Change initialization to use heNormal.
This commit is contained in:
Родитель
88d6edc95e
Коммит
937cbd7fcf
|
@ -1,7 +1,7 @@
|
|||
# Simple CIFAR-10 convnet, without and with BatchNormalization.
|
||||
|
||||
command = TrainConvNet:Eval
|
||||
#command = TrainConvNetWithBN:Eval
|
||||
command = TrainConvNetWithBN:Eval
|
||||
|
||||
makeMode = false ; traceLevel = 1 ; deviceId = 0
|
||||
|
||||
|
@ -21,15 +21,15 @@ TrainConvNet = [
|
|||
|
||||
model = Sequential (
|
||||
Subtract128 :
|
||||
ConvolutionalLayer {32, (5:5), pad = true, activation = ReLU, init = "gaussian", initValueScale = 0.0043} :
|
||||
ConvolutionalLayer {32, (5:5), pad = true, activation = ReLU, init = "heNormal"} :
|
||||
MaxPoolingLayer {(3:3), stride = (2:2)} :
|
||||
ConvolutionalLayer {32, (5:5), pad = true, activation = ReLU, init = "gaussian", initValueScale = 1.414} :
|
||||
ConvolutionalLayer {32, (5:5), pad = true, activation = ReLU, init = "heNormal"} :
|
||||
MaxPoolingLayer {(3:3), stride = (2:2)} :
|
||||
ConvolutionalLayer {64, (5:5), pad = true, activation = ReLU, init = "gaussian", initValueScale = 1.414} :
|
||||
ConvolutionalLayer {64, (5:5), pad = true, activation = ReLU, init = "heNormal"} :
|
||||
MaxPoolingLayer {(3:3), stride = (2:2)} :
|
||||
DenseLayer {64, activation = ReLU, init = "gaussian", initValueScale = 12} :
|
||||
DenseLayer {64, activation = ReLU, init = "heNormal"} :
|
||||
Dropout :
|
||||
LinearLayer {labelDim, init = "gaussian", initValueScale = 1.5}
|
||||
LinearLayer {labelDim, init = "heNormal"}
|
||||
)
|
||||
|
||||
# inputs
|
||||
|
@ -74,7 +74,6 @@ TrainConvNet = [
|
|||
]
|
||||
|
||||
# Training with BN
|
||||
# Not working well on this small set. Overtrains.
|
||||
TrainConvNetWithBN = [
|
||||
action = "train"
|
||||
|
||||
|
@ -86,18 +85,18 @@ TrainConvNetWithBN = [
|
|||
|
||||
model = Sequential (
|
||||
Subtract128 :
|
||||
ConvolutionalLayer {32, (5:5), pad = true, bias = false, init = "gaussian", initValueScale = 0.0043} :
|
||||
ConvolutionalLayer {32, (5:5), pad = true, bias = false, init = "heNormal"} :
|
||||
BatchNormalizationLayer {spatialRank = 2, normalizationTimeConstant = 4096} : ReLU :
|
||||
MaxPoolingLayer {(3:3), stride = (2:2)} :
|
||||
ConvolutionalLayer {32, (5:5), pad = true, bias = false, init = "gaussian", initValueScale = 1.414} :
|
||||
ConvolutionalLayer {32, (5:5), pad = true, bias = false, init = "heNormal"} :
|
||||
BatchNormalizationLayer {spatialRank = 2, normalizationTimeConstant = 4096} : ReLU :
|
||||
MaxPoolingLayer {(3:3), stride = (2:2)} :
|
||||
ConvolutionalLayer {64, (5:5), pad = true, bias = false, init = "gaussian", initValueScale = 1.414} :
|
||||
ConvolutionalLayer {64, (5:5), pad = true, bias = false, init = "heNormal"} :
|
||||
BatchNormalizationLayer {spatialRank = 2, normalizationTimeConstant = 4096} : ReLU :
|
||||
MaxPoolingLayer {(3:3), stride = (2:2)} :
|
||||
LinearLayer {64, bias = false, init = "gaussian", initValueScale = 12} :
|
||||
LinearLayer {64, bias = false, init = "heNormal"} :
|
||||
BatchNormalizationLayer {normalizationTimeConstant = 4096} : ReLU :
|
||||
LinearLayer {labelDim, init = "gaussian", initValueScale = 1.5}
|
||||
LinearLayer {labelDim, init = "heNormal"}
|
||||
)
|
||||
|
||||
# inputs
|
||||
|
|
Загрузка…
Ссылка в новой задаче