDataReference.png)
|
||||
|
||||
## Using a trained model
|
||||
|
||||
The Test (e.g. Simple_Demo_Test) and the Output (e.g. Simple_Demo_Output) commands
|
||||
specified in the config files use the trained model to compute labels for data specified in the SimpleDataTest.txt file.
|
||||
The Test command computes prediction error, cross entropy and perplexity for the test set and outputs them to the console.
|
||||
The Output command writes for each test instance the likelihood per label to a file `outputPath = $OutputDir$/SimpleOutput`.
|
||||
The model that is used to compute the labels in these commands is defined
|
||||
in the modelPath variable at the beginning of the file `modelPath=$modelDir$/simple.dnn`.
|
|
@ -0,0 +1,53 @@
|
|||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
|
||||
<html>
|
||||
<head>
|
||||
<title>AN4 License Terms</title>
|
||||
|
||||
<meta http-equiv="content-type"
|
||||
content="text/html; charset=ISO-8859-1">
|
||||
</head>
|
||||
<body>
|
||||
|
||||
<h2>AN4 License Terms</h2>
|
||||
|
||||
<p>This audio database is free for use for any purpose (commercial or otherwise)
|
||||
subject to the restrictions detailed below.</p>
|
||||
|
||||
<pre>
|
||||
/* ====================================================================
|
||||
* Copyright (c) 1991-2005 Carnegie Mellon University. All rights
|
||||
* reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
*
|
||||
* This work was supported in part by funding from the Defense Advanced
|
||||
* Research Projects Agency and the National Science Foundation of the
|
||||
* United States of America, and the CMU Sphinx Speech Consortium.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY CARNEGIE MELLON UNIVERSITY ``AS IS'' AND
|
||||
* ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
||||
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY
|
||||
* NOR ITS EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* ====================================================================
|
||||
*/
|
||||
</pre>
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,93 @@
|
|||
# Parameters can be overwritten on the command line
|
||||
# for example: cntk configFile=myConfigFile RootDir=../..
|
||||
# For running from Visual Studio add
|
||||
# currentDirectory=$(SolutionDir)/<path to corresponding data folder>
|
||||
RootDir = ".."
|
||||
|
||||
ConfigDir = "$RootDir$/Config"
|
||||
DataDir = "$RootDir$/Data"
|
||||
OutputDir = "$RootDir$/Output"
|
||||
ModelDir = "$OutputDir$/Models"
|
||||
|
||||
# deviceId=-1 for CPU, >=0 for GPU devices, "auto" chooses the best GPU, or CPU if no usable GPU is available
|
||||
deviceId = -1
|
||||
|
||||
command = speechTrain
|
||||
|
||||
precision = "float"
|
||||
traceLevel = "1"
|
||||
modelPath = "$ModelDir$/cntkSpeechFF.dnn"
|
||||
parallelTrain = true
|
||||
|
||||
#######################################
|
||||
# TRAINING CONFIG #
|
||||
#######################################
|
||||
|
||||
speechTrain = [
|
||||
action = "train"
|
||||
|
||||
SimpleNetworkBuilder = [
|
||||
layerSizes = 363:512:512:132
|
||||
trainingCriterion = "CrossEntropyWithSoftmax"
|
||||
evalCriterion = "ErrorPrediction"
|
||||
layerTypes = "Sigmoid"
|
||||
initValueScale = 1.0
|
||||
applyMeanVarNorm = true
|
||||
uniformInit = true
|
||||
needPrior = true
|
||||
]
|
||||
|
||||
SGD = [
|
||||
epochSize = 20480
|
||||
minibatchSize = 256:1024:2048
|
||||
learningRatesPerMB = 1.0:0.5:0.1
|
||||
numMBsToShowResult = 10
|
||||
momentumPerMB = 0.9:0.656119
|
||||
dropoutRate = 0.0
|
||||
maxEpochs = 3
|
||||
keepCheckPointFiles = true
|
||||
|
||||
# Additional optional parameters are: parallelizationStartEpoch
|
||||
parallelTrain = [
|
||||
parallelizationMethod = "DataParallelSGD"
|
||||
distributedMBReading = true
|
||||
|
||||
# Additional optional parameters are: useZeroThresholdFor1BitQuantization
|
||||
dataParallelSGD = [
|
||||
gradientBits = 1
|
||||
]
|
||||
]
|
||||
|
||||
autoAdjust = [
|
||||
reduceLearnRateIfImproveLessThan = 0
|
||||
loadBestModel = true
|
||||
increaseLearnRateIfImproveMoreThan = 1000000000
|
||||
learnRateDecreaseFactor = 0.5
|
||||
learnRateIncreaseFactor = 1.382
|
||||
autoAdjustLR = "adjustAfterEpoch"
|
||||
]
|
||||
|
||||
clippingThresholdPerSample = 1#INF
|
||||
]
|
||||
|
||||
reader = [
|
||||
readerType = "HTKMLFReader"
|
||||
readMethod = "blockRandomize"
|
||||
miniBatchMode = "partial"
|
||||
randomize = "auto"
|
||||
verbosity = 0
|
||||
|
||||
features = [
|
||||
dim = 363
|
||||
type = "real"
|
||||
scpFile = "$DataDir$/glob_0000.scp"
|
||||
]
|
||||
|
||||
labels = [
|
||||
mlfFile = "$DataDir$/glob_0000.mlf"
|
||||
labelMappingFile = "$DataDir$/state.list"
|
||||
labelDim = 132
|
||||
labelType = "category"
|
||||
]
|
||||
]
|
||||
]
|
|
@ -0,0 +1,67 @@
|
|||
# Parameters can be overwritten on the command line
|
||||
# for example: cntk configFile=myConfigFile RootDir=../..
|
||||
# For running from Visual Studio add
|
||||
# currentDirectory=$(SolutionDir)/<path to corresponding data folder>
|
||||
RootDir = ".."
|
||||
|
||||
ConfigDir = "$RootDir$/Config"
|
||||
DataDir = "$RootDir$/Data"
|
||||
OutputDir = "$RootDir$/Output"
|
||||
ModelDir = "$OutputDir$/Models"
|
||||
|
||||
# deviceId = -1 for CPU, >=0 for GPU devices, "auto" chooses the best GPU, or CPU if no usable GPU is available
|
||||
deviceId = -1
|
||||
|
||||
command = speechTrain
|
||||
|
||||
precision = "float"
|
||||
traceLevel = 1
|
||||
modelPath = "$ModelDir$/cntkSpeechLSTM.dnn"
|
||||
parallelTrain = true
|
||||
|
||||
#######################################
|
||||
# TRAINING CONFIG #
|
||||
#######################################
|
||||
|
||||
frameMode = false
|
||||
truncated = true
|
||||
|
||||
speechTrain = [
|
||||
action = "train"
|
||||
|
||||
NDLNetworkBuilder = [
|
||||
networkDescription = "$ConfigDir$/lstmp-3layer-opt.ndl"
|
||||
]
|
||||
|
||||
SGD = [
|
||||
epochSize = 20480
|
||||
minibatchSize = 2048
|
||||
learningRatesPerMB = 0.5
|
||||
numMBsToShowResult = 10
|
||||
momentumPerMB = 0:0.9
|
||||
maxEpochs = 4
|
||||
keepCheckPointFiles = true
|
||||
]
|
||||
|
||||
reader = [
|
||||
readerType = "HTKMLFReader"
|
||||
readMethod = "blockRandomize"
|
||||
miniBatchMode = "partial"
|
||||
nbruttsineachrecurrentiter = 32
|
||||
randomize = "auto"
|
||||
verbosity = 0
|
||||
|
||||
features = [
|
||||
dim = 363
|
||||
type = "real"
|
||||
scpFile = "$DataDir$/glob_0000.scp"
|
||||
]
|
||||
|
||||
labels = [
|
||||
mlfFile = "$DataDir$/glob_0000.mlf"
|
||||
labelMappingFile = "$DataDir$/state.list"
|
||||
labelDim = 132
|
||||
labelType = "category"
|
||||
]
|
||||
]
|
||||
]
|
|
@ -0,0 +1,213 @@
|
|||
# macros to include
|
||||
load = ndlMacroDefine
|
||||
|
||||
# the actual NDL that defines the network
|
||||
run = ndlCreateNetwork_LSTMP_c1024_p256_x3
|
||||
|
||||
ndlMacroDefine = [
|
||||
# Macro definitions
|
||||
MeanVarNorm(x)=[
|
||||
xMean = Mean(x);
|
||||
xStdDev = InvStdDev(x)
|
||||
xNorm = PerDimMeanVarNormalization(x, xMean, xStdDev)
|
||||
]
|
||||
|
||||
LogPrior(labels) = [
|
||||
prior = Mean(labels)
|
||||
logPrior = Log(Prior)
|
||||
]
|
||||
|
||||
LSTMPComponent(inputDim, outputDim, cellDim, inputx, cellDimX2, cellDimX3, cellDimX4) = [
|
||||
wx = Parameter(cellDimX4, inputDim, init="uniform", initValueScale=1);
|
||||
b = Parameter(cellDimX4, 1, init="fixedValue", value=0.0);
|
||||
Wh = Parameter(cellDimX4, outputDim, init="uniform", initValueScale=1);
|
||||
|
||||
Wci = Parameter(cellDim, init="uniform", initValueScale=1);
|
||||
Wcf = Parameter(cellDim, init="uniform", initValueScale=1);
|
||||
Wco = Parameter(cellDim, init="uniform", initValueScale=1);
|
||||
|
||||
dh = PastValue(outputDim, output, timeStep=1);
|
||||
dc = PastValue(cellDim, ct, timeStep=1);
|
||||
|
||||
wxx = Times(wx, inputx);
|
||||
wxxpb = Plus(wxx, b);
|
||||
|
||||
whh = Times(wh, dh);
|
||||
|
||||
wxxpbpwhh = Plus(wxxpb,whh)
|
||||
|
||||
G1 = RowSlice(0, cellDim, wxxpbpwhh)
|
||||
G2 = RowSlice(cellDim, cellDim, wxxpbpwhh)
|
||||
G3 = RowSlice(cellDimX2, cellDim, wxxpbpwhh);
|
||||
G4 = RowSlice(cellDimX3, cellDim, wxxpbpwhh);
|
||||
|
||||
Wcidc = DiagTimes(Wci, dc);
|
||||
it = Sigmoid (Plus ( G1, Wcidc));
|
||||
|
||||
bit = ElementTimes(it, Tanh( G2 ));
|
||||
|
||||
Wcfdc = DiagTimes(Wcf, dc);
|
||||
ft = Sigmoid( Plus (G3, Wcfdc));
|
||||
|
||||
bft = ElementTimes(ft, dc);
|
||||
|
||||
ct = Plus(bft, bit);
|
||||
|
||||
Wcoct = DiagTimes(Wco, ct);
|
||||
ot = Sigmoid( Plus( G4, Wcoct));
|
||||
|
||||
mt = ElementTimes(ot, Tanh(ct));
|
||||
|
||||
Wmr = Parameter(outputDim, cellDim, init="uniform", initValueScale=1);
|
||||
output = Times(Wmr, mt);
|
||||
]
|
||||
|
||||
LSTMPComponentBetter(inputDim, outputDim, cellDim, inputx, cellDimX2, cellDimX3, cellDimX4) = [
|
||||
wx = Parameter(cellDimX4, inputDim, init="uniform", initValueScale=1);
|
||||
b = Parameter(cellDimX4, 1, init="fixedValue", value=0.0);
|
||||
Wh = Parameter(cellDimX4, outputDim, init="uniform", initValueScale=1);
|
||||
|
||||
Wci = Parameter(cellDim, init="uniform", initValueScale=1);
|
||||
Wcf = Parameter(cellDim, init="uniform", initValueScale=1);
|
||||
Wco = Parameter(cellDim, init="uniform", initValueScale=1);
|
||||
|
||||
dh = PastValue(outputDim, output, timeStep=1);
|
||||
dc = PastValue(cellDim, ct, timeStep=1);
|
||||
|
||||
wxx = Times(wx, inputx);
|
||||
wxxpb = Plus(wxx, b);
|
||||
|
||||
whh = Times(wh, dh);
|
||||
|
||||
Wxix = RowSlice(0, cellDim, wxx); #Times(Wxi, inputx);
|
||||
Whidh = RowSlice(0, cellDim, whh); #Times(Whi, dh);
|
||||
Wcidc = DiagTimes(Wci, dc);
|
||||
|
||||
it = Sigmoid (Plus ( Plus (Wxix, Whidh), Wcidc));
|
||||
|
||||
Wxcx = RowSlice(cellDim, cellDim, wxx); #Times(Wxc, inputx);
|
||||
Whcdh = RowSlice(cellDim, cellDim, whh); #Times(Whc, dh);
|
||||
bit = ElementTimes(it, Tanh( Plus(Wxcx, Whcdh)));
|
||||
|
||||
Wxfx = RowSlice(cellDimX2, cellDim, wxx); #Times(Wxf, inputx);
|
||||
Whfdh = RowSlice(cellDimX2, cellDim, whh); #Times(Whf, dh);
|
||||
Wcfdc = DiagTimes(Wcf, dc);
|
||||
|
||||
ft = Sigmoid( Plus (Plus (Wxfx, Whfdh), Wcfdc));
|
||||
|
||||
bft = ElementTimes(ft, dc);
|
||||
|
||||
ct = Plus(bft, bit);
|
||||
|
||||
Wxox = RowSlice(cellDimX3, cellDim, wxx); #Times(Wxo, inputx);
|
||||
Whodh = RowSlice(cellDimX3, cellDim, whh); #Times(Who, dh);
|
||||
Wcoct = DiagTimes(Wco, ct);
|
||||
|
||||
ot = Sigmoid( Plus( Plus( Wxox, Whodh), Wcoct));
|
||||
|
||||
mt = ElementTimes(ot, Tanh(ct));
|
||||
|
||||
Wmr = Parameter(outputDim, cellDim, init="uniform", initValueScale=1);
|
||||
output = Times(Wmr, mt);
|
||||
]
|
||||
|
||||
LSTMPComponentNaive(inputDim, outputDim, cellDim, inputx) = [
|
||||
Wxo = Parameter(cellDim, inputDim, init="uniform", initValueScale=1);
|
||||
Wxi = Parameter(cellDim, inputDim, init="uniform", initValueScale=1);
|
||||
Wxf = Parameter(cellDim, inputDim, init="uniform", initValueScale=1);
|
||||
Wxc = Parameter(cellDim, inputDim, init="uniform", initValueScale=1);
|
||||
|
||||
bo = Parameter(cellDim, init="fixedValue", value=0.0);
|
||||
bc = Parameter(cellDim, init="fixedValue", value=0.0);
|
||||
bi = Parameter(cellDim, init="fixedValue", value=0.0);
|
||||
bf = Parameter(cellDim, init="fixedValue", value=0.0);
|
||||
|
||||
Whi = Parameter(cellDim, outputDim, init="uniform", initValueScale=1);
|
||||
|
||||
Wci = Parameter(cellDim, init="uniform", initValueScale=1);
|
||||
|
||||
|
||||
Whf = Parameter(cellDim, outputDim, init="uniform", initValueScale=1);
|
||||
Wcf = Parameter(cellDim, init="uniform", initValueScale=1);
|
||||
Who = Parameter(cellDim, outputDim, init="uniform", initValueScale=1);
|
||||
Wco = Parameter(cellDim, init="uniform", initValueScale=1);
|
||||
Whc = Parameter(cellDim, outputDim, init="uniform", initValueScale=1);
|
||||
|
||||
dh = PastValue(outputDim, output, timeStep=1);
|
||||
dc = PastValue(cellDim, ct, timeStep=1);
|
||||
|
||||
|
||||
Wxix = Times(Wxi, inputx);
|
||||
Whidh = Times(Whi, dh);
|
||||
Wcidc = DiagTimes(Wci, dc);
|
||||
|
||||
it = Sigmoid (Plus ( Plus (Plus (Wxix, bi), Whidh), Wcidc));
|
||||
|
||||
Wxcx = Times(Wxc, inputx);
|
||||
Whcdh = Times(Whc, dh);
|
||||
bit = ElementTimes(it, Tanh( Plus(Wxcx, Plus(Whcdh, bc))));
|
||||
|
||||
Wxfx = Times(Wxf, inputx);
|
||||
Whfdh = Times(Whf, dh);
|
||||
Wcfdc = DiagTimes(Wcf, dc);
|
||||
|
||||
ft = Sigmoid( Plus (Plus (Plus(Wxfx, bf), Whfdh), Wcfdc));
|
||||
|
||||
bft = ElementTimes(ft, dc);
|
||||
|
||||
ct = Plus(bft, bit);
|
||||
|
||||
Wxox = Times(Wxo, inputx);
|
||||
Whodh = Times(Who, dh);
|
||||
Wcoct = DiagTimes(Wco, ct);
|
||||
|
||||
ot = Sigmoid( Plus( Plus( Plus(Wxox, bo), Whodh), Wcoct));
|
||||
|
||||
mt = ElementTimes(ot, Tanh(ct));
|
||||
|
||||
Wmr = Parameter(outputDim, cellDim, init="uniform", initValueScale=1);
|
||||
output = Times(Wmr, mt);
|
||||
]
|
||||
]
|
||||
|
||||
ndlCreateNetwork_LSTMP_c1024_p256_x3 = [
|
||||
# define basic i/o
|
||||
basefeatDim = 363
|
||||
rowSliceStart = 1200
|
||||
featDim = 363
|
||||
labelDim = 132
|
||||
cellDim = 1024
|
||||
cellDimX2 = 2048
|
||||
cellDimX3 = 3072
|
||||
cellDimX4 = 4096
|
||||
hiddenDim = 512
|
||||
|
||||
features = Input(featDim)
|
||||
labels = Input(labelDim)
|
||||
|
||||
featNorm = MeanVarNorm(features)
|
||||
|
||||
# layer 1
|
||||
LSTMoutput1 = LSTMPComponent(basefeatDim, hiddenDim, cellDim, featNorm, cellDimX2, cellDimX3, cellDimX4);
|
||||
# layer 2
|
||||
LSTMoutput2 = LSTMPComponent(hiddenDim, hiddenDim, cellDim, LSTMoutput1, cellDimX2, cellDimX3, cellDimX4);
|
||||
# layer 3
|
||||
LSTMoutput3 = LSTMPComponent(hiddenDim, hiddenDim, cellDim, LSTMoutput2, cellDimX2, cellDimX3, cellDimX4);
|
||||
|
||||
W = Parameter(labelDim, hiddenDim, init="uniform", initValueScale=1);
|
||||
b = Parameter(labelDim, 1, init="fixedValue", value=0);
|
||||
LSTMoutputW = Plus(Times(W, LSTMoutput3), b);
|
||||
|
||||
ce = CrossEntropyWithSoftmax(labels, LSTMoutputW);
|
||||
err = ErrorPrediction(labels, LSTMoutputW);
|
||||
|
||||
logPrior = LogPrior(labels)
|
||||
scaledLogLikelihood = Minus(LSTMoutputW, logPrior)
|
||||
|
||||
# Special Nodes
|
||||
FeatureNodes = (features)
|
||||
LabelNodes = (labels)
|
||||
CriterionNodes = (ce)
|
||||
EvalNodes = (err)
|
||||
OutputNodes = (scaledLogLikelihood)
|
||||
]
|
|
@ -0,0 +1,948 @@
|
|||
An4/71/71/cen5-fjam-b.mfc=000000000.chunk[0,367]
|
||||
An4/213/213/cen4-fsaf2-b.mfc=000000000.chunk[368,805]
|
||||
An4/513/513/cen7-mgah-b.mfc=000000000.chunk[806,1173]
|
||||
An4/614/614/cen7-mkdb-b.mfc=000000000.chunk[1174,1421]
|
||||
An4/507/507/cen1-mgah-b.mfc=000000000.chunk[1422,1669]
|
||||
An4/693/693/cen8-mmkw-b.mfc=000000000.chunk[1670,2027]
|
||||
An4/918/918/cen4-mtos-b.mfc=000000000.chunk[2028,2335]
|
||||
An4/477/477/an257-mewl-b.mfc=000000000.chunk[2336,2943]
|
||||
An4/454/454/an70-meht-b.mfc=000000000.chunk[2944,3021]
|
||||
An4/254/254/cen6-ftmj-b.mfc=000000000.chunk[3022,3249]
|
||||
An4/946/946/cen6-mwhw-b.mfc=000000000.chunk[3250,3467]
|
||||
An4/122/122/cen4-fkdo-b.mfc=000000000.chunk[3468,3735]
|
||||
An4/181/181/an183-fnsv-b.mfc=000000000.chunk[3736,4093]
|
||||
An4/93/93/cen1-fjmd-b.mfc=000000000.chunk[4094,4251]
|
||||
An4/128/128/an62-flmm2-b.mfc=000000000.chunk[4252,4409]
|
||||
An4/688/688/cen3-mmkw-b.mfc=000000000.chunk[4410,4617]
|
||||
An4/872/872/an332-msrb-b.mfc=000000000.chunk[4618,4985]
|
||||
An4/624/624/cen5-mkem-b.mfc=000000000.chunk[4986,5383]
|
||||
An4/146/146/cen2-flrp-b.mfc=000000000.chunk[5384,5541]
|
||||
An4/198/198/cen2-fplp-b.mfc=000000000.chunk[5542,5969]
|
||||
An4/239/239/cen4-ftal-b.mfc=000000000.chunk[5970,6187]
|
||||
An4/49/49/an291-ffmm-b.mfc=000000000.chunk[6188,6335]
|
||||
An4/306/306/cen7-mbmg-b.mfc=000000000.chunk[6336,6733]
|
||||
An4/252/252/cen4-ftmj-b.mfc=000000000.chunk[6734,7171]
|
||||
An4/800/800/an359-mscg2-b.mfc=000000000.chunk[7172,7509]
|
||||
An4/771/771/an236-mrjc2-b.mfc=000000000.chunk[7510,7597]
|
||||
An4/880/880/cen5-msrb-b.mfc=000000000.chunk[7598,7955]
|
||||
An4/795/795/cen7-mrmg-b.mfc=000000000.chunk[7956,8293]
|
||||
An4/821/821/cen7-msct-b.mfc=000000000.chunk[8294,8611]
|
||||
An4/255/255/cen7-ftmj-b.mfc=000000000.chunk[8612,8949]
|
||||
An4/580/580/an58-mjhp-b.mfc=000000000.chunk[8950,9267]
|
||||
An4/70/70/cen4-fjam-b.mfc=000000000.chunk[9268,9595]
|
||||
An4/528/528/an171-mjda-b.mfc=000000000.chunk[9596,9963]
|
||||
An4/901/901/an35-mtje-b.mfc=000000000.chunk[9964,10371]
|
||||
An4/776/776/cen1-mrjc2-b.mfc=000000000.chunk[10372,10779]
|
||||
An4/908/908/cen7-mtje-b.mfc=000000000.chunk[10780,11257]
|
||||
An4/603/603/an316-mkdb-b.mfc=000000000.chunk[11258,11565]
|
||||
An4/544/544/an20-mjdr-b.mfc=000000000.chunk[11566,11853]
|
||||
An4/243/243/cen8-ftal-b.mfc=000000000.chunk[11854,12071]
|
||||
An4/891/891/cen3-mtcv-b.mfc=000000000.chunk[12072,12269]
|
||||
An4/245/245/an212-ftmj-b.mfc=000000000.chunk[12270,12647]
|
||||
An4/156/156/an119-fmjc-b.mfc=000000000.chunk[12648,13055]
|
||||
An4/446/446/cen5-meab-b.mfc=000000000.chunk[13056,13483]
|
||||
An4/801/801/an360-mscg2-b.mfc=000000000.chunk[13484,13601]
|
||||
An4/538/538/cen6-mjda-b.mfc=000000000.chunk[13602,13799]
|
||||
An4/282/282/an1-mblw-b.mfc=000000000.chunk[13800,13947]
|
||||
An4/589/589/cen7-mjhp-b.mfc=000000000.chunk[13948,14275]
|
||||
An4/710/710/an389-mmtm-b.mfc=000000000.chunk[14276,14603]
|
||||
An4/638/638/cen6-mmaf-b.mfc=000000000.chunk[14604,14811]
|
||||
An4/874/874/an334-msrb-b.mfc=000000000.chunk[14812,15029]
|
||||
An4/40/40/an40-fejs-b.mfc=000000000.chunk[15030,15337]
|
||||
An4/176/176/cen6-fmjd-b.mfc=000000000.chunk[15338,15545]
|
||||
An4/732/732/cen8-mnfe-b.mfc=000000000.chunk[15546,15773]
|
||||
An4/575/575/cen6-mjgk-b.mfc=000000000.chunk[15774,16191]
|
||||
An4/234/234/an329-ftal-b.mfc=000000000.chunk[16192,16429]
|
||||
An4/497/497/cen4-mfaa-b.mfc=000000000.chunk[16430,16687]
|
||||
An4/619/619/an189-mkem-b.mfc=000000000.chunk[16688,16785]
|
||||
An4/303/303/cen4-mbmg-b.mfc=000000000.chunk[16786,17093]
|
||||
An4/502/502/an196-mgah-b.mfc=000000000.chunk[17094,17291]
|
||||
An4/436/436/cen8-mdxs-b.mfc=000000000.chunk[17292,17619]
|
||||
An4/889/889/cen1-mtcv-b.mfc=000000000.chunk[17620,18227]
|
||||
An4/697/697/an384-mmsh-b.mfc=000000000.chunk[18228,18475]
|
||||
An4/413/413/an108-mdxn-b.mfc=000000000.chunk[18476,18643]
|
||||
An4/165/165/cen8-fmjc-b.mfc=000000000.chunk[18644,18901]
|
||||
An4/186/186/cen3-fnsv-b.mfc=000000000.chunk[18902,19149]
|
||||
An4/274/274/cen1-mblb-b.mfc=000000000.chunk[19150,19417]
|
||||
An4/309/309/an202-mcel-b.mfc=000000000.chunk[19418,19525]
|
||||
An4/725/725/cen1-mnfe-b.mfc=000000000.chunk[19526,19783]
|
||||
An4/699/699/cen1-mmsh-b.mfc=000000000.chunk[19784,20051]
|
||||
An4/833/833/cen6-msjm-b.mfc=000000000.chunk[20052,20299]
|
||||
An4/857/857/cen4-mskh-b.mfc=000000000.chunk[20300,20687]
|
||||
An4/734/734/an82-mnjl-b.mfc=000000000.chunk[20688,21025]
|
||||
An4/340/340/cen3-mcfl-b.mfc=000000000.chunk[21026,21263]
|
||||
An4/36/36/an36-fejs-b.mfc=000000000.chunk[21264,21641]
|
||||
An4/690/690/cen5-mmkw-b.mfc=000000000.chunk[21642,22069]
|
||||
An4/545/545/cen1-mjdr-b.mfc=000000000.chunk[22070,22347]
|
||||
An4/115/115/an132-fkdo-b.mfc=000000000.chunk[22348,22505]
|
||||
An4/48/48/cen8-fejs-b.mfc=000000000.chunk[22506,22723]
|
||||
An4/518/518/an249-mjbh-b.mfc=000000000.chunk[22724,22811]
|
||||
An4/89/89/an6-fjmd-b.mfc=000000000.chunk[22812,22889]
|
||||
An4/668/668/an337-mmdg-b.mfc=000000000.chunk[22890,23007]
|
||||
An4/622/622/cen2-mkem-b.mfc=000000000.chunk[23008,23175]
|
||||
An4/8/8/cen5-fash-b.mfc=000000000.chunk[23176,23623]
|
||||
An4/601/601/cen7-mjjs2-b.mfc=000000000.chunk[23624,24051]
|
||||
An4/480/480/an260-mewl-b.mfc=000000000.chunk[24052,24409]
|
||||
An4/182/182/an184-fnsv-b.mfc=000000000.chunk[24410,24497]
|
||||
An4/179/179/an181-fnsv-b.mfc=000000000.chunk[24498,24825]
|
||||
An4/92/92/an9-fjmd-b.mfc=000000000.chunk[24826,25003]
|
||||
An4/164/164/cen7-fmjc-b.mfc=000000000.chunk[25004,25251]
|
||||
An4/16/16/cen2-fbbh-b.mfc=000000000.chunk[25252,25549]
|
||||
An4/657/657/an49-mmap-b.mfc=000000000.chunk[25550,25867]
|
||||
An4/723/723/an349-mnfe-b.mfc=000000000.chunk[25868,26325]
|
||||
An4/700/700/cen2-mmsh-b.mfc=000000000.chunk[26326,26453]
|
||||
An4/675/675/cen4-mmdg-b.mfc=000000000.chunk[26454,26861]
|
||||
An4/386/386/an112-mdcs2-b.mfc=000000000.chunk[26862,27129]
|
||||
An4/152/152/cen8-flrp-b.mfc=000000000.chunk[27130,27347]
|
||||
An4/740/740/cen3-mnjl-b.mfc=000000000.chunk[27348,27465]
|
||||
An4/370/370/cen7-mcsc-b.mfc=000000000.chunk[27466,27783]
|
||||
An4/683/683/an364-mmkw-b.mfc=000000000.chunk[27784,27861]
|
||||
An4/440/440/an139-meab-b.mfc=000000000.chunk[27862,28089]
|
||||
An4/789/789/cen1-mrmg-b.mfc=000000000.chunk[28090,28427]
|
||||
An4/611/611/cen4-mkdb-b.mfc=000000000.chunk[28428,28685]
|
||||
An4/10/10/an86-fbbh-b.mfc=000000000.chunk[28686,29013]
|
||||
An4/343/343/cen6-mcfl-b.mfc=000000000.chunk[29014,29251]
|
||||
An4/438/438/an137-meab-b.mfc=000000000.chunk[29252,29669]
|
||||
An4/456/456/cen2-meht-b.mfc=000000000.chunk[29670,29817]
|
||||
An4/489/489/an161-mfaa-b.mfc=000000000.chunk[29818,30075]
|
||||
An4/53/53/an295-ffmm-b.mfc=000000000.chunk[30076,30363]
|
||||
An4/702/702/cen4-mmsh-b.mfc=000000000.chunk[30364,30681]
|
||||
An4/777/777/cen2-mrjc2-b.mfc=000000000.chunk[30682,30999]
|
||||
An4/873/873/an333-msrb-b.mfc=000000000.chunk[31000,31097]
|
||||
An4/768/768/cen6-mrcb-b.mfc=000000000.chunk[31098,31275]
|
||||
An4/552/552/cen8-mjdr-b.mfc=000000000.chunk[31276,31503]
|
||||
An4/631/631/an54-mmaf-b.mfc=000000000.chunk[31504,31611]
|
||||
An4/476/476/an256-mewl-b.mfc=000000000.chunk[31612,31689]
|
||||
An4/151/151/cen7-flrp-b.mfc=000000000.chunk[31690,31937]
|
||||
An4/920/920/cen6-mtos-b.mfc=000000000.chunk[31938,32145]
|
||||
An4/358/358/cen8-mcrt-b.mfc=000000000.chunk[32146,32463]
|
||||
An4/177/177/cen7-fmjd-b.mfc=000000000.chunk[32464,32761]
|
||||
An4/635/635/cen3-mmaf-b.mfc=000000000.chunk[32762,32929]
|
||||
An4/719/719/cen8-mmtm-b.mfc=000000000.chunk[32930,33207]
|
||||
An4/750/750/cen1-mrab-b.mfc=000000000.chunk[33208,33395]
|
||||
An4/755/755/cen6-mrab-b.mfc=000000000.chunk[33396,33573]
|
||||
An4/721/721/an347-mnfe-b.mfc=000000000.chunk[33574,33661]
|
||||
An4/380/380/cen4-mdcs-b.mfc=000000000.chunk[33662,33909]
|
||||
An4/625/625/cen6-mkem-b.mfc=000000000.chunk[33910,34117]
|
||||
An4/106/106/cen1-fkai-b.mfc=000000000.chunk[34118,34295]
|
||||
An4/658/658/an50-mmap-b.mfc=000000000.chunk[34296,34513]
|
||||
An4/402/402/an210-mdmc-b.mfc=000000000.chunk[34514,35021]
|
||||
An4/192/192/an91-fplp-b.mfc=000000000.chunk[35022,35469]
|
||||
An4/416/416/cen1-mdxn-b.mfc=000000000.chunk[35470,35757]
|
||||
An4/161/161/cen4-fmjc-b.mfc=000000000.chunk[35758,35965]
|
||||
An4/797/797/an356-mscg2-b.mfc=000000000.chunk[35966,36183]
|
||||
An4/433/433/cen5-mdxs-b.mfc=000000000.chunk[36184,36691]
|
||||
An4/57/57/cen4-ffmm-b.mfc=000000000.chunk[36692,37119]
|
||||
An4/157/157/an120-fmjc-b.mfc=000000000.chunk[37120,37347]
|
||||
An4/272/272/an374-mblb-b.mfc=000000000.chunk[37348,37575]
|
||||
An4/549/549/cen5-mjdr-b.mfc=000000000.chunk[37576,37903]
|
||||
An4/41/41/cen1-fejs-b.mfc=000000000.chunk[37904,38341]
|
||||
An4/290/290/cen4-mblw-b.mfc=000000000.chunk[38342,38549]
|
||||
An4/701/701/cen3-mmsh-b.mfc=000000000.chunk[38550,38677]
|
||||
An4/398/398/an206-mdmc-b.mfc=000000000.chunk[38678,39005]
|
||||
An4/640/640/cen8-mmaf-b.mfc=000000000.chunk[39006,39323]
|
||||
An4/904/904/cen3-mtje-b.mfc=000000000.chunk[39324,39541]
|
||||
An4/686/686/cen1-mmkw-b.mfc=000000000.chunk[39542,40039]
|
||||
An4/97/97/cen5-fjmd-b.mfc=000000000.chunk[40040,40397]
|
||||
An4/259/259/an223-fwxs-b.mfc=000000000.chunk[40398,40495]
|
||||
An4/729/729/cen5-mnfe-b.mfc=000000000.chunk[40496,41033]
|
||||
An4/709/709/an388-mmtm-b.mfc=000000000.chunk[41034,41131]
|
||||
An4/692/692/cen7-mmkw-b.mfc=000000000.chunk[41132,41759]
|
||||
An4/2/2/an253-fash-b.mfc=000000000.chunk[41760,41827]
|
||||
An4/39/39/an39-fejs-b.mfc=000000000.chunk[41828,42095]
|
||||
An4/488/488/cen8-mewl-b.mfc=000000000.chunk[42096,42423]
|
||||
An4/411/411/an106-mdxn-b.mfc=000000000.chunk[42424,42601]
|
||||
An4/905/905/cen4-mtje-b.mfc=000000000.chunk[42602,43069]
|
||||
An4/783/783/cen8-mrjc2-b.mfc=000000000.chunk[43070,43417]
|
||||
An4/205/205/an296-fsaf2-b.mfc=000000000.chunk[43418,43705]
|
||||
An4/788/788/an285-mrmg-b.mfc=000000000.chunk[43706,44053]
|
||||
An4/173/173/cen3-fmjd-b.mfc=000000000.chunk[44054,44251]
|
||||
An4/389/389/an115-mdcs2-b.mfc=000000000.chunk[44252,44579]
|
||||
An4/412/412/an107-mdxn-b.mfc=000000000.chunk[44580,44867]
|
||||
An4/69/69/cen3-fjam-b.mfc=000000000.chunk[44868,45045]
|
||||
An4/84/84/cen5-fjdn-b.mfc=000000000.chunk[45046,45273]
|
||||
An4/826/826/an229-msjm-b.mfc=000000000.chunk[45274,45361]
|
||||
An4/722/722/an348-mnfe-b.mfc=000000000.chunk[45362,45589]
|
||||
An4/490/490/an162-mfaa-b.mfc=000000000.chunk[45590,45897]
|
||||
An4/335/335/an263-mcfl-b.mfc=000000000.chunk[45898,46275]
|
||||
An4/854/854/cen1-mskh-b.mfc=000000000.chunk[46276,46503]
|
||||
An4/334/334/an262-mcfl-b.mfc=000000000.chunk[46504,46851]
|
||||
An4/403/403/cen1-mdmc-b.mfc=000000000.chunk[46852,47079]
|
||||
An4/46/46/cen6-fejs-b.mfc=000000000.chunk[47080,47277]
|
||||
An4/154/154/an117-fmjc-b.mfc=000000000.chunk[47278,47595]
|
||||
An4/565/565/cen8-mjes-b.mfc=000000000.chunk[47596,47843]
|
||||
An4/251/251/cen3-ftmj-b.mfc=000000000.chunk[47844,48071]
|
||||
An4/139/139/an21-flrp-b.mfc=000000000.chunk[48072,48479]
|
||||
An4/6/6/cen2-fash-b.mfc=000000000.chunk[48480,48607]
|
||||
An4/76/76/an122-fjdn-b.mfc=000000000.chunk[48608,48765]
|
||||
An4/817/817/cen3-msct-b.mfc=000000000.chunk[48766,48913]
|
||||
An4/328/328/cen4-mcen-b.mfc=000000000.chunk[48914,49161]
|
||||
An4/293/293/cen7-mblw-b.mfc=000000000.chunk[49162,49409]
|
||||
An4/214/214/cen5-fsaf2-b.mfc=000000000.chunk[49410,49797]
|
||||
An4/91/91/an8-fjmd-b.mfc=000000000.chunk[49798,49975]
|
||||
An4/820/820/cen6-msct-b.mfc=000000000.chunk[49976,50213]
|
||||
An4/300/300/cen1-mbmg-b.mfc=000000000.chunk[50214,50491]
|
||||
An4/18/18/cen4-fbbh-b.mfc=000000000.chunk[50492,50829]
|
||||
An4/526/526/cen7-mjbh-b.mfc=000000000.chunk[50830,51067]
|
||||
An4/408/408/cen6-mdmc-b.mfc=000000000.chunk[51068,51285]
|
||||
An4/169/169/an194-fmjd-b.mfc=000000000.chunk[51286,51553]
|
||||
An4/939/939/an154-mwhw-b.mfc=000000000.chunk[51554,51841]
|
||||
An4/931/931/cen4-mtxj-b.mfc=000000000.chunk[51842,52299]
|
||||
An4/758/758/an101-mrcb-b.mfc=000000000.chunk[52300,52647]
|
||||
An4/781/781/cen6-mrjc2-b.mfc=000000000.chunk[52648,52875]
|
||||
An4/321/321/an127-mcen-b.mfc=000000000.chunk[52876,52973]
|
||||
An4/199/199/cen3-fplp-b.mfc=000000000.chunk[52974,53271]
|
||||
An4/494/494/cen1-mfaa-b.mfc=000000000.chunk[53272,53469]
|
||||
An4/560/560/cen3-mjes-b.mfc=000000000.chunk[53470,53547]
|
||||
An4/713/713/cen2-mmtm-b.mfc=000000000.chunk[53548,53855]
|
||||
An4/938/938/an153-mwhw-b.mfc=000000000.chunk[53856,54143]
|
||||
An4/163/163/cen6-fmjc-b.mfc=000000000.chunk[54144,54321]
|
||||
An4/338/338/cen1-mcfl-b.mfc=000000000.chunk[54322,54569]
|
||||
An4/775/775/an240-mrjc2-b.mfc=000000000.chunk[54570,54777]
|
||||
An4/264/264/cen3-fwxs-b.mfc=000000000.chunk[54778,54925]
|
||||
An4/224/224/cen2-fsrb-b.mfc=000000000.chunk[54926,55233]
|
||||
An4/166/166/an191-fmjd-b.mfc=000000000.chunk[55234,55321]
|
||||
An4/80/80/cen1-fjdn-b.mfc=000000000.chunk[55322,55469]
|
||||
An4/426/426/an28-mdxs-b.mfc=000000000.chunk[55470,55577]
|
||||
An4/737/737/an85-mnjl-b.mfc=000000000.chunk[55578,55965]
|
||||
An4/919/919/cen5-mtos-b.mfc=000000000.chunk[55966,56363]
|
||||
An4/102/102/an312-fkai-b.mfc=000000000.chunk[56364,56751]
|
||||
An4/743/743/cen7-mnjl-b.mfc=000000000.chunk[56752,57129]
|
||||
An4/948/948/cen8-mwhw-b.mfc=000000000.chunk[57130,57347]
|
||||
An4/17/17/cen3-fbbh-b.mfc=000000000.chunk[57348,57575]
|
||||
An4/11/11/an87-fbbh-b.mfc=000000000.chunk[57576,57743]
|
||||
An4/344/344/cen7-mcfl-b.mfc=000000000.chunk[57744,58111]
|
||||
An4/359/359/an231-mcsc-b.mfc=000000000.chunk[58112,58329]
|
||||
An4/203/203/cen7-fplp-b.mfc=000000000.chunk[58330,58877]
|
||||
An4/704/704/cen6-mmsh-b.mfc=000000000.chunk[58878,59035]
|
||||
An4/331/331/cen7-mcen-b.mfc=000000000.chunk[59036,59323]
|
||||
An4/736/736/an84-mnjl-b.mfc=000000000.chunk[59324,59511]
|
||||
An4/121/121/cen3-fkdo-b.mfc=000000000.chunk[59512,59769]
|
||||
An4/574/574/cen5-mjgk-b.mfc=000000000.chunk[59770,59977]
|
||||
An4/143/143/an24-flrp-b.mfc=000000000.chunk[59978,60065]
|
||||
An4/209/209/an300-fsaf2-b.mfc=000000000.chunk[60066,60473]
|
||||
An4/367/367/cen4-mcsc-b.mfc=000000000.chunk[60474,60731]
|
||||
An4/38/38/an38-fejs-b.mfc=000000000.chunk[60732,60809]
|
||||
An4/390/390/cen1-mdcs2-b.mfc=000000000.chunk[60810,61057]
|
||||
An4/756/756/cen7-mrab-b.mfc=000000000.chunk[61058,61275]
|
||||
An4/555/555/an158-mjes-b.mfc=000000000.chunk[61276,61613]
|
||||
An4/680/680/an361-mmkw-b.mfc=000000000.chunk[61614,62041]
|
||||
An4/578/578/an56-mjhp-b.mfc=000000000.chunk[62042,62419]
|
||||
An4/655/655/an47-mmap-b.mfc=000000000.chunk[62420,62667]
|
||||
An4/646/646/cen1-mmal-b.mfc=000000000.chunk[62668,63035]
|
||||
An4/720/720/an346-mnfe-b.mfc=000000000.chunk[63036,63453]
|
||||
An4/608/608/cen1-mkdb-b.mfc=000000000.chunk[63454,63721]
|
||||
An4/441/441/an140-meab-b.mfc=000000000.chunk[63722,64299]
|
||||
An4/356/356/cen6-mcrt-b.mfc=000000000.chunk[64300,64547]
|
||||
An4/926/926/an379-mtxj-b.mfc=000000000.chunk[64548,64625]
|
||||
An4/541/541/an16-mjdr-b.mfc=000000000.chunk[64626,64893]
|
||||
An4/195/195/an94-fplp-b.mfc=000000000.chunk[64894,65441]
|
||||
An4/591/591/an176-mjjs2-b.mfc=000000000.chunk[65442,65789]
|
||||
An4/9/9/cen7-fash-b.mfc=000000000.chunk[65790,66037]
|
||||
An4/484/484/cen4-mewl-b.mfc=000000000.chunk[66038,66525]
|
||||
An4/537/537/cen5-mjda-b.mfc=000000000.chunk[66526,66933]
|
||||
An4/242/242/cen7-ftal-b.mfc=000000000.chunk[66934,67171]
|
||||
An4/848/848/cen8-msjr-b.mfc=000000000.chunk[67172,67409]
|
||||
An4/220/220/an168-fsrb-b.mfc=000000000.chunk[67410,67757]
|
||||
An4/906/906/cen5-mtje-b.mfc=000000000.chunk[67758,68185]
|
||||
An4/444/444/cen3-meab-b.mfc=000000000.chunk[68186,68373]
|
||||
An4/88/88/an10-fjmd-b.mfc=000000000.chunk[68374,68531]
|
||||
An4/561/561/cen4-mjes-b.mfc=000000000.chunk[68532,68919]
|
||||
An4/728/728/cen4-mnfe-b.mfc=000000000.chunk[68920,69347]
|
||||
An4/784/784/an281-mrmg-b.mfc=000000000.chunk[69348,69485]
|
||||
An4/55/55/cen2-ffmm-b.mfc=000000000.chunk[69486,69983]
|
||||
An4/593/593/an178-mjjs2-b.mfc=000000000.chunk[69984,70061]
|
||||
An4/327/327/cen3-mcen-b.mfc=000000000.chunk[70062,70309]
|
||||
An4/4/4/an255-fash-b.mfc=000000000.chunk[70310,70567]
|
||||
An4/922/922/cen8-mtos-b.mfc=000000000.chunk[70568,70775]
|
||||
An4/229/229/cen7-fsrb-b.mfc=000000000.chunk[70776,71253]
|
||||
An4/297/297/an268-mbmg-b.mfc=000000000.chunk[71254,71651]
|
||||
An4/215/215/cen6-fsaf2-b.mfc=000000000.chunk[71652,71839]
|
||||
An4/567/567/an217-mjgk-b.mfc=000000000.chunk[71840,71987]
|
||||
An4/96/96/cen4-fjmd-b.mfc=000000000.chunk[71988,72335]
|
||||
An4/846/846/cen6-msjr-b.mfc=000000000.chunk[72336,72543]
|
||||
An4/850/850/an96-mskh-b.mfc=000000000.chunk[72544,72621]
|
||||
An4/492/492/an164-mfaa-b.mfc=000000000.chunk[72622,72859]
|
||||
An4/661/661/cen3-mmap-b.mfc=000000000.chunk[72860,72987]
|
||||
An4/200/200/cen4-fplp-b.mfc=000000000.chunk[72988,73485]
|
||||
An4/82/82/cen3-fjdn-b.mfc=000000000.chunk[73486,73583]
|
||||
An4/936/936/an151-mwhw-b.mfc=000000000.chunk[73584,73891]
|
||||
An4/60/60/cen7-ffmm-b.mfc=000000000.chunk[73892,74379]
|
||||
An4/183/183/an185-fnsv-b.mfc=000000000.chunk[74380,74477]
|
||||
An4/667/667/an336-mmdg-b.mfc=000000000.chunk[74478,74785]
|
||||
An4/576/576/cen7-mjgk-b.mfc=000000000.chunk[74786,74993]
|
||||
An4/212/212/cen3-fsaf2-b.mfc=000000000.chunk[74994,75101]
|
||||
An4/779/779/cen4-mrjc2-b.mfc=000000000.chunk[75102,75449]
|
||||
An4/418/418/cen3-mdxn-b.mfc=000000000.chunk[75450,75637]
|
||||
An4/636/636/cen4-mmaf-b.mfc=000000000.chunk[75638,75935]
|
||||
An4/257/257/an221-fwxs-b.mfc=000000000.chunk[75936,76253]
|
||||
An4/59/59/cen6-ffmm-b.mfc=000000000.chunk[76254,76481]
|
||||
An4/899/899/an33-mtje-b.mfc=000000000.chunk[76482,76879]
|
||||
An4/886/886/an303-mtcv-b.mfc=000000000.chunk[76880,77307]
|
||||
An4/932/932/cen5-mtxj-b.mfc=000000000.chunk[77308,77735]
|
||||
An4/336/336/an264-mcfl-b.mfc=000000000.chunk[77736,77813]
|
||||
An4/877/877/cen2-msrb-b.mfc=000000000.chunk[77814,78051]
|
||||
An4/629/629/an52-mmaf-b.mfc=000000000.chunk[78052,78199]
|
||||
An4/767/767/cen5-mrcb-b.mfc=000000000.chunk[78200,78547]
|
||||
An4/374/374/an243-mdcs-b.mfc=000000000.chunk[78548,78635]
|
||||
An4/437/437/an136-meab-b.mfc=000000000.chunk[78636,79063]
|
||||
An4/202/202/cen6-fplp-b.mfc=000000000.chunk[79064,79451]
|
||||
An4/29/29/cen2-fclc-b.mfc=000000000.chunk[79452,79699]
|
||||
An4/669/669/an338-mmdg-b.mfc=000000000.chunk[79700,80017]
|
||||
An4/216/216/cen7-fsaf2-b.mfc=000000000.chunk[80018,80395]
|
||||
An4/227/227/cen5-fsrb-b.mfc=000000000.chunk[80396,80903]
|
||||
An4/864/864/an278-msmn-b.mfc=000000000.chunk[80904,81311]
|
||||
An4/794/794/cen6-mrmg-b.mfc=000000000.chunk[81312,81549]
|
||||
An4/865/865/an279-msmn-b.mfc=000000000.chunk[81550,81837]
|
||||
An4/111/111/cen6-fkai-b.mfc=000000000.chunk[81838,82015]
|
||||
An4/774/774/an239-mrjc2-b.mfc=000000000.chunk[82016,82293]
|
||||
An4/831/831/cen4-msjm-b.mfc=000000000.chunk[82294,82481]
|
||||
An4/793/793/cen5-mrmg-b.mfc=000000000.chunk[82482,83049]
|
||||
An4/301/301/cen2-mbmg-b.mfc=000000000.chunk[83050,83237]
|
||||
An4/325/325/cen1-mcen-b.mfc=000000000.chunk[83238,83485]
|
||||
An4/210/210/cen1-fsaf2-b.mfc=000000000.chunk[83486,83863]
|
||||
An4/117/117/an134-fkdo-b.mfc=000000000.chunk[83864,83991]
|
||||
An4/388/388/an114-mdcs2-b.mfc=000000000.chunk[83992,84289]
|
||||
An4/718/718/cen7-mmtm-b.mfc=000000000.chunk[84290,84617]
|
||||
An4/174/174/cen4-fmjd-b.mfc=000000000.chunk[84618,84955]
|
||||
An4/652/652/cen7-mmal-b.mfc=000000000.chunk[84956,85233]
|
||||
An4/228/228/cen6-fsrb-b.mfc=000000000.chunk[85234,85451]
|
||||
An4/373/373/an242-mdcs-b.mfc=000000000.chunk[85452,85729]
|
||||
An4/175/175/cen5-fmjd-b.mfc=000000000.chunk[85730,86147]
|
||||
An4/184/184/cen1-fnsv-b.mfc=000000000.chunk[86148,86505]
|
||||
An4/393/393/cen4-mdcs2-b.mfc=000000000.chunk[86506,86723]
|
||||
An4/319/319/cen8-mcel-b.mfc=000000000.chunk[86724,86961]
|
||||
An4/291/291/cen5-mblw-b.mfc=000000000.chunk[86962,87079]
|
||||
An4/584/584/cen2-mjhp-b.mfc=000000000.chunk[87080,87287]
|
||||
An4/827/827/an230-msjm-b.mfc=000000000.chunk[87288,87385]
|
||||
An4/628/628/an51-mmaf-b.mfc=000000000.chunk[87386,87733]
|
||||
An4/295/295/an266-mbmg-b.mfc=000000000.chunk[87734,87901]
|
||||
An4/317/317/cen5-mcel-b.mfc=000000000.chunk[87902,88269]
|
||||
An4/431/431/cen3-mdxs-b.mfc=000000000.chunk[88270,88517]
|
||||
An4/52/52/an294-ffmm-b.mfc=000000000.chunk[88518,88785]
|
||||
An4/491/491/an163-mfaa-b.mfc=000000000.chunk[88786,89023]
|
||||
An4/844/844/cen4-msjr-b.mfc=000000000.chunk[89024,89261]
|
||||
An4/116/116/an133-fkdo-b.mfc=000000000.chunk[89262,89369]
|
||||
An4/61/61/cen8-ffmm-b.mfc=000000000.chunk[89370,89717]
|
||||
An4/118/118/an135-fkdo-b.mfc=000000000.chunk[89718,89995]
|
||||
An4/131/131/an65-flmm2-b.mfc=000000000.chunk[89996,90233]
|
||||
An4/878/878/cen3-msrb-b.mfc=000000000.chunk[90234,90431]
|
||||
An4/352/352/cen2-mcrt-b.mfc=000000000.chunk[90432,90739]
|
||||
An4/132/132/cen1-flmm2-b.mfc=000000000.chunk[90740,91127]
|
||||
An4/230/230/cen8-fsrb-b.mfc=000000000.chunk[91128,91425]
|
||||
An4/933/933/cen6-mtxj-b.mfc=000000000.chunk[91426,91603]
|
||||
An4/535/535/cen3-mjda-b.mfc=000000000.chunk[91604,91741]
|
||||
An4/531/531/an174-mjda-b.mfc=000000000.chunk[91742,91859]
|
||||
An4/525/525/cen6-mjbh-b.mfc=000000000.chunk[91860,92057]
|
||||
An4/74/74/cen8-fjam-b.mfc=000000000.chunk[92058,92265]
|
||||
An4/644/644/an324-mmal-b.mfc=000000000.chunk[92266,92363]
|
||||
An4/240/240/cen5-ftal-b.mfc=000000000.chunk[92364,92601]
|
||||
An4/726/726/cen2-mnfe-b.mfc=000000000.chunk[92602,92809]
|
||||
An4/425/425/an27-mdxs-b.mfc=000000000.chunk[92810,93297]
|
||||
An4/612/612/cen5-mkdb-b.mfc=000000000.chunk[93298,93655]
|
||||
An4/698/698/an385-mmsh-b.mfc=000000000.chunk[93656,93733]
|
||||
An4/787/787/an284-mrmg-b.mfc=000000000.chunk[93734,93881]
|
||||
An4/666/666/cen8-mmap-b.mfc=000000000.chunk[93882,94099]
|
||||
An4/31/31/cen4-fclc-b.mfc=000000000.chunk[94100,94467]
|
||||
An4/470/470/cen3-mema-b.mfc=000000000.chunk[94468,94615]
|
||||
An4/782/782/cen7-mrjc2-b.mfc=000000000.chunk[94616,94943]
|
||||
An4/824/824/an227-msjm-b.mfc=000000000.chunk[94944,95211]
|
||||
An4/287/287/cen1-mblw-b.mfc=000000000.chunk[95212,95379]
|
||||
An4/748/748/an74-mrab-b.mfc=000000000.chunk[95380,95667]
|
||||
An4/241/241/cen6-ftal-b.mfc=000000000.chunk[95668,95835]
|
||||
An4/832/832/cen5-msjm-b.mfc=000000000.chunk[95836,96123]
|
||||
An4/664/664/cen6-mmap-b.mfc=000000000.chunk[96124,96311]
|
||||
An4/347/347/an142-mcrt-b.mfc=000000000.chunk[96312,96509]
|
||||
An4/377/377/cen1-mdcs-b.mfc=000000000.chunk[96510,96757]
|
||||
An4/124/124/cen6-fkdo-b.mfc=000000000.chunk[96758,96995]
|
||||
An4/724/724/an350-mnfe-b.mfc=000000000.chunk[96996,97133]
|
||||
An4/442/442/cen1-meab-b.mfc=000000000.chunk[97134,97601]
|
||||
An4/742/742/cen6-mnjl-b.mfc=000000000.chunk[97602,97809]
|
||||
An4/500/500/cen7-mfaa-b.mfc=000000000.chunk[97810,98047]
|
||||
An4/909/909/cen8-mtje-b.mfc=000000000.chunk[98048,98245]
|
||||
An4/626/626/cen7-mkem-b.mfc=000000000.chunk[98246,98413]
|
||||
An4/627/627/cen8-mkem-b.mfc=000000000.chunk[98414,98671]
|
||||
An4/401/401/an209-mdmc-b.mfc=000000000.chunk[98672,98979]
|
||||
An4/838/838/an353-msjr-b.mfc=000000000.chunk[98980,99057]
|
||||
An4/415/415/an110-mdxn-b.mfc=000000000.chunk[99058,99265]
|
||||
An4/225/225/cen3-fsrb-b.mfc=000000000.chunk[99266,99473]
|
||||
An4/595/595/an180-mjjs2-b.mfc=000000000.chunk[99474,99571]
|
||||
An4/673/673/cen2-mmdg-b.mfc=000000000.chunk[99572,99859]
|
||||
An4/162/162/cen5-fmjc-b.mfc=000000000.chunk[99860,100147]
|
||||
An4/679/679/cen8-mmdg-b.mfc=000000000.chunk[100148,100445]
|
||||
An4/590/590/cen8-mjhp-b.mfc=000000000.chunk[100446,100673]
|
||||
An4/299/299/an270-mbmg-b.mfc=000000000.chunk[100674,100881]
|
||||
An4/805/805/cen4-mscg2-b.mfc=000000000.chunk[100882,101249]
|
||||
An4/197/197/cen1-fplp-b.mfc=000000000.chunk[101250,101807]
|
||||
An4/267/267/cen6-fwxs-b.mfc=000000000.chunk[101808,102115]
|
||||
An4/630/630/an53-mmaf-b.mfc=000000000.chunk[102116,102463]
|
||||
An4/888/888/an305-mtcv-b.mfc=000000000.chunk[102464,102691]
|
||||
An4/812/812/an343-msct-b.mfc=000000000.chunk[102692,102879]
|
||||
An4/233/233/an328-ftal-b.mfc=000000000.chunk[102880,103207]
|
||||
An4/529/529/an172-mjda-b.mfc=000000000.chunk[103208,103425]
|
||||
An4/707/707/an386-mmtm-b.mfc=000000000.chunk[103426,103663]
|
||||
An4/592/592/an177-mjjs2-b.mfc=000000000.chunk[103664,103791]
|
||||
An4/130/130/an64-flmm2-b.mfc=000000000.chunk[103792,103919]
|
||||
An4/310/310/an203-mcel-b.mfc=000000000.chunk[103920,104167]
|
||||
An4/170/170/an195-fmjd-b.mfc=000000000.chunk[104168,104485]
|
||||
An4/119/119/cen1-fkdo-b.mfc=000000000.chunk[104486,104753]
|
||||
An4/345/345/cen8-mcfl-b.mfc=000000000.chunk[104754,105011]
|
||||
An4/365/365/cen2-mcsc-b.mfc=000000000.chunk[105012,105319]
|
||||
An4/735/735/an83-mnjl-b.mfc=000000000.chunk[105320,105467]
|
||||
An4/633/633/cen1-mmaf-b.mfc=000000000.chunk[105468,105795]
|
||||
An4/654/654/an46-mmap-b.mfc=000000000.chunk[105796,105893]
|
||||
An4/149/149/cen5-flrp-b.mfc=000000000.chunk[105894,106341]
|
||||
An4/751/751/cen2-mrab-b.mfc=000000000.chunk[106342,106519]
|
||||
An4/238/238/cen3-ftal-b.mfc=000000000.chunk[106520,106657]
|
||||
An4/360/360/an232-mcsc-b.mfc=000000000.chunk[106658,106745]
|
||||
An4/881/881/cen6-msrb-b.mfc=000000000.chunk[106746,106973]
|
||||
An4/757/757/cen8-mrab-b.mfc=000000000.chunk[106974,107171]
|
||||
An4/400/400/an208-mdmc-b.mfc=000000000.chunk[107172,107549]
|
||||
An4/168/168/an193-fmjd-b.mfc=000000000.chunk[107550,107977]
|
||||
An4/897/897/an31-mtje-b.mfc=000000000.chunk[107978,108345]
|
||||
An4/530/530/an173-mjda-b.mfc=000000000.chunk[108346,108653]
|
||||
An4/566/566/an216-mjgk-b.mfc=000000000.chunk[108654,108911]
|
||||
An4/95/95/cen3-fjmd-b.mfc=000000000.chunk[108912,109009]
|
||||
An4/43/43/cen3-fejs-b.mfc=000000000.chunk[109010,109287]
|
||||
An4/753/753/cen4-mrab-b.mfc=000000000.chunk[109288,109615]
|
||||
An4/405/405/cen3-mdmc-b.mfc=000000000.chunk[109616,109743]
|
||||
An4/66/66/an80-fjam-b.mfc=000000000.chunk[109744,109831]
|
||||
An4/858/858/cen5-mskh-b.mfc=000000000.chunk[109832,110219]
|
||||
An4/852/852/an98-mskh-b.mfc=000000000.chunk[110220,110307]
|
||||
An4/237/237/cen2-ftal-b.mfc=000000000.chunk[110308,110485]
|
||||
An4/602/602/cen8-mjjs2-b.mfc=000000000.chunk[110486,110903]
|
||||
An4/842/842/cen2-msjr-b.mfc=000000000.chunk[110904,111131]
|
||||
An4/13/13/an89-fbbh-b.mfc=000000000.chunk[111132,111769]
|
||||
An4/283/283/an2-mblw-b.mfc=000000000.chunk[111770,111917]
|
||||
An4/460/460/cen6-meht-b.mfc=000000000.chunk[111918,112105]
|
||||
An4/20/20/cen6-fbbh-b.mfc=000000000.chunk[112106,112343]
|
||||
An4/308/308/an201-mcel-b.mfc=000000000.chunk[112344,112451]
|
||||
An4/471/471/cen4-mema-b.mfc=000000000.chunk[112452,112819]
|
||||
An4/546/546/cen2-mjdr-b.mfc=000000000.chunk[112820,113017]
|
||||
An4/468/468/cen1-mema-b.mfc=000000000.chunk[113018,113255]
|
||||
An4/236/236/cen1-ftal-b.mfc=000000000.chunk[113256,113453]
|
||||
An4/372/372/an241-mdcs-b.mfc=000000000.chunk[113454,113691]
|
||||
An4/395/395/cen6-mdcs2-b.mfc=000000000.chunk[113692,113869]
|
||||
An4/945/945/cen5-mwhw-b.mfc=000000000.chunk[113870,114177]
|
||||
An4/754/754/cen5-mrab-b.mfc=000000000.chunk[114178,114445]
|
||||
An4/509/509/cen3-mgah-b.mfc=000000000.chunk[114446,114643]
|
||||
An4/556/556/an159-mjes-b.mfc=000000000.chunk[114644,114721]
|
||||
An4/594/594/an179-mjjs2-b.mfc=000000000.chunk[114722,115229]
|
||||
An4/487/487/cen7-mewl-b.mfc=000000000.chunk[115230,115487]
|
||||
An4/684/684/an365-mmkw-b.mfc=000000000.chunk[115488,115915]
|
||||
An4/855/855/cen2-mskh-b.mfc=000000000.chunk[115916,116113]
|
||||
An4/439/439/an138-meab-b.mfc=000000000.chunk[116114,116401]
|
||||
An4/354/354/cen4-mcrt-b.mfc=000000000.chunk[116402,116879]
|
||||
An4/26/26/an149-fclc-b.mfc=000000000.chunk[116880,117107]
|
||||
An4/588/588/cen6-mjhp-b.mfc=000000000.chunk[117108,117275]
|
||||
An4/823/823/an226-msjm-b.mfc=000000000.chunk[117276,117363]
|
||||
An4/68/68/cen2-fjam-b.mfc=000000000.chunk[117364,117511]
|
||||
An4/101/101/an311-fkai-b.mfc=000000000.chunk[117512,117819]
|
||||
An4/98/98/cen6-fjmd-b.mfc=000000000.chunk[117820,118017]
|
||||
An4/450/450/an66-meht-b.mfc=000000000.chunk[118018,118285]
|
||||
An4/662/662/cen4-mmap-b.mfc=000000000.chunk[118286,118753]
|
||||
An4/452/452/an68-meht-b.mfc=000000000.chunk[118754,118961]
|
||||
An4/687/687/cen2-mmkw-b.mfc=000000000.chunk[118962,119419]
|
||||
An4/218/218/an166-fsrb-b.mfc=000000000.chunk[119420,119667]
|
||||
An4/314/314/cen2-mcel-b.mfc=000000000.chunk[119668,119955]
|
||||
An4/33/33/cen6-fclc-b.mfc=000000000.chunk[119956,120163]
|
||||
An4/424/424/an26-mdxs-b.mfc=000000000.chunk[120164,120281]
|
||||
An4/615/615/cen8-mkdb-b.mfc=000000000.chunk[120282,120529]
|
||||
An4/298/298/an269-mbmg-b.mfc=000000000.chunk[120530,120927]
|
||||
An4/527/527/cen8-mjbh-b.mfc=000000000.chunk[120928,121145]
|
||||
An4/15/15/cen1-fbbh-b.mfc=000000000.chunk[121146,121383]
|
||||
An4/910/910/an366-mtos-b.mfc=000000000.chunk[121384,121661]
|
||||
An4/158/158/cen1-fmjc-b.mfc=000000000.chunk[121662,121949]
|
||||
An4/246/246/an213-ftmj-b.mfc=000000000.chunk[121950,122347]
|
||||
An4/849/849/an100-mskh-b.mfc=000000000.chunk[122348,122425]
|
||||
An4/56/56/cen3-ffmm-b.mfc=000000000.chunk[122426,122623]
|
||||
An4/404/404/cen2-mdmc-b.mfc=000000000.chunk[122624,122871]
|
||||
An4/351/351/cen1-mcrt-b.mfc=000000000.chunk[122872,123289]
|
||||
An4/863/863/an277-msmn-b.mfc=000000000.chunk[123290,123377]
|
||||
An4/322/322/an128-mcen-b.mfc=000000000.chunk[123378,123775]
|
||||
An4/419/419/cen4-mdxn-b.mfc=000000000.chunk[123776,124043]
|
||||
An4/86/86/cen7-fjdn-b.mfc=000000000.chunk[124044,124301]
|
||||
An4/311/311/an204-mcel-b.mfc=000000000.chunk[124302,124399]
|
||||
An4/142/142/an23-flrp-b.mfc=000000000.chunk[124400,124807]
|
||||
An4/25/25/an148-fclc-b.mfc=000000000.chunk[124808,125205]
|
||||
An4/947/947/cen7-mwhw-b.mfc=000000000.chunk[125206,125493]
|
||||
An4/250/250/cen2-ftmj-b.mfc=000000000.chunk[125494,125781]
|
||||
An4/381/381/cen5-mdcs-b.mfc=000000000.chunk[125782,126059]
|
||||
An4/927/927/an380-mtxj-b.mfc=000000000.chunk[126060,126247]
|
||||
An4/941/941/cen1-mwhw-b.mfc=000000000.chunk[126248,126425]
|
||||
An4/769/769/cen7-mrcb-b.mfc=000000000.chunk[126426,126863]
|
||||
An4/685/685/an59-mmkw-b.mfc=000000000.chunk[126864,127411]
|
||||
An4/72/72/cen6-fjam-b.mfc=000000000.chunk[127412,127699]
|
||||
An4/420/420/cen5-mdxn-b.mfc=000000000.chunk[127700,127907]
|
||||
An4/457/457/cen3-meht-b.mfc=000000000.chunk[127908,128095]
|
||||
An4/279/279/cen6-mblb-b.mfc=000000000.chunk[128096,128263]
|
||||
An4/656/656/an48-mmap-b.mfc=000000000.chunk[128264,128481]
|
||||
An4/773/773/an238-mrjc2-b.mfc=000000000.chunk[128482,128559]
|
||||
An4/562/562/cen5-mjes-b.mfc=000000000.chunk[128560,128797]
|
||||
An4/811/811/an342-msct-b.mfc=000000000.chunk[128798,129205]
|
||||
An4/23/23/an146-fclc-b.mfc=000000000.chunk[129206,129543]
|
||||
An4/391/391/cen2-mdcs2-b.mfc=000000000.chunk[129544,129761]
|
||||
An4/172/172/cen2-fmjd-b.mfc=000000000.chunk[129762,130099]
|
||||
An4/185/185/cen2-fnsv-b.mfc=000000000.chunk[130100,130377]
|
||||
An4/78/78/an124-fjdn-b.mfc=000000000.chunk[130378,130645]
|
||||
An4/148/148/cen4-flrp-b.mfc=000000000.chunk[130646,130943]
|
||||
An4/253/253/cen5-ftmj-b.mfc=000000000.chunk[130944,131361]
|
||||
An4/445/445/cen4-meab-b.mfc=000000000.chunk[131362,131749]
|
||||
An4/523/523/cen4-mjbh-b.mfc=000000000.chunk[131750,131907]
|
||||
An4/524/524/cen5-mjbh-b.mfc=000000000.chunk[131908,132325]
|
||||
An4/428/428/an30-mdxs-b.mfc=000000000.chunk[132326,132423]
|
||||
An4/315/315/cen3-mcel-b.mfc=000000000.chunk[132424,132611]
|
||||
An4/281/281/cen8-mblb-b.mfc=000000000.chunk[132612,132819]
|
||||
An4/570/570/an220-mjgk-b.mfc=000000000.chunk[132820,132987]
|
||||
An4/727/727/cen3-mnfe-b.mfc=000000000.chunk[132988,133155]
|
||||
An4/231/231/an326-ftal-b.mfc=000000000.chunk[133156,133273]
|
||||
An4/193/193/an92-fplp-b.mfc=000000000.chunk[133274,133871]
|
||||
An4/892/892/cen4-mtcv-b.mfc=000000000.chunk[133872,134479]
|
||||
An4/834/834/cen7-msjm-b.mfc=000000000.chunk[134480,134747]
|
||||
An4/144/144/an25-flrp-b.mfc=000000000.chunk[134748,135185]
|
||||
An4/828/828/cen1-msjm-b.mfc=000000000.chunk[135186,135413]
|
||||
An4/934/934/cen7-mtxj-b.mfc=000000000.chunk[135414,135661]
|
||||
An4/387/387/an113-mdcs2-b.mfc=000000000.chunk[135662,136139]
|
||||
An4/434/434/cen6-mdxs-b.mfc=000000000.chunk[136140,136377]
|
||||
An4/469/469/cen2-mema-b.mfc=000000000.chunk[136378,136515]
|
||||
An4/232/232/an327-ftal-b.mfc=000000000.chunk[136516,136673]
|
||||
An4/378/378/cen2-mdcs-b.mfc=000000000.chunk[136674,136831]
|
||||
An4/275/275/cen2-mblb-b.mfc=000000000.chunk[136832,137079]
|
||||
An4/837/837/an352-msjr-b.mfc=000000000.chunk[137080,137207]
|
||||
An4/447/447/cen6-meab-b.mfc=000000000.chunk[137208,137425]
|
||||
An4/521/521/cen2-mjbh-b.mfc=000000000.chunk[137426,137573]
|
||||
An4/733/733/an81-mnjl-b.mfc=000000000.chunk[137574,137791]
|
||||
An4/510/510/cen4-mgah-b.mfc=000000000.chunk[137792,138119]
|
||||
An4/276/276/cen3-mblb-b.mfc=000000000.chunk[138120,138227]
|
||||
An4/894/894/cen6-mtcv-b.mfc=000000000.chunk[138228,138465]
|
||||
An4/741/741/cen5-mnjl-b.mfc=000000000.chunk[138466,138783]
|
||||
An4/898/898/an32-mtje-b.mfc=000000000.chunk[138784,138881]
|
||||
An4/532/532/an175-mjda-b.mfc=000000000.chunk[138882,138959]
|
||||
An4/150/150/cen6-flrp-b.mfc=000000000.chunk[138960,139177]
|
||||
An4/280/280/cen7-mblb-b.mfc=000000000.chunk[139178,139555]
|
||||
An4/902/902/cen1-mtje-b.mfc=000000000.chunk[139556,139813]
|
||||
An4/896/896/cen8-mtcv-b.mfc=000000000.chunk[139814,140101]
|
||||
An4/900/900/an34-mtje-b.mfc=000000000.chunk[140102,140209]
|
||||
An4/323/323/an129-mcen-b.mfc=000000000.chunk[140210,140357]
|
||||
An4/579/579/an57-mjhp-b.mfc=000000000.chunk[140358,140595]
|
||||
An4/451/451/an67-meht-b.mfc=000000000.chunk[140596,140673]
|
||||
An4/830/830/cen3-msjm-b.mfc=000000000.chunk[140674,140851]
|
||||
An4/75/75/an121-fjdn-b.mfc=000000000.chunk[140852,140919]
|
||||
An4/194/194/an93-fplp-b.mfc=000000000.chunk[140920,141027]
|
||||
An4/620/620/an190-mkem-b.mfc=000000000.chunk[141028,141295]
|
||||
An4/266/266/cen5-fwxs-b.mfc=000000000.chunk[141296,141713]
|
||||
An4/659/659/cen1-mmap-b.mfc=000000000.chunk[141714,141931]
|
||||
An4/903/903/cen2-mtje-b.mfc=000000000.chunk[141932,142359]
|
||||
An4/189/189/cen6-fnsv-b.mfc=000000000.chunk[142360,142617]
|
||||
An4/271/271/an373-mblb-b.mfc=000000000.chunk[142618,143015]
|
||||
An4/67/67/cen1-fjam-b.mfc=000000000.chunk[143016,143253]
|
||||
An4/219/219/an167-fsrb-b.mfc=000000000.chunk[143254,143511]
|
||||
An4/778/778/cen3-mrjc2-b.mfc=000000000.chunk[143512,143719]
|
||||
An4/814/814/an345-msct-b.mfc=000000000.chunk[143720,144287]
|
||||
An4/829/829/cen2-msjm-b.mfc=000000000.chunk[144288,144525]
|
||||
An4/47/47/cen7-fejs-b.mfc=000000000.chunk[144526,144823]
|
||||
An4/799/799/an358-mscg2-b.mfc=000000000.chunk[144824,145241]
|
||||
An4/804/804/cen3-mscg2-b.mfc=000000000.chunk[145242,145469]
|
||||
An4/329/329/cen5-mcen-b.mfc=000000000.chunk[145470,145887]
|
||||
An4/600/600/cen6-mjjs2-b.mfc=000000000.chunk[145888,146225]
|
||||
An4/876/876/cen1-msrb-b.mfc=000000000.chunk[146226,146493]
|
||||
An4/708/708/an387-mmtm-b.mfc=000000000.chunk[146494,146781]
|
||||
An4/24/24/an147-fclc-b.mfc=000000000.chunk[146782,147069]
|
||||
An4/808/808/cen7-mscg2-b.mfc=000000000.chunk[147070,147457]
|
||||
An4/313/313/cen1-mcel-b.mfc=000000000.chunk[147458,147765]
|
||||
An4/482/482/cen2-mewl-b.mfc=000000000.chunk[147766,147923]
|
||||
An4/51/51/an293-ffmm-b.mfc=000000000.chunk[147924,148261]
|
||||
An4/935/935/cen8-mtxj-b.mfc=000000000.chunk[148262,148529]
|
||||
An4/244/244/an211-ftmj-b.mfc=000000000.chunk[148530,148737]
|
||||
An4/396/396/cen7-mdcs2-b.mfc=000000000.chunk[148738,148945]
|
||||
An4/745/745/an71-mrab-b.mfc=000000000.chunk[148946,149253]
|
||||
An4/569/569/an219-mjgk-b.mfc=000000000.chunk[149254,149331]
|
||||
An4/277/277/cen4-mblb-b.mfc=000000000.chunk[149332,149599]
|
||||
An4/371/371/cen8-mcsc-b.mfc=000000000.chunk[149600,149847]
|
||||
An4/650/650/cen5-mmal-b.mfc=000000000.chunk[149848,150175]
|
||||
An4/135/135/cen4-flmm2-b.mfc=000000000.chunk[150176,150793]
|
||||
An4/206/206/an297-fsaf2-b.mfc=000000000.chunk[150794,151221]
|
||||
An4/294/294/cen8-mblw-b.mfc=000000000.chunk[151222,151419]
|
||||
An4/85/85/cen6-fjdn-b.mfc=000000000.chunk[151420,151567]
|
||||
An4/785/785/an282-mrmg-b.mfc=000000000.chunk[151568,151695]
|
||||
An4/406/406/cen4-mdmc-b.mfc=000000000.chunk[151696,152323]
|
||||
An4/474/474/cen7-mema-b.mfc=000000000.chunk[152324,152561]
|
||||
An4/790/790/cen2-mrmg-b.mfc=000000000.chunk[152562,152919]
|
||||
An4/463/463/an286-mema-b.mfc=000000000.chunk[152920,153027]
|
||||
An4/559/559/cen2-mjes-b.mfc=000000000.chunk[153028,153255]
|
||||
An4/353/353/cen3-mcrt-b.mfc=000000000.chunk[153256,153523]
|
||||
An4/435/435/cen7-mdxs-b.mfc=000000000.chunk[153524,153941]
|
||||
An4/145/145/cen1-flrp-b.mfc=000000000.chunk[153942,154229]
|
||||
An4/278/278/cen5-mblb-b.mfc=000000000.chunk[154230,154557]
|
||||
An4/517/517/an248-mjbh-b.mfc=000000000.chunk[154558,154765]
|
||||
An4/65/65/an79-fjam-b.mfc=000000000.chunk[154766,155073]
|
||||
An4/341/341/cen4-mcfl-b.mfc=000000000.chunk[155074,155411]
|
||||
An4/520/520/cen1-mjbh-b.mfc=000000000.chunk[155412,155679]
|
||||
An4/137/137/cen7-flmm2-b.mfc=000000000.chunk[155680,155967]
|
||||
An4/806/806/cen5-mscg2-b.mfc=000000000.chunk[155968,156415]
|
||||
An4/429/429/cen1-mdxs-b.mfc=000000000.chunk[156416,156933]
|
||||
An4/610/610/cen3-mkdb-b.mfc=000000000.chunk[156934,157151]
|
||||
An4/869/869/cen7-msmn-b.mfc=000000000.chunk[157152,157539]
|
||||
An4/141/141/an22-flrp-b.mfc=000000000.chunk[157540,157637]
|
||||
An4/791/791/cen3-mrmg-b.mfc=000000000.chunk[157638,157805]
|
||||
An4/289/289/cen3-mblw-b.mfc=000000000.chunk[157806,157963]
|
||||
An4/711/711/an390-mmtm-b.mfc=000000000.chunk[157964,158061]
|
||||
An4/432/432/cen4-mdxs-b.mfc=000000000.chunk[158062,158369]
|
||||
An4/350/350/an145-mcrt-b.mfc=000000000.chunk[158370,158557]
|
||||
An4/670/670/an339-mmdg-b.mfc=000000000.chunk[158558,158905]
|
||||
An4/581/581/an59-mjhp-b.mfc=000000000.chunk[158906,159203]
|
||||
An4/461/461/cen7-meht-b.mfc=000000000.chunk[159204,159531]
|
||||
An4/103/103/an313-fkai-b.mfc=000000000.chunk[159532,160009]
|
||||
An4/263/263/cen2-fwxs-b.mfc=000000000.chunk[160010,160317]
|
||||
An4/362/362/an234-mcsc-b.mfc=000000000.chunk[160318,160415]
|
||||
An4/478/478/an258-mewl-b.mfc=000000000.chunk[160416,160633]
|
||||
An4/786/786/an283-mrmg-b.mfc=000000000.chunk[160634,161131]
|
||||
An4/512/512/cen6-mgah-b.mfc=000000000.chunk[161132,161369]
|
||||
An4/847/847/cen7-msjr-b.mfc=000000000.chunk[161370,161647]
|
||||
An4/498/498/cen5-mfaa-b.mfc=000000000.chunk[161648,161975]
|
||||
An4/916/916/cen2-mtos-b.mfc=000000000.chunk[161976,162233]
|
||||
An4/410/410/cen8-mdmc-b.mfc=000000000.chunk[162234,162561]
|
||||
An4/459/459/cen5-meht-b.mfc=000000000.chunk[162562,162859]
|
||||
An4/223/223/cen1-fsrb-b.mfc=000000000.chunk[162860,163137]
|
||||
An4/764/764/cen2-mrcb-b.mfc=000000000.chunk[163138,163325]
|
||||
An4/564/564/cen7-mjes-b.mfc=000000000.chunk[163326,163663]
|
||||
An4/5/5/cen1-fash-b.mfc=000000000.chunk[163664,164011]
|
||||
An4/129/129/an63-flmm2-b.mfc=000000000.chunk[164012,164249]
|
||||
An4/369/369/cen6-mcsc-b.mfc=000000000.chunk[164250,164457]
|
||||
An4/87/87/cen8-fjdn-b.mfc=000000000.chunk[164458,164625]
|
||||
An4/167/167/an192-fmjd-b.mfc=000000000.chunk[164626,165043]
|
||||
An4/598/598/cen4-mjjs2-b.mfc=000000000.chunk[165044,165511]
|
||||
An4/188/188/cen5-fnsv-b.mfc=000000000.chunk[165512,166029]
|
||||
An4/749/749/an75-mrab-b.mfc=000000000.chunk[166030,166347]
|
||||
An4/582/582/an60-mjhp-b.mfc=000000000.chunk[166348,166435]
|
||||
An4/160/160/cen3-fmjc-b.mfc=000000000.chunk[166436,166633]
|
||||
An4/180/180/an182-fnsv-b.mfc=000000000.chunk[166634,166761]
|
||||
An4/682/682/an363-mmkw-b.mfc=000000000.chunk[166762,167379]
|
||||
An4/339/339/cen2-mcfl-b.mfc=000000000.chunk[167380,167907]
|
||||
An4/921/921/cen7-mtos-b.mfc=000000000.chunk[167908,168075]
|
||||
An4/421/421/cen6-mdxn-b.mfc=000000000.chunk[168076,168253]
|
||||
An4/247/247/an214-ftmj-b.mfc=000000000.chunk[168254,168391]
|
||||
An4/815/815/cen1-msct-b.mfc=000000000.chunk[168392,168659]
|
||||
An4/671/671/an340-mmdg-b.mfc=000000000.chunk[168660,168787]
|
||||
An4/616/616/an186-mkem-b.mfc=000000000.chunk[168788,169105]
|
||||
An4/196/196/an95-fplp-b.mfc=000000000.chunk[169106,169733]
|
||||
An4/235/235/an330-ftal-b.mfc=000000000.chunk[169734,169901]
|
||||
An4/268/268/cen7-fwxs-b.mfc=000000000.chunk[169902,170319]
|
||||
An4/506/506/an200-mgah-b.mfc=000000000.chunk[170320,170417]
|
||||
An4/647/647/cen2-mmal-b.mfc=000000000.chunk[170418,170615]
|
||||
An4/127/127/an61-flmm2-b.mfc=000000000.chunk[170616,170873]
|
||||
An4/803/803/cen2-mscg2-b.mfc=000000000.chunk[170874,171151]
|
||||
An4/475/475/cen8-mema-b.mfc=000000000.chunk[171152,171499]
|
||||
An4/472/472/cen5-mema-b.mfc=000000000.chunk[171500,171617]
|
||||
An4/599/599/cen5-mjjs2-b.mfc=000000000.chunk[171618,172245]
|
||||
An4/108/108/cen3-fkai-b.mfc=000000000.chunk[172246,172353]
|
||||
An4/357/357/cen7-mcrt-b.mfc=000000000.chunk[172354,172711]
|
||||
An4/342/342/cen5-mcfl-b.mfc=000000000.chunk[172712,173029]
|
||||
An4/714/714/cen3-mmtm-b.mfc=000000000.chunk[173030,173177]
|
||||
An4/747/747/an73-mrab-b.mfc=000000000.chunk[173178,173325]
|
||||
An4/643/643/an323-mmal-b.mfc=000000000.chunk[173326,173523]
|
||||
An4/99/99/cen7-fjmd-b.mfc=000000000.chunk[173524,173741]
|
||||
An4/503/503/an197-mgah-b.mfc=000000000.chunk[173742,173949]
|
||||
An4/533/533/cen1-mjda-b.mfc=000000000.chunk[173950,174167]
|
||||
An4/691/691/cen6-mmkw-b.mfc=000000000.chunk[174168,174525]
|
||||
An4/305/305/cen6-mbmg-b.mfc=000000000.chunk[174526,174763]
|
||||
An4/191/191/cen8-fnsv-b.mfc=000000000.chunk[174764,175101]
|
||||
An4/772/772/an237-mrjc2-b.mfc=000000000.chunk[175102,175239]
|
||||
An4/273/273/an375-mblb-b.mfc=000000000.chunk[175240,175467]
|
||||
An4/660/660/cen2-mmap-b.mfc=000000000.chunk[175468,175615]
|
||||
An4/540/540/cen8-mjda-b.mfc=000000000.chunk[175616,175903]
|
||||
An4/930/930/cen3-mtxj-b.mfc=000000000.chunk[175904,176001]
|
||||
An4/346/346/an141-mcrt-b.mfc=000000000.chunk[176002,176089]
|
||||
An4/125/125/cen7-fkdo-b.mfc=000000000.chunk[176090,176447]
|
||||
An4/107/107/cen2-fkai-b.mfc=000000000.chunk[176448,176605]
|
||||
An4/504/504/an198-mgah-b.mfc=000000000.chunk[176606,176843]
|
||||
An4/316/316/cen4-mcel-b.mfc=000000000.chunk[176844,177161]
|
||||
An4/840/840/an355-msjr-b.mfc=000000000.chunk[177162,177359]
|
||||
An4/689/689/cen4-mmkw-b.mfc=000000000.chunk[177360,177877]
|
||||
An4/113/113/cen8-fkai-b.mfc=000000000.chunk[177878,178095]
|
||||
An4/548/548/cen4-mjdr-b.mfc=000000000.chunk[178096,178533]
|
||||
An4/915/915/cen1-mtos-b.mfc=000000000.chunk[178534,178741]
|
||||
An4/326/326/cen2-mcen-b.mfc=000000000.chunk[178742,178989]
|
||||
An4/770/770/cen8-mrcb-b.mfc=000000000.chunk[178990,179267]
|
||||
An4/618/618/an188-mkem-b.mfc=000000000.chunk[179268,179515]
|
||||
An4/543/543/an19-mjdr-b.mfc=000000000.chunk[179516,179923]
|
||||
An4/597/597/cen2-mjjs2-b.mfc=000000000.chunk[179924,180391]
|
||||
An4/304/304/cen5-mbmg-b.mfc=000000000.chunk[180392,180779]
|
||||
An4/613/613/cen6-mkdb-b.mfc=000000000.chunk[180780,180947]
|
||||
An4/551/551/cen7-mjdr-b.mfc=000000000.chunk[180948,181235]
|
||||
An4/260/260/an224-fwxs-b.mfc=000000000.chunk[181236,181553]
|
||||
An4/810/810/an341-msct-b.mfc=000000000.chunk[181554,181651]
|
||||
An4/211/211/cen2-fsaf2-b.mfc=000000000.chunk[181652,181959]
|
||||
An4/3/3/an254-fash-b.mfc=000000000.chunk[181960,182047]
|
||||
An4/285/285/an4-mblw-b.mfc=000000000.chunk[182048,182185]
|
||||
An4/651/651/cen6-mmal-b.mfc=000000000.chunk[182186,182343]
|
||||
An4/862/862/an276-msmn-b.mfc=000000000.chunk[182344,182631]
|
||||
An4/296/296/an267-mbmg-b.mfc=000000000.chunk[182632,182969]
|
||||
An4/261/261/an225-fwxs-b.mfc=000000000.chunk[182970,183067]
|
||||
An4/705/705/cen7-mmsh-b.mfc=000000000.chunk[183068,183285]
|
||||
An4/28/28/cen1-fclc-b.mfc=000000000.chunk[183286,183713]
|
||||
An4/382/382/cen6-mdcs-b.mfc=000000000.chunk[183714,183891]
|
||||
An4/765/765/cen3-mrcb-b.mfc=000000000.chunk[183892,184069]
|
||||
An4/499/499/cen6-mfaa-b.mfc=000000000.chunk[184070,184247]
|
||||
An4/7/7/cen4-fash-b.mfc=000000000.chunk[184248,184605]
|
||||
An4/110/110/cen5-fkai-b.mfc=000000000.chunk[184606,184913]
|
||||
An4/893/893/cen5-mtcv-b.mfc=000000000.chunk[184914,185201]
|
||||
An4/677/677/cen6-mmdg-b.mfc=000000000.chunk[185202,185509]
|
||||
An4/204/204/cen8-fplp-b.mfc=000000000.chunk[185510,185897]
|
||||
An4/427/427/an29-mdxs-b.mfc=000000000.chunk[185898,186005]
|
||||
An4/284/284/an3-mblw-b.mfc=000000000.chunk[186006,186133]
|
||||
An4/348/348/an143-mcrt-b.mfc=000000000.chunk[186134,186241]
|
||||
An4/449/449/cen8-meab-b.mfc=000000000.chunk[186242,186549]
|
||||
An4/423/423/cen8-mdxn-b.mfc=000000000.chunk[186550,186817]
|
||||
An4/466/466/an289-mema-b.mfc=000000000.chunk[186818,186985]
|
||||
An4/508/508/cen2-mgah-b.mfc=000000000.chunk[186986,187243]
|
||||
An4/1/1/an251-fash-b.mfc=000000000.chunk[187244,187341]
|
||||
An4/399/399/an207-mdmc-b.mfc=000000000.chunk[187342,187799]
|
||||
An4/21/21/cen7-fbbh-b.mfc=000000000.chunk[187800,188107]
|
||||
An4/573/573/cen4-mjgk-b.mfc=000000000.chunk[188108,188525]
|
||||
An4/706/706/cen8-mmsh-b.mfc=000000000.chunk[188526,188743]
|
||||
An4/609/609/cen2-mkdb-b.mfc=000000000.chunk[188744,188911]
|
||||
An4/839/839/an354-msjr-b.mfc=000000000.chunk[188912,189299]
|
||||
An4/312/312/an205-mcel-b.mfc=000000000.chunk[189300,189657]
|
||||
An4/63/63/an77-fjam-b.mfc=000000000.chunk[189658,189965]
|
||||
An4/678/678/cen7-mmdg-b.mfc=000000000.chunk[189966,190503]
|
||||
An4/761/761/an104-mrcb-b.mfc=000000000.chunk[190504,190601]
|
||||
An4/642/642/an322-mmal-b.mfc=000000000.chunk[190602,190929]
|
||||
An4/262/262/cen1-fwxs-b.mfc=000000000.chunk[190930,191347]
|
||||
An4/171/171/cen1-fmjd-b.mfc=000000000.chunk[191348,191665]
|
||||
An4/114/114/an131-fkdo-b.mfc=000000000.chunk[191666,192263]
|
||||
An4/853/853/an99-mskh-b.mfc=000000000.chunk[192264,192521]
|
||||
An4/333/333/an261-mcfl-b.mfc=000000000.chunk[192522,192619]
|
||||
An4/112/112/cen7-fkai-b.mfc=000000000.chunk[192620,192777]
|
||||
An4/265/265/cen4-fwxs-b.mfc=000000000.chunk[192778,193325]
|
||||
An4/813/813/an344-msct-b.mfc=000000000.chunk[193326,193723]
|
||||
An4/496/496/cen3-mfaa-b.mfc=000000000.chunk[193724,193881]
|
||||
An4/178/178/cen8-fmjd-b.mfc=000000000.chunk[193882,194129]
|
||||
An4/54/54/cen1-ffmm-b.mfc=000000000.chunk[194130,194457]
|
||||
An4/596/596/cen1-mjjs2-b.mfc=000000000.chunk[194458,194895]
|
||||
An4/875/875/an335-msrb-b.mfc=000000000.chunk[194896,195033]
|
||||
An4/430/430/cen2-mdxs-b.mfc=000000000.chunk[195034,195281]
|
||||
An4/928/928/cen1-mtxj-b.mfc=000000000.chunk[195282,195529]
|
||||
An4/493/493/an165-mfaa-b.mfc=000000000.chunk[195530,195807]
|
||||
An4/887/887/an304-mtcv-b.mfc=000000000.chunk[195808,195905]
|
||||
An4/859/859/cen6-mskh-b.mfc=000000000.chunk[195906,196083]
|
||||
An4/883/883/cen8-msrb-b.mfc=000000000.chunk[196084,196301]
|
||||
An4/871/871/an331-msrb-b.mfc=000000000.chunk[196302,196479]
|
||||
An4/836/836/an351-msjr-b.mfc=000000000.chunk[196480,196757]
|
||||
An4/553/553/an156-mjes-b.mfc=000000000.chunk[196758,197075]
|
||||
An4/861/861/cen8-mskh-b.mfc=000000000.chunk[197076,197333]
|
||||
An4/248/248/an215-ftmj-b.mfc=000000000.chunk[197334,197441]
|
||||
An4/77/77/an123-fjdn-b.mfc=000000000.chunk[197442,197569]
|
||||
An4/417/417/cen2-mdxn-b.mfc=000000000.chunk[197570,197787]
|
||||
An4/856/856/cen3-mskh-b.mfc=000000000.chunk[197788,197965]
|
||||
An4/44/44/cen4-fejs-b.mfc=000000000.chunk[197966,198493]
|
||||
An4/645/645/an325-mmal-b.mfc=000000000.chunk[198494,198581]
|
||||
An4/453/453/an69-meht-b.mfc=000000000.chunk[198582,198669]
|
||||
An4/639/639/cen7-mmaf-b.mfc=000000000.chunk[198670,198957]
|
||||
An4/907/907/cen6-mtje-b.mfc=000000000.chunk[198958,199175]
|
||||
An4/330/330/cen6-mcen-b.mfc=000000000.chunk[199176,199373]
|
||||
An4/258/258/an222-fwxs-b.mfc=000000000.chunk[199374,199461]
|
||||
An4/746/746/an72-mrab-b.mfc=000000000.chunk[199462,199549]
|
||||
An4/752/752/cen3-mrab-b.mfc=000000000.chunk[199550,199677]
|
||||
An4/663/663/cen5-mmap-b.mfc=000000000.chunk[199678,199945]
|
||||
An4/843/843/cen3-msjr-b.mfc=000000000.chunk[199946,200083]
|
||||
An4/674/674/cen3-mmdg-b.mfc=000000000.chunk[200084,200321]
|
||||
An4/105/105/an315-fkai-b.mfc=000000000.chunk[200322,200519]
|
||||
An4/604/604/an317-mkdb-b.mfc=000000000.chunk[200520,200657]
|
||||
An4/557/557/an160-mjes-b.mfc=000000000.chunk[200658,201035]
|
||||
An4/320/320/an126-mcen-b.mfc=000000000.chunk[201036,201123]
|
||||
An4/605/605/an318-mkdb-b.mfc=000000000.chunk[201124,201251]
|
||||
An4/731/731/cen7-mnfe-b.mfc=000000000.chunk[201252,201649]
|
||||
An4/467/467/an290-mema-b.mfc=000000000.chunk[201650,201907]
|
||||
An4/368/368/cen5-mcsc-b.mfc=000000000.chunk[201908,202045]
|
||||
An4/672/672/cen1-mmdg-b.mfc=000000000.chunk[202046,202463]
|
||||
An4/744/744/cen8-mnjl-b.mfc=000000000.chunk[202464,202721]
|
||||
An4/37/37/an37-fejs-b.mfc=000000000.chunk[202722,203189]
|
||||
An4/376/376/an245-mdcs-b.mfc=000000000.chunk[203190,203447]
|
||||
An4/64/64/an78-fjam-b.mfc=000000000.chunk[203448,203645]
|
||||
An4/27/27/an150-fclc-b.mfc=000000000.chunk[203646,204073]
|
||||
An4/917/917/cen3-mtos-b.mfc=000000000.chunk[204074,204311]
|
||||
An4/637/637/cen5-mmaf-b.mfc=000000000.chunk[204312,204659]
|
||||
An4/464/464/an287-mema-b.mfc=000000000.chunk[204660,204907]
|
||||
An4/187/187/cen4-fnsv-b.mfc=000000000.chunk[204908,205375]
|
||||
An4/385/385/an111-mdcs2-b.mfc=000000000.chunk[205376,205573]
|
||||
An4/885/885/an302-mtcv-b.mfc=000000000.chunk[205574,205981]
|
||||
An4/914/914/an370-mtos-b.mfc=000000000.chunk[205982,206439]
|
||||
An4/153/153/an116-fmjc-b.mfc=000000000.chunk[206440,206667]
|
||||
An4/375/375/an244-mdcs-b.mfc=000000000.chunk[206668,206915]
|
||||
An4/868/868/cen6-msmn-b.mfc=000000000.chunk[206916,207093]
|
||||
An4/495/495/cen2-mfaa-b.mfc=000000000.chunk[207094,207221]
|
||||
An4/712/712/cen1-mmtm-b.mfc=000000000.chunk[207222,207509]
|
||||
An4/364/364/cen1-mcsc-b.mfc=000000000.chunk[207510,207987]
|
||||
An4/739/739/cen2-mnjl-b.mfc=000000000.chunk[207988,208185]
|
||||
An4/256/256/cen8-ftmj-b.mfc=000000000.chunk[208186,208473]
|
||||
An4/222/222/an170-fsrb-b.mfc=000000000.chunk[208474,208721]
|
||||
An4/332/332/cen8-mcen-b.mfc=000000000.chunk[208722,208979]
|
||||
An4/759/759/an102-mrcb-b.mfc=000000000.chunk[208980,209057]
|
||||
An4/571/571/cen1-mjgk-b.mfc=000000000.chunk[209058,209245]
|
||||
An4/585/585/cen3-mjhp-b.mfc=000000000.chunk[209246,209413]
|
||||
An4/422/422/cen7-mdxn-b.mfc=000000000.chunk[209414,209681]
|
||||
An4/50/50/an292-ffmm-b.mfc=000000000.chunk[209682,209849]
|
||||
An4/483/483/cen3-mewl-b.mfc=000000000.chunk[209850,210167]
|
||||
An4/104/104/an314-fkai-b.mfc=000000000.chunk[210168,210535]
|
||||
An4/641/641/an321-mmal-b.mfc=000000000.chunk[210536,210833]
|
||||
An4/798/798/an357-mscg2-b.mfc=000000000.chunk[210834,210931]
|
||||
An4/42/42/cen2-fejs-b.mfc=000000000.chunk[210932,211159]
|
||||
An4/632/632/an55-mmaf-b.mfc=000000000.chunk[211160,211347]
|
||||
An4/716/716/cen5-mmtm-b.mfc=000000000.chunk[211348,211585]
|
||||
An4/19/19/cen5-fbbh-b.mfc=000000000.chunk[211586,211873]
|
||||
An4/923/923/an376-mtxj-b.mfc=000000000.chunk[211874,212041]
|
||||
An4/890/890/cen2-mtcv-b.mfc=000000000.chunk[212042,212179]
|
||||
An4/825/825/an228-msjm-b.mfc=000000000.chunk[212180,212537]
|
||||
An4/379/379/cen3-mdcs-b.mfc=000000000.chunk[212538,212745]
|
||||
An4/870/870/cen8-msmn-b.mfc=000000000.chunk[212746,213333]
|
||||
An4/623/623/cen4-mkem-b.mfc=000000000.chunk[213334,213461]
|
||||
An4/703/703/cen5-mmsh-b.mfc=000000000.chunk[213462,213679]
|
||||
An4/126/126/cen8-fkdo-b.mfc=000000000.chunk[213680,213937]
|
||||
An4/79/79/an125-fjdn-b.mfc=000000000.chunk[213938,214045]
|
||||
An4/384/384/cen8-mdcs-b.mfc=000000000.chunk[214046,214303]
|
||||
An4/681/681/an362-mmkw-b.mfc=000000000.chunk[214304,214741]
|
||||
An4/913/913/an369-mtos-b.mfc=000000000.chunk[214742,214839]
|
||||
An4/392/392/cen3-mdcs2-b.mfc=000000000.chunk[214840,215007]
|
||||
An4/217/217/cen8-fsaf2-b.mfc=000000000.chunk[215008,215205]
|
||||
An4/409/409/cen7-mdmc-b.mfc=000000000.chunk[215206,215533]
|
||||
An4/515/515/an246-mjbh-b.mfc=000000000.chunk[215534,215621]
|
||||
An4/90/90/an7-fjmd-b.mfc=000000000.chunk[215622,215839]
|
||||
An4/760/760/an103-mrcb-b.mfc=000000000.chunk[215840,216247]
|
||||
An4/62/62/an76-fjam-b.mfc=000000000.chunk[216248,216335]
|
||||
An4/822/822/cen8-msct-b.mfc=000000000.chunk[216336,216563]
|
||||
An4/462/462/cen8-meht-b.mfc=000000000.chunk[216564,216761]
|
||||
An4/292/292/cen6-mblw-b.mfc=000000000.chunk[216762,216929]
|
||||
An4/676/676/cen5-mmdg-b.mfc=000000000.chunk[216930,217477]
|
||||
An4/572/572/cen2-mjgk-b.mfc=000000000.chunk[217478,217695]
|
||||
An4/363/363/an235-mcsc-b.mfc=000000000.chunk[217696,217773]
|
||||
An4/522/522/cen3-mjbh-b.mfc=000000000.chunk[217774,217931]
|
||||
An4/924/924/an377-mtxj-b.mfc=000000000.chunk[217932,218299]
|
||||
An4/816/816/cen2-msct-b.mfc=000000000.chunk[218300,218547]
|
||||
An4/485/485/cen5-mewl-b.mfc=000000000.chunk[218548,218915]
|
||||
An4/621/621/cen1-mkem-b.mfc=000000000.chunk[218916,219183]
|
||||
An4/577/577/cen8-mjgk-b.mfc=000000000.chunk[219184,219391]
|
||||
An4/318/318/cen6-mcel-b.mfc=000000000.chunk[219392,219619]
|
||||
An4/792/792/cen4-mrmg-b.mfc=000000000.chunk[219620,219977]
|
||||
An4/841/841/cen1-msjr-b.mfc=000000000.chunk[219978,220345]
|
||||
An4/763/763/cen1-mrcb-b.mfc=000000000.chunk[220346,220553]
|
||||
An4/458/458/cen4-meht-b.mfc=000000000.chunk[220554,220751]
|
||||
An4/715/715/cen4-mmtm-b.mfc=000000000.chunk[220752,221289]
|
||||
An4/607/607/an320-mkdb-b.mfc=000000000.chunk[221290,221527]
|
||||
An4/208/208/an299-fsaf2-b.mfc=000000000.chunk[221528,221925]
|
||||
An4/134/134/cen3-flmm2-b.mfc=000000000.chunk[221926,222103]
|
||||
An4/649/649/cen4-mmal-b.mfc=000000000.chunk[222104,222391]
|
||||
An4/911/911/an367-mtos-b.mfc=000000000.chunk[222392,222799]
|
||||
An4/730/730/cen6-mnfe-b.mfc=000000000.chunk[222800,223087]
|
||||
An4/349/349/an144-mcrt-b.mfc=000000000.chunk[223088,223485]
|
||||
An4/324/324/an130-mcen-b.mfc=000000000.chunk[223486,223553]
|
||||
An4/501/501/cen8-mfaa-b.mfc=000000000.chunk[223554,223751]
|
||||
An4/226/226/cen4-fsrb-b.mfc=000000000.chunk[223752,224189]
|
||||
An4/547/547/cen3-mjdr-b.mfc=000000000.chunk[224190,224357]
|
||||
An4/414/414/an109-mdxn-b.mfc=000000000.chunk[224358,224625]
|
||||
An4/201/201/cen5-fplp-b.mfc=000000000.chunk[224626,225233]
|
||||
An4/221/221/an169-fsrb-b.mfc=000000000.chunk[225234,225391]
|
||||
An4/12/12/an88-fbbh-b.mfc=000000000.chunk[225392,225859]
|
||||
An4/879/879/cen4-msrb-b.mfc=000000000.chunk[225860,226267]
|
||||
An4/563/563/cen6-mjes-b.mfc=000000000.chunk[226268,226415]
|
||||
An4/123/123/cen5-fkdo-b.mfc=000000000.chunk[226416,226813]
|
||||
An4/207/207/an298-fsaf2-b.mfc=000000000.chunk[226814,226911]
|
||||
An4/617/617/an187-mkem-b.mfc=000000000.chunk[226912,227079]
|
||||
An4/866/866/cen4-msmn-b.mfc=000000000.chunk[227080,227517]
|
||||
An4/943/943/cen3-mwhw-b.mfc=000000000.chunk[227518,227625]
|
||||
An4/542/542/an18-mjdr-b.mfc=000000000.chunk[227626,227783]
|
||||
An4/762/762/an105-mrcb-b.mfc=000000000.chunk[227784,227931]
|
||||
An4/465/465/an288-mema-b.mfc=000000000.chunk[227932,228019]
|
||||
An4/249/249/cen1-ftmj-b.mfc=000000000.chunk[228020,228257]
|
||||
An4/307/307/cen8-mbmg-b.mfc=000000000.chunk[228258,228585]
|
||||
An4/802/802/cen1-mscg2-b.mfc=000000000.chunk[228586,228823]
|
||||
An4/73/73/cen7-fjam-b.mfc=000000000.chunk[228824,229061]
|
||||
An4/554/554/an157-mjes-b.mfc=000000000.chunk[229062,229189]
|
||||
An4/539/539/cen7-mjda-b.mfc=000000000.chunk[229190,229517]
|
||||
An4/505/505/an199-mgah-b.mfc=000000000.chunk[229518,229615]
|
||||
An4/780/780/cen5-mrjc2-b.mfc=000000000.chunk[229616,229993]
|
||||
An4/100/100/cen8-fjmd-b.mfc=000000000.chunk[229994,230211]
|
||||
An4/696/696/an383-mmsh-b.mfc=000000000.chunk[230212,230349]
|
||||
An4/486/486/cen6-mewl-b.mfc=000000000.chunk[230350,230547]
|
||||
An4/32/32/cen5-fclc-b.mfc=000000000.chunk[230548,230975]
|
||||
An4/835/835/cen8-msjm-b.mfc=000000000.chunk[230976,231193]
|
||||
An4/514/514/cen8-mgah-b.mfc=000000000.chunk[231194,231541]
|
||||
An4/694/694/an381-mmsh-b.mfc=000000000.chunk[231542,231779]
|
||||
An4/867/867/cen5-msmn-b.mfc=000000000.chunk[231780,232107]
|
||||
An4/366/366/cen3-mcsc-b.mfc=000000000.chunk[232108,232335]
|
||||
An4/912/912/an368-mtos-b.mfc=000000000.chunk[232336,232753]
|
||||
An4/738/738/cen1-mnjl-b.mfc=000000000.chunk[232754,233161]
|
||||
An4/270/270/an372-mblb-b.mfc=000000000.chunk[233162,233459]
|
||||
An4/155/155/an118-fmjc-b.mfc=000000000.chunk[233460,233707]
|
||||
An4/558/558/cen1-mjes-b.mfc=000000000.chunk[233708,233925]
|
||||
An4/606/606/an319-mkdb-b.mfc=000000000.chunk[233926,234273]
|
||||
An4/819/819/cen5-msct-b.mfc=000000000.chunk[234274,234671]
|
||||
An4/288/288/cen2-mblw-b.mfc=000000000.chunk[234672,234829]
|
||||
An4/120/120/cen2-fkdo-b.mfc=000000000.chunk[234830,235117]
|
||||
An4/536/536/cen4-mjda-b.mfc=000000000.chunk[235118,235695]
|
||||
An4/302/302/cen3-mbmg-b.mfc=000000000.chunk[235696,235843]
|
||||
An4/860/860/cen7-mskh-b.mfc=000000000.chunk[235844,236141]
|
||||
An4/269/269/an371-mblb-b.mfc=000000000.chunk[236142,236509]
|
||||
An4/455/455/cen1-meht-b.mfc=000000000.chunk[236510,236717]
|
||||
An4/286/286/an5-mblw-b.mfc=000000000.chunk[236718,236815]
|
||||
An4/136/136/cen6-flmm2-b.mfc=000000000.chunk[236816,237043]
|
||||
An4/481/481/cen1-mewl-b.mfc=000000000.chunk[237044,237471]
|
||||
An4/58/58/cen5-ffmm-b.mfc=000000000.chunk[237472,237959]
|
||||
An4/583/583/cen1-mjhp-b.mfc=000000000.chunk[237960,238337]
|
||||
An4/534/534/cen2-mjda-b.mfc=000000000.chunk[238338,238555]
|
||||
An4/940/940/an155-mwhw-b.mfc=000000000.chunk[238556,238693]
|
||||
An4/882/882/cen7-msrb-b.mfc=000000000.chunk[238694,239061]
|
||||
An4/473/473/cen6-mema-b.mfc=000000000.chunk[239062,239239]
|
||||
An4/937/937/an152-mwhw-b.mfc=000000000.chunk[239240,239337]
|
||||
An4/94/94/cen2-fjmd-b.mfc=000000000.chunk[239338,239615]
|
||||
An4/83/83/cen4-fjdn-b.mfc=000000000.chunk[239616,239763]
|
||||
An4/568/568/an218-mjgk-b.mfc=000000000.chunk[239764,239851]
|
||||
An4/45/45/cen5-fejs-b.mfc=000000000.chunk[239852,240259]
|
||||
An4/766/766/cen4-mrcb-b.mfc=000000000.chunk[240260,240537]
|
||||
An4/929/929/cen2-mtxj-b.mfc=000000000.chunk[240538,240695]
|
||||
An4/634/634/cen2-mmaf-b.mfc=000000000.chunk[240696,240953]
|
||||
An4/337/337/an265-mcfl-b.mfc=000000000.chunk[240954,241051]
|
||||
An4/884/884/an301-mtcv-b.mfc=000000000.chunk[241052,241429]
|
||||
An4/516/516/an247-mjbh-b.mfc=000000000.chunk[241430,241507]
|
||||
An4/796/796/cen8-mrmg-b.mfc=000000000.chunk[241508,241725]
|
||||
An4/397/397/cen8-mdcs2-b.mfc=000000000.chunk[241726,241973]
|
||||
An4/648/648/cen3-mmal-b.mfc=000000000.chunk[241974,242151]
|
||||
An4/81/81/cen2-fjdn-b.mfc=000000000.chunk[242152,242329]
|
||||
An4/807/807/cen6-mscg2-b.mfc=000000000.chunk[242330,242617]
|
||||
An4/717/717/cen6-mmtm-b.mfc=000000000.chunk[242618,242845]
|
||||
An4/394/394/cen5-mdcs2-b.mfc=000000000.chunk[242846,243113]
|
||||
An4/895/895/cen7-mtcv-b.mfc=000000000.chunk[243114,243461]
|
||||
An4/140/140/an2121-flrp-b.mfc=000000000.chunk[243462,243779]
|
||||
An4/653/653/cen8-mmal-b.mfc=000000000.chunk[243780,243957]
|
||||
An4/355/355/cen5-mcrt-b.mfc=000000000.chunk[243958,244555]
|
||||
An4/159/159/cen2-fmjc-b.mfc=000000000.chunk[244556,244803]
|
||||
An4/443/443/cen2-meab-b.mfc=000000000.chunk[244804,245111]
|
||||
An4/942/942/cen2-mwhw-b.mfc=000000000.chunk[245112,245329]
|
||||
An4/809/809/cen8-mscg2-b.mfc=000000000.chunk[245330,245637]
|
||||
An4/519/519/an250-mjbh-b.mfc=000000000.chunk[245638,245725]
|
||||
An4/944/944/cen4-mwhw-b.mfc=000000000.chunk[245726,246083]
|
||||
An4/190/190/cen7-fnsv-b.mfc=000000000.chunk[246084,246471]
|
||||
An4/925/925/an378-mtxj-b.mfc=000000000.chunk[246472,246619]
|
||||
An4/665/665/cen7-mmap-b.mfc=000000000.chunk[246620,246907]
|
||||
An4/448/448/cen7-meab-b.mfc=000000000.chunk[246908,247345]
|
||||
An4/845/845/cen5-msjr-b.mfc=000000000.chunk[247346,247563]
|
||||
An4/818/818/cen4-msct-b.mfc=000000000.chunk[247564,247821]
|
||||
An4/695/695/an382-mmsh-b.mfc=000000000.chunk[247822,248089]
|
||||
An4/511/511/cen5-mgah-b.mfc=000000000.chunk[248090,248567]
|
||||
An4/479/479/an259-mewl-b.mfc=000000000.chunk[248568,248705]
|
||||
An4/35/35/cen8-fclc-b.mfc=000000000.chunk[248706,248973]
|
||||
An4/109/109/cen4-fkai-b.mfc=000000000.chunk[248974,249221]
|
||||
An4/14/14/an90-fbbh-b.mfc=000000000.chunk[249222,249319]
|
||||
An4/586/586/cen4-mjhp-b.mfc=000000000.chunk[249320,249647]
|
||||
An4/133/133/cen2-flmm2-b.mfc=000000000.chunk[249648,249845]
|
||||
An4/30/30/cen3-fclc-b.mfc=000000000.chunk[249846,250033]
|
||||
An4/383/383/cen7-mdcs-b.mfc=000000000.chunk[250034,250381]
|
||||
An4/34/34/cen7-fclc-b.mfc=000000000.chunk[250382,250679]
|
||||
An4/851/851/an97-mskh-b.mfc=000000000.chunk[250680,250817]
|
||||
An4/147/147/cen3-flrp-b.mfc=000000000.chunk[250818,250975]
|
||||
An4/550/550/cen6-mjdr-b.mfc=000000000.chunk[250976,251143]
|
||||
An4/407/407/cen5-mdmc-b.mfc=000000000.chunk[251144,251521]
|
||||
An4/587/587/cen5-mjhp-b.mfc=000000000.chunk[251522,251799]
|
||||
An4/22/22/cen8-fbbh-b.mfc=000000000.chunk[251800,252077]
|
||||
An4/138/138/cen8-flmm2-b.mfc=000000000.chunk[252078,252655]
|
||||
An4/361/361/an233-mcsc-b.mfc=000000000.chunk[252656,252733]
|
|
@ -0,0 +1,132 @@
|
|||
_ah_[2]
|
||||
_ah_[3]
|
||||
_ah_[4]
|
||||
_hmm_[2]
|
||||
_hmm_[3]
|
||||
_hmm_[4]
|
||||
_noise_[2]
|
||||
_noise_[3]
|
||||
_noise_[4]
|
||||
aa_s2_1
|
||||
aa_s3_1
|
||||
aa_s4_1
|
||||
ae_s2_1
|
||||
ae_s3_1
|
||||
ae_s4_1
|
||||
ah_s2_1
|
||||
ah_s3_1
|
||||
ah_s4_1
|
||||
ao_s2_1
|
||||
ao_s3_1
|
||||
ao_s4_1
|
||||
aw_s2_1
|
||||
aw_s3_1
|
||||
aw_s4_1
|
||||
ax_s2_1
|
||||
ax_s3_1
|
||||
ax_s4_1
|
||||
ay_s2_1
|
||||
ay_s3_1
|
||||
ay_s4_1
|
||||
b_s2_1
|
||||
b_s3_1
|
||||
b_s4_1
|
||||
ch_s2_1
|
||||
ch_s3_1
|
||||
ch_s4_1
|
||||
d_s2_1
|
||||
d_s3_1
|
||||
d_s4_1
|
||||
dh_s2_1
|
||||
dh_s3_1
|
||||
dh_s4_1
|
||||
eh_s2_1
|
||||
eh_s3_1
|
||||
eh_s4_1
|
||||
er_s2_1
|
||||
er_s3_1
|
||||
er_s4_1
|
||||
ey_s2_1
|
||||
ey_s3_1
|
||||
ey_s4_1
|
||||
f_s2_1
|
||||
f_s3_1
|
||||
f_s4_1
|
||||
g_s2_1
|
||||
g_s3_1
|
||||
g_s4_1
|
||||
hh_s2_1
|
||||
hh_s3_1
|
||||
hh_s4_1
|
||||
ih_s2_1
|
||||
ih_s3_1
|
||||
ih_s4_1
|
||||
iy_s2_1
|
||||
iy_s3_1
|
||||
iy_s4_1
|
||||
jh_s2_1
|
||||
jh_s3_1
|
||||
jh_s4_1
|
||||
k_s2_1
|
||||
k_s3_1
|
||||
k_s4_1
|
||||
l_s2_1
|
||||
l_s3_1
|
||||
l_s4_1
|
||||
m_s2_1
|
||||
m_s3_1
|
||||
m_s4_1
|
||||
n_s2_1
|
||||
n_s3_1
|
||||
n_s4_1
|
||||
ng_s2_1
|
||||
ng_s3_1
|
||||
ng_s4_1
|
||||
ow_s2_1
|
||||
ow_s3_1
|
||||
ow_s4_1
|
||||
oy_s2_1
|
||||
oy_s3_1
|
||||
oy_s4_1
|
||||
p_s2_1
|
||||
p_s3_1
|
||||
p_s4_1
|
||||
r_s2_1
|
||||
r_s3_1
|
||||
r_s4_1
|
||||
s_s2_1
|
||||
s_s3_1
|
||||
s_s4_1
|
||||
sh_s2_1
|
||||
sh_s3_1
|
||||
sh_s4_1
|
||||
sil[2]
|
||||
sil[3]
|
||||
sil[4]
|
||||
t_s2_1
|
||||
t_s3_1
|
||||
t_s4_1
|
||||
th_s2_1
|
||||
th_s3_1
|
||||
th_s4_1
|
||||
uh_s2_1
|
||||
uh_s3_1
|
||||
uh_s4_1
|
||||
uw_s2_1
|
||||
uw_s3_1
|
||||
uw_s4_1
|
||||
v_s2_1
|
||||
v_s3_1
|
||||
v_s4_1
|
||||
w_s2_1
|
||||
w_s3_1
|
||||
w_s4_1
|
||||
y_s2_1
|
||||
y_s3_1
|
||||
y_s4_1
|
||||
z_s2_1
|
||||
z_s3_1
|
||||
z_s4_1
|
||||
zh_s2_1
|
||||
zh_s3_1
|
||||
zh_s4_1
|
|
@ -0,0 +1,72 @@
|
|||
# CNTK example: Speech
|
||||
|
||||
## License
|
||||
|
||||
Contents of this directory is a modified version of AN4 dataset pre-processed and optimized for CNTK end-to-end testing.
|
||||
The data uses the format required by the HTKMLFReader. For details please refer to the documentation.
|
||||
The [AN4 dataset](http://www.speech.cs.cmu.edu/databases/an4) is a part of CMU audio databases.
|
||||
This modified version of dataset is distributed under the terms of a AN4 license which can be found in 'AdditionalFiles/AN4.LICENSE.html'
|
||||
|
||||
## Overview
|
||||
|
||||
|:--------|:---|
|
||||
Data: |Speech data from the CMU Audio Database aka AN4 (http://www.speech.cs.cmu.edu/databases/an4)
|
||||
Purpose: |Showcase how to train feed forward and LSTM networks for speech data
|
||||
Network: |SimpleNetworkBuilder for 2-layer FF, NdlNetworkBuilder for 3-layer LSTM network
|
||||
Training: |Data-parallel 1-Bit SGD with adjusted learning rate
|
||||
Comments: |There are two config files: FeedForward.config and LSTM-NDL.config for FF and LSTM training respectively
|
||||
|
||||
## Running the example
|
||||
|
||||
### Getting the data
|
||||
|
||||
The data for this example is already contained in the folder Demos/Text/Data/.
|
||||
|
||||
### Setup
|
||||
|
||||
Compile the sources to generate the cntk executable (not required if you downloaded the binaries).
|
||||
|
||||
__Windows:__ Add the folder of the cntk executable to your path
|
||||
(e.g. `set PATH=%PATH%;c:/src/cntk/x64/Debug/;`)
|
||||
or prefix the call to the cntk executable with the corresponding folder.
|
||||
|
||||
__Linux:__ Add the folder of the cntk executable to your path
|
||||
(e.g. `export PATH=$PATH:$HOME/src/cntk/build/debug/bin/`)
|
||||
or prefix the call to the cntk executable with the corresponding folder.
|
||||
|
||||
### Run
|
||||
|
||||
Run the example from the Demos/Speech/Data folder using:
|
||||
|
||||
`cntk configFile=../Config/FeedForward.config`
|
||||
|
||||
or run from any folder and specify the Data folder as the `currentDirectory`,
|
||||
e.g. running from the Demos/Speech folder using:
|
||||
|
||||
`cntk configFile=Config/FeedForward.config currentDirectory=Data`
|
||||
|
||||
The output folder will be created inside Demos/Speech/.
|
||||
|
||||
## Details
|
||||
|
||||
### Config files
|
||||
|
||||
The config files define a `RootDir` variable and sevearal other variables for directories.
|
||||
The `ConfigDir` and `ModelDir` variables define the folders for additional config files and for model files.
|
||||
These variables will be overwritten when running on the Philly cluster.
|
||||
__It is therefore recommended to generally use `ConfigDir` and `ModelDir` in all config files.__
|
||||
To run on CPU set `deviceId = -1`, to run on GPU set deviceId to "auto" or a specific value >= 0.
|
||||
|
||||
The FeedForward.config file uses the SimpleNetworkBuilder to create a 2-layer
|
||||
feed forward network with sigmoid nodes and a softmax layer.
|
||||
The LSTM-NDL.config file uses the NdlNetworkBuilder and refers to the lstmp-3layer_WithSelfStab.ndl file.
|
||||
In the ndl file an LSTM component is defined and used to create a 3-layer LSTM network with a softmax layer.
|
||||
Both configuration only define and execute a single training task:
|
||||
|
||||
`command=speechTrain`
|
||||
|
||||
The trained models for each epoch are stored in the output models folder.
|
||||
|
||||
### Additional files
|
||||
|
||||
The 'AdditionalFiles' folder contains the license terms for the AN4 audio database.
|
|
@ -0,0 +1,40 @@
|
|||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 5.4415899 Perplexity = 230.80885 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 5.4415899 Perplexity = 230.80885
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 5.2513086 Perplexity = 190.8158 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 5.2513086 Perplexity = 190.8158
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 5.1372039 Perplexity = 170.23909 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 5.1372039 Perplexity = 170.23909
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 5.0720036 Perplexity = 159.49358 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 5.0720036 Perplexity = 159.49358
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 5.0618825 Perplexity = 157.88746 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 5.0618825 Perplexity = 157.88746
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 5.0321352 Perplexity = 153.25991 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 5.0321352 Perplexity = 153.25991
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 5.0083887 Perplexity = 149.66339 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 5.0083887 Perplexity = 149.66339
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 5.0220441 Perplexity = 151.72111 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 5.0220441 Perplexity = 151.72111
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9666183 Perplexity = 143.54066 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9666183 Perplexity = 143.54066
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9719939 Perplexity = 144.31436 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9719939 Perplexity = 144.31436
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9397468 Perplexity = 139.73487 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9397468 Perplexity = 139.73487
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9442405 Perplexity = 140.36421 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9442405 Perplexity = 140.36421
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9287878 Perplexity = 138.21187 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9287878 Perplexity = 138.21187
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9292672 Perplexity = 138.27814 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9292672 Perplexity = 138.27814
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9187232 Perplexity = 136.82781 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9187232 Perplexity = 136.82781
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9224714 Perplexity = 137.34162 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9224714 Perplexity = 137.34162
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9124989 Perplexity = 135.97878 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9124989 Perplexity = 135.97878
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9146056 Perplexity = 136.26556 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9146056 Perplexity = 136.26556
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9083939 Perplexity = 135.42174 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9083939 Perplexity = 135.42174
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9042288 Perplexity = 134.85886 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9042288 Perplexity = 134.85886
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9007954 Perplexity = 134.39664 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.9007954 Perplexity = 134.39664
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8977358 Perplexity = 133.98607 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8977358 Perplexity = 133.98607
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8960381 Perplexity = 133.75879 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8960381 Perplexity = 133.75879
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8950807 Perplexity = 133.63079 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8950807 Perplexity = 133.63079
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8947338 Perplexity = 133.58444 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8947338 Perplexity = 133.58444
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8945776 Perplexity = 133.56358 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8945776 Perplexity = 133.56358
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8944772 Perplexity = 133.55017 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8944772 Perplexity = 133.55017
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8944128 Perplexity = 133.54157 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8944128 Perplexity = 133.54157
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8943936 Perplexity = 133.53901 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8943936 Perplexity = 133.53901
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.89438 Perplexity = 133.53718 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.89438 Perplexity = 133.53718
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8943731 Perplexity = 133.53627 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8943731 Perplexity = 133.53627
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8943699 Perplexity = 133.53584 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8943699 Perplexity = 133.53584
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.894368 Perplexity = 133.53558 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.894368 Perplexity = 133.53558
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.894367 Perplexity = 133.53545 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.894367 Perplexity = 133.53545
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8943667 Perplexity = 133.53541 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8943667 Perplexity = 133.53541
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8943665 Perplexity = 133.53538 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8943665 Perplexity = 133.53538
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8943664 Perplexity = 133.53537 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8943664 Perplexity = 133.53537
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8943664 Perplexity = 133.53537 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8943664 Perplexity = 133.53537
|
||||
Final Results: Minibatch[1-8905]: Samples Seen = 73760 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8943663 Perplexity = 133.53537 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8943663 Perplexity = 133.53537
|
||||
Final Results: Minibatch[1-82430]: Samples Seen = 82430 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8084526 Perplexity = 122.54185 TrainNodeNCEBasedCrossEntropy: NCEBasedCrossEntropyWithSoftmax/Sample = 4.8084526 Perplexity = 122.54185
|
|
@ -0,0 +1,446 @@
|
|||
# Parameters can be overwritten on the command line
|
||||
# for example: cntk configFile=myConfigFile RootDir=../..
|
||||
# For running from Visual Studio add
|
||||
# currentDirectory=$(SolutionDir)/<path to corresponding data folder>
|
||||
RootDir = ".."
|
||||
|
||||
ConfigDir = "$RootDir$/Config"
|
||||
DataDir = "$RootDir$/Data"
|
||||
OutputDir = "$RootDir$/Output"
|
||||
ModelDir = "$OutputDir$/Models"
|
||||
|
||||
# deviceId=-1 for CPU, >=0 for GPU devices, "auto" chooses the best GPU, or CPU if no usable GPU is available
|
||||
deviceId = "auto"
|
||||
|
||||
command = writeWordAndClassInfo:train:test
|
||||
|
||||
precision = "float"
|
||||
traceLevel = 1
|
||||
modelPath = "$ModelDir$/rnn.dnn"
|
||||
|
||||
# uncomment the following line to write logs to a file
|
||||
#stderr=$OutputDir$/rnnOutput
|
||||
|
||||
type = double
|
||||
numCPUThreads = 1
|
||||
|
||||
confVocabSize = 10000
|
||||
confClassSize = 50
|
||||
|
||||
trainFile = "ptb.train.cntk.txt"
|
||||
validFile = "ptb.valid.cntk.txt"
|
||||
testFile = "ptb.test.cntk.txt"
|
||||
|
||||
writeWordAndClassInfo = [
|
||||
action = "writeWordAndClass"
|
||||
inputFile = "$DataDir$/$trainFile$"
|
||||
outputVocabFile = "$ModelDir$/vocab.txt"
|
||||
outputWord2Cls = "$ModelDir$/word2cls.txt"
|
||||
outputCls2Index = "$ModelDir$/cls2idx.txt"
|
||||
vocabSize = "$confVocabSize$"
|
||||
nbrClass = "$confClassSize$"
|
||||
cutoff = 0
|
||||
printValues = true
|
||||
]
|
||||
|
||||
#######################################
|
||||
# TRAINING CONFIG #
|
||||
#######################################
|
||||
|
||||
train = [
|
||||
action = "train"
|
||||
minibatchSize = 2048
|
||||
traceLevel = 1
|
||||
epochSize = 0
|
||||
recurrentLayer = 1
|
||||
defaultHiddenActivity = 0.1
|
||||
useValidation = true
|
||||
rnnType = "CLASSLSTM"
|
||||
|
||||
SimpleNetworkBuilder = [
|
||||
trainingCriterion = "classCrossEntropyWithSoftmax"
|
||||
evalCriterion = "classCrossEntropyWithSoftmax"
|
||||
nodeType = "sigmoid"
|
||||
initValueScale = 6.0
|
||||
layerSizes = "$confVocabSize$:150:200:10000"
|
||||
addPrior = false
|
||||
addDropoutNodes = false
|
||||
applyMeanVarNorm = false
|
||||
uniformInit = true
|
||||
lookupTableOrder = 1
|
||||
|
||||
# these are for the class information for class-based language modeling
|
||||
vocabSize = "$confVocabSize$"
|
||||
nbrClass = "$confClassSize$"
|
||||
]
|
||||
|
||||
SGD = [
|
||||
learningRatesPerSample = 0.1
|
||||
momentumPerMB = 0
|
||||
gradientClippingWithTruncation = true
|
||||
clippingThresholdPerSample = 15.0
|
||||
maxEpochs = 16
|
||||
unroll = false
|
||||
numMBsToShowResult = 100
|
||||
gradUpdateType = "none"
|
||||
loadBestModel = true
|
||||
|
||||
# settings for Auto Adjust Learning Rate
|
||||
AutoAdjust = [
|
||||
autoAdjustLR = "adjustAfterEpoch"
|
||||
reduceLearnRateIfImproveLessThan = 0.001
|
||||
continueReduce = false
|
||||
increaseLearnRateIfImproveMoreThan = 1000000000
|
||||
learnRateDecreaseFactor = 0.5
|
||||
learnRateIncreaseFactor = 1.382
|
||||
numMiniBatch4LRSearch = 100
|
||||
numPrevLearnRates = 5
|
||||
numBestSearchEpoch = 1
|
||||
]
|
||||
|
||||
dropoutRate = 0.0
|
||||
]
|
||||
|
||||
reader = [
|
||||
readerType = "LMSequenceReader"
|
||||
randomize = "none"
|
||||
nbruttsineachrecurrentiter = 10
|
||||
|
||||
# word class info
|
||||
wordclass = "$ModelDir$/vocab.txt"
|
||||
|
||||
# if writerType is set, we will cache to a binary file
|
||||
# if the binary file exists, we will use it instead of parsing this file
|
||||
# writerType=BinaryReader
|
||||
|
||||
# write definition
|
||||
wfile = "$OutputDir$/sequenceSentence.bin"
|
||||
|
||||
# wsize - inital size of the file in MB
|
||||
# if calculated size would be bigger, that is used instead
|
||||
wsize = 256
|
||||
|
||||
# wrecords - number of records we should allocate space for in the file
|
||||
# files cannot be expanded, so this should be large enough. If known modify this element in config before creating file
|
||||
wrecords = 1000
|
||||
|
||||
# windowSize - number of records we should include in BinaryWriter window
|
||||
windowSize = "$confVocabSize$"
|
||||
|
||||
file = "$DataDir$/$trainFile$"
|
||||
|
||||
# additional features sections
|
||||
# for now store as expanded category data (including label in)
|
||||
features = [
|
||||
# sentence has no features, so need to set dimension to zero
|
||||
dim = 0
|
||||
# write definition
|
||||
sectionType = "data"
|
||||
]
|
||||
|
||||
# sequence break table, list indexes into sequence records, so we know when a sequence starts/stops
|
||||
sequence = [
|
||||
dim = 1
|
||||
wrecords = 2
|
||||
# write definition
|
||||
sectionType = "data"
|
||||
]
|
||||
|
||||
#labels sections
|
||||
labelIn = [
|
||||
dim = 1
|
||||
labelType = "Category"
|
||||
beginSequence = "</s>"
|
||||
endSequence = "</s>"
|
||||
|
||||
# vocabulary size
|
||||
labelDim = "$confVocabSize$"
|
||||
labelMappingFile = "$OutputDir$/sentenceLabels.txt"
|
||||
|
||||
# Write definition
|
||||
# sizeof(unsigned) which is the label index type
|
||||
elementSize = 4
|
||||
sectionType = "labels"
|
||||
mapping = [
|
||||
# redefine number of records for this section, since we don't need to save it for each data record
|
||||
wrecords = 11
|
||||
# variable size so use an average string size
|
||||
elementSize = 10
|
||||
sectionType = "labelMapping"
|
||||
]
|
||||
|
||||
category = [
|
||||
dim = 11
|
||||
# elementSize = sizeof(ElemType) is default
|
||||
sectionType = "categoryLabels"
|
||||
]
|
||||
]
|
||||
|
||||
# labels sections
|
||||
labels = [
|
||||
dim = 1
|
||||
labelType = "NextWord"
|
||||
beginSequence = "O"
|
||||
endSequence = "O"
|
||||
|
||||
# vocabulary size
|
||||
labelDim = "$confVocabSize$"
|
||||
labelMappingFile = "$OutputDir$/sentenceLabels.out.txt"
|
||||
|
||||
# Write definition
|
||||
# sizeof(unsigned) which is the label index type
|
||||
elementSize = 4
|
||||
sectionType = "labels"
|
||||
mapping = [
|
||||
# redefine number of records for this section, since we don't need to save it for each data record
|
||||
wrecords = 3
|
||||
# variable size so use an average string size
|
||||
elementSize = 10
|
||||
sectionType = "labelMapping"
|
||||
]
|
||||
|
||||
category = [
|
||||
dim = 3
|
||||
# elementSize = sizeof(ElemType) is default
|
||||
sectionType = categoryLabels
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
cvReader = [
|
||||
# reader to use
|
||||
readerType = "LMSequenceReader"
|
||||
randomize = "none"
|
||||
|
||||
# word class info
|
||||
wordclass = "$ModelDir$/vocab.txt"
|
||||
|
||||
# if writerType is set, we will cache to a binary file
|
||||
# if the binary file exists, we will use it instead of parsing this file
|
||||
# writerType = "BinaryReader"
|
||||
|
||||
# write definition
|
||||
wfile = "$OutputDir$/sequenceSentence.valid.bin"
|
||||
|
||||
# wsize - inital size of the file in MB
|
||||
# if calculated size would be bigger, that is used instead
|
||||
wsize = 256
|
||||
|
||||
# wrecords - number of records we should allocate space for in the file
|
||||
# files cannot be expanded, so this should be large enough. If known modify this element in config before creating file
|
||||
wrecords = 1000
|
||||
|
||||
# windowSize - number of records we should include in BinaryWriter window
|
||||
windowSize = "$confVocabSize$"
|
||||
|
||||
file = "$DataDir$/$validFile$"
|
||||
|
||||
# additional features sections
|
||||
# for now store as expanded category data (including label in)
|
||||
features = [
|
||||
# sentence has no features, so need to set dimension to zero
|
||||
dim = 0
|
||||
# write definition
|
||||
sectionType = "data"
|
||||
]
|
||||
|
||||
# sequence break table, list indexes into sequence records, so we know when a sequence starts/stops
|
||||
sequence = [
|
||||
dim = 1
|
||||
wrecords = 2
|
||||
# write definition
|
||||
sectionType = "data"
|
||||
]
|
||||
|
||||
# labels sections
|
||||
# it should be the same as that in the training set
|
||||
labelIn = [
|
||||
dim = 1
|
||||
|
||||
# vocabulary size
|
||||
labelDim = "$confVocabSize$"
|
||||
labelMappingFile = "$OutputDir$/sentenceLabels.out.txt"
|
||||
|
||||
labelType = "Category"
|
||||
beginSequence = "</s>"
|
||||
endSequence = "</s>"
|
||||
|
||||
# Write definition
|
||||
# sizeof(unsigned) which is the label index type
|
||||
elementSize = 4
|
||||
sectionType = "labels"
|
||||
|
||||
mapping = [
|
||||
# redefine number of records for this section, since we don't need to save it for each data record
|
||||
wrecords = 11
|
||||
# variable size so use an average string size
|
||||
elementSize = 10
|
||||
sectionType = "labelMapping"
|
||||
]
|
||||
|
||||
category = [
|
||||
dim = 11
|
||||
# elementSize = sizeof(ElemType) is default
|
||||
sectionType = "categoryLabels"
|
||||
]
|
||||
]
|
||||
|
||||
#labels sections
|
||||
labels = [
|
||||
dim = 1
|
||||
|
||||
labelType = "NextWord"
|
||||
beginSequence = "O"
|
||||
endSequence = "O"
|
||||
|
||||
# vocabulary size
|
||||
labelDim = "$confVocabSize$"
|
||||
labelMappingFile = "$OutputDir$/sentenceLabels.out.txt"
|
||||
|
||||
# Write definition
|
||||
# sizeof(unsigned) which is the label index type
|
||||
elementSize = 4
|
||||
sectionType = "labels"
|
||||
|
||||
mapping = [
|
||||
# redefine number of records for this section, since we don't need to save it for each data record
|
||||
wrecords = 3
|
||||
# variable size so use an average string size
|
||||
elementSize = 10
|
||||
sectionType = "labelMapping"
|
||||
]
|
||||
|
||||
category = [
|
||||
dim = 3
|
||||
# elementSize = sizeof(ElemType) is default
|
||||
sectionType = "categoryLabels"
|
||||
]
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
#######################################
|
||||
# TEST CONFIG #
|
||||
#######################################
|
||||
|
||||
test = [
|
||||
action = "eval"
|
||||
|
||||
# correspond to the number of words/characteres to train in a minibatch
|
||||
minibatchSize = 1
|
||||
# need to be small since models are updated for each minibatch
|
||||
traceLevel = 1
|
||||
epochSize = 0
|
||||
recurrentLayer = 1
|
||||
defaultHiddenActivity = 0.1
|
||||
useValidation = true
|
||||
rnnType = "CLASSLSTM"
|
||||
|
||||
reader = [
|
||||
# reader to use
|
||||
readerType = "LMSequenceReader"
|
||||
randomize = "none"
|
||||
|
||||
# word class info
|
||||
wordclass = "$ModelDir$/vocab.txt"
|
||||
|
||||
# if writerType is set, we will cache to a binary file
|
||||
# if the binary file exists, we will use it instead of parsing this file
|
||||
# writerType = "BinaryReader"
|
||||
|
||||
# write definition
|
||||
wfile = "$OutputDir$/sequenceSentence.bin"
|
||||
# wsize - inital size of the file in MB
|
||||
# if calculated size would be bigger, that is used instead
|
||||
wsize = 256
|
||||
|
||||
# wrecords - number of records we should allocate space for in the file
|
||||
# files cannot be expanded, so this should be large enough. If known modify this element in config before creating file
|
||||
wrecords = 1000
|
||||
|
||||
# windowSize - number of records we should include in BinaryWriter window
|
||||
windowSize = "$confVocabSize$"
|
||||
|
||||
file = "$DataDir$/$testFile$"
|
||||
|
||||
# additional features sections
|
||||
# for now store as expanded category data (including label in)
|
||||
features = [
|
||||
# sentence has no features, so need to set dimension to zero
|
||||
dim = 0
|
||||
# write definition
|
||||
sectionType = "data"
|
||||
]
|
||||
|
||||
# sequence break table, list indexes into sequence records, so we know when a sequence starts/stops
|
||||
sequence = [
|
||||
dim = 1
|
||||
wrecords = 2
|
||||
# write definition
|
||||
sectionType = "data"
|
||||
]
|
||||
|
||||
#labels sections
|
||||
labelIn = [
|
||||
dim = 1
|
||||
|
||||
# vocabulary size
|
||||
labelDim = "$confVocabSize$"
|
||||
labelMappingFile = "$OutputDir$/sentenceLabels.txt"
|
||||
|
||||
labelType = "Category"
|
||||
beginSequence = "</s>"
|
||||
endSequence = "</s>"
|
||||
|
||||
# Write definition
|
||||
# sizeof(unsigned) which is the label index type
|
||||
elementSize = 4
|
||||
sectionType = "labels"
|
||||
|
||||
mapping = [
|
||||
# redefine number of records for this section, since we don't need to save it for each data record
|
||||
wrecords = 11
|
||||
# variable size so use an average string size
|
||||
elementSize = 10
|
||||
sectionType = "labelMapping"
|
||||
]
|
||||
|
||||
category = [
|
||||
dim = 11
|
||||
# elementSize = sizeof(ElemType) is default
|
||||
sectionType = "categoryLabels"
|
||||
]
|
||||
]
|
||||
|
||||
#labels sections
|
||||
labels = [
|
||||
dim = 1
|
||||
labelType = "NextWord"
|
||||
beginSequence = "O"
|
||||
endSequence = "O"
|
||||
|
||||
# vocabulary size
|
||||
labelDim = "$confVocabSize$"
|
||||
|
||||
labelMappingFile = "$OutputDir$/sentenceLabels.out.txt"
|
||||
# Write definition
|
||||
# sizeof(unsigned) which is the label index type
|
||||
elementSize = 4
|
||||
sectionType = "labels"
|
||||
|
||||
mapping = [
|
||||
# redefine number of records for this section, since we don't need to save it for each data record
|
||||
wrecords = 3
|
||||
# variable size so use an average string size
|
||||
elementSize = 10
|
||||
sectionType = "labelMapping"
|
||||
]
|
||||
|
||||
category = [
|
||||
dim = 3
|
||||
# elementSize = sizeof(ElemType) is default
|
||||
sectionType = "categoryLabels"
|
||||
]
|
||||
]
|
||||
]
|
||||
]
|
|
@ -0,0 +1,67 @@
|
|||
# CNTK example: Text
|
||||
|
||||
## License
|
||||
|
||||
Note: The data is not checked into the repository currently since a license is required for the penn treebank data.
|
||||
|
||||
## Overview
|
||||
|
||||
|:--------|:---|
|
||||
Data: |The Penn Treebank Project (https://www.cis.upenn.edu/~treebank/) annotates naturally-occuring text for linguistic structure .
|
||||
Purpose: |Showcase how to train a recurrent network for text data.
|
||||
Network: |SimpleNetworkBuilder for recurrent network with two hidden layers.
|
||||
Training: |Stochastic gradient descent with adjusted learning rate.
|
||||
Comments: |The provided configuration file performs class based RNN training.
|
||||
|
||||
## Running the example
|
||||
|
||||
### Getting the data
|
||||
|
||||
The data for this example is already contained in the folder Demos/Text/Data/.
|
||||
|
||||
### Setup
|
||||
|
||||
Compile the sources to generate the cntk executable (not required if you downloaded the binaries).
|
||||
|
||||
__Windows:__ Add the folder of the cntk executable to your path
|
||||
(e.g. `set PATH=%PATH%;c:/src/cntk/x64/Debug/;`)
|
||||
or prefix the call to the cntk executable with the corresponding folder.
|
||||
|
||||
__Linux:__ Add the folder of the cntk executable to your path
|
||||
(e.g. `export PATH=$PATH:$HOME/src/cntk/build/debug/bin/`)
|
||||
or prefix the call to the cntk executable with the corresponding folder.
|
||||
|
||||
### Run
|
||||
|
||||
Run the example from the Demos/Text/Data folder using:
|
||||
|
||||
`cntk configFile=../Config/rnn.config`
|
||||
|
||||
or run from any folder and specify the Data folder as the `currentDirectory`,
|
||||
e.g. running from the Demos/Text folder using:
|
||||
|
||||
`cntk configFile=Config/rnn.config currentDirectory=Data`
|
||||
|
||||
The output folder will be created inside Demos/Text/.
|
||||
|
||||
## Details
|
||||
|
||||
### Config files
|
||||
|
||||
The config files define a `RootDir` variable and sevearal other variables for directories.
|
||||
The `ConfigDir` and `ModelDir` variables define the folders for additional config files and for model files.
|
||||
These variables will be overwritten when running on the Philly cluster.
|
||||
__It is therefore recommended to generally use `ConfigDir` and `ModelDir` in all config files.__
|
||||
To run on CPU set `deviceId = -1`, to run on GPU set deviceId to "auto" or a specific value >= 0.
|
||||
|
||||
The configuration contains three commands.
|
||||
The first writes the word and class information as three separate files into the data directory.
|
||||
The training command uses the SimpleNetworkBuilder to build a recurrent network
|
||||
using `rnnType = CLASSLSTM` and the LMSequenceReader.
|
||||
The test command evalutes the trained network agains the specified `testFile`.
|
||||
|
||||
The trained models for each epoch are stored in the output models folder.
|
||||
|
||||
### Additional files
|
||||
|
||||
The 'AdditionalFiles' folder contains perplexity and expected results files for comparison.
|
До Ширина: | Высота: | Размер: 16 KiB После Ширина: | Высота: | Размер: 16 KiB |
До Ширина: | Высота: | Размер: 14 KiB После Ширина: | Высота: | Размер: 14 KiB |
До Ширина: | Высота: | Размер: 15 KiB После Ширина: | Высота: | Размер: 15 KiB |
До Ширина: | Высота: | Размер: 11 KiB После Ширина: | Высота: | Размер: 11 KiB |
|
@ -1,66 +0,0 @@
|
|||
WorkDir=.
|
||||
ModelDir=$WorkDir$/_out/$ConfigName$
|
||||
stderr=$WorkDir$/_out/$ConfigName$
|
||||
|
||||
ndlMacros=$WorkDir$/Macros.ndl
|
||||
|
||||
precision=float
|
||||
deviceId=Auto
|
||||
|
||||
command=Train:Test
|
||||
|
||||
Train=[
|
||||
action=train
|
||||
modelPath=$ModelDir$/01_OneHidden
|
||||
|
||||
NDLNetworkBuilder=[
|
||||
networkDescription=$WorkDir$/01_OneHidden.ndl
|
||||
]
|
||||
|
||||
SGD=[
|
||||
epochSize=60000
|
||||
minibatchSize=32
|
||||
learningRatesPerMB=0.1
|
||||
momentumPerMB=0
|
||||
maxEpochs=30
|
||||
]
|
||||
|
||||
reader=[
|
||||
readerType=UCIFastReader
|
||||
file=$WorkDir$/Train-28x28.txt
|
||||
features=[
|
||||
dim=784
|
||||
start=1
|
||||
]
|
||||
labels=[
|
||||
dim=1
|
||||
start=0
|
||||
labelDim=10
|
||||
labelMappingFile=$WorkDir$/labelsmap.txt
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
Test=[
|
||||
action=test
|
||||
modelPath=$ModelDir$/01_OneHidden
|
||||
|
||||
NDLNetworkBuilder=[
|
||||
networkDescription=$WorkDir$/01_OneHidden.ndl
|
||||
]
|
||||
|
||||
reader=[
|
||||
readerType=UCIFastReader
|
||||
file=$WorkDir$/Test-28x28.txt
|
||||
features=[
|
||||
dim=784
|
||||
start=1
|
||||
]
|
||||
labels=[
|
||||
dim=1
|
||||
start=0
|
||||
labelDim=10
|
||||
labelMappingFile=$WorkDir$/labelsmap.txt
|
||||
]
|
||||
]
|
||||
]
|
|
@ -1,25 +0,0 @@
|
|||
load=ndlMnistMacros
|
||||
run=DNN
|
||||
|
||||
ndlMnistMacros = [
|
||||
FeatDim = 784
|
||||
LabelDim = 10
|
||||
|
||||
features = Input(FeatDim, tag = feature)
|
||||
featScale = Const(0.00390625)
|
||||
featScaled = Scale(featScale, features)
|
||||
labels = Input(LabelDim, tag = label)
|
||||
]
|
||||
|
||||
DNN=[
|
||||
hiddenDim = 200
|
||||
|
||||
# DNNSigmoidLayer and DNNLayer are defined in Macros.ndl
|
||||
h1=DNNSigmoidLayer(FeatDim, hiddenDim, featScaled, 1)
|
||||
ol=DNNLayer(hiddenDim, labelDim, h1, 1)
|
||||
|
||||
CE = CrossEntropyWithSoftmax(labels, ol, tag = Criteria)
|
||||
Err = ErrorPrediction(labels, ol, tag = Eval)
|
||||
OutputNodes = ol
|
||||
]
|
||||
|
|
@ -1,66 +0,0 @@
|
|||
WorkDir=.
|
||||
ModelDir=$WorkDir$/_out/$ConfigName$
|
||||
stderr=$WorkDir$/_out/$ConfigName$
|
||||
|
||||
ndlMacros=$WorkDir$/Macros.ndl
|
||||
|
||||
precision=float
|
||||
deviceId=Auto
|
||||
|
||||
command=Train:Test
|
||||
|
||||
Train=[
|
||||
action=train
|
||||
modelPath=$ModelDir$/02_Convolution
|
||||
|
||||
NDLNetworkBuilder=[
|
||||
networkDescription=$WorkDir$/02_Convolution.ndl
|
||||
]
|
||||
|
||||
SGD=[
|
||||
epochSize=60000
|
||||
minibatchSize=32
|
||||
learningRatesPerMB=0.5
|
||||
momentumPerMB=0*10:0.7
|
||||
maxEpochs=15
|
||||
]
|
||||
|
||||
reader=[
|
||||
readerType=UCIFastReader
|
||||
file=$WorkDir$/Train-28x28.txt
|
||||
features=[
|
||||
dim=784
|
||||
start=1
|
||||
]
|
||||
labels=[
|
||||
dim=1
|
||||
start=0
|
||||
labelDim=10
|
||||
labelMappingFile=$WorkDir$/labelsmap.txt
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
Test=[
|
||||
action=test
|
||||
modelPath=$ModelDir$/02_Convolution
|
||||
|
||||
NDLNetworkBuilder=[
|
||||
networkDescription=$WorkDir$/02_Convolution.ndl
|
||||
]
|
||||
|
||||
reader=[
|
||||
readerType=UCIFastReader
|
||||
file=$WorkDir$/Test-28x28.txt
|
||||
features=[
|
||||
dim=784
|
||||
start=1
|
||||
]
|
||||
labels=[
|
||||
dim=1
|
||||
start=0
|
||||
labelDim=10
|
||||
labelMappingFile=$WorkDir$/labelsmap.txt
|
||||
]
|
||||
]
|
||||
]
|
|
@ -1,66 +0,0 @@
|
|||
WorkDir=.
|
||||
ModelDir=$WorkDir$/_out/$ConfigName$
|
||||
stderr=$WorkDir$/_out/$ConfigName$
|
||||
|
||||
ndlMacros=$WorkDir$/Macros.ndl
|
||||
|
||||
precision=float
|
||||
deviceId=Auto
|
||||
|
||||
command=Train:Test
|
||||
|
||||
Train=[
|
||||
action=train
|
||||
modelPath=$ModelDir$/03_ConvBatchNorm
|
||||
|
||||
NDLNetworkBuilder=[
|
||||
networkDescription=$WorkDir$/03_ConvBatchNorm.ndl
|
||||
]
|
||||
|
||||
SGD=[
|
||||
epochSize=60000
|
||||
minibatchSize=32
|
||||
learningRatesPerMB=0.5
|
||||
momentumPerMB=0*10:0.7
|
||||
maxEpochs=8
|
||||
]
|
||||
|
||||
reader=[
|
||||
readerType=UCIFastReader
|
||||
file=$WorkDir$/Train-28x28.txt
|
||||
features=[
|
||||
dim=784
|
||||
start=1
|
||||
]
|
||||
labels=[
|
||||
dim=1
|
||||
start=0
|
||||
labelDim=10
|
||||
labelMappingFile=$WorkDir$/labelsmap.txt
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
Test=[
|
||||
action=test
|
||||
modelPath=$ModelDir$/03_ConvBatchNorm
|
||||
|
||||
NDLNetworkBuilder=[
|
||||
networkDescription=$WorkDir$/03_ConvBatchNorm.ndl
|
||||
]
|
||||
|
||||
reader=[
|
||||
readerType=UCIFastReader
|
||||
file=$WorkDir$/Test-28x28.txt
|
||||
features=[
|
||||
dim=784
|
||||
start=1
|
||||
]
|
||||
labels=[
|
||||
dim=1
|
||||
start=0
|
||||
labelDim=10
|
||||
labelMappingFile=$WorkDir$/labelsmap.txt
|
||||
]
|
||||
]
|
||||
]
|
|
@ -56,11 +56,11 @@ if __name__ == "__main__":
|
|||
trnLbl = loadLabels('http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz', 60000)
|
||||
trn = np.hstack((trnLbl, trnData))
|
||||
print 'Writing train text file...'
|
||||
np.savetxt(r'./Train-28x28.txt', trn, fmt = '%u', delimiter='\t')
|
||||
np.savetxt(r'./../Data/Train-28x28.txt', trn, fmt = '%u', delimiter='\t')
|
||||
print 'Done.'
|
||||
testData = loadData('http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz', 10000)
|
||||
testLbl = loadLabels('http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz', 10000)
|
||||
test = np.hstack((testLbl, testData))
|
||||
print 'Writing test text file...'
|
||||
np.savetxt(r'./Test-28x28.txt', test, fmt = '%u', delimiter='\t')
|
||||
np.savetxt(r'./../Data/Test-28x28.txt', test, fmt = '%u', delimiter='\t')
|
||||
print 'Done.'
|
|
@ -0,0 +1,87 @@
|
|||
# Parameters can be overwritten on the command line
|
||||
# for example: cntk configFile=myConfigFile RootDir=../..
|
||||
# For running from Visual Studio add
|
||||
# currentDirectory=$(SolutionDir)/<path to corresponding data folder>
|
||||
RootDir = ".."
|
||||
|
||||
ConfigDir = "$RootDir$/Config"
|
||||
DataDir = "$RootDir$/Data"
|
||||
OutputDir = "$RootDir$/Output"
|
||||
ModelDir = "$OutputDir$/Models"
|
||||
|
||||
deviceId = "auto"
|
||||
|
||||
command = train:test
|
||||
|
||||
precision = "float"
|
||||
modelPath = "$ModelDir$/01_OneHidden"
|
||||
ndlMacros = "$ConfigDir$/Macros.ndl"
|
||||
|
||||
# uncomment the following line to write logs to a file
|
||||
# stderr = "$OutputDir$/01_OneHidden_out"
|
||||
|
||||
#######################################
|
||||
# TRAINING CONFIG #
|
||||
#######################################
|
||||
|
||||
train = [
|
||||
action = "train"
|
||||
|
||||
NDLNetworkBuilder = [
|
||||
networkDescription = "$ConfigDir$/01_OneHidden.ndl"
|
||||
]
|
||||
|
||||
SGD = [
|
||||
epochSize = 60000
|
||||
minibatchSize = 32
|
||||
learningRatesPerMB = 0.1
|
||||
momentumPerMB = 0
|
||||
maxEpochs = 15
|
||||
]
|
||||
|
||||
reader = [
|
||||
readerType = "UCIFastReader"
|
||||
file = "$DataDir$/Train-28x28.txt"
|
||||
|
||||
features = [
|
||||
dim = 784
|
||||
start = 1
|
||||
]
|
||||
|
||||
labels = [
|
||||
dim = 1
|
||||
start = 0
|
||||
labelDim = 10
|
||||
labelMappingFile = "$DataDir$/labelsmap.txt"
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
#######################################
|
||||
# TEST CONFIG #
|
||||
#######################################
|
||||
|
||||
test = [
|
||||
action = "test"
|
||||
|
||||
NDLNetworkBuilder=[
|
||||
networkDescription = "$ConfigDir$/01_OneHidden.ndl"
|
||||
]
|
||||
|
||||
reader = [
|
||||
readerType = "UCIFastReader"
|
||||
file = "$DataDir$/Test-28x28.txt"
|
||||
|
||||
features = [
|
||||
dim = 784
|
||||
start = 1
|
||||
]
|
||||
|
||||
labels = [
|
||||
dim = 1
|
||||
start = 0
|
||||
labelDim = 10
|
||||
labelMappingFile = "$DataDir$/labelsmap.txt"
|
||||
]
|
||||
]
|
||||
]
|
|
@ -0,0 +1,34 @@
|
|||
# macros to include
|
||||
load = ndlMnistMacros
|
||||
|
||||
# the actual NDL that defines the network
|
||||
run = DNN
|
||||
|
||||
ndlMnistMacros = [
|
||||
featDim = 784
|
||||
labelDim = 10
|
||||
|
||||
features = Input(featDim)
|
||||
featScale = Const(0.00390625)
|
||||
featScaled = Scale(featScale, features)
|
||||
labels = Input(labelDim)
|
||||
]
|
||||
|
||||
DNN = [
|
||||
hiddenDim = 200
|
||||
|
||||
# DNNSigmoidLayer and DNNLayer are defined in Macros.ndl
|
||||
h1 = DNNSigmoidLayer(featDim, hiddenDim, featScaled, 1)
|
||||
ol = DNNLayer(hiddenDim, labelDim, h1, 1)
|
||||
|
||||
ce = CrossEntropyWithSoftmax(labels, ol)
|
||||
err = ErrorPrediction(labels, ol)
|
||||
|
||||
# Special Nodes
|
||||
FeatureNodes = (features)
|
||||
LabelNodes = (labels)
|
||||
CriterionNodes = (ce)
|
||||
EvalNodes = (err)
|
||||
OutputNodes = (ol)
|
||||
]
|
||||
|
|
@ -0,0 +1,87 @@
|
|||
# Parameters can be overwritten on the command line
|
||||
# for example: cntk configFile=myConfigFile RootDir=../..
|
||||
# For running from Visual Studio add
|
||||
# currentDirectory=$(SolutionDir)/<path to corresponding data folder>
|
||||
RootDir = ".."
|
||||
|
||||
ConfigDir = "$RootDir$/Config"
|
||||
DataDir = "$RootDir$/Data"
|
||||
OutputDir = "$RootDir$/Output"
|
||||
ModelDir = "$OutputDir$/Models"
|
||||
|
||||
deviceId = "auto"
|
||||
|
||||
command = train:test
|
||||
|
||||
precision = "float"
|
||||
modelPath = "$ModelDir$/02_Convolution"
|
||||
ndlMacros = "$ConfigDir$/Macros.ndl"
|
||||
|
||||
# uncomment the following line to write logs to a file
|
||||
# stderr = "$OutputDir$/02_Convolution_out"
|
||||
|
||||
#######################################
|
||||
# TRAINING CONFIG #
|
||||
#######################################
|
||||
|
||||
train = [
|
||||
action = "train"
|
||||
|
||||
NDLNetworkBuilder = [
|
||||
networkDescription = "$ConfigDir$/02_Convolution.ndl"
|
||||
]
|
||||
|
||||
SGD = [
|
||||
epochSize = 60000
|
||||
minibatchSize = 32
|
||||
learningRatesPerMB = 0.5
|
||||
momentumPerMB = 0*10:0.7
|
||||
maxEpochs = 15
|
||||
]
|
||||
|
||||
reader = [
|
||||
readerType = "UCIFastReader"
|
||||
file = "$DataDir$/Train-28x28.txt"
|
||||
|
||||
features = [
|
||||
dim = 784
|
||||
start = 1
|
||||
]
|
||||
|
||||
labels = [
|
||||
dim = 1
|
||||
start = 0
|
||||
labelDim = 10
|
||||
labelMappingFile = "$DataDir$/labelsmap.txt"
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
#######################################
|
||||
# TEST CONFIG #
|
||||
#######################################
|
||||
|
||||
test = [
|
||||
action = test
|
||||
|
||||
NDLNetworkBuilder = [
|
||||
networkDescription = "$ConfigDir$/02_Convolution.ndl"
|
||||
]
|
||||
|
||||
reader = [
|
||||
readerType = "UCIFastReader"
|
||||
file = "$DataDir$/Test-28x28.txt"
|
||||
|
||||
features = [
|
||||
dim = 784
|
||||
start = 1
|
||||
]
|
||||
|
||||
labels = [
|
||||
dim = 1
|
||||
start = 0
|
||||
labelDim = 10
|
||||
labelMappingFile = "$DataDir$/labelsmap.txt"
|
||||
]
|
||||
]
|
||||
]
|
|
@ -1,15 +1,18 @@
|
|||
load=ndlMnistMacros
|
||||
run=DNN
|
||||
# macros to include
|
||||
load = ndlMnistMacros
|
||||
|
||||
# the actual NDL that defines the network
|
||||
run = DNN
|
||||
|
||||
ndlMnistMacros = [
|
||||
ImageW = 28
|
||||
ImageH = 28
|
||||
LabelDim = 10
|
||||
imageW = 28
|
||||
imageH = 28
|
||||
labelDim = 10
|
||||
|
||||
features = ImageInput(ImageW, ImageH, 1, tag = feature)
|
||||
features = ImageInput(imageW, imageH, 1)
|
||||
featScale = Const(0.00390625)
|
||||
featScaled = Scale(featScale, features)
|
||||
labels = Input(LabelDim, tag = label)
|
||||
labels = Input(labelDim)
|
||||
]
|
||||
|
||||
DNN=[
|
||||
|
@ -52,8 +55,14 @@ DNN=[
|
|||
h1 = DNNSigmoidLayer(512, h1Dim, pool2, 1)
|
||||
ol = DNNLayer(h1Dim, labelDim, h1, 1)
|
||||
|
||||
CE = CrossEntropyWithSoftmax(labels, ol, tag = Criteria)
|
||||
Err = ErrorPrediction(labels, ol, tag = Eval)
|
||||
OutputNodes = ol
|
||||
ce = CrossEntropyWithSoftmax(labels, ol)
|
||||
err = ErrorPrediction(labels, ol)
|
||||
|
||||
# Special Nodes
|
||||
FeatureNodes = (features)
|
||||
LabelNodes = (labels)
|
||||
CriterionNodes = (ce)
|
||||
EvalNodes = (err)
|
||||
OutputNodes = (ol)
|
||||
]
|
||||
|
|
@ -0,0 +1,87 @@
|
|||
# Parameters can be overwritten on the command line
|
||||
# for example: cntk configFile=myConfigFile RootDir=../..
|
||||
# For running from Visual Studio add
|
||||
# currentDirectory=$(SolutionDir)/<path to corresponding data folder>
|
||||
RootDir = ".."
|
||||
|
||||
ConfigDir = "$RootDir$/Config"
|
||||
DataDir = "$RootDir$/Data"
|
||||
OutputDir = "$RootDir$/Output"
|
||||
ModelDir = "$OutputDir$/Models"
|
||||
|
||||
deviceId = "auto"
|
||||
|
||||
command = train:test
|
||||
|
||||
precision = "float"
|
||||
modelPath = "$ModelDir$/03_ConvBatchNorm"
|
||||
ndlMacros = "$ConfigDir$/Macros.ndl"
|
||||
|
||||
# uncomment the following line to write logs to a file
|
||||
# stderr = "$OutputDir$/03_ConvBatchNorm_out"
|
||||
|
||||
#######################################
|
||||
# TRAINING CONFIG #
|
||||
#######################################
|
||||
|
||||
train = [
|
||||
action = "train"
|
||||
|
||||
NDLNetworkBuilder = [
|
||||
networkDescription = "$ConfigDir$/03_ConvBatchNorm.ndl"
|
||||
]
|
||||
|
||||
SGD = [
|
||||
epochSize = 60000
|
||||
minibatchSize = 32
|
||||
learningRatesPerMB = 0.5
|
||||
momentumPerMB = 0*10:0.7
|
||||
maxEpochs = 8
|
||||
]
|
||||
|
||||
reader = [
|
||||
readerType = "UCIFastReader"
|
||||
file = "$DataDir$/Train-28x28.txt"
|
||||
|
||||
features = [
|
||||
dim = 784
|
||||
start = 1
|
||||
]
|
||||
|
||||
labels = [
|
||||
dim = 1
|
||||
start = 0
|
||||
labelDim = 10
|
||||
labelMappingFile = "$DataDir$/labelsmap.txt"
|
||||
]
|
||||
]
|
||||
]
|
||||
|
||||
#######################################
|
||||
# TEST CONFIG #
|
||||
#######################################
|
||||
|
||||
test = [
|
||||
action = "test"
|
||||
|
||||
NDLNetworkBuilder = [
|
||||
networkDescription = "$ConfigDir$/03_ConvBatchNorm.ndl"
|
||||
]
|
||||
|
||||
reader = [
|
||||
readerType = "UCIFastReader"
|
||||
file = "$DataDir$/Test-28x28.txt"
|
||||
|
||||
features = [
|
||||
dim = 784
|
||||
start = 1
|
||||
]
|
||||
|
||||
labels = [
|
||||
dim = 1
|
||||
start = 0
|
||||
labelDim = 10
|
||||
labelMappingFile = "$DataDir$/labelsmap.txt"
|
||||
]
|
||||
]
|
||||
]
|
|
@ -1,18 +1,21 @@
|
|||
load=ndlMnistMacros
|
||||
run=DNN
|
||||
# macros to include
|
||||
load = ndlMnistMacros
|
||||
|
||||
# the actual NDL that defines the network
|
||||
run = DNN
|
||||
|
||||
ndlMnistMacros = [
|
||||
ImageW = 28
|
||||
ImageH = 28
|
||||
LabelDim = 10
|
||||
imageW = 28
|
||||
imageH = 28
|
||||
labelDim = 10
|
||||
|
||||
features = ImageInput(ImageW, ImageH, 1, tag = feature)
|
||||
features = ImageInput(imageW, imageH, 1)
|
||||
featScale = Const(0.00390625)
|
||||
featScaled = Scale(featScale, features)
|
||||
labels = Input(LabelDim, tag = label)
|
||||
labels = Input(labelDim)
|
||||
]
|
||||
|
||||
DNN=[
|
||||
DNN = [
|
||||
# conv1
|
||||
kW1 = 5
|
||||
kH1 = 5
|
||||
|
@ -55,8 +58,14 @@ DNN=[
|
|||
|
||||
ol = DNNLayer(h1Dim, labelDim, h1_act, 1)
|
||||
|
||||
CE = CrossEntropyWithSoftmax(labels, ol, tag = Criteria)
|
||||
Err = ErrorPrediction(labels, ol, tag = Eval)
|
||||
OutputNodes = ol
|
||||
ce = CrossEntropyWithSoftmax(labels, ol)
|
||||
err = ErrorPrediction(labels, ol)
|
||||
|
||||
# Special Nodes
|
||||
FeatureNodes = (features)
|
||||
LabelNodes = (labels)
|
||||
CriterionNodes = (ce)
|
||||
EvalNodes = (err)
|
||||
OutputNodes = (ol)
|
||||
]
|
||||
|
|
@ -0,0 +1,31 @@
|
|||
DNNSigmoidLayer(inDim, outDim, x, parmScale) = [
|
||||
W = Parameter(outDim, inDim, init="uniform", initValueScale=parmScale)
|
||||
b = Parameter(outDim, 1, init="uniform", initValueScale=parmScale)
|
||||
t = Times(W, x)
|
||||
z = Plus(t, b)
|
||||
y = Sigmoid(z)
|
||||
]
|
||||
|
||||
DNNLayer(inDim, outDim, x, parmScale) = [
|
||||
W = Parameter(outDim, inDim, init="uniform", initValueScale=parmScale)
|
||||
b = Parameter(outDim, 1, init="uniform", initValueScale=parmScale)
|
||||
t = Times(W, x)
|
||||
z = Plus(t, b)
|
||||
]
|
||||
|
||||
ConvReLULayer(inp, outMap, inWCount, kW, kH, hStride, vStride, wScale, bValue) = [
|
||||
convW = Parameter(outMap, inWCount, init="uniform", initValueScale=wScale)
|
||||
convB = Parameter(outMap, 1, init="fixedValue", value=bValue)
|
||||
conv = Convolution(convW, inp, kW, kH, outMap, hStride, vStride, zeroPadding=false)
|
||||
convPlusB = Plus(conv, convB);
|
||||
act = RectifiedLinear(convPlusB);
|
||||
]
|
||||
|
||||
BatchNorm(dim, x, scaleInit, biasInit) = [
|
||||
m = Mean(x)
|
||||
isd = InvStdDev(x)
|
||||
norm = ColumnElementTimes(Minus(x, m), isd)
|
||||
sc = Parameter(dim, 1, init="uniform", initValueScale=scaleInit)
|
||||
b = Parameter(dim, 1, init="uniform", initValueScale=biasInit)
|
||||
bn_norm = Plus(ColumnElementTimes(norm, sc), b)
|
||||
]
|
|
@ -8,5 +8,3 @@
|
|||
7
|
||||
8
|
||||
9
|
||||
|
||||
|
|
@ -1,35 +0,0 @@
|
|||
DNNSigmoidLayer(inDim, outDim, x, parmScale)
|
||||
{
|
||||
W = Parameter(outDim, inDim, init = Uniform, initValueScale = parmScale)
|
||||
b = Parameter(outDim, init = Uniform, initValueScale = parmScale)
|
||||
t = Times(W, x)
|
||||
z = Plus(t, b)
|
||||
y = Sigmoid(z)
|
||||
}
|
||||
|
||||
DNNLayer(inDim, outDim, x, parmScale)
|
||||
{
|
||||
W = Parameter(outDim, inDim, init = Uniform, initValueScale = parmScale)
|
||||
b = Parameter(outDim, init = Uniform, initValueScale = parmScale)
|
||||
t = Times(W, x)
|
||||
z = Plus(t, b)
|
||||
}
|
||||
|
||||
ConvReLULayer(inp, outMap, inWCount, kW, kH, hStride, vStride, wScale, bValue)
|
||||
{
|
||||
convW = Parameter(outMap, inWCount, init = Uniform, initValueScale = wScale)
|
||||
conv = Convolution(convW, inp, kW, kH, outMap, hStride, vStride, zeroPadding = false)
|
||||
convB = Parameter(outMap, 1, init = fixedValue, value = bValue)
|
||||
convPlusB = Plus(conv, convB);
|
||||
act = RectifiedLinear(convPlusB);
|
||||
}
|
||||
|
||||
BatchNorm(dim, x, scaleInit, biasInit)
|
||||
{
|
||||
m = Mean(x)
|
||||
isd = InvStdDev(x)
|
||||
norm = ColumnElementTimes(Minus(x, m), isd)
|
||||
sc = Parameter(dim, 1, init=Uniform, initValueScale=scaleInit)
|
||||
b = Parameter(dim, 1, init=Uniform, initValueScale=biasInit)
|
||||
bn_norm = Plus(ColumnElementTimes(norm, sc), b)
|
||||
}
|
|
@ -0,0 +1,82 @@
|
|||
# CNTK example: MNIST
|
||||
|
||||
## Overview
|
||||
|
||||
|:--------|:---|
|
||||
Data: |The MNIST database (http://yann.lecun.com/exdb/mnist/) of handwritten digits.
|
||||
Purpose: |This example demonstrates usage of NDL to train neural networks on MNIST dataset.
|
||||
Network: |NDLNetworkBuilder, simple feed forward and convolutional networks, cross entropy with softmax.
|
||||
Training: |Stochastic gradient descent both with and without momentum.
|
||||
Comments: |There are two config files, details are provided below.
|
||||
|
||||
## Running the example
|
||||
|
||||
### Getting the data
|
||||
|
||||
The MNIST dataset is not included in the CNTK distribution but can be easily
|
||||
downloaded and converted by running the following command from the 'AdditionalFiles' folder:
|
||||
|
||||
`python mnist_convert.py`
|
||||
|
||||
The script will download all required files and convert them to CNTK-supported format.
|
||||
The resulting files (Train-28x28.txt and Test-28x28.txt) will be stored in the 'Data' folder.
|
||||
In case you don't have a Python installed, there are 2 options:
|
||||
|
||||
1. Download and install latest version of Python 2.7 from: https://www.python.org/downloads/
|
||||
Then install numpy package by following instruction from: http://www.scipy.org/install.html#individual-packages
|
||||
|
||||
2. Alternatively install Python Anaconda distribution which contains most of the
|
||||
popular Python packages including numpy: http://continuum.io/downloads
|
||||
|
||||
### Setup
|
||||
|
||||
Compile the sources to generate the cntk executable (not required if you downloaded the binaries).
|
||||
|
||||
__Windows:__ Add the folder of the cntk executable to your path
|
||||
(e.g. `set PATH=%PATH%;c:/src/cntk/x64/Debug/;`)
|
||||
or prefix the call to the cntk executable with the corresponding folder.
|
||||
|
||||
__Linux:__ Add the folder of the cntk executable to your path
|
||||
(e.g. `export PATH=$PATH:$HOME/src/cntk/build/debug/bin/`)
|
||||
or prefix the call to the cntk executable with the corresponding folder.
|
||||
|
||||
### Run
|
||||
|
||||
Run the example from the Image/MNIST/Data folder using:
|
||||
|
||||
`cntk configFile=../Config/01_OneHidden.config`
|
||||
|
||||
or run from any folder and specify the Data folder as the `currentDirectory`,
|
||||
e.g. running from the Image/MNIST folder using:
|
||||
|
||||
`cntk configFile=Config/01_OneHidden.config currentDirectory=Data`
|
||||
|
||||
The output folder will be created inside Image/MNIST/.
|
||||
|
||||
## Details
|
||||
|
||||
### Config files
|
||||
|
||||
There are three config files and corresponding network description files in the 'Config' folder:
|
||||
|
||||
1. 01_OneHidden.ndl is a simple, one hidden layer network that produces 2.3% of error.
|
||||
To run the sample, navigate to the Data folder and run the following command:
|
||||
`cntk configFile=../Config/01_OneHidden.config`
|
||||
|
||||
2. 02_Convolution.ndl is more interesting, convolutional network which has 2 convolutional and 2 max pooling layers.
|
||||
The network produces 0.87% of error after training for about 2 minutes on GPU.
|
||||
To run the sample, navigate to the Data folder and run the following command:
|
||||
`cntk configFile=../Config/02_Convolution.config`
|
||||
|
||||
3. 03_ConvBatchNorm.ndl is almost identical to 02_Convolution.ndl
|
||||
except that it uses batch normalization for the fully connected layer h1.
|
||||
Note that batch normalization is implemented using just NDL (see Macros.ndl for details).
|
||||
As a result, it uses less epochs (8 vs 15 in 02_Convolution) to achieve the same accuracy.
|
||||
To run the sample, navigate to the Data folder and run the following command:
|
||||
`cntk configFile=../Config/03_ConvBatchNorm.config`
|
||||
|
||||
For more details, refer to .ndl and corresponding .config files.
|
||||
|
||||
### Additional files
|
||||
|
||||
The 'AdditionalFiles' folder contains the python script to download and convert the data.
|
|
@ -1,28 +0,0 @@
|
|||
This example demonstrates usage of NDL to train 2 neural networks on MNIST dataset (http://yann.lecun.com/exdb/mnist/).
|
||||
MNIST dataset is not included in CNTK distribution but can be easily downloaded and converted by running the following command from this folder:
|
||||
python mnist_convert.py
|
||||
The script will download all required files and convert them to CNTK-supported format.
|
||||
In case you don't have a Python installed, there are 2 options:
|
||||
1. Download and install latest version of Python 2.7 from: https://www.python.org/downloads/
|
||||
Then install numpy package by following instruction from: http://www.scipy.org/install.html#individual-packages
|
||||
2. Alternatively install Python Anaconda distribution which contains most of the popular Python packages including numpy:
|
||||
http://continuum.io/downloads
|
||||
|
||||
Short description of the networks:
|
||||
|
||||
1. 01_OneHidden.ndl is a simple, one hidden layer network that produces 2.3% of error.
|
||||
To run the sample, navigate to this folder and run the following command:
|
||||
<path to CNTK executable> configFile=01_OneHidden.config configName=01_OneHidden
|
||||
|
||||
2. 02_Convolution.ndl is more interesting, convolutional network which has 2 convolutional and 2 max pooling layers. The network produces 0.87% of error after training for about 2 minutes on GPU.
|
||||
To run the sample, navigate to this folder and run the following command:
|
||||
<path to CNTK executable> configFile=02_Conv.config configName=02_Conv
|
||||
|
||||
3. 03_ConvBatchNorm.ndl is almost identical to 02_Convolution.ndl except that it uses batch normalization for the fully connected layer h1.
|
||||
Note that batch normalization is implemented using just NDL (see Macros.ndl for details).
|
||||
As a result, it uses less epochs (8 vs 15 in 02_Convolution) to achieve the same accuracy.
|
||||
To run the sample, navigate to this folder and run the following command:
|
||||
<path to CNTK executable> configFile=03_ConvBatchNorm.config configName=03_ConvBatchNorm
|
||||
|
||||
For more details, refer to .ndl and corresponding .config files.
|
||||
|
|
@ -0,0 +1,14 @@
|
|||
# CNTK Demos and Example Setups
|
||||
|
||||
This folder contains examples that correspond to popular data sets and tasks.
|
||||
These data sets often require a license and are therefore not included in the repository.
|
||||
The 'Demos' folder contains a few self-contained and documented demos to get started with CNTK.
|
||||
|
||||
The four examples shown in the table below provide a good introduction to CNTK.
|
||||
|
||||
|Folder | Domain | Network types |
|
||||
|:------------------------|:-------------------------------------------------|:----------------|
|
||||
Demos/Simple2d | Synthetic 2d data | FF (CPU and GPU)
|
||||
Demos/Speech | Speech data (CMU AN4) | FF and LSTM
|
||||
Demos/Text | Text data (penn treebank) | RNN
|
||||
ExampleSetups/Image/MNIST | Image data (MNIST handwritten digit recognition) | CNN
|